[funini.com] -> [kei@sodan] -> Kernel Reading

root/mm/vmscan.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. register_shrinker
  2. unregister_shrinker
  3. shrink_slab
  4. page_mapping_inuse
  5. is_page_cache_freeable
  6. may_write_to_queue
  7. handle_write_error
  8. __remove_mapping
  9. remove_mapping
  10. shrink_page_list
  11. __isolate_lru_page
  12. isolate_lru_pages
  13. isolate_pages_global
  14. clear_active_flags
  15. shrink_inactive_list
  16. note_zone_scanning_priority
  17. zone_is_near_oom
  18. calc_reclaim_mapped
  19. shrink_active_list
  20. shrink_zone
  21. shrink_zones
  22. do_try_to_free_pages
  23. try_to_free_pages
  24. try_to_free_mem_cgroup_pages
  25. balance_pgdat
  26. kswapd
  27. wakeup_kswapd
  28. shrink_all_zones
  29. count_lru_pages
  30. shrink_all_memory
  31. cpu_callback
  32. kswapd_run
  33. kswapd_init
  34. __zone_reclaim
  35. zone_reclaim

/*
 *  linux/mm/vmscan.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *
 *  Swap reorganised 29.12.95, Stephen Tweedie.
 *  kswapd added: 7.1.96  sct
 *  Removed kswapd_ctl limits, and swap out as many pages as needed
 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
 *  Multiqueue VM started 5.8.00, Rik van Riel.
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/init.h>
#include <linux/highmem.h>
#include <linux/vmstat.h>
#include <linux/file.h>
#include <linux/writeback.h>
#include <linux/blkdev.h>
#include <linux/buffer_head.h>  /* for try_to_release_page(),
                                        buffer_heads_over_limit */
#include <linux/mm_inline.h>
#include <linux/pagevec.h>
#include <linux/backing-dev.h>
#include <linux/rmap.h>
#include <linux/topology.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/notifier.h>
#include <linux/rwsem.h>
#include <linux/delay.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <linux/memcontrol.h>
#include <linux/delayacct.h>

#include <asm/tlbflush.h>
#include <asm/div64.h>

#include <linux/swapops.h>

#include "internal.h"

struct scan_control {
        /* Incremented by the number of inactive pages that were scanned */
        unsigned long nr_scanned;

        /* This context's GFP mask */
        gfp_t gfp_mask;

        int may_writepage;

        /* Can pages be swapped as part of reclaim? */
        int may_swap;

        /* This context's SWAP_CLUSTER_MAX. If freeing memory for
         * suspend, we effectively ignore SWAP_CLUSTER_MAX.
         * In this context, it doesn't matter that we scan the
         * whole list at once. */
        int swap_cluster_max;

        int swappiness;

        int all_unreclaimable;

        int order;

        /* Which cgroup do we reclaim from */
        struct mem_cgroup *mem_cgroup;

        /* Pluggable isolate pages callback */
        unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
                        unsigned long *scanned, int order, int mode,
                        struct zone *z, struct mem_cgroup *mem_cont,
                        int active);
};

#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))

#ifdef ARCH_HAS_PREFETCH
#define prefetch_prev_lru_page(_page, _base, _field)                    \
        do {                                                            \
                if ((_page)->lru.prev != _base) {                       \
                        struct page *prev;                              \
                                                                        \
                        prev = lru_to_page(&(_page->lru));              \
                        prefetch(&prev->_field);                        \
                }                                                       \
        } while (0)
#else
#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

#ifdef ARCH_HAS_PREFETCHW
#define prefetchw_prev_lru_page(_page, _base, _field)                   \
        do {                                                            \
                if ((_page)->lru.prev != _base) {                       \
                        struct page *prev;                              \
                                                                        \
                        prev = lru_to_page(&(_page->lru));              \
                        prefetchw(&prev->_field);                       \
                }                                                       \
        } while (0)
#else
#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
#endif

/*
 * From 0 .. 100.  Higher means more swappy.
 */
int vm_swappiness = 60;
long vm_total_pages;    /* The total number of pages which the VM controls */

static LIST_HEAD(shrinker_list);
static DECLARE_RWSEM(shrinker_rwsem);

#ifdef CONFIG_CGROUP_MEM_RES_CTLR
#define scan_global_lru(sc)     (!(sc)->mem_cgroup)
#else
#define scan_global_lru(sc)     (1)
#endif

/*
 * Add a shrinker callback to be called from the vm
 */
void register_shrinker(struct shrinker *shrinker)
{
        shrinker->nr = 0;
        down_write(&shrinker_rwsem);
        list_add_tail(&shrinker->list, &shrinker_list);
        up_write(&shrinker_rwsem);
}
EXPORT_SYMBOL(register_shrinker);

/*
 * Remove one
 */
void unregister_shrinker(struct shrinker *shrinker)
{
        down_write(&shrinker_rwsem);
        list_del(&shrinker->list);
        up_write(&shrinker_rwsem);
}
EXPORT_SYMBOL(unregister_shrinker);

#define SHRINK_BATCH 128
/*
 * Call the shrink functions to age shrinkable caches
 *
 * Here we assume it costs one seek to replace a lru page and that it also
 * takes a seek to recreate a cache object.  With this in mind we age equal
 * percentages of the lru and ageable caches.  This should balance the seeks
 * generated by these structures.
 *
 * If the vm encountered mapped pages on the LRU it increase the pressure on
 * slab to avoid swapping.
 *
 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
 *
 * `lru_pages' represents the number of on-LRU pages in all the zones which
 * are eligible for the caller's allocation attempt.  It is used for balancing
 * slab reclaim versus page reclaim.
 *
 * Returns the number of slab objects which we shrunk.
 */
unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
                        unsigned long lru_pages)
{
        struct shrinker *shrinker;
        unsigned long ret = 0;

        if (scanned == 0)
                scanned = SWAP_CLUSTER_MAX;

        if (!down_read_trylock(&shrinker_rwsem))
                return 1;       /* Assume we'll be able to shrink next time */

        list_for_each_entry(shrinker, &shrinker_list, list) {
                unsigned long long delta;
                unsigned long total_scan;
                unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);

                delta = (4 * scanned) / shrinker->seeks;
                delta *= max_pass;
                do_div(delta, lru_pages + 1);
                shrinker->nr += delta;
                if (shrinker->nr < 0) {
                        printk(KERN_ERR "%s: nr=%ld\n",
                                        __func__, shrinker->nr);
                        shrinker->nr = max_pass;
                }

                /*
                 * Avoid risking looping forever due to too large nr value:
                 * never try to free more than twice the estimate number of
                 * freeable entries.
                 */
                if (shrinker->nr > max_pass * 2)
                        shrinker->nr = max_pass * 2;

                total_scan = shrinker->nr;
                shrinker->nr = 0;

                while (total_scan >= SHRINK_BATCH) {
                        long this_scan = SHRINK_BATCH;
                        int shrink_ret;
                        int nr_before;

                        nr_before = (*shrinker->shrink)(0, gfp_mask);
                        shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
                        if (shrink_ret == -1)
                                break;
                        if (shrink_ret < nr_before)
                                ret += nr_before - shrink_ret;
                        count_vm_events(SLABS_SCANNED, this_scan);
                        total_scan -= this_scan;

                        cond_resched();
                }

                shrinker->nr += total_scan;
        }
        up_read(&shrinker_rwsem);
        return ret;
}

/* Called without lock on whether page is mapped, so answer is unstable */
static inline int page_mapping_inuse(struct page *page)
{
        struct address_space *mapping;

        /* Page is in somebody's page tables. */
        if (page_mapped(page))
                return 1;

        /* Be more reluctant to reclaim swapcache than pagecache */
        if (PageSwapCache(page))
                return 1;

        mapping = page_mapping(page);
        if (!mapping)
                return 0;

        /* File is mmap'd by somebody? */
        return mapping_mapped(mapping);
}

static inline int is_page_cache_freeable(struct page *page)
{
        return page_count(page) - !!PagePrivate(page) == 2;
}

static int may_write_to_queue(struct backing_dev_info *bdi)
{
        if (current->flags & PF_SWAPWRITE)
                return 1;
        if (!bdi_write_congested(bdi))
                return 1;
        if (bdi == current->backing_dev_info)
                return 1;
        return 0;
}

/*
 * We detected a synchronous write error writing a page out.  Probably
 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 * fsync(), msync() or close().
 *
 * The tricky part is that after writepage we cannot touch the mapping: nothing
 * prevents it from being freed up.  But we have a ref on the page and once
 * that page is locked, the mapping is pinned.
 *
 * We're allowed to run sleeping lock_page() here because we know the caller has
 * __GFP_FS.
 */
static void handle_write_error(struct address_space *mapping,
                                struct page *page, int error)
{
        lock_page(page);
        if (page_mapping(page) == mapping)
                mapping_set_error(mapping, error);
        unlock_page(page);
}

/* Request for sync pageout. */
enum pageout_io {
        PAGEOUT_IO_ASYNC,
        PAGEOUT_IO_SYNC,
};

/* possible outcome of pageout() */
typedef enum {
        /* failed to write page out, page is locked */
        PAGE_KEEP,
        /* move page to the active list, page is locked */
        PAGE_ACTIVATE,
        /* page has been sent to the disk successfully, page is unlocked */
        PAGE_SUCCESS,
        /* page is clean and locked */
        PAGE_CLEAN,
} pageout_t;

/*
 * pageout is called by shrink_page_list() for each dirty page.
 * Calls ->writepage().
 */
static pageout_t pageout(struct page *page, struct address_space *mapping,
                                                enum pageout_io sync_writeback)
{
        /*
         * If the page is dirty, only perform writeback if that write
         * will be non-blocking.  To prevent this allocation from being
         * stalled by pagecache activity.  But note that there may be
         * stalls if we need to run get_block().  We could test
         * PagePrivate for that.
         *
         * If this process is currently in generic_file_write() against
         * this page's queue, we can perform writeback even if that
         * will block.
         *
         * If the page is swapcache, write it back even if that would
         * block, for some throttling. This happens by accident, because
         * swap_backing_dev_info is bust: it doesn't reflect the
         * congestion state of the swapdevs.  Easy to fix, if needed.
         * See swapfile.c:page_queue_congested().
         */
        if (!is_page_cache_freeable(page))
                return PAGE_KEEP;
        if (!mapping) {
                /*
                 * Some data journaling orphaned pages can have
                 * page->mapping == NULL while being dirty with clean buffers.
                 */
                if (PagePrivate(page)) {
                        if (try_to_free_buffers(page)) {
                                ClearPageDirty(page);
                                printk("%s: orphaned page\n", __func__);
                                return PAGE_CLEAN;
                        }
                }
                return PAGE_KEEP;
        }
        if (mapping->a_ops->writepage == NULL)
                return PAGE_ACTIVATE;
        if (!may_write_to_queue(mapping->backing_dev_info))
                return PAGE_KEEP;

        if (clear_page_dirty_for_io(page)) {
                int res;
                struct writeback_control wbc = {
                        .sync_mode = WB_SYNC_NONE,
                        .nr_to_write = SWAP_CLUSTER_MAX,
                        .range_start = 0,
                        .range_end = LLONG_MAX,
                        .nonblocking = 1,
                        .for_reclaim = 1,
                };

                SetPageReclaim(page);
                res = mapping->a_ops->writepage(page, &wbc);
                if (res < 0)
                        handle_write_error(mapping, page, res);
                if (res == AOP_WRITEPAGE_ACTIVATE) {
                        ClearPageReclaim(page);
                        return PAGE_ACTIVATE;
                }

                /*
                 * Wait on writeback if requested to. This happens when
                 * direct reclaiming a large contiguous area and the
                 * first attempt to free a range of pages fails.
                 */
                if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
                        wait_on_page_writeback(page);

                if (!PageWriteback(page)) {
                        /* synchronous write or broken a_ops? */
                        ClearPageReclaim(page);
                }
                inc_zone_page_state(page, NR_VMSCAN_WRITE);
                return PAGE_SUCCESS;
        }

        return PAGE_CLEAN;
}

/*
 * Same as remove_mapping, but if the page is removed from the mapping, it
 * gets returned with a refcount of 0.
 */
static int __remove_mapping(struct address_space *mapping, struct page *page)
{
        BUG_ON(!PageLocked(page));
        BUG_ON(mapping != page_mapping(page));

        spin_lock_irq(&mapping->tree_lock);
        /*
         * The non racy check for a busy page.
         *
         * Must be careful with the order of the tests. When someone has
         * a ref to the page, it may be possible that they dirty it then
         * drop the reference. So if PageDirty is tested before page_count
         * here, then the following race may occur:
         *
         * get_user_pages(&page);
         * [user mapping goes away]
         * write_to(page);
         *                              !PageDirty(page)    [good]
         * SetPageDirty(page);
         * put_page(page);
         *                              !page_count(page)   [good, discard it]
         *
         * [oops, our write_to data is lost]
         *
         * Reversing the order of the tests ensures such a situation cannot
         * escape unnoticed. The smp_rmb is needed to ensure the page->flags
         * load is not satisfied before that of page->_count.
         *
         * Note that if SetPageDirty is always performed via set_page_dirty,
         * and thus under tree_lock, then this ordering is not required.
         */
        if (!page_freeze_refs(page, 2))
                goto cannot_free;
        /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
        if (unlikely(PageDirty(page))) {
                page_unfreeze_refs(page, 2);
                goto cannot_free;
        }

        if (PageSwapCache(page)) {
                swp_entry_t swap = { .val = page_private(page) };
                __delete_from_swap_cache(page);
                spin_unlock_irq(&mapping->tree_lock);
                swap_free(swap);
        } else {
                __remove_from_page_cache(page);
                spin_unlock_irq(&mapping->tree_lock);
        }

        return 1;

cannot_free:
        spin_unlock_irq(&mapping->tree_lock);
        return 0;
}

/*
 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 * someone else has a ref on the page, abort and return 0.  If it was
 * successfully detached, return 1.  Assumes the caller has a single ref on
 * this page.
 */
int remove_mapping(struct address_space *mapping, struct page *page)
{
        if (__remove_mapping(mapping, page)) {
                /*
                 * Unfreezing the refcount with 1 rather than 2 effectively
                 * drops the pagecache ref for us without requiring another
                 * atomic operation.
                 */
                page_unfreeze_refs(page, 1);
                return 1;
        }
        return 0;
}

/*
 * shrink_page_list() returns the number of reclaimed pages
 */
static unsigned long shrink_page_list(struct list_head *page_list,
                                        struct scan_control *sc,
                                        enum pageout_io sync_writeback)
{
        LIST_HEAD(ret_pages);
        struct pagevec freed_pvec;
        int pgactivate = 0;
        unsigned long nr_reclaimed = 0;

        cond_resched();

        pagevec_init(&freed_pvec, 1);
        while (!list_empty(page_list)) {
                struct address_space *mapping;
                struct page *page;
                int may_enter_fs;
                int referenced;

                cond_resched();

                page = lru_to_page(page_list);
                list_del(&page->lru);

                if (!trylock_page(page))
                        goto keep;

                VM_BUG_ON(PageActive(page));

                sc->nr_scanned++;

                if (!sc->may_swap && page_mapped(page))
                        goto keep_locked;

                /* Double the slab pressure for mapped and swapcache pages */
                if (page_mapped(page) || PageSwapCache(page))
                        sc->nr_scanned++;

                may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
                        (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));

                if (PageWriteback(page)) {
                        /*
                         * Synchronous reclaim is performed in two passes,
                         * first an asynchronous pass over the list to
                         * start parallel writeback, and a second synchronous
                         * pass to wait for the IO to complete.  Wait here
                         * for any page for which writeback has already
                         * started.
                         */
                        if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
                                wait_on_page_writeback(page);
                        else
                                goto keep_locked;
                }

                referenced = page_referenced(page, 1, sc->mem_cgroup);
                /* In active use or really unfreeable?  Activate it. */
                if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
                                        referenced && page_mapping_inuse(page))
                        goto activate_locked;

#ifdef CONFIG_SWAP
                /*
                 * Anonymous process memory has backing store?
                 * Try to allocate it some swap space here.
                 */
                if (PageAnon(page) && !PageSwapCache(page))
                        if (!add_to_swap(page, GFP_ATOMIC))
                                goto activate_locked;
#endif /* CONFIG_SWAP */

                mapping = page_mapping(page);

                /*
                 * The page is mapped into the page tables of one or more
                 * processes. Try to unmap it here.
                 */
                if (page_mapped(page) && mapping) {
                        switch (try_to_unmap(page, 0)) {
                        case SWAP_FAIL:
                                goto activate_locked;
                        case SWAP_AGAIN:
                                goto keep_locked;
                        case SWAP_SUCCESS:
                                ; /* try to free the page below */
                        }
                }

                if (PageDirty(page)) {
                        if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
                                goto keep_locked;
                        if (!may_enter_fs)
                                goto keep_locked;
                        if (!sc->may_writepage)
                                goto keep_locked;

                        /* Page is dirty, try to write it out here */
                        switch (pageout(page, mapping, sync_writeback)) {
                        case PAGE_KEEP:
                                goto keep_locked;
                        case PAGE_ACTIVATE:
                                goto activate_locked;
                        case PAGE_SUCCESS:
                                if (PageWriteback(page) || PageDirty(page))
                                        goto keep;
                                /*
                                 * A synchronous write - probably a ramdisk.  Go
                                 * ahead and try to reclaim the page.
                                 */
                                if (!trylock_page(page))
                                        goto keep;
                                if (PageDirty(page) || PageWriteback(page))
                                        goto keep_locked;
                                mapping = page_mapping(page);
                        case PAGE_CLEAN:
                                ; /* try to free the page below */
                        }
                }

                /*
                 * If the page has buffers, try to free the buffer mappings
                 * associated with this page. If we succeed we try to free
                 * the page as well.
                 *
                 * We do this even if the page is PageDirty().
                 * try_to_release_page() does not perform I/O, but it is
                 * possible for a page to have PageDirty set, but it is actually
                 * clean (all its buffers are clean).  This happens if the
                 * buffers were written out directly, with submit_bh(). ext3
                 * will do this, as well as the blockdev mapping. 
                 * try_to_release_page() will discover that cleanness and will
                 * drop the buffers and mark the page clean - it can be freed.
                 *
                 * Rarely, pages can have buffers and no ->mapping.  These are
                 * the pages which were not successfully invalidated in
                 * truncate_complete_page().  We try to drop those buffers here
                 * and if that worked, and the page is no longer mapped into
                 * process address space (page_count == 1) it can be freed.
                 * Otherwise, leave the page on the LRU so it is swappable.
                 */
                if (PagePrivate(page)) {
                        if (!try_to_release_page(page, sc->gfp_mask))
                                goto activate_locked;
                        if (!mapping && page_count(page) == 1) {
                                unlock_page(page);
                                if (put_page_testzero(page))
                                        goto free_it;
                                else {
                                        /*
                                         * rare race with speculative reference.
                                         * the speculative reference will free
                                         * this page shortly, so we may
                                         * increment nr_reclaimed here (and
                                         * leave it off the LRU).
                                         */
                                        nr_reclaimed++;
                                        continue;
                                }
                        }
                }

                if (!mapping || !__remove_mapping(mapping, page))
                        goto keep_locked;

                unlock_page(page);
free_it:
                nr_reclaimed++;
                if (!pagevec_add(&freed_pvec, page)) {
                        __pagevec_free(&freed_pvec);
                        pagevec_reinit(&freed_pvec);
                }
                continue;

activate_locked:
                SetPageActive(page);
                pgactivate++;
keep_locked:
                unlock_page(page);
keep:
                list_add(&page->lru, &ret_pages);
                VM_BUG_ON(PageLRU(page));
        }
        list_splice(&ret_pages, page_list);
        if (pagevec_count(&freed_pvec))
                __pagevec_free(&freed_pvec);
        count_vm_events(PGACTIVATE, pgactivate);
        return nr_reclaimed;
}

/* LRU Isolation modes. */
#define ISOLATE_INACTIVE 0      /* Isolate inactive pages. */
#define ISOLATE_ACTIVE 1        /* Isolate active pages. */
#define ISOLATE_BOTH 2          /* Isolate both active and inactive pages. */

/*
 * Attempt to remove the specified page from its LRU.  Only take this page
 * if it is of the appropriate PageActive status.  Pages which are being
 * freed elsewhere are also ignored.
 *
 * page:        page to consider
 * mode:        one of the LRU isolation modes defined above
 *
 * returns 0 on success, -ve errno on failure.
 */
int __isolate_lru_page(struct page *page, int mode)
{
        int ret = -EINVAL;

        /* Only take pages on the LRU. */
        if (!PageLRU(page))
                return ret;

        /*
         * When checking the active state, we need to be sure we are
         * dealing with comparible boolean values.  Take the logical not
         * of each.
         */
        if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
                return ret;

        ret = -EBUSY;
        if (likely(get_page_unless_zero(page))) {
                /*
                 * Be careful not to clear PageLRU until after we're
                 * sure the page is not being freed elsewhere -- the
                 * page release code relies on it.
                 */
                ClearPageLRU(page);
                ret = 0;
        }

        return ret;
}

/*
 * zone->lru_lock is heavily contended.  Some of the functions that
 * shrink the lists perform better by taking out a batch of pages
 * and working on them outside the LRU lock.
 *
 * For pagecache intensive workloads, this function is the hottest
 * spot in the kernel (apart from copy_*_user functions).
 *
 * Appropriate locks must be held before calling this function.
 *
 * @nr_to_scan: The number of pages to look through on the list.
 * @src:        The LRU list to pull pages off.
 * @dst:        The temp list to put pages on to.
 * @scanned:    The number of pages that were scanned.
 * @order:      The caller's attempted allocation order
 * @mode:       One of the LRU isolation modes
 *
 * returns how many pages were moved onto *@dst.
 */
static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
                struct list_head *src, struct list_head *dst,
                unsigned long *scanned, int order, int mode)
{
        unsigned long nr_taken = 0;
        unsigned long scan;

        for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
                struct page *page;
                unsigned long pfn;
                unsigned long end_pfn;
                unsigned long page_pfn;
                int zone_id;

                page = lru_to_page(src);
                prefetchw_prev_lru_page(page, src, flags);

                VM_BUG_ON(!PageLRU(page));

                switch (__isolate_lru_page(page, mode)) {
                case 0:
                        list_move(&page->lru, dst);
                        nr_taken++;
                        break;

                case -EBUSY:
                        /* else it is being freed elsewhere */
                        list_move(&page->lru, src);
                        continue;

                default:
                        BUG();
                }

                if (!order)
                        continue;

                /*
                 * Attempt to take all pages in the order aligned region
                 * surrounding the tag page.  Only take those pages of
                 * the same active state as that tag page.  We may safely
                 * round the target page pfn down to the requested order
                 * as the mem_map is guarenteed valid out to MAX_ORDER,
                 * where that page is in a different zone we will detect
                 * it from its zone id and abort this block scan.
                 */
                zone_id = page_zone_id(page);
                page_pfn = page_to_pfn(page);
                pfn = page_pfn & ~((1 << order) - 1);
                end_pfn = pfn + (1 << order);
                for (; pfn < end_pfn; pfn++) {
                        struct page *cursor_page;

                        /* The target page is in the block, ignore it. */
                        if (unlikely(pfn == page_pfn))
                                continue;

                        /* Avoid holes within the zone. */
                        if (unlikely(!pfn_valid_within(pfn)))
                                break;

                        cursor_page = pfn_to_page(pfn);
                        /* Check that we have not crossed a zone boundary. */
                        if (unlikely(page_zone_id(cursor_page) != zone_id))
                                continue;
                        switch (__isolate_lru_page(cursor_page, mode)) {
                        case 0:
                                list_move(&cursor_page->lru, dst);
                                nr_taken++;
                                scan++;
                                break;

                        case -EBUSY:
                                /* else it is being freed elsewhere */
                                list_move(&cursor_page->lru, src);
                        default:
                                break;
                        }
                }
        }

        *scanned = scan;
        return nr_taken;
}

static unsigned long isolate_pages_global(unsigned long nr,
                                        struct list_head *dst,
                                        unsigned long *scanned, int order,
                                        int mode, struct zone *z,
                                        struct mem_cgroup *mem_cont,
                                        int active)
{
        if (active)
                return isolate_lru_pages(nr, &z->active_list, dst,
                                                scanned, order, mode);
        else
                return isolate_lru_pages(nr, &z->inactive_list, dst,
                                                scanned, order, mode);
}

/*
 * clear_active_flags() is a helper for shrink_active_list(), clearing
 * any active bits from the pages in the list.
 */
static unsigned long clear_active_flags(struct list_head *page_list)
{
        int nr_active = 0;
        struct page *page;

        list_for_each_entry(page, page_list, lru)
                if (PageActive(page)) {
                        ClearPageActive(page);
                        nr_active++;
                }

        return nr_active;
}

/*
 * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
 * of reclaimed pages
 */
static unsigned long shrink_inactive_list(unsigned long max_scan,
                                struct zone *zone, struct scan_control *sc)
{
        LIST_HEAD(page_list);
        struct pagevec pvec;
        unsigned long nr_scanned = 0;
        unsigned long nr_reclaimed = 0;

        pagevec_init(&pvec, 1);

        lru_add_drain();
        spin_lock_irq(&zone->lru_lock);
        do {
                struct page *page;
                unsigned long nr_taken;
                unsigned long nr_scan;
                unsigned long nr_freed;
                unsigned long nr_active;

                nr_taken = sc->isolate_pages(sc->swap_cluster_max,
                             &page_list, &nr_scan, sc->order,
                             (sc->order > PAGE_ALLOC_COSTLY_ORDER)?
                                             ISOLATE_BOTH : ISOLATE_INACTIVE,
                                zone, sc->mem_cgroup, 0);
                nr_active = clear_active_flags(&page_list);
                __count_vm_events(PGDEACTIVATE, nr_active);

                __mod_zone_page_state(zone, NR_ACTIVE, -nr_active);
                __mod_zone_page_state(zone, NR_INACTIVE,
                                                -(nr_taken - nr_active));
                if (scan_global_lru(sc))
                        zone->pages_scanned += nr_scan;
                spin_unlock_irq(&zone->lru_lock);

                nr_scanned += nr_scan;
                nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);

                /*
                 * If we are direct reclaiming for contiguous pages and we do
                 * not reclaim everything in the list, try again and wait
                 * for IO to complete. This will stall high-order allocations
                 * but that should be acceptable to the caller
                 */
                if (nr_freed < nr_taken && !current_is_kswapd() &&
                                        sc->order > PAGE_ALLOC_COSTLY_ORDER) {
                        congestion_wait(WRITE, HZ/10);

                        /*
                         * The attempt at page out may have made some
                         * of the pages active, mark them inactive again.
                         */
                        nr_active = clear_active_flags(&page_list);
                        count_vm_events(PGDEACTIVATE, nr_active);

                        nr_freed += shrink_page_list(&page_list, sc,
                                                        PAGEOUT_IO_SYNC);
                }

                nr_reclaimed += nr_freed;
                local_irq_disable();
                if (current_is_kswapd()) {
                        __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
                        __count_vm_events(KSWAPD_STEAL, nr_freed);
                } else if (scan_global_lru(sc))
                        __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);

                __count_zone_vm_events(PGSTEAL, zone, nr_freed);

                if (nr_taken == 0)
                        goto done;

                spin_lock(&zone->lru_lock);
                /*
                 * Put back any unfreeable pages.
                 */
                while (!list_empty(&page_list)) {
                        page = lru_to_page(&page_list);
                        VM_BUG_ON(PageLRU(page));
                        SetPageLRU(page);
                        list_del(&page->lru);
                        if (PageActive(page))
                                add_page_to_active_list(zone, page);
                        else
                                add_page_to_inactive_list(zone, page);
                        if (!pagevec_add(&pvec, page)) {
                                spin_unlock_irq(&zone->lru_lock);
                                __pagevec_release(&pvec);
                                spin_lock_irq(&zone->lru_lock);
                        }
                }
        } while (nr_scanned < max_scan);
        spin_unlock(&zone->lru_lock);
done:
        local_irq_enable();
        pagevec_release(&pvec);
        return nr_reclaimed;
}

/*
 * We are about to scan this zone at a certain priority level.  If that priority
 * level is smaller (ie: more urgent) than the previous priority, then note
 * that priority level within the zone.  This is done so that when the next
 * process comes in to scan this zone, it will immediately start out at this
 * priority level rather than having to build up its own scanning priority.
 * Here, this priority affects only the reclaim-mapped threshold.
 */
static inline void note_zone_scanning_priority(struct zone *zone, int priority)
{
        if (priority < zone->prev_priority)
                zone->prev_priority = priority;
}

static inline int zone_is_near_oom(struct zone *zone)
{
        return zone->pages_scanned >= (zone_page_state(zone, NR_ACTIVE)
                                + zone_page_state(zone, NR_INACTIVE))*3;
}

/*
 * Determine we should try to reclaim mapped pages.
 * This is called only when sc->mem_cgroup is NULL.
 */
static int calc_reclaim_mapped(struct scan_control *sc, struct zone *zone,
                                int priority)
{
        long mapped_ratio;
        long distress;
        long swap_tendency;
        long imbalance;
        int reclaim_mapped = 0;
        int prev_priority;

        if (scan_global_lru(sc) && zone_is_near_oom(zone))
                return 1;
        /*
         * `distress' is a measure of how much trouble we're having
         * reclaiming pages.  0 -> no problems.  100 -> great trouble.
         */
        if (scan_global_lru(sc))
                prev_priority = zone->prev_priority;
        else
                prev_priority = mem_cgroup_get_reclaim_priority(sc->mem_cgroup);

        distress = 100 >> min(prev_priority, priority);

        /*
         * The point of this algorithm is to decide when to start
         * reclaiming mapped memory instead of just pagecache.  Work out
         * how much memory
         * is mapped.
         */
        if (scan_global_lru(sc))
                mapped_ratio = ((global_page_state(NR_FILE_MAPPED) +
                                global_page_state(NR_ANON_PAGES)) * 100) /
                                        vm_total_pages;
        else
                mapped_ratio = mem_cgroup_calc_mapped_ratio(sc->mem_cgroup);

        /*
         * Now decide how much we really want to unmap some pages.  The
         * mapped ratio is downgraded - just because there's a lot of
         * mapped memory doesn't necessarily mean that page reclaim
         * isn't succeeding.
         *
         * The distress ratio is important - we don't want to start
         * going oom.
         *
         * A 100% value of vm_swappiness overrides this algorithm
         * altogether.
         */
        swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;

        /*
         * If there's huge imbalance between active and inactive
         * (think active 100 times larger than inactive) we should
         * become more permissive, or the system will take too much
         * cpu before it start swapping during memory pressure.
         * Distress is about avoiding early-oom, this is about
         * making swappiness graceful despite setting it to low
         * values.
         *
         * Avoid div by zero with nr_inactive+1, and max resulting
         * value is vm_total_pages.
         */
        if (scan_global_lru(sc)) {
                imbalance  = zone_page_state(zone, NR_ACTIVE);
                imbalance /= zone_page_state(zone, NR_INACTIVE) + 1;
        } else
                imbalance = mem_cgroup_reclaim_imbalance(sc->mem_cgroup);

        /*
         * Reduce the effect of imbalance if swappiness is low,
         * this means for a swappiness very low, the imbalance
         * must be much higher than 100 for this logic to make
         * the difference.
         *
         * Max temporary value is vm_total_pages*100.
         */
        imbalance *= (vm_swappiness + 1);
        imbalance /= 100;

        /*
         * If not much of the ram is mapped, makes the imbalance
         * less relevant, it's high priority we refill the inactive
         * list with mapped pages only in presence of high ratio of
         * mapped pages.
         *
         * Max temporary value is vm_total_pages*100.
         */
        imbalance *= mapped_ratio;
        imbalance /= 100;

        /* apply imbalance feedback to swap_tendency */
        swap_tendency += imbalance;

        /*
         * Now use this metric to decide whether to start moving mapped
         * memory onto the inactive list.
         */
        if (swap_tendency >= 100)
                reclaim_mapped = 1;

        return reclaim_mapped;
}

/*
 * This moves pages from the active list to the inactive list.
 *
 * We move them the other way if the page is referenced by one or more
 * processes, from rmap.
 *
 * If the pages are mostly unmapped, the processing is fast and it is
 * appropriate to hold zone->lru_lock across the whole operation.  But if
 * the pages are mapped, the processing is slow (page_referenced()) so we
 * should drop zone->lru_lock around each page.  It's impossible to balance
 * this, so instead we remove the pages from the LRU while processing them.
 * It is safe to rely on PG_active against the non-LRU pages in here because
 * nobody will play with that bit on a non-LRU page.
 *
 * The downside is that we have to touch page->_count against each page.
 * But we had to alter page->flags anyway.
 */


static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
                                struct scan_control *sc, int priority)
{
        unsigned long pgmoved;
        int pgdeactivate = 0;
        unsigned long pgscanned;
        LIST_HEAD(l_hold);      /* The pages which were snipped off */
        LIST_HEAD(l_inactive);  /* Pages to go onto the inactive_list */
        LIST_HEAD(l_active);    /* Pages to go onto the active_list */
        struct page *page;
        struct pagevec pvec;
        int reclaim_mapped = 0;

        if (sc->may_swap)
                reclaim_mapped = calc_reclaim_mapped(sc, zone, priority);

        lru_add_drain();
        spin_lock_irq(&zone->lru_lock);
        pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
                                        ISOLATE_ACTIVE, zone,
                                        sc->mem_cgroup, 1);
        /*
         * zone->pages_scanned is used for detect zone's oom
         * mem_cgroup remembers nr_scan by itself.
         */
        if (scan_global_lru(sc))
                zone->pages_scanned += pgscanned;

        __mod_zone_page_state(zone, NR_ACTIVE, -pgmoved);
        spin_unlock_irq(&zone->lru_lock);

        while (!list_empty(&l_hold)) {
                cond_resched();
                page = lru_to_page(&l_hold);
                list_del(&page->lru);
                if (page_mapped(page)) {
                        if (!reclaim_mapped ||
                            (total_swap_pages == 0 && PageAnon(page)) ||
                            page_referenced(page, 0, sc->mem_cgroup)) {
                                list_add(&page->lru, &l_active);
                                continue;
                        }
                }
                list_add(&page->lru, &l_inactive);
        }

        pagevec_init(&pvec, 1);
        pgmoved = 0;
        spin_lock_irq(&zone->lru_lock);
        while (!list_empty(&l_inactive)) {
                page = lru_to_page(&l_inactive);
                prefetchw_prev_lru_page(page, &l_inactive, flags);
                VM_BUG_ON(PageLRU(page));
                SetPageLRU(page);
                VM_BUG_ON(!PageActive(page));
                ClearPageActive(page);

                list_move(&page->lru, &zone->inactive_list);
                mem_cgroup_move_lists(page, false);
                pgmoved++;
                if (!pagevec_add(&pvec, page)) {
                        __mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
                        spin_unlock_irq(&zone->lru_lock);
                        pgdeactivate += pgmoved;
                        pgmoved = 0;
                        if (buffer_heads_over_limit)
                                pagevec_strip(&pvec);
                        __pagevec_release(&pvec);
                        spin_lock_irq(&zone->lru_lock);
                }
        }
        __mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
        pgdeactivate += pgmoved;
        if (buffer_heads_over_limit) {
                spin_unlock_irq(&zone->lru_lock);
                pagevec_strip(&pvec);
                spin_lock_irq(&zone->lru_lock);
        }

        pgmoved = 0;
        while (!list_empty(&l_active)) {
                page = lru_to_page(&l_active);
                prefetchw_prev_lru_page(page, &l_active, flags);
                VM_BUG_ON(PageLRU(page));
                SetPageLRU(page);
                VM_BUG_ON(!PageActive(page));

                list_move(&page->lru, &zone->active_list);
                mem_cgroup_move_lists(page, true);
                pgmoved++;
                if (!pagevec_add(&pvec, page)) {
                        __mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
                        pgmoved = 0;
                        spin_unlock_irq(&zone->lru_lock);
                        __pagevec_release(&pvec);
                        spin_lock_irq(&zone->lru_lock);
                }
        }
        __mod_zone_page_state(zone, NR_ACTIVE, pgmoved);

        __count_zone_vm_events(PGREFILL, zone, pgscanned);
        __count_vm_events(PGDEACTIVATE, pgdeactivate);
        spin_unlock_irq(&zone->lru_lock);

        pagevec_release(&pvec);
}

/*
 * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
 */
static unsigned long shrink_zone(int priority, struct zone *zone,
                                struct scan_control *sc)
{
        unsigned long nr_active;
        unsigned long nr_inactive;
        unsigned long nr_to_scan;
        unsigned long nr_reclaimed = 0;

        if (scan_global_lru(sc)) {
                /*
                 * Add one to nr_to_scan just to make sure that the kernel
                 * will slowly sift through the active list.
                 */
                zone->nr_scan_active +=
                        (zone_page_state(zone, NR_ACTIVE) >> priority) + 1;
                nr_active = zone->nr_scan_active;
                zone->nr_scan_inactive +=
                        (zone_page_state(zone, NR_INACTIVE) >> priority) + 1;
                nr_inactive = zone->nr_scan_inactive;
                if (nr_inactive >= sc->swap_cluster_max)
                        zone->nr_scan_inactive = 0;
                else
                        nr_inactive = 0;

                if (nr_active >= sc->swap_cluster_max)
                        zone->nr_scan_active = 0;
                else
                        nr_active = 0;
        } else {
                /*
                 * This reclaim occurs not because zone memory shortage but
                 * because memory controller hits its limit.
                 * Then, don't modify zone reclaim related data.
                 */
                nr_active = mem_cgroup_calc_reclaim_active(sc->mem_cgroup,
                                        zone, priority);

                nr_inactive = mem_cgroup_calc_reclaim_inactive(sc->mem_cgroup,
                                        zone, priority);
        }


        while (nr_active || nr_inactive) {
                if (nr_active) {
                        nr_to_scan = min(nr_active,
                                        (unsigned long)sc->swap_cluster_max);
                        nr_active -= nr_to_scan;
                        shrink_active_list(nr_to_scan, zone, sc, priority);
                }

                if (nr_inactive) {
                        nr_to_scan = min(nr_inactive,
                                        (unsigned long)sc->swap_cluster_max);
                        nr_inactive -= nr_to_scan;
                        nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
                                                                sc);
                }
        }

        throttle_vm_writeout(sc->gfp_mask);
        return nr_reclaimed;
}

/*
 * This is the direct reclaim path, for page-allocating processes.  We only
 * try to reclaim pages from zones which will satisfy the caller's allocation
 * request.
 *
 * We reclaim from a zone even if that zone is over pages_high.  Because:
 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
 *    allocation or
 * b) The zones may be over pages_high but they must go *over* pages_high to
 *    satisfy the `incremental min' zone defense algorithm.
 *
 * Returns the number of reclaimed pages.
 *
 * If a zone is deemed to be full of pinned pages then just give it a light
 * scan then give up on it.
 */
static unsigned long shrink_zones(int priority, struct zonelist *zonelist,
                                        struct scan_control *sc)
{
        enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);
        unsigned long nr_reclaimed = 0;
        struct zoneref *z;
        struct zone *zone;

        sc->all_unreclaimable = 1;
        for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
                if (!populated_zone(zone))
                        continue;
                /*
                 * Take care memory controller reclaiming has small influence
                 * to global LRU.
                 */
                if (scan_global_lru(sc)) {
                        if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
                                continue;
                        note_zone_scanning_priority(zone, priority);

                        if (zone_is_all_unreclaimable(zone) &&
                                                priority != DEF_PRIORITY)
                                continue;       /* Let kswapd poll it */
                        sc->all_unreclaimable = 0;
                } else {
                        /*
                         * Ignore cpuset limitation here. We just want to reduce
                         * # of used pages by us regardless of memory shortage.
                         */
                        sc->all_unreclaimable = 0;
                        mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
                                                        priority);
                }

                nr_reclaimed += shrink_zone(priority, zone, sc);
        }

        return nr_reclaimed;
}
 
/*
 * This is the main entry point to direct page reclaim.
 *
 * If a full scan of the inactive list fails to free enough memory then we
 * are "out of memory" and something needs to be killed.
 *
 * If the caller is !__GFP_FS then the probability of a failure is reasonably
 * high - the zone may be full of dirty or under-writeback pages, which this
 * caller can't do much about.  We kick pdflush and take explicit naps in the
 * hope that some of these pages can be written.  But if the allocating task
 * holds filesystem locks which prevent writeout this might not work, and the
 * allocation attempt will fail.
 *
 * returns:     0, if no pages reclaimed
 *              else, the number of pages reclaimed
 */
static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
                                        struct scan_control *sc)
{
        int priority;
        unsigned long ret = 0;
        unsigned long total_scanned = 0;
        unsigned long nr_reclaimed = 0;
        struct reclaim_state *reclaim_state = current->reclaim_state;
        unsigned long lru_pages = 0;
        struct zoneref *z;
        struct zone *zone;
        enum zone_type high_zoneidx = gfp_zone(sc->gfp_mask);

        delayacct_freepages_start();

        if (scan_global_lru(sc))
                count_vm_event(ALLOCSTALL);
        /*
         * mem_cgroup will not do shrink_slab.
         */
        if (scan_global_lru(sc)) {
                for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {

                        if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
                                continue;

                        lru_pages += zone_page_state(zone, NR_ACTIVE)
                                        + zone_page_state(zone, NR_INACTIVE);
                }
        }

        for (priority = DEF_PRIORITY; priority >= 0; priority--) {
                sc->nr_scanned = 0;
                if (!priority)
                        disable_swap_token();
                nr_reclaimed += shrink_zones(priority, zonelist, sc);
                /*
                 * Don't shrink slabs when reclaiming memory from
                 * over limit cgroups
                 */
                if (scan_global_lru(sc)) {
                        shrink_slab(sc->nr_scanned, sc->gfp_mask, lru_pages);
                        if (reclaim_state) {
                                nr_reclaimed += reclaim_state->reclaimed_slab;
                                reclaim_state->reclaimed_slab = 0;
                        }
                }
                total_scanned += sc->nr_scanned;
                if (nr_reclaimed >= sc->swap_cluster_max) {
                        ret = nr_reclaimed;
                        goto out;
                }

                /*
                 * Try to write back as many pages as we just scanned.  This
                 * tends to cause slow streaming writers to write data to the
                 * disk smoothly, at the dirtying rate, which is nice.   But
                 * that's undesirable in laptop mode, where we *want* lumpy
                 * writeout.  So in laptop mode, write out the whole world.
                 */
                if (total_scanned > sc->swap_cluster_max +
                                        sc->swap_cluster_max / 2) {
                        wakeup_pdflush(laptop_mode ? 0 : total_scanned);
                        sc->may_writepage = 1;
                }

                /* Take a nap, wait for some writeback to complete */
                if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
                        congestion_wait(WRITE, HZ/10);
        }
        /* top priority shrink_zones still had more to do? don't OOM, then */
        if (!sc->all_unreclaimable && scan_global_lru(sc))
                ret = nr_reclaimed;
out:
        /*
         * Now that we've scanned all the zones at this priority level, note
         * that level within the zone so that the next thread which performs
         * scanning of this zone will immediately start out at this priority
         * level.  This affects only the decision whether or not to bring
         * mapped pages onto the inactive list.
         */
        if (priority < 0)
                priority = 0;

        if (scan_global_lru(sc)) {
                for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {

                        if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
                                continue;

                        zone->prev_priority = priority;
                }
        } else
                mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);

        delayacct_freepages_end();

        return ret;
}

unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
                                                                gfp_t gfp_mask)
{
        struct scan_control sc = {
                .gfp_mask = gfp_mask,
                .may_writepage = !laptop_mode,
                .swap_cluster_max = SWAP_CLUSTER_MAX,
                .may_swap = 1,
                .swappiness = vm_swappiness,
                .order = order,
                .mem_cgroup = NULL,
                .isolate_pages = isolate_pages_global,
        };

        return do_try_to_free_pages(zonelist, &sc);
}

#ifdef CONFIG_CGROUP_MEM_RES_CTLR

unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
                                                gfp_t gfp_mask)
{
        struct scan_control sc = {
                .may_writepage = !laptop_mode,
                .may_swap = 1,
                .swap_cluster_max = SWAP_CLUSTER_MAX,
                .swappiness = vm_swappiness,
                .order = 0,
                .mem_cgroup = mem_cont,
                .isolate_pages = mem_cgroup_isolate_pages,
        };
        struct zonelist *zonelist;

        sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
                        (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
        zonelist = NODE_DATA(numa_node_id())->node_zonelists;
        return do_try_to_free_pages(zonelist, &sc);
}
#endif

/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
 * they are all at pages_high.
 *
 * Returns the number of pages which were actually freed.
 *
 * There is special handling here for zones which are full of pinned pages.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
 * zones which have free_pages > pages_high, but once a zone is found to have
 * free_pages <= pages_high, we scan that zone and the lower zones regardless
 * of the number of free pages in the lower zones.  This interoperates with
 * the page allocator fallback scheme to ensure that aging of pages is balanced
 * across the zones.
 */
static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
{
        int all_zones_ok;
        int priority;
        int i;
        unsigned long total_scanned;
        unsigned long nr_reclaimed;
        struct reclaim_state *reclaim_state = current->reclaim_state;
        struct scan_control sc = {
                .gfp_mask = GFP_KERNEL,
                .may_swap = 1,
                .swap_cluster_max = SWAP_CLUSTER_MAX,
                .swappiness = vm_swappiness,
                .order = order,
                .mem_cgroup = NULL,
                .isolate_pages = isolate_pages_global,
        };
        /*
         * temp_priority is used to remember the scanning priority at which
         * this zone was successfully refilled to free_pages == pages_high.
         */
        int temp_priority[MAX_NR_ZONES];

loop_again:
        total_scanned = 0;
        nr_reclaimed = 0;
        sc.may_writepage = !laptop_mode;
        count_vm_event(PAGEOUTRUN);

        for (i = 0; i < pgdat->nr_zones; i++)
                temp_priority[i] = DEF_PRIORITY;

        for (priority = DEF_PRIORITY; priority >= 0; priority--) {
                int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
                unsigned long lru_pages = 0;

                /* The swap token gets in the way of swapout... */
                if (!priority)
                        disable_swap_token();

                all_zones_ok = 1;

                /*
                 * Scan in the highmem->dma direction for the highest
                 * zone which needs scanning
                 */
                for (i = pgdat->nr_zones - 1; i >= 0; i--) {
                        struct zone *zone = pgdat->node_zones + i;

                        if (!populated_zone(zone))
                                continue;

                        if (zone_is_all_unreclaimable(zone) &&
                            priority != DEF_PRIORITY)
                                continue;

                        if (!zone_watermark_ok(zone, order, zone->pages_high,
                                               0, 0)) {
                                end_zone = i;
                                break;
                        }
                }
                if (i < 0)
                        goto out;

                for (i = 0; i <= end_zone; i++) {
                        struct zone *zone = pgdat->node_zones + i;

                        lru_pages += zone_page_state(zone, NR_ACTIVE)
                                        + zone_page_state(zone, NR_INACTIVE);
                }

                /*
                 * Now scan the zone in the dma->highmem direction, stopping
                 * at the last zone which needs scanning.
                 *
                 * We do this because the page allocator works in the opposite
                 * direction.  This prevents the page allocator from allocating
                 * pages behind kswapd's direction of progress, which would
                 * cause too much scanning of the lower zones.
                 */
                for (i = 0; i <= end_zone; i++) {
                        struct zone *zone = pgdat->node_zones + i;
                        int nr_slab;

                        if (!populated_zone(zone))
                                continue;

                        if (zone_is_all_unreclaimable(zone) &&
                                        priority != DEF_PRIORITY)
                                continue;

                        if (!zone_watermark_ok(zone, order, zone->pages_high,
                                               end_zone, 0))
                                all_zones_ok = 0;
                        temp_priority[i] = priority;
                        sc.nr_scanned = 0;
                        note_zone_scanning_priority(zone, priority);
                        /*
                         * We put equal pressure on every zone, unless one
                         * zone has way too many pages free already.
                         */
                        if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
                                                end_zone, 0))
                                nr_reclaimed += shrink_zone(priority, zone, &sc);
                        reclaim_state->reclaimed_slab = 0;
                        nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
                                                lru_pages);
                        nr_reclaimed += reclaim_state->reclaimed_slab;
                        total_scanned += sc.nr_scanned;
                        if (zone_is_all_unreclaimable(zone))
                                continue;
                        if (nr_slab == 0 && zone->pages_scanned >=
                                (zone_page_state(zone, NR_ACTIVE)
                                + zone_page_state(zone, NR_INACTIVE)) * 6)
                                        zone_set_flag(zone,
                                                      ZONE_ALL_UNRECLAIMABLE);
                        /*
                         * If we've done a decent amount of scanning and
                         * the reclaim ratio is low, start doing writepage
                         * even in laptop mode
                         */
                        if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
                            total_scanned > nr_reclaimed + nr_reclaimed / 2)
                                sc.may_writepage = 1;
                }
                if (all_zones_ok)
                        break;          /* kswapd: all done */
                /*
                 * OK, kswapd is getting into trouble.  Take a nap, then take
                 * another pass across the zones.
                 */
                if (total_scanned && priority < DEF_PRIORITY - 2)
                        congestion_wait(WRITE, HZ/10);

                /*
                 * We do this so kswapd doesn't build up large priorities for
                 * example when it is freeing in parallel with allocators. It
                 * matches the direct reclaim path behaviour in terms of impact
                 * on zone->*_priority.
                 */
                if (nr_reclaimed >= SWAP_CLUSTER_MAX)
                        break;
        }
out:
        /*
         * Note within each zone the priority level at which this zone was
         * brought into a happy state.  So that the next thread which scans this
         * zone will start out at that priority level.
         */
        for (i = 0; i < pgdat->nr_zones; i++) {
                struct zone *zone = pgdat->node_zones + i;

                zone->prev_priority = temp_priority[i];
        }
        if (!all_zones_ok) {
                cond_resched();

                try_to_freeze();

                goto loop_again;
        }

        return nr_reclaimed;
}

/*
 * The background pageout daemon, started as a kernel thread
 * from the init process. 
 *
 * This basically trickles out pages so that we have _some_
 * free memory available even if there is no other activity
 * that frees anything up. This is needed for things like routing
 * etc, where we otherwise might have all activity going on in
 * asynchronous contexts that cannot page things out.
 *
 * If there are applications that are active memory-allocators
 * (most normal use), this basically shouldn't matter.
 */
static int kswapd(void *p)
{
        unsigned long order;
        pg_data_t *pgdat = (pg_data_t*)p;
        struct task_struct *tsk = current;
        DEFINE_WAIT(wait);
        struct reclaim_state reclaim_state = {
                .reclaimed_slab = 0,
        };
        node_to_cpumask_ptr(cpumask, pgdat->node_id);

        if (!cpus_empty(*cpumask))
                set_cpus_allowed_ptr(tsk, cpumask);
        current->reclaim_state = &reclaim_state;

        /*
         * Tell the memory management that we're a "memory allocator",
         * and that if we need more memory we should get access to it
         * regardless (see "__alloc_pages()"). "kswapd" should
         * never get caught in the normal page freeing logic.
         *
         * (Kswapd normally doesn't need memory anyway, but sometimes
         * you need a small amount of memory in order to be able to
         * page out something else, and this flag essentially protects
         * us from recursively trying to free more memory as we're
         * trying to free the first piece of memory in the first place).
         */
        tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
        set_freezable();

        order = 0;
        for ( ; ; ) {
                unsigned long new_order;

                prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
                new_order = pgdat->kswapd_max_order;
                pgdat->kswapd_max_order = 0;
                if (order < new_order) {
                        /*
                         * Don't sleep if someone wants a larger 'order'
                         * allocation
                         */
                        order = new_order;
                } else {
                        if (!freezing(current))
                                schedule();

                        order = pgdat->kswapd_max_order;
                }
                finish_wait(&pgdat->kswapd_wait, &wait);

                if (!try_to_freeze()) {
                        /* We can speed up thawing tasks if we don't call
                         * balance_pgdat after returning from the refrigerator
                         */
                        balance_pgdat(pgdat, order);
                }
        }
        return 0;
}

/*
 * A zone is low on free memory, so wake its kswapd task to service it.
 */
void wakeup_kswapd(struct zone *zone, int order)
{
        pg_data_t *pgdat;

        if (!populated_zone(zone))
                return;

        pgdat = zone->zone_pgdat;
        if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
                return;
        if (pgdat->kswapd_max_order < order)
                pgdat->kswapd_max_order = order;
        if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
                return;
        if (!waitqueue_active(&pgdat->kswapd_wait))
                return;
        wake_up_interruptible(&pgdat->kswapd_wait);
}

#ifdef CONFIG_PM
/*
 * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
 * from LRU lists system-wide, for given pass and priority, and returns the
 * number of reclaimed pages
 *
 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
 */
static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
                                      int pass, struct scan_control *sc)
{
        struct zone *zone;
        unsigned long nr_to_scan, ret = 0;

        for_each_zone(zone) {

                if (!populated_zone(zone))
                        continue;

                if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
                        continue;

                /* For pass = 0 we don't shrink the active list */
                if (pass > 0) {
                        zone->nr_scan_active +=
                                (zone_page_state(zone, NR_ACTIVE) >> prio) + 1;
                        if (zone->nr_scan_active >= nr_pages || pass > 3) {
                                zone->nr_scan_active = 0;
                                nr_to_scan = min(nr_pages,
                                        zone_page_state(zone, NR_ACTIVE));
                                shrink_active_list(nr_to_scan, zone, sc, prio);
                        }
                }

                zone->nr_scan_inactive +=
                        (zone_page_state(zone, NR_INACTIVE) >> prio) + 1;
                if (zone->nr_scan_inactive >= nr_pages || pass > 3) {
                        zone->nr_scan_inactive = 0;
                        nr_to_scan = min(nr_pages,
                                zone_page_state(zone, NR_INACTIVE));
                        ret += shrink_inactive_list(nr_to_scan, zone, sc);
                        if (ret >= nr_pages)
                                return ret;
                }
        }

        return ret;
}

static unsigned long count_lru_pages(void)
{
        return global_page_state(NR_ACTIVE) + global_page_state(NR_INACTIVE);
}

/*
 * Try to free `nr_pages' of memory, system-wide, and return the number of
 * freed pages.
 *
 * Rather than trying to age LRUs the aim is to preserve the overall
 * LRU order by reclaiming preferentially
 * inactive > active > active referenced > active mapped
 */
unsigned long shrink_all_memory(unsigned long nr_pages)
{
        unsigned long lru_pages, nr_slab;
        unsigned long ret = 0;
        int pass;
        struct reclaim_state reclaim_state;
        struct scan_control sc = {
                .gfp_mask = GFP_KERNEL,
                .may_swap = 0,
                .swap_cluster_max = nr_pages,
                .may_writepage = 1,
                .swappiness = vm_swappiness,
                .isolate_pages = isolate_pages_global,
        };

        current->reclaim_state = &reclaim_state;

        lru_pages = count_lru_pages();
        nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
        /* If slab caches are huge, it's better to hit them first */
        while (nr_slab >= lru_pages) {
                reclaim_state.reclaimed_slab = 0;
                shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
                if (!reclaim_state.reclaimed_slab)
                        break;

                ret += reclaim_state.reclaimed_slab;
                if (ret >= nr_pages)
                        goto out;

                nr_slab -= reclaim_state.reclaimed_slab;
        }

        /*
         * We try to shrink LRUs in 5 passes:
         * 0 = Reclaim from inactive_list only
         * 1 = Reclaim from active list but don't reclaim mapped
         * 2 = 2nd pass of type 1
         * 3 = Reclaim mapped (normal reclaim)
         * 4 = 2nd pass of type 3
         */
        for (pass = 0; pass < 5; pass++) {
                int prio;

                /* Force reclaiming mapped pages in the passes #3 and #4 */
                if (pass > 2) {
                        sc.may_swap = 1;
                        sc.swappiness = 100;
                }

                for (prio = DEF_PRIORITY; prio >= 0; prio--) {
                        unsigned long nr_to_scan = nr_pages - ret;

                        sc.nr_scanned = 0;
                        ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
                        if (ret >= nr_pages)
                                goto out;

                        reclaim_state.reclaimed_slab = 0;
                        shrink_slab(sc.nr_scanned, sc.gfp_mask,
                                        count_lru_pages());
                        ret += reclaim_state.reclaimed_slab;
                        if (ret >= nr_pages)
                                goto out;

                        if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
                                congestion_wait(WRITE, HZ / 10);
                }
        }

        /*
         * If ret = 0, we could not shrink LRUs, but there may be something
         * in slab caches
         */
        if (!ret) {
                do {
                        reclaim_state.reclaimed_slab = 0;
                        shrink_slab(nr_pages, sc.gfp_mask, count_lru_pages());
                        ret += reclaim_state.reclaimed_slab;
                } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
        }

out:
        current->reclaim_state = NULL;

        return ret;
}
#endif

/* It's optimal to keep kswapds on the same CPUs as their memory, but
   not required for correctness.  So if the last cpu in a node goes
   away, we get changed to run anywhere: as the first one comes back,
   restore their cpu bindings. */
static int __devinit cpu_callback(struct notifier_block *nfb,
                                  unsigned long action, void *hcpu)
{
        int nid;

        if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
                for_each_node_state(nid, N_HIGH_MEMORY) {
                        pg_data_t *pgdat = NODE_DATA(nid);
                        node_to_cpumask_ptr(mask, pgdat->node_id);

                        if (any_online_cpu(*mask) < nr_cpu_ids)
                                /* One of our CPUs online: restore mask */
                                set_cpus_allowed_ptr(pgdat->kswapd, mask);
                }
        }
        return NOTIFY_OK;
}

/*
 * This kswapd start function will be called by init and node-hot-add.
 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
 */
int kswapd_run(int nid)
{
        pg_data_t *pgdat = NODE_DATA(nid);
        int ret = 0;

        if (pgdat->kswapd)
                return 0;

        pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
        if (IS_ERR(pgdat->kswapd)) {
                /* failure at boot is fatal */
                BUG_ON(system_state == SYSTEM_BOOTING);
                printk("Failed to start kswapd on node %d\n",nid);
                ret = -1;
        }
        return ret;
}

static int __init kswapd_init(void)
{
        int nid;

        swap_setup();
        for_each_node_state(nid, N_HIGH_MEMORY)
                kswapd_run(nid);
        hotcpu_notifier(cpu_callback, 0);
        return 0;
}

module_init(kswapd_init)

#ifdef CONFIG_NUMA
/*
 * Zone reclaim mode
 *
 * If non-zero call zone_reclaim when the number of free pages falls below
 * the watermarks.
 */
int zone_reclaim_mode __read_mostly;

#define RECLAIM_OFF 0
#define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
#define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
#define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */

/*
 * Priority for ZONE_RECLAIM. This determines the fraction of pages
 * of a node considered for each zone_reclaim. 4 scans 1/16th of
 * a zone.
 */
#define ZONE_RECLAIM_PRIORITY 4

/*
 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
 * occur.
 */
int sysctl_min_unmapped_ratio = 1;

/*
 * If the number of slab pages in a zone grows beyond this percentage then
 * slab reclaim needs to occur.
 */
int sysctl_min_slab_ratio = 5;

/*
 * Try to free up some pages from this zone through reclaim.
 */
static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
        /* Minimum pages needed in order to stay on node */
        const unsigned long nr_pages = 1 << order;
        struct task_struct *p = current;
        struct reclaim_state reclaim_state;
        int priority;
        unsigned long nr_reclaimed = 0;
        struct scan_control sc = {
                .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
                .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
                .swap_cluster_max = max_t(unsigned long, nr_pages,
                                        SWAP_CLUSTER_MAX),
                .gfp_mask = gfp_mask,
                .swappiness = vm_swappiness,
                .isolate_pages = isolate_pages_global,
        };
        unsigned long slab_reclaimable;

        disable_swap_token();
        cond_resched();
        /*
         * We need to be able to allocate from the reserves for RECLAIM_SWAP
         * and we also need to be able to write out pages for RECLAIM_WRITE
         * and RECLAIM_SWAP.
         */
        p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
        reclaim_state.reclaimed_slab = 0;
        p->reclaim_state = &reclaim_state;

        if (zone_page_state(zone, NR_FILE_PAGES) -
                zone_page_state(zone, NR_FILE_MAPPED) >
                zone->min_unmapped_pages) {
                /*
                 * Free memory by calling shrink zone with increasing
                 * priorities until we have enough memory freed.
                 */
                priority = ZONE_RECLAIM_PRIORITY;
                do {
                        note_zone_scanning_priority(zone, priority);
                        nr_reclaimed += shrink_zone(priority, zone, &sc);
                        priority--;
                } while (priority >= 0 && nr_reclaimed < nr_pages);
        }

        slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
        if (slab_reclaimable > zone->min_slab_pages) {
                /*
                 * shrink_slab() does not currently allow us to determine how
                 * many pages were freed in this zone. So we take the current
                 * number of slab pages and shake the slab until it is reduced
                 * by the same nr_pages that we used for reclaiming unmapped
                 * pages.
                 *
                 * Note that shrink_slab will free memory on all zones and may
                 * take a long time.
                 */
                while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
                        zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
                                slab_reclaimable - nr_pages)
                        ;

                /*
                 * Update nr_reclaimed by the number of slab pages we
                 * reclaimed from this zone.
                 */
                nr_reclaimed += slab_reclaimable -
                        zone_page_state(zone, NR_SLAB_RECLAIMABLE);
        }

        p->reclaim_state = NULL;
        current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
        return nr_reclaimed >= nr_pages;
}

int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
{
        int node_id;
        int ret;

        /*
         * Zone reclaim reclaims unmapped file backed pages and
         * slab pages if we are over the defined limits.
         *
         * A small portion of unmapped file backed pages is needed for
         * file I/O otherwise pages read by file I/O will be immediately
         * thrown out if the zone is overallocated. So we do not reclaim
         * if less than a specified percentage of the zone is used by
         * unmapped file backed pages.
         */
        if (zone_page_state(zone, NR_FILE_PAGES) -
            zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
            && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
                        <= zone->min_slab_pages)
                return 0;

        if (zone_is_all_unreclaimable(zone))
                return 0;

        /*
         * Do not scan if the allocation should not be delayed.
         */
        if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
                        return 0;

        /*
         * Only run zone reclaim on the local zone or on zones that do not
         * have associated processors. This will favor the local processor
         * over remote processors and spread off node memory allocations
         * as wide as possible.
         */
        node_id = zone_to_nid(zone);
        if (node_state(node_id, N_CPU) && node_id != numa_node_id())
                return 0;

        if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
                return 0;
        ret = __zone_reclaim(zone, gfp_mask, order);
        zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);

        return ret;
}
#endif

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading