[funini.com] -> [kei@sodan] -> Kernel Reading

root/mm/swap_state.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. show_swap_cache_info
  2. add_to_swap_cache
  3. __delete_from_swap_cache
  4. add_to_swap
  5. delete_from_swap_cache
  6. free_swap_cache
  7. free_page_and_swap_cache
  8. free_pages_and_swap_cache
  9. lookup_swap_cache
  10. read_swap_cache_async
  11. swapin_readahead

/*
 *  linux/mm/swap_state.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *
 *  Rewritten to use page cache, (C) 1998 Stephen Tweedie
 */
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/kernel_stat.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/init.h>
#include <linux/pagemap.h>
#include <linux/buffer_head.h>
#include <linux/backing-dev.h>
#include <linux/pagevec.h>
#include <linux/migrate.h>

#include <asm/pgtable.h>

/*
 * swapper_space is a fiction, retained to simplify the path through
 * vmscan's shrink_page_list, to make sync_page look nicer, and to allow
 * future use of radix_tree tags in the swap cache.
 */
static const struct address_space_operations swap_aops = {
        .writepage      = swap_writepage,
        .sync_page      = block_sync_page,
        .set_page_dirty = __set_page_dirty_nobuffers,
        .migratepage    = migrate_page,
};

static struct backing_dev_info swap_backing_dev_info = {
        .capabilities   = BDI_CAP_NO_ACCT_AND_WRITEBACK,
        .unplug_io_fn   = swap_unplug_io_fn,
};

struct address_space swapper_space = {
        .page_tree      = RADIX_TREE_INIT(GFP_ATOMIC|__GFP_NOWARN),
        .tree_lock      = __SPIN_LOCK_UNLOCKED(swapper_space.tree_lock),
        .a_ops          = &swap_aops,
        .i_mmap_nonlinear = LIST_HEAD_INIT(swapper_space.i_mmap_nonlinear),
        .backing_dev_info = &swap_backing_dev_info,
};

#define INC_CACHE_INFO(x)       do { swap_cache_info.x++; } while (0)

static struct {
        unsigned long add_total;
        unsigned long del_total;
        unsigned long find_success;
        unsigned long find_total;
} swap_cache_info;

void show_swap_cache_info(void)
{
        printk("%lu pages in swap cache\n", total_swapcache_pages);
        printk("Swap cache stats: add %lu, delete %lu, find %lu/%lu\n",
                swap_cache_info.add_total, swap_cache_info.del_total,
                swap_cache_info.find_success, swap_cache_info.find_total);
        printk("Free swap  = %ldkB\n", nr_swap_pages << (PAGE_SHIFT - 10));
        printk("Total swap = %lukB\n", total_swap_pages << (PAGE_SHIFT - 10));
}

/*
 * add_to_swap_cache resembles add_to_page_cache_locked on swapper_space,
 * but sets SwapCache flag and private instead of mapping and index.
 */
int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask)
{
        int error;

        BUG_ON(!PageLocked(page));
        BUG_ON(PageSwapCache(page));
        BUG_ON(PagePrivate(page));
        error = radix_tree_preload(gfp_mask);
        if (!error) {
                page_cache_get(page);
                SetPageSwapCache(page);
                set_page_private(page, entry.val);

                spin_lock_irq(&swapper_space.tree_lock);
                error = radix_tree_insert(&swapper_space.page_tree,
                                                entry.val, page);
                if (likely(!error)) {
                        total_swapcache_pages++;
                        __inc_zone_page_state(page, NR_FILE_PAGES);
                        INC_CACHE_INFO(add_total);
                }
                spin_unlock_irq(&swapper_space.tree_lock);
                radix_tree_preload_end();

                if (unlikely(error)) {
                        set_page_private(page, 0UL);
                        ClearPageSwapCache(page);
                        page_cache_release(page);
                }
        }
        return error;
}

/*
 * This must be called only on pages that have
 * been verified to be in the swap cache.
 */
void __delete_from_swap_cache(struct page *page)
{
        BUG_ON(!PageLocked(page));
        BUG_ON(!PageSwapCache(page));
        BUG_ON(PageWriteback(page));
        BUG_ON(PagePrivate(page));

        radix_tree_delete(&swapper_space.page_tree, page_private(page));
        set_page_private(page, 0);
        ClearPageSwapCache(page);
        total_swapcache_pages--;
        __dec_zone_page_state(page, NR_FILE_PAGES);
        INC_CACHE_INFO(del_total);
}

/**
 * add_to_swap - allocate swap space for a page
 * @page: page we want to move to swap
 * @gfp_mask: memory allocation flags
 *
 * Allocate swap space for the page and add the page to the
 * swap cache.  Caller needs to hold the page lock. 
 */
int add_to_swap(struct page * page, gfp_t gfp_mask)
{
        swp_entry_t entry;
        int err;

        BUG_ON(!PageLocked(page));
        BUG_ON(!PageUptodate(page));

        for (;;) {
                entry = get_swap_page();
                if (!entry.val)
                        return 0;

                /*
                 * Radix-tree node allocations from PF_MEMALLOC contexts could
                 * completely exhaust the page allocator. __GFP_NOMEMALLOC
                 * stops emergency reserves from being allocated.
                 *
                 * TODO: this could cause a theoretical memory reclaim
                 * deadlock in the swap out path.
                 */
                /*
                 * Add it to the swap cache and mark it dirty
                 */
                err = add_to_swap_cache(page, entry,
                                gfp_mask|__GFP_NOMEMALLOC|__GFP_NOWARN);

                switch (err) {
                case 0:                         /* Success */
                        SetPageDirty(page);
                        return 1;
                case -EEXIST:
                        /* Raced with "speculative" read_swap_cache_async */
                        swap_free(entry);
                        continue;
                default:
                        /* -ENOMEM radix-tree allocation failure */
                        swap_free(entry);
                        return 0;
                }
        }
}

/*
 * This must be called only on pages that have
 * been verified to be in the swap cache and locked.
 * It will never put the page into the free list,
 * the caller has a reference on the page.
 */
void delete_from_swap_cache(struct page *page)
{
        swp_entry_t entry;

        entry.val = page_private(page);

        spin_lock_irq(&swapper_space.tree_lock);
        __delete_from_swap_cache(page);
        spin_unlock_irq(&swapper_space.tree_lock);

        swap_free(entry);
        page_cache_release(page);
}

/* 
 * If we are the only user, then try to free up the swap cache. 
 * 
 * Its ok to check for PageSwapCache without the page lock
 * here because we are going to recheck again inside 
 * exclusive_swap_page() _with_ the lock. 
 *                                      - Marcelo
 */
static inline void free_swap_cache(struct page *page)
{
        if (PageSwapCache(page) && trylock_page(page)) {
                remove_exclusive_swap_page(page);
                unlock_page(page);
        }
}

/* 
 * Perform a free_page(), also freeing any swap cache associated with
 * this page if it is the last user of the page.
 */
void free_page_and_swap_cache(struct page *page)
{
        free_swap_cache(page);
        page_cache_release(page);
}

/*
 * Passed an array of pages, drop them all from swapcache and then release
 * them.  They are removed from the LRU and freed if this is their last use.
 */
void free_pages_and_swap_cache(struct page **pages, int nr)
{
        struct page **pagep = pages;

        lru_add_drain();
        while (nr) {
                int todo = min(nr, PAGEVEC_SIZE);
                int i;

                for (i = 0; i < todo; i++)
                        free_swap_cache(pagep[i]);
                release_pages(pagep, todo, 0);
                pagep += todo;
                nr -= todo;
        }
}

/*
 * Lookup a swap entry in the swap cache. A found page will be returned
 * unlocked and with its refcount incremented - we rely on the kernel
 * lock getting page table operations atomic even if we drop the page
 * lock before returning.
 */
struct page * lookup_swap_cache(swp_entry_t entry)
{
        struct page *page;

        page = find_get_page(&swapper_space, entry.val);

        if (page)
                INC_CACHE_INFO(find_success);

        INC_CACHE_INFO(find_total);
        return page;
}

/* 
 * Locate a page of swap in physical memory, reserving swap cache space
 * and reading the disk if it is not already cached.
 * A failure return means that either the page allocation failed or that
 * the swap entry is no longer in use.
 */
struct page *read_swap_cache_async(swp_entry_t entry, gfp_t gfp_mask,
                        struct vm_area_struct *vma, unsigned long addr)
{
        struct page *found_page, *new_page = NULL;
        int err;

        do {
                /*
                 * First check the swap cache.  Since this is normally
                 * called after lookup_swap_cache() failed, re-calling
                 * that would confuse statistics.
                 */
                found_page = find_get_page(&swapper_space, entry.val);
                if (found_page)
                        break;

                /*
                 * Get a new page to read into from swap.
                 */
                if (!new_page) {
                        new_page = alloc_page_vma(gfp_mask, vma, addr);
                        if (!new_page)
                                break;          /* Out of memory */
                }

                /*
                 * Swap entry may have been freed since our caller observed it.
                 */
                if (!swap_duplicate(entry))
                        break;

                /*
                 * Associate the page with swap entry in the swap cache.
                 * May fail (-EEXIST) if there is already a page associated
                 * with this entry in the swap cache: added by a racing
                 * read_swap_cache_async, or add_to_swap or shmem_writepage
                 * re-using the just freed swap entry for an existing page.
                 * May fail (-ENOMEM) if radix-tree node allocation failed.
                 */
                set_page_locked(new_page);
                err = add_to_swap_cache(new_page, entry, gfp_mask & GFP_KERNEL);
                if (likely(!err)) {
                        /*
                         * Initiate read into locked page and return.
                         */
                        lru_cache_add_active(new_page);
                        swap_readpage(NULL, new_page);
                        return new_page;
                }
                clear_page_locked(new_page);
                swap_free(entry);
        } while (err != -ENOMEM);

        if (new_page)
                page_cache_release(new_page);
        return found_page;
}

/**
 * swapin_readahead - swap in pages in hope we need them soon
 * @entry: swap entry of this memory
 * @gfp_mask: memory allocation flags
 * @vma: user vma this address belongs to
 * @addr: target address for mempolicy
 *
 * Returns the struct page for entry and addr, after queueing swapin.
 *
 * Primitive swap readahead code. We simply read an aligned block of
 * (1 << page_cluster) entries in the swap area. This method is chosen
 * because it doesn't cost us any seek time.  We also make sure to queue
 * the 'original' request together with the readahead ones...
 *
 * This has been extended to use the NUMA policies from the mm triggering
 * the readahead.
 *
 * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
 */
struct page *swapin_readahead(swp_entry_t entry, gfp_t gfp_mask,
                        struct vm_area_struct *vma, unsigned long addr)
{
        int nr_pages;
        struct page *page;
        unsigned long offset;
        unsigned long end_offset;

        /*
         * Get starting offset for readaround, and number of pages to read.
         * Adjust starting address by readbehind (for NUMA interleave case)?
         * No, it's very unlikely that swap layout would follow vma layout,
         * more likely that neighbouring swap pages came from the same node:
         * so use the same "addr" to choose the same node for each swap read.
         */
        nr_pages = valid_swaphandles(entry, &offset);
        for (end_offset = offset + nr_pages; offset < end_offset; offset++) {
                /* Ok, do the async read-ahead now */
                page = read_swap_cache_async(swp_entry(swp_type(entry), offset),
                                                gfp_mask, vma, addr);
                if (!page)
                        break;
                page_cache_release(page);
        }
        lru_add_drain();        /* Push any new pages onto the LRU now */
        return read_swap_cache_async(entry, gfp_mask, vma, addr);
}

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading