[funini.com] -> [kei@sodan] -> Kernel Reading

root/include/linux/mm.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. put_page_testzero
  2. get_page_unless_zero
  3. is_vmalloc_addr
  4. compound_head
  5. page_count
  6. get_page
  7. virt_to_head_page
  8. init_page_count
  9. set_compound_page_dtor
  10. get_compound_page_dtor
  11. compound_order
  12. set_compound_order
  13. page_zonenum
  14. page_zone_id
  15. zone_to_nid
  16. page_to_nid
  17. page_zone
  18. page_to_section
  19. set_page_zone
  20. set_page_node
  21. set_page_section
  22. set_page_links
  23. round_hint_to_min
  24. lowmem_page_address
  25. page_mapping
  26. PageAnon
  27. page_index
  28. reset_page_mapcount
  29. page_mapcount
  30. page_mapped
  31. shmem_lock
  32. unmap_shared_mapping_range
  33. handle_mm_fault
  34. __pud_alloc
  35. __pmd_alloc
  36. pud_alloc
  37. pmd_alloc
  38. pgtable_page_ctor
  39. pgtable_page_dtor
  40. setup_per_cpu_pageset
  41. vma_nonlinear_insert
  42. added_exe_file_vma
  43. removed_exe_file_vma
  44. do_mmap
  45. find_vma_intersection
  46. vma_pages
  47. vm_stat_account
  48. enable_debug_pagealloc
  49. kernel_map_pages
  50. enable_debug_pagealloc
  51. kernel_page_present

#ifndef _LINUX_MM_H
#define _LINUX_MM_H

#include <linux/errno.h>

#ifdef __KERNEL__

#include <linux/gfp.h>
#include <linux/list.h>
#include <linux/mmdebug.h>
#include <linux/mmzone.h>
#include <linux/rbtree.h>
#include <linux/prio_tree.h>
#include <linux/debug_locks.h>
#include <linux/mm_types.h>

struct mempolicy;
struct anon_vma;
struct file_ra_state;
struct user_struct;
struct writeback_control;

#ifndef CONFIG_DISCONTIGMEM          /* Don't use mapnrs, do it properly */
extern unsigned long max_mapnr;
#endif

extern unsigned long num_physpages;
extern void * high_memory;
extern int page_cluster;

#ifdef CONFIG_SYSCTL
extern int sysctl_legacy_va_layout;
#else
#define sysctl_legacy_va_layout 0
#endif

extern unsigned long mmap_min_addr;

#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/processor.h>

#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))

/* to align the pointer to the (next) page boundary */
#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)

/*
 * Linux kernel virtual memory manager primitives.
 * The idea being to have a "virtual" mm in the same way
 * we have a virtual fs - giving a cleaner interface to the
 * mm details, and allowing different kinds of memory mappings
 * (from shared memory to executable loading to arbitrary
 * mmap() functions).
 */

extern struct kmem_cache *vm_area_cachep;

/*
 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
 * disabled, then there's a single shared list of VMAs maintained by the
 * system, and mm's subscribe to these individually
 */
struct vm_list_struct {
        struct vm_list_struct   *next;
        struct vm_area_struct   *vma;
};

#ifndef CONFIG_MMU
extern struct rb_root nommu_vma_tree;
extern struct rw_semaphore nommu_vma_sem;

extern unsigned int kobjsize(const void *objp);
#endif

/*
 * vm_flags in vm_area_struct, see mm_types.h.
 */
#define VM_READ         0x00000001      /* currently active flags */
#define VM_WRITE        0x00000002
#define VM_EXEC         0x00000004
#define VM_SHARED       0x00000008

/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
#define VM_MAYREAD      0x00000010      /* limits for mprotect() etc */
#define VM_MAYWRITE     0x00000020
#define VM_MAYEXEC      0x00000040
#define VM_MAYSHARE     0x00000080

#define VM_GROWSDOWN    0x00000100      /* general info on the segment */
#define VM_GROWSUP      0x00000200
#define VM_PFNMAP       0x00000400      /* Page-ranges managed without "struct page", just pure PFN */
#define VM_DENYWRITE    0x00000800      /* ETXTBSY on write attempts.. */

#define VM_EXECUTABLE   0x00001000
#define VM_LOCKED       0x00002000
#define VM_IO           0x00004000      /* Memory mapped I/O or similar */

                                        /* Used by sys_madvise() */
#define VM_SEQ_READ     0x00008000      /* App will access data sequentially */
#define VM_RAND_READ    0x00010000      /* App will not benefit from clustered reads */

#define VM_DONTCOPY     0x00020000      /* Do not copy this vma on fork */
#define VM_DONTEXPAND   0x00040000      /* Cannot expand with mremap() */
#define VM_RESERVED     0x00080000      /* Count as reserved_vm like IO */
#define VM_ACCOUNT      0x00100000      /* Is a VM accounted object */
#define VM_NORESERVE    0x00200000      /* should the VM suppress accounting */
#define VM_HUGETLB      0x00400000      /* Huge TLB Page VM */
#define VM_NONLINEAR    0x00800000      /* Is non-linear (remap_file_pages) */
#define VM_MAPPED_COPY  0x01000000      /* T if mapped copy of data (nommu mmap) */
#define VM_INSERTPAGE   0x02000000      /* The vma has had "vm_insert_page()" done on it */
#define VM_ALWAYSDUMP   0x04000000      /* Always include in core dumps */

#define VM_CAN_NONLINEAR 0x08000000     /* Has ->fault & does nonlinear pages */
#define VM_MIXEDMAP     0x10000000      /* Can contain "struct page" and pure PFN pages */
#define VM_SAO          0x20000000      /* Strong Access Ordering (powerpc) */

#ifndef VM_STACK_DEFAULT_FLAGS          /* arch can override this */
#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
#endif

#ifdef CONFIG_STACK_GROWSUP
#define VM_STACK_FLAGS  (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
#else
#define VM_STACK_FLAGS  (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
#endif

#define VM_READHINTMASK                 (VM_SEQ_READ | VM_RAND_READ)
#define VM_ClearReadHint(v)             (v)->vm_flags &= ~VM_READHINTMASK
#define VM_NormalReadHint(v)            (!((v)->vm_flags & VM_READHINTMASK))
#define VM_SequentialReadHint(v)        ((v)->vm_flags & VM_SEQ_READ)
#define VM_RandomReadHint(v)            ((v)->vm_flags & VM_RAND_READ)

/*
 * mapping from the currently active vm_flags protection bits (the
 * low four bits) to a page protection mask..
 */
extern pgprot_t protection_map[16];

#define FAULT_FLAG_WRITE        0x01    /* Fault was a write access */
#define FAULT_FLAG_NONLINEAR    0x02    /* Fault was via a nonlinear mapping */


/*
 * vm_fault is filled by the the pagefault handler and passed to the vma's
 * ->fault function. The vma's ->fault is responsible for returning a bitmask
 * of VM_FAULT_xxx flags that give details about how the fault was handled.
 *
 * pgoff should be used in favour of virtual_address, if possible. If pgoff
 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
 * mapping support.
 */
struct vm_fault {
        unsigned int flags;             /* FAULT_FLAG_xxx flags */
        pgoff_t pgoff;                  /* Logical page offset based on vma */
        void __user *virtual_address;   /* Faulting virtual address */

        struct page *page;              /* ->fault handlers should return a
                                         * page here, unless VM_FAULT_NOPAGE
                                         * is set (which is also implied by
                                         * VM_FAULT_ERROR).
                                         */
};

/*
 * These are the virtual MM functions - opening of an area, closing and
 * unmapping it (needed to keep files on disk up-to-date etc), pointer
 * to the functions called when a no-page or a wp-page exception occurs. 
 */
struct vm_operations_struct {
        void (*open)(struct vm_area_struct * area);
        void (*close)(struct vm_area_struct * area);
        int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);

        /* notification that a previously read-only page is about to become
         * writable, if an error is returned it will cause a SIGBUS */
        int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);

        /* called by access_process_vm when get_user_pages() fails, typically
         * for use by special VMAs that can switch between memory and hardware
         */
        int (*access)(struct vm_area_struct *vma, unsigned long addr,
                      void *buf, int len, int write);
#ifdef CONFIG_NUMA
        /*
         * set_policy() op must add a reference to any non-NULL @new mempolicy
         * to hold the policy upon return.  Caller should pass NULL @new to
         * remove a policy and fall back to surrounding context--i.e. do not
         * install a MPOL_DEFAULT policy, nor the task or system default
         * mempolicy.
         */
        int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);

        /*
         * get_policy() op must add reference [mpol_get()] to any policy at
         * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
         * in mm/mempolicy.c will do this automatically.
         * get_policy() must NOT add a ref if the policy at (vma,addr) is not
         * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
         * If no [shared/vma] mempolicy exists at the addr, get_policy() op
         * must return NULL--i.e., do not "fallback" to task or system default
         * policy.
         */
        struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
                                        unsigned long addr);
        int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
                const nodemask_t *to, unsigned long flags);
#endif
};

struct mmu_gather;
struct inode;

#define page_private(page)              ((page)->private)
#define set_page_private(page, v)       ((page)->private = (v))

/*
 * FIXME: take this include out, include page-flags.h in
 * files which need it (119 of them)
 */
#include <linux/page-flags.h>

/*
 * Methods to modify the page usage count.
 *
 * What counts for a page usage:
 * - cache mapping   (page->mapping)
 * - private data    (page->private)
 * - page mapped in a task's page tables, each mapping
 *   is counted separately
 *
 * Also, many kernel routines increase the page count before a critical
 * routine so they can be sure the page doesn't go away from under them.
 */

/*
 * Drop a ref, return true if the refcount fell to zero (the page has no users)
 */
static inline int put_page_testzero(struct page *page)
{
        VM_BUG_ON(atomic_read(&page->_count) == 0);
        return atomic_dec_and_test(&page->_count);
}

/*
 * Try to grab a ref unless the page has a refcount of zero, return false if
 * that is the case.
 */
static inline int get_page_unless_zero(struct page *page)
{
        VM_BUG_ON(PageTail(page));
        return atomic_inc_not_zero(&page->_count);
}

/* Support for virtually mapped pages */
struct page *vmalloc_to_page(const void *addr);
unsigned long vmalloc_to_pfn(const void *addr);

/*
 * Determine if an address is within the vmalloc range
 *
 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
 * is no special casing required.
 */
static inline int is_vmalloc_addr(const void *x)
{
#ifdef CONFIG_MMU
        unsigned long addr = (unsigned long)x;

        return addr >= VMALLOC_START && addr < VMALLOC_END;
#else
        return 0;
#endif
}

static inline struct page *compound_head(struct page *page)
{
        if (unlikely(PageTail(page)))
                return page->first_page;
        return page;
}

static inline int page_count(struct page *page)
{
        return atomic_read(&compound_head(page)->_count);
}

static inline void get_page(struct page *page)
{
        page = compound_head(page);
        VM_BUG_ON(atomic_read(&page->_count) == 0);
        atomic_inc(&page->_count);
}

static inline struct page *virt_to_head_page(const void *x)
{
        struct page *page = virt_to_page(x);
        return compound_head(page);
}

/*
 * Setup the page count before being freed into the page allocator for
 * the first time (boot or memory hotplug)
 */
static inline void init_page_count(struct page *page)
{
        atomic_set(&page->_count, 1);
}

void put_page(struct page *page);
void put_pages_list(struct list_head *pages);

void split_page(struct page *page, unsigned int order);

/*
 * Compound pages have a destructor function.  Provide a
 * prototype for that function and accessor functions.
 * These are _only_ valid on the head of a PG_compound page.
 */
typedef void compound_page_dtor(struct page *);

static inline void set_compound_page_dtor(struct page *page,
                                                compound_page_dtor *dtor)
{
        page[1].lru.next = (void *)dtor;
}

static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
{
        return (compound_page_dtor *)page[1].lru.next;
}

static inline int compound_order(struct page *page)
{
        if (!PageHead(page))
                return 0;
        return (unsigned long)page[1].lru.prev;
}

static inline void set_compound_order(struct page *page, unsigned long order)
{
        page[1].lru.prev = (void *)order;
}

/*
 * Multiple processes may "see" the same page. E.g. for untouched
 * mappings of /dev/null, all processes see the same page full of
 * zeroes, and text pages of executables and shared libraries have
 * only one copy in memory, at most, normally.
 *
 * For the non-reserved pages, page_count(page) denotes a reference count.
 *   page_count() == 0 means the page is free. page->lru is then used for
 *   freelist management in the buddy allocator.
 *   page_count() > 0  means the page has been allocated.
 *
 * Pages are allocated by the slab allocator in order to provide memory
 * to kmalloc and kmem_cache_alloc. In this case, the management of the
 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
 * unless a particular usage is carefully commented. (the responsibility of
 * freeing the kmalloc memory is the caller's, of course).
 *
 * A page may be used by anyone else who does a __get_free_page().
 * In this case, page_count still tracks the references, and should only
 * be used through the normal accessor functions. The top bits of page->flags
 * and page->virtual store page management information, but all other fields
 * are unused and could be used privately, carefully. The management of this
 * page is the responsibility of the one who allocated it, and those who have
 * subsequently been given references to it.
 *
 * The other pages (we may call them "pagecache pages") are completely
 * managed by the Linux memory manager: I/O, buffers, swapping etc.
 * The following discussion applies only to them.
 *
 * A pagecache page contains an opaque `private' member, which belongs to the
 * page's address_space. Usually, this is the address of a circular list of
 * the page's disk buffers. PG_private must be set to tell the VM to call
 * into the filesystem to release these pages.
 *
 * A page may belong to an inode's memory mapping. In this case, page->mapping
 * is the pointer to the inode, and page->index is the file offset of the page,
 * in units of PAGE_CACHE_SIZE.
 *
 * If pagecache pages are not associated with an inode, they are said to be
 * anonymous pages. These may become associated with the swapcache, and in that
 * case PG_swapcache is set, and page->private is an offset into the swapcache.
 *
 * In either case (swapcache or inode backed), the pagecache itself holds one
 * reference to the page. Setting PG_private should also increment the
 * refcount. The each user mapping also has a reference to the page.
 *
 * The pagecache pages are stored in a per-mapping radix tree, which is
 * rooted at mapping->page_tree, and indexed by offset.
 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
 * lists, we instead now tag pages as dirty/writeback in the radix tree.
 *
 * All pagecache pages may be subject to I/O:
 * - inode pages may need to be read from disk,
 * - inode pages which have been modified and are MAP_SHARED may need
 *   to be written back to the inode on disk,
 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
 *   modified may need to be swapped out to swap space and (later) to be read
 *   back into memory.
 */

/*
 * The zone field is never updated after free_area_init_core()
 * sets it, so none of the operations on it need to be atomic.
 */


/*
 * page->flags layout:
 *
 * There are three possibilities for how page->flags get
 * laid out.  The first is for the normal case, without
 * sparsemem.  The second is for sparsemem when there is
 * plenty of space for node and section.  The last is when
 * we have run out of space and have to fall back to an
 * alternate (slower) way of determining the node.
 *
 * No sparsemem or sparsemem vmemmap: |       NODE     | ZONE | ... | FLAGS |
 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
 * classic sparse no space for node:  | SECTION |     ZONE    | ... | FLAGS |
 */
#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
#define SECTIONS_WIDTH          SECTIONS_SHIFT
#else
#define SECTIONS_WIDTH          0
#endif

#define ZONES_WIDTH             ZONES_SHIFT

#if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
#define NODES_WIDTH             NODES_SHIFT
#else
#ifdef CONFIG_SPARSEMEM_VMEMMAP
#error "Vmemmap: No space for nodes field in page flags"
#endif
#define NODES_WIDTH             0
#endif

/* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
#define SECTIONS_PGOFF          ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
#define NODES_PGOFF             (SECTIONS_PGOFF - NODES_WIDTH)
#define ZONES_PGOFF             (NODES_PGOFF - ZONES_WIDTH)

/*
 * We are going to use the flags for the page to node mapping if its in
 * there.  This includes the case where there is no node, so it is implicit.
 */
#if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
#define NODE_NOT_IN_PAGE_FLAGS
#endif

#ifndef PFN_SECTION_SHIFT
#define PFN_SECTION_SHIFT 0
#endif

/*
 * Define the bit shifts to access each section.  For non-existant
 * sections we define the shift as 0; that plus a 0 mask ensures
 * the compiler will optimise away reference to them.
 */
#define SECTIONS_PGSHIFT        (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
#define NODES_PGSHIFT           (NODES_PGOFF * (NODES_WIDTH != 0))
#define ZONES_PGSHIFT           (ZONES_PGOFF * (ZONES_WIDTH != 0))

/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
#ifdef NODE_NOT_IN_PAGEFLAGS
#define ZONEID_SHIFT            (SECTIONS_SHIFT + ZONES_SHIFT)
#define ZONEID_PGOFF            ((SECTIONS_PGOFF < ZONES_PGOFF)? \
                                                SECTIONS_PGOFF : ZONES_PGOFF)
#else
#define ZONEID_SHIFT            (NODES_SHIFT + ZONES_SHIFT)
#define ZONEID_PGOFF            ((NODES_PGOFF < ZONES_PGOFF)? \
                                                NODES_PGOFF : ZONES_PGOFF)
#endif

#define ZONEID_PGSHIFT          (ZONEID_PGOFF * (ZONEID_SHIFT != 0))

#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
#endif

#define ZONES_MASK              ((1UL << ZONES_WIDTH) - 1)
#define NODES_MASK              ((1UL << NODES_WIDTH) - 1)
#define SECTIONS_MASK           ((1UL << SECTIONS_WIDTH) - 1)
#define ZONEID_MASK             ((1UL << ZONEID_SHIFT) - 1)

static inline enum zone_type page_zonenum(struct page *page)
{
        return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
}

/*
 * The identification function is only used by the buddy allocator for
 * determining if two pages could be buddies. We are not really
 * identifying a zone since we could be using a the section number
 * id if we have not node id available in page flags.
 * We guarantee only that it will return the same value for two
 * combinable pages in a zone.
 */
static inline int page_zone_id(struct page *page)
{
        return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
}

static inline int zone_to_nid(struct zone *zone)
{
#ifdef CONFIG_NUMA
        return zone->node;
#else
        return 0;
#endif
}

#ifdef NODE_NOT_IN_PAGE_FLAGS
extern int page_to_nid(struct page *page);
#else
static inline int page_to_nid(struct page *page)
{
        return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
}
#endif

static inline struct zone *page_zone(struct page *page)
{
        return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
}

#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
static inline unsigned long page_to_section(struct page *page)
{
        return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
}
#endif

static inline void set_page_zone(struct page *page, enum zone_type zone)
{
        page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
        page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
}

static inline void set_page_node(struct page *page, unsigned long node)
{
        page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
        page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
}

static inline void set_page_section(struct page *page, unsigned long section)
{
        page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
        page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
}

static inline void set_page_links(struct page *page, enum zone_type zone,
        unsigned long node, unsigned long pfn)
{
        set_page_zone(page, zone);
        set_page_node(page, node);
        set_page_section(page, pfn_to_section_nr(pfn));
}

/*
 * If a hint addr is less than mmap_min_addr change hint to be as
 * low as possible but still greater than mmap_min_addr
 */
static inline unsigned long round_hint_to_min(unsigned long hint)
{
#ifdef CONFIG_SECURITY
        hint &= PAGE_MASK;
        if (((void *)hint != NULL) &&
            (hint < mmap_min_addr))
                return PAGE_ALIGN(mmap_min_addr);
#endif
        return hint;
}

/*
 * Some inline functions in vmstat.h depend on page_zone()
 */
#include <linux/vmstat.h>

static __always_inline void *lowmem_page_address(struct page *page)
{
        return __va(page_to_pfn(page) << PAGE_SHIFT);
}

#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
#define HASHED_PAGE_VIRTUAL
#endif

#if defined(WANT_PAGE_VIRTUAL)
#define page_address(page) ((page)->virtual)
#define set_page_address(page, address)                 \
        do {                                            \
                (page)->virtual = (address);            \
        } while(0)
#define page_address_init()  do { } while(0)
#endif

#if defined(HASHED_PAGE_VIRTUAL)
void *page_address(struct page *page);
void set_page_address(struct page *page, void *virtual);
void page_address_init(void);
#endif

#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
#define page_address(page) lowmem_page_address(page)
#define set_page_address(page, address)  do { } while(0)
#define page_address_init()  do { } while(0)
#endif

/*
 * On an anonymous page mapped into a user virtual memory area,
 * page->mapping points to its anon_vma, not to a struct address_space;
 * with the PAGE_MAPPING_ANON bit set to distinguish it.
 *
 * Please note that, confusingly, "page_mapping" refers to the inode
 * address_space which maps the page from disk; whereas "page_mapped"
 * refers to user virtual address space into which the page is mapped.
 */
#define PAGE_MAPPING_ANON       1

extern struct address_space swapper_space;
static inline struct address_space *page_mapping(struct page *page)
{
        struct address_space *mapping = page->mapping;

        VM_BUG_ON(PageSlab(page));
#ifdef CONFIG_SWAP
        if (unlikely(PageSwapCache(page)))
                mapping = &swapper_space;
        else
#endif
        if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
                mapping = NULL;
        return mapping;
}

static inline int PageAnon(struct page *page)
{
        return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
}

/*
 * Return the pagecache index of the passed page.  Regular pagecache pages
 * use ->index whereas swapcache pages use ->private
 */
static inline pgoff_t page_index(struct page *page)
{
        if (unlikely(PageSwapCache(page)))
                return page_private(page);
        return page->index;
}

/*
 * The atomic page->_mapcount, like _count, starts from -1:
 * so that transitions both from it and to it can be tracked,
 * using atomic_inc_and_test and atomic_add_negative(-1).
 */
static inline void reset_page_mapcount(struct page *page)
{
        atomic_set(&(page)->_mapcount, -1);
}

static inline int page_mapcount(struct page *page)
{
        return atomic_read(&(page)->_mapcount) + 1;
}

/*
 * Return true if this page is mapped into pagetables.
 */
static inline int page_mapped(struct page *page)
{
        return atomic_read(&(page)->_mapcount) >= 0;
}

/*
 * Different kinds of faults, as returned by handle_mm_fault().
 * Used to decide whether a process gets delivered SIGBUS or
 * just gets major/minor fault counters bumped up.
 */

#define VM_FAULT_MINOR  0 /* For backwards compat. Remove me quickly. */

#define VM_FAULT_OOM    0x0001
#define VM_FAULT_SIGBUS 0x0002
#define VM_FAULT_MAJOR  0x0004
#define VM_FAULT_WRITE  0x0008  /* Special case for get_user_pages */

#define VM_FAULT_NOPAGE 0x0100  /* ->fault installed the pte, not return page */
#define VM_FAULT_LOCKED 0x0200  /* ->fault locked the returned page */

#define VM_FAULT_ERROR  (VM_FAULT_OOM | VM_FAULT_SIGBUS)

#define offset_in_page(p)       ((unsigned long)(p) & ~PAGE_MASK)

extern void show_free_areas(void);

#ifdef CONFIG_SHMEM
int shmem_lock(struct file *file, int lock, struct user_struct *user);
#else
static inline int shmem_lock(struct file *file, int lock,
                             struct user_struct *user)
{
        return 0;
}
#endif
struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);

int shmem_zero_setup(struct vm_area_struct *);

#ifndef CONFIG_MMU
extern unsigned long shmem_get_unmapped_area(struct file *file,
                                             unsigned long addr,
                                             unsigned long len,
                                             unsigned long pgoff,
                                             unsigned long flags);
#endif

extern int can_do_mlock(void);
extern int user_shm_lock(size_t, struct user_struct *);
extern void user_shm_unlock(size_t, struct user_struct *);

/*
 * Parameter block passed down to zap_pte_range in exceptional cases.
 */
struct zap_details {
        struct vm_area_struct *nonlinear_vma;   /* Check page->index if set */
        struct address_space *check_mapping;    /* Check page->mapping if set */
        pgoff_t first_index;                    /* Lowest page->index to unmap */
        pgoff_t last_index;                     /* Highest page->index to unmap */
        spinlock_t *i_mmap_lock;                /* For unmap_mapping_range: */
        unsigned long truncate_count;           /* Compare vm_truncate_count */
};

struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
                pte_t pte);

int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
                unsigned long size);
unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
                unsigned long size, struct zap_details *);
unsigned long unmap_vmas(struct mmu_gather **tlb,
                struct vm_area_struct *start_vma, unsigned long start_addr,
                unsigned long end_addr, unsigned long *nr_accounted,
                struct zap_details *);

/**
 * mm_walk - callbacks for walk_page_range
 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
 * @pte_hole: if set, called for each hole at all levels
 *
 * (see walk_page_range for more details)
 */
struct mm_walk {
        int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
        int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
        int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
        int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
        int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
        struct mm_struct *mm;
        void *private;
};

int walk_page_range(unsigned long addr, unsigned long end,
                struct mm_walk *walk);
void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
                unsigned long end, unsigned long floor, unsigned long ceiling);
int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
                        struct vm_area_struct *vma);
void unmap_mapping_range(struct address_space *mapping,
                loff_t const holebegin, loff_t const holelen, int even_cows);
int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
                        void *buf, int len, int write);

static inline void unmap_shared_mapping_range(struct address_space *mapping,
                loff_t const holebegin, loff_t const holelen)
{
        unmap_mapping_range(mapping, holebegin, holelen, 0);
}

extern int vmtruncate(struct inode * inode, loff_t offset);
extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);

#ifdef CONFIG_MMU
extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
                        unsigned long address, int write_access);
#else
static inline int handle_mm_fault(struct mm_struct *mm,
                        struct vm_area_struct *vma, unsigned long address,
                        int write_access)
{
        /* should never happen if there's no MMU */
        BUG();
        return VM_FAULT_SIGBUS;
}
#endif

extern int make_pages_present(unsigned long addr, unsigned long end);
extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);

int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
                int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);

extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
extern void do_invalidatepage(struct page *page, unsigned long offset);

int __set_page_dirty_nobuffers(struct page *page);
int __set_page_dirty_no_writeback(struct page *page);
int redirty_page_for_writepage(struct writeback_control *wbc,
                                struct page *page);
int set_page_dirty(struct page *page);
int set_page_dirty_lock(struct page *page);
int clear_page_dirty_for_io(struct page *page);

extern unsigned long move_page_tables(struct vm_area_struct *vma,
                unsigned long old_addr, struct vm_area_struct *new_vma,
                unsigned long new_addr, unsigned long len);
extern unsigned long do_mremap(unsigned long addr,
                               unsigned long old_len, unsigned long new_len,
                               unsigned long flags, unsigned long new_addr);
extern int mprotect_fixup(struct vm_area_struct *vma,
                          struct vm_area_struct **pprev, unsigned long start,
                          unsigned long end, unsigned long newflags);

/*
 * get_user_pages_fast provides equivalent functionality to get_user_pages,
 * operating on current and current->mm (force=0 and doesn't return any vmas).
 *
 * get_user_pages_fast may take mmap_sem and page tables, so no assumptions
 * can be made about locking. get_user_pages_fast is to be implemented in a
 * way that is advantageous (vs get_user_pages()) when the user memory area is
 * already faulted in and present in ptes. However if the pages have to be
 * faulted in, it may turn out to be slightly slower).
 */
int get_user_pages_fast(unsigned long start, int nr_pages, int write,
                        struct page **pages);

/*
 * A callback you can register to apply pressure to ageable caches.
 *
 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'.  It should
 * look through the least-recently-used 'nr_to_scan' entries and
 * attempt to free them up.  It should return the number of objects
 * which remain in the cache.  If it returns -1, it means it cannot do
 * any scanning at this time (eg. there is a risk of deadlock).
 *
 * The 'gfpmask' refers to the allocation we are currently trying to
 * fulfil.
 *
 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
 * querying the cache size, so a fastpath for that case is appropriate.
 */
struct shrinker {
        int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
        int seeks;      /* seeks to recreate an obj */

        /* These are for internal use */
        struct list_head list;
        long nr;        /* objs pending delete */
};
#define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
extern void register_shrinker(struct shrinker *);
extern void unregister_shrinker(struct shrinker *);

int vma_wants_writenotify(struct vm_area_struct *vma);

extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl);

#ifdef __PAGETABLE_PUD_FOLDED
static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
                                                unsigned long address)
{
        return 0;
}
#else
int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
#endif

#ifdef __PAGETABLE_PMD_FOLDED
static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
                                                unsigned long address)
{
        return 0;
}
#else
int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
#endif

int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);

/*
 * The following ifdef needed to get the 4level-fixup.h header to work.
 * Remove it when 4level-fixup.h has been removed.
 */
#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
{
        return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
                NULL: pud_offset(pgd, address);
}

static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
{
        return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
                NULL: pmd_offset(pud, address);
}
#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */

#if USE_SPLIT_PTLOCKS
/*
 * We tuck a spinlock to guard each pagetable page into its struct page,
 * at page->private, with BUILD_BUG_ON to make sure that this will not
 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
 * When freeing, reset page->mapping so free_pages_check won't complain.
 */
#define __pte_lockptr(page)     &((page)->ptl)
#define pte_lock_init(_page)    do {                                    \
        spin_lock_init(__pte_lockptr(_page));                           \
} while (0)
#define pte_lock_deinit(page)   ((page)->mapping = NULL)
#define pte_lockptr(mm, pmd)    ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
#else   /* !USE_SPLIT_PTLOCKS */
/*
 * We use mm->page_table_lock to guard all pagetable pages of the mm.
 */
#define pte_lock_init(page)     do {} while (0)
#define pte_lock_deinit(page)   do {} while (0)
#define pte_lockptr(mm, pmd)    ({(void)(pmd); &(mm)->page_table_lock;})
#endif /* USE_SPLIT_PTLOCKS */

static inline void pgtable_page_ctor(struct page *page)
{
        pte_lock_init(page);
        inc_zone_page_state(page, NR_PAGETABLE);
}

static inline void pgtable_page_dtor(struct page *page)
{
        pte_lock_deinit(page);
        dec_zone_page_state(page, NR_PAGETABLE);
}

#define pte_offset_map_lock(mm, pmd, address, ptlp)     \
({                                                      \
        spinlock_t *__ptl = pte_lockptr(mm, pmd);       \
        pte_t *__pte = pte_offset_map(pmd, address);    \
        *(ptlp) = __ptl;                                \
        spin_lock(__ptl);                               \
        __pte;                                          \
})

#define pte_unmap_unlock(pte, ptl)      do {            \
        spin_unlock(ptl);                               \
        pte_unmap(pte);                                 \
} while (0)

#define pte_alloc_map(mm, pmd, address)                 \
        ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
                NULL: pte_offset_map(pmd, address))

#define pte_alloc_map_lock(mm, pmd, address, ptlp)      \
        ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
                NULL: pte_offset_map_lock(mm, pmd, address, ptlp))

#define pte_alloc_kernel(pmd, address)                  \
        ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
                NULL: pte_offset_kernel(pmd, address))

extern void free_area_init(unsigned long * zones_size);
extern void free_area_init_node(int nid, unsigned long * zones_size,
                unsigned long zone_start_pfn, unsigned long *zholes_size);
#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
/*
 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
 * zones, allocate the backing mem_map and account for memory holes in a more
 * architecture independent manner. This is a substitute for creating the
 * zone_sizes[] and zholes_size[] arrays and passing them to
 * free_area_init_node()
 *
 * An architecture is expected to register range of page frames backed by
 * physical memory with add_active_range() before calling
 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
 * usage, an architecture is expected to do something like
 *
 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
 *                                                       max_highmem_pfn};
 * for_each_valid_physical_page_range()
 *      add_active_range(node_id, start_pfn, end_pfn)
 * free_area_init_nodes(max_zone_pfns);
 *
 * If the architecture guarantees that there are no holes in the ranges
 * registered with add_active_range(), free_bootmem_active_regions()
 * will call free_bootmem_node() for each registered physical page range.
 * Similarly sparse_memory_present_with_active_regions() calls
 * memory_present() for each range when SPARSEMEM is enabled.
 *
 * See mm/page_alloc.c for more information on each function exposed by
 * CONFIG_ARCH_POPULATES_NODE_MAP
 */
extern void free_area_init_nodes(unsigned long *max_zone_pfn);
extern void add_active_range(unsigned int nid, unsigned long start_pfn,
                                        unsigned long end_pfn);
extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
                                        unsigned long end_pfn);
extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
                                        unsigned long end_pfn);
extern void remove_all_active_ranges(void);
extern unsigned long absent_pages_in_range(unsigned long start_pfn,
                                                unsigned long end_pfn);
extern void get_pfn_range_for_nid(unsigned int nid,
                        unsigned long *start_pfn, unsigned long *end_pfn);
extern unsigned long find_min_pfn_with_active_regions(void);
extern void free_bootmem_with_active_regions(int nid,
                                                unsigned long max_low_pfn);
typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
extern void sparse_memory_present_with_active_regions(int nid);
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
extern int early_pfn_to_nid(unsigned long pfn);
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
extern void set_dma_reserve(unsigned long new_dma_reserve);
extern void memmap_init_zone(unsigned long, int, unsigned long,
                                unsigned long, enum memmap_context);
extern void setup_per_zone_pages_min(void);
extern void mem_init(void);
extern void show_mem(void);
extern void si_meminfo(struct sysinfo * val);
extern void si_meminfo_node(struct sysinfo *val, int nid);
extern int after_bootmem;

#ifdef CONFIG_NUMA
extern void setup_per_cpu_pageset(void);
#else
static inline void setup_per_cpu_pageset(void) {}
#endif

/* prio_tree.c */
void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
        struct prio_tree_iter *iter);

#define vma_prio_tree_foreach(vma, iter, root, begin, end)      \
        for (prio_tree_iter_init(iter, root, begin, end), vma = NULL;   \
                (vma = vma_prio_tree_next(vma, iter)); )

static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
                                        struct list_head *list)
{
        vma->shared.vm_set.parent = NULL;
        list_add_tail(&vma->shared.vm_set.list, list);
}

/* mmap.c */
extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
        unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
extern struct vm_area_struct *vma_merge(struct mm_struct *,
        struct vm_area_struct *prev, unsigned long addr, unsigned long end,
        unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
        struct mempolicy *);
extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
extern int split_vma(struct mm_struct *,
        struct vm_area_struct *, unsigned long addr, int new_below);
extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
        struct rb_node **, struct rb_node *);
extern void unlink_file_vma(struct vm_area_struct *);
extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
        unsigned long addr, unsigned long len, pgoff_t pgoff);
extern void exit_mmap(struct mm_struct *);

extern int mm_take_all_locks(struct mm_struct *mm);
extern void mm_drop_all_locks(struct mm_struct *mm);

#ifdef CONFIG_PROC_FS
/* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
extern void added_exe_file_vma(struct mm_struct *mm);
extern void removed_exe_file_vma(struct mm_struct *mm);
#else
static inline void added_exe_file_vma(struct mm_struct *mm)
{}

static inline void removed_exe_file_vma(struct mm_struct *mm)
{}
#endif /* CONFIG_PROC_FS */

extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
extern int install_special_mapping(struct mm_struct *mm,
                                   unsigned long addr, unsigned long len,
                                   unsigned long flags, struct page **pages);

extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);

extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
        unsigned long len, unsigned long prot,
        unsigned long flag, unsigned long pgoff);
extern unsigned long mmap_region(struct file *file, unsigned long addr,
        unsigned long len, unsigned long flags,
        unsigned int vm_flags, unsigned long pgoff,
        int accountable);

static inline unsigned long do_mmap(struct file *file, unsigned long addr,
        unsigned long len, unsigned long prot,
        unsigned long flag, unsigned long offset)
{
        unsigned long ret = -EINVAL;
        if ((offset + PAGE_ALIGN(len)) < offset)
                goto out;
        if (!(offset & ~PAGE_MASK))
                ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
out:
        return ret;
}

extern int do_munmap(struct mm_struct *, unsigned long, size_t);

extern unsigned long do_brk(unsigned long, unsigned long);

/* filemap.c */
extern unsigned long page_unuse(struct page *);
extern void truncate_inode_pages(struct address_space *, loff_t);
extern void truncate_inode_pages_range(struct address_space *,
                                       loff_t lstart, loff_t lend);

/* generic vm_area_ops exported for stackable file systems */
extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);

/* mm/page-writeback.c */
int write_one_page(struct page *page, int wait);

/* readahead.c */
#define VM_MAX_READAHEAD        128     /* kbytes */
#define VM_MIN_READAHEAD        16      /* kbytes (includes current page) */

int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
                        pgoff_t offset, unsigned long nr_to_read);
int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
                        pgoff_t offset, unsigned long nr_to_read);

void page_cache_sync_readahead(struct address_space *mapping,
                               struct file_ra_state *ra,
                               struct file *filp,
                               pgoff_t offset,
                               unsigned long size);

void page_cache_async_readahead(struct address_space *mapping,
                                struct file_ra_state *ra,
                                struct file *filp,
                                struct page *pg,
                                pgoff_t offset,
                                unsigned long size);

unsigned long max_sane_readahead(unsigned long nr);

/* Do stack extension */
extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
#ifdef CONFIG_IA64
extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
#endif
extern int expand_stack_downwards(struct vm_area_struct *vma,
                                  unsigned long address);

/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
                                             struct vm_area_struct **pprev);

/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
   NULL if none.  Assume start_addr < end_addr. */
static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
{
        struct vm_area_struct * vma = find_vma(mm,start_addr);

        if (vma && end_addr <= vma->vm_start)
                vma = NULL;
        return vma;
}

static inline unsigned long vma_pages(struct vm_area_struct *vma)
{
        return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
}

pgprot_t vm_get_page_prot(unsigned long vm_flags);
struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
                        unsigned long pfn, unsigned long size, pgprot_t);
int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
                        unsigned long pfn);
int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
                        unsigned long pfn);

struct page *follow_page(struct vm_area_struct *, unsigned long address,
                        unsigned int foll_flags);
#define FOLL_WRITE      0x01    /* check pte is writable */
#define FOLL_TOUCH      0x02    /* mark page accessed */
#define FOLL_GET        0x04    /* do get_page on page */
#define FOLL_ANON       0x08    /* give ZERO_PAGE if no pgtable */

typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
                        void *data);
extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
                               unsigned long size, pte_fn_t fn, void *data);

#ifdef CONFIG_PROC_FS
void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
#else
static inline void vm_stat_account(struct mm_struct *mm,
                        unsigned long flags, struct file *file, long pages)
{
}
#endif /* CONFIG_PROC_FS */

#ifdef CONFIG_DEBUG_PAGEALLOC
extern int debug_pagealloc_enabled;

extern void kernel_map_pages(struct page *page, int numpages, int enable);

static inline void enable_debug_pagealloc(void)
{
        debug_pagealloc_enabled = 1;
}
#ifdef CONFIG_HIBERNATION
extern bool kernel_page_present(struct page *page);
#endif /* CONFIG_HIBERNATION */
#else
static inline void
kernel_map_pages(struct page *page, int numpages, int enable) {}
static inline void enable_debug_pagealloc(void)
{
}
#ifdef CONFIG_HIBERNATION
static inline bool kernel_page_present(struct page *page) { return true; }
#endif /* CONFIG_HIBERNATION */
#endif

extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
#ifdef  __HAVE_ARCH_GATE_AREA
int in_gate_area_no_task(unsigned long addr);
int in_gate_area(struct task_struct *task, unsigned long addr);
#else
int in_gate_area_no_task(unsigned long addr);
#define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
#endif  /* __HAVE_ARCH_GATE_AREA */

int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
                                        void __user *, size_t *, loff_t *);
unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
                        unsigned long lru_pages);

#ifndef CONFIG_MMU
#define randomize_va_space 0
#else
extern int randomize_va_space;
#endif

const char * arch_vma_name(struct vm_area_struct *vma);
void print_vma_addr(char *prefix, unsigned long rip);

struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
void *vmemmap_alloc_block(unsigned long size, int node);
void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
int vmemmap_populate_basepages(struct page *start_page,
                                                unsigned long pages, int node);
int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
void vmemmap_populate_print_last(void);

#endif /* __KERNEL__ */
#endif /* _LINUX_MM_H */

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading