[funini.com] -> [kei@sodan] -> Kernel Reading

root/mm/filemap.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. __remove_from_page_cache
  2. remove_from_page_cache
  3. sync_page
  4. sync_page_killable
  5. __filemap_fdatawrite_range
  6. __filemap_fdatawrite
  7. filemap_fdatawrite
  8. filemap_fdatawrite_range
  9. filemap_flush
  10. wait_on_page_writeback_range
  11. sync_page_range
  12. sync_page_range_nolock
  13. filemap_fdatawait
  14. filemap_write_and_wait
  15. filemap_write_and_wait_range
  16. add_to_page_cache_locked
  17. add_to_page_cache_lru
  18. __page_cache_alloc
  19. __sleep_on_page_lock
  20. page_waitqueue
  21. wake_up_page
  22. wait_on_page_bit
  23. unlock_page
  24. end_page_writeback
  25. __lock_page
  26. __lock_page_killable
  27. __lock_page_nosync
  28. find_get_page
  29. find_lock_page
  30. find_or_create_page
  31. find_get_pages
  32. find_get_pages_contig
  33. find_get_pages_tag
  34. grab_cache_page_nowait
  35. shrink_readahead_size_eio
  36. do_generic_file_read
  37. file_read_actor
  38. generic_segment_checks
  39. generic_file_aio_read
  40. do_readahead
  41. sys_readahead
  42. page_cache_read
  43. filemap_fault
  44. generic_file_mmap
  45. generic_file_readonly_mmap
  46. generic_file_mmap
  47. generic_file_readonly_mmap
  48. __read_cache_page
  49. read_cache_page_async
  50. read_cache_page
  51. should_remove_suid
  52. __remove_suid
  53. file_remove_suid
  54. __iovec_copy_from_user_inatomic
  55. iov_iter_copy_from_user_atomic
  56. iov_iter_copy_from_user
  57. iov_iter_advance
  58. iov_iter_fault_in_readable
  59. iov_iter_single_seg_count
  60. generic_write_checks
  61. pagecache_write_begin
  62. pagecache_write_end
  63. generic_file_direct_write
  64. __grab_cache_page
  65. generic_perform_write_2copy
  66. generic_perform_write
  67. generic_file_buffered_write
  68. __generic_file_aio_write_nolock
  69. generic_file_aio_write_nolock
  70. generic_file_aio_write
  71. try_to_release_page

/*
 *      linux/mm/filemap.c
 *
 * Copyright (C) 1994-1999  Linus Torvalds
 */

/*
 * This file handles the generic file mmap semantics used by
 * most "normal" filesystems (but you don't /have/ to use this:
 * the NFS filesystem used to do this differently, for example)
 */
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/compiler.h>
#include <linux/fs.h>
#include <linux/uaccess.h>
#include <linux/aio.h>
#include <linux/capability.h>
#include <linux/kernel_stat.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/file.h>
#include <linux/uio.h>
#include <linux/hash.h>
#include <linux/writeback.h>
#include <linux/backing-dev.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/cpuset.h>
#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
#include <linux/memcontrol.h>
#include "internal.h"

/*
 * FIXME: remove all knowledge of the buffer layer from the core VM
 */
#include <linux/buffer_head.h> /* for generic_osync_inode */

#include <asm/mman.h>


/*
 * Shared mappings implemented 30.11.1994. It's not fully working yet,
 * though.
 *
 * Shared mappings now work. 15.8.1995  Bruno.
 *
 * finished 'unifying' the page and buffer cache and SMP-threaded the
 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
 *
 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
 */

/*
 * Lock ordering:
 *
 *  ->i_mmap_lock               (vmtruncate)
 *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
 *      ->swap_lock             (exclusive_swap_page, others)
 *        ->mapping->tree_lock
 *
 *  ->i_mutex
 *    ->i_mmap_lock             (truncate->unmap_mapping_range)
 *
 *  ->mmap_sem
 *    ->i_mmap_lock
 *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
 *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
 *
 *  ->mmap_sem
 *    ->lock_page               (access_process_vm)
 *
 *  ->i_mutex                   (generic_file_buffered_write)
 *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
 *
 *  ->i_mutex
 *    ->i_alloc_sem             (various)
 *
 *  ->inode_lock
 *    ->sb_lock                 (fs/fs-writeback.c)
 *    ->mapping->tree_lock      (__sync_single_inode)
 *
 *  ->i_mmap_lock
 *    ->anon_vma.lock           (vma_adjust)
 *
 *  ->anon_vma.lock
 *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
 *
 *  ->page_table_lock or pte_lock
 *    ->swap_lock               (try_to_unmap_one)
 *    ->private_lock            (try_to_unmap_one)
 *    ->tree_lock               (try_to_unmap_one)
 *    ->zone.lru_lock           (follow_page->mark_page_accessed)
 *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
 *    ->private_lock            (page_remove_rmap->set_page_dirty)
 *    ->tree_lock               (page_remove_rmap->set_page_dirty)
 *    ->inode_lock              (page_remove_rmap->set_page_dirty)
 *    ->inode_lock              (zap_pte_range->set_page_dirty)
 *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
 *
 *  ->task->proc_lock
 *    ->dcache_lock             (proc_pid_lookup)
 */

/*
 * Remove a page from the page cache and free it. Caller has to make
 * sure the page is locked and that nobody else uses it - or that usage
 * is safe.  The caller must hold the mapping's tree_lock.
 */
void __remove_from_page_cache(struct page *page)
{
        struct address_space *mapping = page->mapping;

        mem_cgroup_uncharge_cache_page(page);
        radix_tree_delete(&mapping->page_tree, page->index);
        page->mapping = NULL;
        mapping->nrpages--;
        __dec_zone_page_state(page, NR_FILE_PAGES);
        BUG_ON(page_mapped(page));

        /*
         * Some filesystems seem to re-dirty the page even after
         * the VM has canceled the dirty bit (eg ext3 journaling).
         *
         * Fix it up by doing a final dirty accounting check after
         * having removed the page entirely.
         */
        if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
                dec_zone_page_state(page, NR_FILE_DIRTY);
                dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
        }
}

void remove_from_page_cache(struct page *page)
{
        struct address_space *mapping = page->mapping;

        BUG_ON(!PageLocked(page));

        spin_lock_irq(&mapping->tree_lock);
        __remove_from_page_cache(page);
        spin_unlock_irq(&mapping->tree_lock);
}

static int sync_page(void *word)
{
        struct address_space *mapping;
        struct page *page;

        page = container_of((unsigned long *)word, struct page, flags);

        /*
         * page_mapping() is being called without PG_locked held.
         * Some knowledge of the state and use of the page is used to
         * reduce the requirements down to a memory barrier.
         * The danger here is of a stale page_mapping() return value
         * indicating a struct address_space different from the one it's
         * associated with when it is associated with one.
         * After smp_mb(), it's either the correct page_mapping() for
         * the page, or an old page_mapping() and the page's own
         * page_mapping() has gone NULL.
         * The ->sync_page() address_space operation must tolerate
         * page_mapping() going NULL. By an amazing coincidence,
         * this comes about because none of the users of the page
         * in the ->sync_page() methods make essential use of the
         * page_mapping(), merely passing the page down to the backing
         * device's unplug functions when it's non-NULL, which in turn
         * ignore it for all cases but swap, where only page_private(page) is
         * of interest. When page_mapping() does go NULL, the entire
         * call stack gracefully ignores the page and returns.
         * -- wli
         */
        smp_mb();
        mapping = page_mapping(page);
        if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
                mapping->a_ops->sync_page(page);
        io_schedule();
        return 0;
}

static int sync_page_killable(void *word)
{
        sync_page(word);
        return fatal_signal_pending(current) ? -EINTR : 0;
}

/**
 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 * @mapping:    address space structure to write
 * @start:      offset in bytes where the range starts
 * @end:        offset in bytes where the range ends (inclusive)
 * @sync_mode:  enable synchronous operation
 *
 * Start writeback against all of a mapping's dirty pages that lie
 * within the byte offsets <start, end> inclusive.
 *
 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 * opposed to a regular memory cleansing writeback.  The difference between
 * these two operations is that if a dirty page/buffer is encountered, it must
 * be waited upon, and not just skipped over.
 */
int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
                                loff_t end, int sync_mode)
{
        int ret;
        struct writeback_control wbc = {
                .sync_mode = sync_mode,
                .nr_to_write = mapping->nrpages * 2,
                .range_start = start,
                .range_end = end,
        };

        if (!mapping_cap_writeback_dirty(mapping))
                return 0;

        ret = do_writepages(mapping, &wbc);
        return ret;
}

static inline int __filemap_fdatawrite(struct address_space *mapping,
        int sync_mode)
{
        return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
}

int filemap_fdatawrite(struct address_space *mapping)
{
        return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
}
EXPORT_SYMBOL(filemap_fdatawrite);

int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
                                loff_t end)
{
        return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
}
EXPORT_SYMBOL(filemap_fdatawrite_range);

/**
 * filemap_flush - mostly a non-blocking flush
 * @mapping:    target address_space
 *
 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 * purposes - I/O may not be started against all dirty pages.
 */
int filemap_flush(struct address_space *mapping)
{
        return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
}
EXPORT_SYMBOL(filemap_flush);

/**
 * wait_on_page_writeback_range - wait for writeback to complete
 * @mapping:    target address_space
 * @start:      beginning page index
 * @end:        ending page index
 *
 * Wait for writeback to complete against pages indexed by start->end
 * inclusive
 */
int wait_on_page_writeback_range(struct address_space *mapping,
                                pgoff_t start, pgoff_t end)
{
        struct pagevec pvec;
        int nr_pages;
        int ret = 0;
        pgoff_t index;

        if (end < start)
                return 0;

        pagevec_init(&pvec, 0);
        index = start;
        while ((index <= end) &&
                        (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
                        PAGECACHE_TAG_WRITEBACK,
                        min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
                unsigned i;

                for (i = 0; i < nr_pages; i++) {
                        struct page *page = pvec.pages[i];

                        /* until radix tree lookup accepts end_index */
                        if (page->index > end)
                                continue;

                        wait_on_page_writeback(page);
                        if (PageError(page))
                                ret = -EIO;
                }
                pagevec_release(&pvec);
                cond_resched();
        }

        /* Check for outstanding write errors */
        if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
                ret = -ENOSPC;
        if (test_and_clear_bit(AS_EIO, &mapping->flags))
                ret = -EIO;

        return ret;
}

/**
 * sync_page_range - write and wait on all pages in the passed range
 * @inode:      target inode
 * @mapping:    target address_space
 * @pos:        beginning offset in pages to write
 * @count:      number of bytes to write
 *
 * Write and wait upon all the pages in the passed range.  This is a "data
 * integrity" operation.  It waits upon in-flight writeout before starting and
 * waiting upon new writeout.  If there was an IO error, return it.
 *
 * We need to re-take i_mutex during the generic_osync_inode list walk because
 * it is otherwise livelockable.
 */
int sync_page_range(struct inode *inode, struct address_space *mapping,
                        loff_t pos, loff_t count)
{
        pgoff_t start = pos >> PAGE_CACHE_SHIFT;
        pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
        int ret;

        if (!mapping_cap_writeback_dirty(mapping) || !count)
                return 0;
        ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
        if (ret == 0) {
                mutex_lock(&inode->i_mutex);
                ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
                mutex_unlock(&inode->i_mutex);
        }
        if (ret == 0)
                ret = wait_on_page_writeback_range(mapping, start, end);
        return ret;
}
EXPORT_SYMBOL(sync_page_range);

/**
 * sync_page_range_nolock - write & wait on all pages in the passed range without locking
 * @inode:      target inode
 * @mapping:    target address_space
 * @pos:        beginning offset in pages to write
 * @count:      number of bytes to write
 *
 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
 * as it forces O_SYNC writers to different parts of the same file
 * to be serialised right until io completion.
 */
int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
                           loff_t pos, loff_t count)
{
        pgoff_t start = pos >> PAGE_CACHE_SHIFT;
        pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
        int ret;

        if (!mapping_cap_writeback_dirty(mapping) || !count)
                return 0;
        ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
        if (ret == 0)
                ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
        if (ret == 0)
                ret = wait_on_page_writeback_range(mapping, start, end);
        return ret;
}
EXPORT_SYMBOL(sync_page_range_nolock);

/**
 * filemap_fdatawait - wait for all under-writeback pages to complete
 * @mapping: address space structure to wait for
 *
 * Walk the list of under-writeback pages of the given address space
 * and wait for all of them.
 */
int filemap_fdatawait(struct address_space *mapping)
{
        loff_t i_size = i_size_read(mapping->host);

        if (i_size == 0)
                return 0;

        return wait_on_page_writeback_range(mapping, 0,
                                (i_size - 1) >> PAGE_CACHE_SHIFT);
}
EXPORT_SYMBOL(filemap_fdatawait);

int filemap_write_and_wait(struct address_space *mapping)
{
        int err = 0;

        if (mapping->nrpages) {
                err = filemap_fdatawrite(mapping);
                /*
                 * Even if the above returned error, the pages may be
                 * written partially (e.g. -ENOSPC), so we wait for it.
                 * But the -EIO is special case, it may indicate the worst
                 * thing (e.g. bug) happened, so we avoid waiting for it.
                 */
                if (err != -EIO) {
                        int err2 = filemap_fdatawait(mapping);
                        if (!err)
                                err = err2;
                }
        }
        return err;
}
EXPORT_SYMBOL(filemap_write_and_wait);

/**
 * filemap_write_and_wait_range - write out & wait on a file range
 * @mapping:    the address_space for the pages
 * @lstart:     offset in bytes where the range starts
 * @lend:       offset in bytes where the range ends (inclusive)
 *
 * Write out and wait upon file offsets lstart->lend, inclusive.
 *
 * Note that `lend' is inclusive (describes the last byte to be written) so
 * that this function can be used to write to the very end-of-file (end = -1).
 */
int filemap_write_and_wait_range(struct address_space *mapping,
                                 loff_t lstart, loff_t lend)
{
        int err = 0;

        if (mapping->nrpages) {
                err = __filemap_fdatawrite_range(mapping, lstart, lend,
                                                 WB_SYNC_ALL);
                /* See comment of filemap_write_and_wait() */
                if (err != -EIO) {
                        int err2 = wait_on_page_writeback_range(mapping,
                                                lstart >> PAGE_CACHE_SHIFT,
                                                lend >> PAGE_CACHE_SHIFT);
                        if (!err)
                                err = err2;
                }
        }
        return err;
}

/**
 * add_to_page_cache_locked - add a locked page to the pagecache
 * @page:       page to add
 * @mapping:    the page's address_space
 * @offset:     page index
 * @gfp_mask:   page allocation mode
 *
 * This function is used to add a page to the pagecache. It must be locked.
 * This function does not add the page to the LRU.  The caller must do that.
 */
int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
                pgoff_t offset, gfp_t gfp_mask)
{
        int error;

        VM_BUG_ON(!PageLocked(page));

        error = mem_cgroup_cache_charge(page, current->mm,
                                        gfp_mask & ~__GFP_HIGHMEM);
        if (error)
                goto out;

        error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
        if (error == 0) {
                page_cache_get(page);
                page->mapping = mapping;
                page->index = offset;

                spin_lock_irq(&mapping->tree_lock);
                error = radix_tree_insert(&mapping->page_tree, offset, page);
                if (likely(!error)) {
                        mapping->nrpages++;
                        __inc_zone_page_state(page, NR_FILE_PAGES);
                } else {
                        page->mapping = NULL;
                        mem_cgroup_uncharge_cache_page(page);
                        page_cache_release(page);
                }

                spin_unlock_irq(&mapping->tree_lock);
                radix_tree_preload_end();
        } else
                mem_cgroup_uncharge_cache_page(page);
out:
        return error;
}
EXPORT_SYMBOL(add_to_page_cache_locked);

int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
                                pgoff_t offset, gfp_t gfp_mask)
{
        int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
        if (ret == 0)
                lru_cache_add(page);
        return ret;
}

#ifdef CONFIG_NUMA
struct page *__page_cache_alloc(gfp_t gfp)
{
        if (cpuset_do_page_mem_spread()) {
                int n = cpuset_mem_spread_node();
                return alloc_pages_node(n, gfp, 0);
        }
        return alloc_pages(gfp, 0);
}
EXPORT_SYMBOL(__page_cache_alloc);
#endif

static int __sleep_on_page_lock(void *word)
{
        io_schedule();
        return 0;
}

/*
 * In order to wait for pages to become available there must be
 * waitqueues associated with pages. By using a hash table of
 * waitqueues where the bucket discipline is to maintain all
 * waiters on the same queue and wake all when any of the pages
 * become available, and for the woken contexts to check to be
 * sure the appropriate page became available, this saves space
 * at a cost of "thundering herd" phenomena during rare hash
 * collisions.
 */
static wait_queue_head_t *page_waitqueue(struct page *page)
{
        const struct zone *zone = page_zone(page);

        return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
}

static inline void wake_up_page(struct page *page, int bit)
{
        __wake_up_bit(page_waitqueue(page), &page->flags, bit);
}

void wait_on_page_bit(struct page *page, int bit_nr)
{
        DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);

        if (test_bit(bit_nr, &page->flags))
                __wait_on_bit(page_waitqueue(page), &wait, sync_page,
                                                        TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(wait_on_page_bit);

/**
 * unlock_page - unlock a locked page
 * @page: the page
 *
 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
 * mechananism between PageLocked pages and PageWriteback pages is shared.
 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 *
 * The first mb is necessary to safely close the critical section opened by the
 * test_and_set_bit() to lock the page; the second mb is necessary to enforce
 * ordering between the clear_bit and the read of the waitqueue (to avoid SMP
 * races with a parallel wait_on_page_locked()).
 */
void unlock_page(struct page *page)
{
        smp_mb__before_clear_bit();
        if (!test_and_clear_bit(PG_locked, &page->flags))
                BUG();
        smp_mb__after_clear_bit(); 
        wake_up_page(page, PG_locked);
}
EXPORT_SYMBOL(unlock_page);

/**
 * end_page_writeback - end writeback against a page
 * @page: the page
 */
void end_page_writeback(struct page *page)
{
        if (TestClearPageReclaim(page))
                rotate_reclaimable_page(page);

        if (!test_clear_page_writeback(page))
                BUG();

        smp_mb__after_clear_bit();
        wake_up_page(page, PG_writeback);
}
EXPORT_SYMBOL(end_page_writeback);

/**
 * __lock_page - get a lock on the page, assuming we need to sleep to get it
 * @page: the page to lock
 *
 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
 * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
 * chances are that on the second loop, the block layer's plug list is empty,
 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
 */
void __lock_page(struct page *page)
{
        DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);

        __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
                                                        TASK_UNINTERRUPTIBLE);
}
EXPORT_SYMBOL(__lock_page);

int __lock_page_killable(struct page *page)
{
        DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);

        return __wait_on_bit_lock(page_waitqueue(page), &wait,
                                        sync_page_killable, TASK_KILLABLE);
}

/**
 * __lock_page_nosync - get a lock on the page, without calling sync_page()
 * @page: the page to lock
 *
 * Variant of lock_page that does not require the caller to hold a reference
 * on the page's mapping.
 */
void __lock_page_nosync(struct page *page)
{
        DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
        __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
                                                        TASK_UNINTERRUPTIBLE);
}

/**
 * find_get_page - find and get a page reference
 * @mapping: the address_space to search
 * @offset: the page index
 *
 * Is there a pagecache struct page at the given (mapping, offset) tuple?
 * If yes, increment its refcount and return it; if no, return NULL.
 */
struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
{
        void **pagep;
        struct page *page;

        rcu_read_lock();
repeat:
        page = NULL;
        pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
        if (pagep) {
                page = radix_tree_deref_slot(pagep);
                if (unlikely(!page || page == RADIX_TREE_RETRY))
                        goto repeat;

                if (!page_cache_get_speculative(page))
                        goto repeat;

                /*
                 * Has the page moved?
                 * This is part of the lockless pagecache protocol. See
                 * include/linux/pagemap.h for details.
                 */
                if (unlikely(page != *pagep)) {
                        page_cache_release(page);
                        goto repeat;
                }
        }
        rcu_read_unlock();

        return page;
}
EXPORT_SYMBOL(find_get_page);

/**
 * find_lock_page - locate, pin and lock a pagecache page
 * @mapping: the address_space to search
 * @offset: the page index
 *
 * Locates the desired pagecache page, locks it, increments its reference
 * count and returns its address.
 *
 * Returns zero if the page was not present. find_lock_page() may sleep.
 */
struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
{
        struct page *page;

repeat:
        page = find_get_page(mapping, offset);
        if (page) {
                lock_page(page);
                /* Has the page been truncated? */
                if (unlikely(page->mapping != mapping)) {
                        unlock_page(page);
                        page_cache_release(page);
                        goto repeat;
                }
                VM_BUG_ON(page->index != offset);
        }
        return page;
}
EXPORT_SYMBOL(find_lock_page);

/**
 * find_or_create_page - locate or add a pagecache page
 * @mapping: the page's address_space
 * @index: the page's index into the mapping
 * @gfp_mask: page allocation mode
 *
 * Locates a page in the pagecache.  If the page is not present, a new page
 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
 * LRU list.  The returned page is locked and has its reference count
 * incremented.
 *
 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
 * allocation!
 *
 * find_or_create_page() returns the desired page's address, or zero on
 * memory exhaustion.
 */
struct page *find_or_create_page(struct address_space *mapping,
                pgoff_t index, gfp_t gfp_mask)
{
        struct page *page;
        int err;
repeat:
        page = find_lock_page(mapping, index);
        if (!page) {
                page = __page_cache_alloc(gfp_mask);
                if (!page)
                        return NULL;
                err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
                if (unlikely(err)) {
                        page_cache_release(page);
                        page = NULL;
                        if (err == -EEXIST)
                                goto repeat;
                }
        }
        return page;
}
EXPORT_SYMBOL(find_or_create_page);

/**
 * find_get_pages - gang pagecache lookup
 * @mapping:    The address_space to search
 * @start:      The starting page index
 * @nr_pages:   The maximum number of pages
 * @pages:      Where the resulting pages are placed
 *
 * find_get_pages() will search for and return a group of up to
 * @nr_pages pages in the mapping.  The pages are placed at @pages.
 * find_get_pages() takes a reference against the returned pages.
 *
 * The search returns a group of mapping-contiguous pages with ascending
 * indexes.  There may be holes in the indices due to not-present pages.
 *
 * find_get_pages() returns the number of pages which were found.
 */
unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
                            unsigned int nr_pages, struct page **pages)
{
        unsigned int i;
        unsigned int ret;
        unsigned int nr_found;

        rcu_read_lock();
restart:
        nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
                                (void ***)pages, start, nr_pages);
        ret = 0;
        for (i = 0; i < nr_found; i++) {
                struct page *page;
repeat:
                page = radix_tree_deref_slot((void **)pages[i]);
                if (unlikely(!page))
                        continue;
                /*
                 * this can only trigger if nr_found == 1, making livelock
                 * a non issue.
                 */
                if (unlikely(page == RADIX_TREE_RETRY))
                        goto restart;

                if (!page_cache_get_speculative(page))
                        goto repeat;

                /* Has the page moved? */
                if (unlikely(page != *((void **)pages[i]))) {
                        page_cache_release(page);
                        goto repeat;
                }

                pages[ret] = page;
                ret++;
        }
        rcu_read_unlock();
        return ret;
}

/**
 * find_get_pages_contig - gang contiguous pagecache lookup
 * @mapping:    The address_space to search
 * @index:      The starting page index
 * @nr_pages:   The maximum number of pages
 * @pages:      Where the resulting pages are placed
 *
 * find_get_pages_contig() works exactly like find_get_pages(), except
 * that the returned number of pages are guaranteed to be contiguous.
 *
 * find_get_pages_contig() returns the number of pages which were found.
 */
unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
                               unsigned int nr_pages, struct page **pages)
{
        unsigned int i;
        unsigned int ret;
        unsigned int nr_found;

        rcu_read_lock();
restart:
        nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
                                (void ***)pages, index, nr_pages);
        ret = 0;
        for (i = 0; i < nr_found; i++) {
                struct page *page;
repeat:
                page = radix_tree_deref_slot((void **)pages[i]);
                if (unlikely(!page))
                        continue;
                /*
                 * this can only trigger if nr_found == 1, making livelock
                 * a non issue.
                 */
                if (unlikely(page == RADIX_TREE_RETRY))
                        goto restart;

                if (page->mapping == NULL || page->index != index)
                        break;

                if (!page_cache_get_speculative(page))
                        goto repeat;

                /* Has the page moved? */
                if (unlikely(page != *((void **)pages[i]))) {
                        page_cache_release(page);
                        goto repeat;
                }

                pages[ret] = page;
                ret++;
                index++;
        }
        rcu_read_unlock();
        return ret;
}
EXPORT_SYMBOL(find_get_pages_contig);

/**
 * find_get_pages_tag - find and return pages that match @tag
 * @mapping:    the address_space to search
 * @index:      the starting page index
 * @tag:        the tag index
 * @nr_pages:   the maximum number of pages
 * @pages:      where the resulting pages are placed
 *
 * Like find_get_pages, except we only return pages which are tagged with
 * @tag.   We update @index to index the next page for the traversal.
 */
unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
                        int tag, unsigned int nr_pages, struct page **pages)
{
        unsigned int i;
        unsigned int ret;
        unsigned int nr_found;

        rcu_read_lock();
restart:
        nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
                                (void ***)pages, *index, nr_pages, tag);
        ret = 0;
        for (i = 0; i < nr_found; i++) {
                struct page *page;
repeat:
                page = radix_tree_deref_slot((void **)pages[i]);
                if (unlikely(!page))
                        continue;
                /*
                 * this can only trigger if nr_found == 1, making livelock
                 * a non issue.
                 */
                if (unlikely(page == RADIX_TREE_RETRY))
                        goto restart;

                if (!page_cache_get_speculative(page))
                        goto repeat;

                /* Has the page moved? */
                if (unlikely(page != *((void **)pages[i]))) {
                        page_cache_release(page);
                        goto repeat;
                }

                pages[ret] = page;
                ret++;
        }
        rcu_read_unlock();

        if (ret)
                *index = pages[ret - 1]->index + 1;

        return ret;
}
EXPORT_SYMBOL(find_get_pages_tag);

/**
 * grab_cache_page_nowait - returns locked page at given index in given cache
 * @mapping: target address_space
 * @index: the page index
 *
 * Same as grab_cache_page(), but do not wait if the page is unavailable.
 * This is intended for speculative data generators, where the data can
 * be regenerated if the page couldn't be grabbed.  This routine should
 * be safe to call while holding the lock for another page.
 *
 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
 * and deadlock against the caller's locked page.
 */
struct page *
grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
{
        struct page *page = find_get_page(mapping, index);

        if (page) {
                if (trylock_page(page))
                        return page;
                page_cache_release(page);
                return NULL;
        }
        page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
        if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
                page_cache_release(page);
                page = NULL;
        }
        return page;
}
EXPORT_SYMBOL(grab_cache_page_nowait);

/*
 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
 * a _large_ part of the i/o request. Imagine the worst scenario:
 *
 *      ---R__________________________________________B__________
 *         ^ reading here                             ^ bad block(assume 4k)
 *
 * read(R) => miss => readahead(R...B) => media error => frustrating retries
 * => failing the whole request => read(R) => read(R+1) =>
 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
 *
 * It is going insane. Fix it by quickly scaling down the readahead size.
 */
static void shrink_readahead_size_eio(struct file *filp,
                                        struct file_ra_state *ra)
{
        if (!ra->ra_pages)
                return;

        ra->ra_pages /= 4;
}

/**
 * do_generic_file_read - generic file read routine
 * @filp:       the file to read
 * @ppos:       current file position
 * @desc:       read_descriptor
 * @actor:      read method
 *
 * This is a generic file read routine, and uses the
 * mapping->a_ops->readpage() function for the actual low-level stuff.
 *
 * This is really ugly. But the goto's actually try to clarify some
 * of the logic when it comes to error handling etc.
 */
static void do_generic_file_read(struct file *filp, loff_t *ppos,
                read_descriptor_t *desc, read_actor_t actor)
{
        struct address_space *mapping = filp->f_mapping;
        struct inode *inode = mapping->host;
        struct file_ra_state *ra = &filp->f_ra;
        pgoff_t index;
        pgoff_t last_index;
        pgoff_t prev_index;
        unsigned long offset;      /* offset into pagecache page */
        unsigned int prev_offset;
        int error;

        index = *ppos >> PAGE_CACHE_SHIFT;
        prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
        prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
        last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
        offset = *ppos & ~PAGE_CACHE_MASK;

        for (;;) {
                struct page *page;
                pgoff_t end_index;
                loff_t isize;
                unsigned long nr, ret;

                cond_resched();
find_page:
                page = find_get_page(mapping, index);
                if (!page) {
                        page_cache_sync_readahead(mapping,
                                        ra, filp,
                                        index, last_index - index);
                        page = find_get_page(mapping, index);
                        if (unlikely(page == NULL))
                                goto no_cached_page;
                }
                if (PageReadahead(page)) {
                        page_cache_async_readahead(mapping,
                                        ra, filp, page,
                                        index, last_index - index);
                }
                if (!PageUptodate(page)) {
                        if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
                                        !mapping->a_ops->is_partially_uptodate)
                                goto page_not_up_to_date;
                        if (!trylock_page(page))
                                goto page_not_up_to_date;
                        if (!mapping->a_ops->is_partially_uptodate(page,
                                                                desc, offset))
                                goto page_not_up_to_date_locked;
                        unlock_page(page);
                }
page_ok:
                /*
                 * i_size must be checked after we know the page is Uptodate.
                 *
                 * Checking i_size after the check allows us to calculate
                 * the correct value for "nr", which means the zero-filled
                 * part of the page is not copied back to userspace (unless
                 * another truncate extends the file - this is desired though).
                 */

                isize = i_size_read(inode);
                end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
                if (unlikely(!isize || index > end_index)) {
                        page_cache_release(page);
                        goto out;
                }

                /* nr is the maximum number of bytes to copy from this page */
                nr = PAGE_CACHE_SIZE;
                if (index == end_index) {
                        nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
                        if (nr <= offset) {
                                page_cache_release(page);
                                goto out;
                        }
                }
                nr = nr - offset;

                /* If users can be writing to this page using arbitrary
                 * virtual addresses, take care about potential aliasing
                 * before reading the page on the kernel side.
                 */
                if (mapping_writably_mapped(mapping))
                        flush_dcache_page(page);

                /*
                 * When a sequential read accesses a page several times,
                 * only mark it as accessed the first time.
                 */
                if (prev_index != index || offset != prev_offset)
                        mark_page_accessed(page);
                prev_index = index;

                /*
                 * Ok, we have the page, and it's up-to-date, so
                 * now we can copy it to user space...
                 *
                 * The actor routine returns how many bytes were actually used..
                 * NOTE! This may not be the same as how much of a user buffer
                 * we filled up (we may be padding etc), so we can only update
                 * "pos" here (the actor routine has to update the user buffer
                 * pointers and the remaining count).
                 */
                ret = actor(desc, page, offset, nr);
                offset += ret;
                index += offset >> PAGE_CACHE_SHIFT;
                offset &= ~PAGE_CACHE_MASK;
                prev_offset = offset;

                page_cache_release(page);
                if (ret == nr && desc->count)
                        continue;
                goto out;

page_not_up_to_date:
                /* Get exclusive access to the page ... */
                if (lock_page_killable(page))
                        goto readpage_eio;

page_not_up_to_date_locked:
                /* Did it get truncated before we got the lock? */
                if (!page->mapping) {
                        unlock_page(page);
                        page_cache_release(page);
                        continue;
                }

                /* Did somebody else fill it already? */
                if (PageUptodate(page)) {
                        unlock_page(page);
                        goto page_ok;
                }

readpage:
                /* Start the actual read. The read will unlock the page. */
                error = mapping->a_ops->readpage(filp, page);

                if (unlikely(error)) {
                        if (error == AOP_TRUNCATED_PAGE) {
                                page_cache_release(page);
                                goto find_page;
                        }
                        goto readpage_error;
                }

                if (!PageUptodate(page)) {
                        if (lock_page_killable(page))
                                goto readpage_eio;
                        if (!PageUptodate(page)) {
                                if (page->mapping == NULL) {
                                        /*
                                         * invalidate_inode_pages got it
                                         */
                                        unlock_page(page);
                                        page_cache_release(page);
                                        goto find_page;
                                }
                                unlock_page(page);
                                shrink_readahead_size_eio(filp, ra);
                                goto readpage_eio;
                        }
                        unlock_page(page);
                }

                goto page_ok;

readpage_eio:
                error = -EIO;
readpage_error:
                /* UHHUH! A synchronous read error occurred. Report it */
                desc->error = error;
                page_cache_release(page);
                goto out;

no_cached_page:
                /*
                 * Ok, it wasn't cached, so we need to create a new
                 * page..
                 */
                page = page_cache_alloc_cold(mapping);
                if (!page) {
                        desc->error = -ENOMEM;
                        goto out;
                }
                error = add_to_page_cache_lru(page, mapping,
                                                index, GFP_KERNEL);
                if (error) {
                        page_cache_release(page);
                        if (error == -EEXIST)
                                goto find_page;
                        desc->error = error;
                        goto out;
                }
                goto readpage;
        }

out:
        ra->prev_pos = prev_index;
        ra->prev_pos <<= PAGE_CACHE_SHIFT;
        ra->prev_pos |= prev_offset;

        *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
        if (filp)
                file_accessed(filp);
}

int file_read_actor(read_descriptor_t *desc, struct page *page,
                        unsigned long offset, unsigned long size)
{
        char *kaddr;
        unsigned long left, count = desc->count;

        if (size > count)
                size = count;

        /*
         * Faults on the destination of a read are common, so do it before
         * taking the kmap.
         */
        if (!fault_in_pages_writeable(desc->arg.buf, size)) {
                kaddr = kmap_atomic(page, KM_USER0);
                left = __copy_to_user_inatomic(desc->arg.buf,
                                                kaddr + offset, size);
                kunmap_atomic(kaddr, KM_USER0);
                if (left == 0)
                        goto success;
        }

        /* Do it the slow way */
        kaddr = kmap(page);
        left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
        kunmap(page);

        if (left) {
                size -= left;
                desc->error = -EFAULT;
        }
success:
        desc->count = count - size;
        desc->written += size;
        desc->arg.buf += size;
        return size;
}

/*
 * Performs necessary checks before doing a write
 * @iov:        io vector request
 * @nr_segs:    number of segments in the iovec
 * @count:      number of bytes to write
 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
 *
 * Adjust number of segments and amount of bytes to write (nr_segs should be
 * properly initialized first). Returns appropriate error code that caller
 * should return or zero in case that write should be allowed.
 */
int generic_segment_checks(const struct iovec *iov,
                        unsigned long *nr_segs, size_t *count, int access_flags)
{
        unsigned long   seg;
        size_t cnt = 0;
        for (seg = 0; seg < *nr_segs; seg++) {
                const struct iovec *iv = &iov[seg];

                /*
                 * If any segment has a negative length, or the cumulative
                 * length ever wraps negative then return -EINVAL.
                 */
                cnt += iv->iov_len;
                if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
                        return -EINVAL;
                if (access_ok(access_flags, iv->iov_base, iv->iov_len))
                        continue;
                if (seg == 0)
                        return -EFAULT;
                *nr_segs = seg;
                cnt -= iv->iov_len;     /* This segment is no good */
                break;
        }
        *count = cnt;
        return 0;
}
EXPORT_SYMBOL(generic_segment_checks);

/**
 * generic_file_aio_read - generic filesystem read routine
 * @iocb:       kernel I/O control block
 * @iov:        io vector request
 * @nr_segs:    number of segments in the iovec
 * @pos:        current file position
 *
 * This is the "read()" routine for all filesystems
 * that can use the page cache directly.
 */
ssize_t
generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
                unsigned long nr_segs, loff_t pos)
{
        struct file *filp = iocb->ki_filp;
        ssize_t retval;
        unsigned long seg;
        size_t count;
        loff_t *ppos = &iocb->ki_pos;

        count = 0;
        retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
        if (retval)
                return retval;

        /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
        if (filp->f_flags & O_DIRECT) {
                loff_t size;
                struct address_space *mapping;
                struct inode *inode;

                mapping = filp->f_mapping;
                inode = mapping->host;
                if (!count)
                        goto out; /* skip atime */
                size = i_size_read(inode);
                if (pos < size) {
                        retval = filemap_write_and_wait(mapping);
                        if (!retval) {
                                retval = mapping->a_ops->direct_IO(READ, iocb,
                                                        iov, pos, nr_segs);
                        }
                        if (retval > 0)
                                *ppos = pos + retval;
                        if (retval) {
                                file_accessed(filp);
                                goto out;
                        }
                }
        }

        for (seg = 0; seg < nr_segs; seg++) {
                read_descriptor_t desc;

                desc.written = 0;
                desc.arg.buf = iov[seg].iov_base;
                desc.count = iov[seg].iov_len;
                if (desc.count == 0)
                        continue;
                desc.error = 0;
                do_generic_file_read(filp, ppos, &desc, file_read_actor);
                retval += desc.written;
                if (desc.error) {
                        retval = retval ?: desc.error;
                        break;
                }
                if (desc.count > 0)
                        break;
        }
out:
        return retval;
}
EXPORT_SYMBOL(generic_file_aio_read);

static ssize_t
do_readahead(struct address_space *mapping, struct file *filp,
             pgoff_t index, unsigned long nr)
{
        if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
                return -EINVAL;

        force_page_cache_readahead(mapping, filp, index,
                                        max_sane_readahead(nr));
        return 0;
}

asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
{
        ssize_t ret;
        struct file *file;

        ret = -EBADF;
        file = fget(fd);
        if (file) {
                if (file->f_mode & FMODE_READ) {
                        struct address_space *mapping = file->f_mapping;
                        pgoff_t start = offset >> PAGE_CACHE_SHIFT;
                        pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
                        unsigned long len = end - start + 1;
                        ret = do_readahead(mapping, file, start, len);
                }
                fput(file);
        }
        return ret;
}

#ifdef CONFIG_MMU
/**
 * page_cache_read - adds requested page to the page cache if not already there
 * @file:       file to read
 * @offset:     page index
 *
 * This adds the requested page to the page cache if it isn't already there,
 * and schedules an I/O to read in its contents from disk.
 */
static int page_cache_read(struct file *file, pgoff_t offset)
{
        struct address_space *mapping = file->f_mapping;
        struct page *page; 
        int ret;

        do {
                page = page_cache_alloc_cold(mapping);
                if (!page)
                        return -ENOMEM;

                ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
                if (ret == 0)
                        ret = mapping->a_ops->readpage(file, page);
                else if (ret == -EEXIST)
                        ret = 0; /* losing race to add is OK */

                page_cache_release(page);

        } while (ret == AOP_TRUNCATED_PAGE);
                
        return ret;
}

#define MMAP_LOTSAMISS  (100)

/**
 * filemap_fault - read in file data for page fault handling
 * @vma:        vma in which the fault was taken
 * @vmf:        struct vm_fault containing details of the fault
 *
 * filemap_fault() is invoked via the vma operations vector for a
 * mapped memory region to read in file data during a page fault.
 *
 * The goto's are kind of ugly, but this streamlines the normal case of having
 * it in the page cache, and handles the special cases reasonably without
 * having a lot of duplicated code.
 */
int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
        int error;
        struct file *file = vma->vm_file;
        struct address_space *mapping = file->f_mapping;
        struct file_ra_state *ra = &file->f_ra;
        struct inode *inode = mapping->host;
        struct page *page;
        pgoff_t size;
        int did_readaround = 0;
        int ret = 0;

        size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
        if (vmf->pgoff >= size)
                return VM_FAULT_SIGBUS;

        /* If we don't want any read-ahead, don't bother */
        if (VM_RandomReadHint(vma))
                goto no_cached_page;

        /*
         * Do we have something in the page cache already?
         */
retry_find:
        page = find_lock_page(mapping, vmf->pgoff);
        /*
         * For sequential accesses, we use the generic readahead logic.
         */
        if (VM_SequentialReadHint(vma)) {
                if (!page) {
                        page_cache_sync_readahead(mapping, ra, file,
                                                           vmf->pgoff, 1);
                        page = find_lock_page(mapping, vmf->pgoff);
                        if (!page)
                                goto no_cached_page;
                }
                if (PageReadahead(page)) {
                        page_cache_async_readahead(mapping, ra, file, page,
                                                           vmf->pgoff, 1);
                }
        }

        if (!page) {
                unsigned long ra_pages;

                ra->mmap_miss++;

                /*
                 * Do we miss much more than hit in this file? If so,
                 * stop bothering with read-ahead. It will only hurt.
                 */
                if (ra->mmap_miss > MMAP_LOTSAMISS)
                        goto no_cached_page;

                /*
                 * To keep the pgmajfault counter straight, we need to
                 * check did_readaround, as this is an inner loop.
                 */
                if (!did_readaround) {
                        ret = VM_FAULT_MAJOR;
                        count_vm_event(PGMAJFAULT);
                }
                did_readaround = 1;
                ra_pages = max_sane_readahead(file->f_ra.ra_pages);
                if (ra_pages) {
                        pgoff_t start = 0;

                        if (vmf->pgoff > ra_pages / 2)
                                start = vmf->pgoff - ra_pages / 2;
                        do_page_cache_readahead(mapping, file, start, ra_pages);
                }
                page = find_lock_page(mapping, vmf->pgoff);
                if (!page)
                        goto no_cached_page;
        }

        if (!did_readaround)
                ra->mmap_miss--;

        /*
         * We have a locked page in the page cache, now we need to check
         * that it's up-to-date. If not, it is going to be due to an error.
         */
        if (unlikely(!PageUptodate(page)))
                goto page_not_uptodate;

        /* Must recheck i_size under page lock */
        size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
        if (unlikely(vmf->pgoff >= size)) {
                unlock_page(page);
                page_cache_release(page);
                return VM_FAULT_SIGBUS;
        }

        /*
         * Found the page and have a reference on it.
         */
        mark_page_accessed(page);
        ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
        vmf->page = page;
        return ret | VM_FAULT_LOCKED;

no_cached_page:
        /*
         * We're only likely to ever get here if MADV_RANDOM is in
         * effect.
         */
        error = page_cache_read(file, vmf->pgoff);

        /*
         * The page we want has now been added to the page cache.
         * In the unlikely event that someone removed it in the
         * meantime, we'll just come back here and read it again.
         */
        if (error >= 0)
                goto retry_find;

        /*
         * An error return from page_cache_read can result if the
         * system is low on memory, or a problem occurs while trying
         * to schedule I/O.
         */
        if (error == -ENOMEM)
                return VM_FAULT_OOM;
        return VM_FAULT_SIGBUS;

page_not_uptodate:
        /* IO error path */
        if (!did_readaround) {
                ret = VM_FAULT_MAJOR;
                count_vm_event(PGMAJFAULT);
        }

        /*
         * Umm, take care of errors if the page isn't up-to-date.
         * Try to re-read it _once_. We do this synchronously,
         * because there really aren't any performance issues here
         * and we need to check for errors.
         */
        ClearPageError(page);
        error = mapping->a_ops->readpage(file, page);
        if (!error) {
                wait_on_page_locked(page);
                if (!PageUptodate(page))
                        error = -EIO;
        }
        page_cache_release(page);

        if (!error || error == AOP_TRUNCATED_PAGE)
                goto retry_find;

        /* Things didn't work out. Return zero to tell the mm layer so. */
        shrink_readahead_size_eio(file, ra);
        return VM_FAULT_SIGBUS;
}
EXPORT_SYMBOL(filemap_fault);

struct vm_operations_struct generic_file_vm_ops = {
        .fault          = filemap_fault,
};

/* This is used for a general mmap of a disk file */

int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
        struct address_space *mapping = file->f_mapping;

        if (!mapping->a_ops->readpage)
                return -ENOEXEC;
        file_accessed(file);
        vma->vm_ops = &generic_file_vm_ops;
        vma->vm_flags |= VM_CAN_NONLINEAR;
        return 0;
}

/*
 * This is for filesystems which do not implement ->writepage.
 */
int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
{
        if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
                return -EINVAL;
        return generic_file_mmap(file, vma);
}
#else
int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
{
        return -ENOSYS;
}
int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
{
        return -ENOSYS;
}
#endif /* CONFIG_MMU */

EXPORT_SYMBOL(generic_file_mmap);
EXPORT_SYMBOL(generic_file_readonly_mmap);

static struct page *__read_cache_page(struct address_space *mapping,
                                pgoff_t index,
                                int (*filler)(void *,struct page*),
                                void *data)
{
        struct page *page;
        int err;
repeat:
        page = find_get_page(mapping, index);
        if (!page) {
                page = page_cache_alloc_cold(mapping);
                if (!page)
                        return ERR_PTR(-ENOMEM);
                err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
                if (unlikely(err)) {
                        page_cache_release(page);
                        if (err == -EEXIST)
                                goto repeat;
                        /* Presumably ENOMEM for radix tree node */
                        return ERR_PTR(err);
                }
                err = filler(data, page);
                if (err < 0) {
                        page_cache_release(page);
                        page = ERR_PTR(err);
                }
        }
        return page;
}

/**
 * read_cache_page_async - read into page cache, fill it if needed
 * @mapping:    the page's address_space
 * @index:      the page index
 * @filler:     function to perform the read
 * @data:       destination for read data
 *
 * Same as read_cache_page, but don't wait for page to become unlocked
 * after submitting it to the filler.
 *
 * Read into the page cache. If a page already exists, and PageUptodate() is
 * not set, try to fill the page but don't wait for it to become unlocked.
 *
 * If the page does not get brought uptodate, return -EIO.
 */
struct page *read_cache_page_async(struct address_space *mapping,
                                pgoff_t index,
                                int (*filler)(void *,struct page*),
                                void *data)
{
        struct page *page;
        int err;

retry:
        page = __read_cache_page(mapping, index, filler, data);
        if (IS_ERR(page))
                return page;
        if (PageUptodate(page))
                goto out;

        lock_page(page);
        if (!page->mapping) {
                unlock_page(page);
                page_cache_release(page);
                goto retry;
        }
        if (PageUptodate(page)) {
                unlock_page(page);
                goto out;
        }
        err = filler(data, page);
        if (err < 0) {
                page_cache_release(page);
                return ERR_PTR(err);
        }
out:
        mark_page_accessed(page);
        return page;
}
EXPORT_SYMBOL(read_cache_page_async);

/**
 * read_cache_page - read into page cache, fill it if needed
 * @mapping:    the page's address_space
 * @index:      the page index
 * @filler:     function to perform the read
 * @data:       destination for read data
 *
 * Read into the page cache. If a page already exists, and PageUptodate() is
 * not set, try to fill the page then wait for it to become unlocked.
 *
 * If the page does not get brought uptodate, return -EIO.
 */
struct page *read_cache_page(struct address_space *mapping,
                                pgoff_t index,
                                int (*filler)(void *,struct page*),
                                void *data)
{
        struct page *page;

        page = read_cache_page_async(mapping, index, filler, data);
        if (IS_ERR(page))
                goto out;
        wait_on_page_locked(page);
        if (!PageUptodate(page)) {
                page_cache_release(page);
                page = ERR_PTR(-EIO);
        }
 out:
        return page;
}
EXPORT_SYMBOL(read_cache_page);

/*
 * The logic we want is
 *
 *      if suid or (sgid and xgrp)
 *              remove privs
 */
int should_remove_suid(struct dentry *dentry)
{
        mode_t mode = dentry->d_inode->i_mode;
        int kill = 0;

        /* suid always must be killed */
        if (unlikely(mode & S_ISUID))
                kill = ATTR_KILL_SUID;

        /*
         * sgid without any exec bits is just a mandatory locking mark; leave
         * it alone.  If some exec bits are set, it's a real sgid; kill it.
         */
        if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
                kill |= ATTR_KILL_SGID;

        if (unlikely(kill && !capable(CAP_FSETID)))
                return kill;

        return 0;
}
EXPORT_SYMBOL(should_remove_suid);

static int __remove_suid(struct dentry *dentry, int kill)
{
        struct iattr newattrs;

        newattrs.ia_valid = ATTR_FORCE | kill;
        return notify_change(dentry, &newattrs);
}

int file_remove_suid(struct file *file)
{
        struct dentry *dentry = file->f_path.dentry;
        int killsuid = should_remove_suid(dentry);
        int killpriv = security_inode_need_killpriv(dentry);
        int error = 0;

        if (killpriv < 0)
                return killpriv;
        if (killpriv)
                error = security_inode_killpriv(dentry);
        if (!error && killsuid)
                error = __remove_suid(dentry, killsuid);

        return error;
}
EXPORT_SYMBOL(file_remove_suid);

static size_t __iovec_copy_from_user_inatomic(char *vaddr,
                        const struct iovec *iov, size_t base, size_t bytes)
{
        size_t copied = 0, left = 0;

        while (bytes) {
                char __user *buf = iov->iov_base + base;
                int copy = min(bytes, iov->iov_len - base);

                base = 0;
                left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
                copied += copy;
                bytes -= copy;
                vaddr += copy;
                iov++;

                if (unlikely(left))
                        break;
        }
        return copied - left;
}

/*
 * Copy as much as we can into the page and return the number of bytes which
 * were sucessfully copied.  If a fault is encountered then return the number of
 * bytes which were copied.
 */
size_t iov_iter_copy_from_user_atomic(struct page *page,
                struct iov_iter *i, unsigned long offset, size_t bytes)
{
        char *kaddr;
        size_t copied;

        BUG_ON(!in_atomic());
        kaddr = kmap_atomic(page, KM_USER0);
        if (likely(i->nr_segs == 1)) {
                int left;
                char __user *buf = i->iov->iov_base + i->iov_offset;
                left = __copy_from_user_inatomic_nocache(kaddr + offset,
                                                        buf, bytes);
                copied = bytes - left;
        } else {
                copied = __iovec_copy_from_user_inatomic(kaddr + offset,
                                                i->iov, i->iov_offset, bytes);
        }
        kunmap_atomic(kaddr, KM_USER0);

        return copied;
}
EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);

/*
 * This has the same sideeffects and return value as
 * iov_iter_copy_from_user_atomic().
 * The difference is that it attempts to resolve faults.
 * Page must not be locked.
 */
size_t iov_iter_copy_from_user(struct page *page,
                struct iov_iter *i, unsigned long offset, size_t bytes)
{
        char *kaddr;
        size_t copied;

        kaddr = kmap(page);
        if (likely(i->nr_segs == 1)) {
                int left;
                char __user *buf = i->iov->iov_base + i->iov_offset;
                left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
                copied = bytes - left;
        } else {
                copied = __iovec_copy_from_user_inatomic(kaddr + offset,
                                                i->iov, i->iov_offset, bytes);
        }
        kunmap(page);
        return copied;
}
EXPORT_SYMBOL(iov_iter_copy_from_user);

void iov_iter_advance(struct iov_iter *i, size_t bytes)
{
        BUG_ON(i->count < bytes);

        if (likely(i->nr_segs == 1)) {
                i->iov_offset += bytes;
                i->count -= bytes;
        } else {
                const struct iovec *iov = i->iov;
                size_t base = i->iov_offset;

                /*
                 * The !iov->iov_len check ensures we skip over unlikely
                 * zero-length segments (without overruning the iovec).
                 */
                while (bytes || unlikely(i->count && !iov->iov_len)) {
                        int copy;

                        copy = min(bytes, iov->iov_len - base);
                        BUG_ON(!i->count || i->count < copy);
                        i->count -= copy;
                        bytes -= copy;
                        base += copy;
                        if (iov->iov_len == base) {
                                iov++;
                                base = 0;
                        }
                }
                i->iov = iov;
                i->iov_offset = base;
        }
}
EXPORT_SYMBOL(iov_iter_advance);

/*
 * Fault in the first iovec of the given iov_iter, to a maximum length
 * of bytes. Returns 0 on success, or non-zero if the memory could not be
 * accessed (ie. because it is an invalid address).
 *
 * writev-intensive code may want this to prefault several iovecs -- that
 * would be possible (callers must not rely on the fact that _only_ the
 * first iovec will be faulted with the current implementation).
 */
int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
{
        char __user *buf = i->iov->iov_base + i->iov_offset;
        bytes = min(bytes, i->iov->iov_len - i->iov_offset);
        return fault_in_pages_readable(buf, bytes);
}
EXPORT_SYMBOL(iov_iter_fault_in_readable);

/*
 * Return the count of just the current iov_iter segment.
 */
size_t iov_iter_single_seg_count(struct iov_iter *i)
{
        const struct iovec *iov = i->iov;
        if (i->nr_segs == 1)
                return i->count;
        else
                return min(i->count, iov->iov_len - i->iov_offset);
}
EXPORT_SYMBOL(iov_iter_single_seg_count);

/*
 * Performs necessary checks before doing a write
 *
 * Can adjust writing position or amount of bytes to write.
 * Returns appropriate error code that caller should return or
 * zero in case that write should be allowed.
 */
inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
{
        struct inode *inode = file->f_mapping->host;
        unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;

        if (unlikely(*pos < 0))
                return -EINVAL;

        if (!isblk) {
                /* FIXME: this is for backwards compatibility with 2.4 */
                if (file->f_flags & O_APPEND)
                        *pos = i_size_read(inode);

                if (limit != RLIM_INFINITY) {
                        if (*pos >= limit) {
                                send_sig(SIGXFSZ, current, 0);
                                return -EFBIG;
                        }
                        if (*count > limit - (typeof(limit))*pos) {
                                *count = limit - (typeof(limit))*pos;
                        }
                }
        }

        /*
         * LFS rule
         */
        if (unlikely(*pos + *count > MAX_NON_LFS &&
                                !(file->f_flags & O_LARGEFILE))) {
                if (*pos >= MAX_NON_LFS) {
                        return -EFBIG;
                }
                if (*count > MAX_NON_LFS - (unsigned long)*pos) {
                        *count = MAX_NON_LFS - (unsigned long)*pos;
                }
        }

        /*
         * Are we about to exceed the fs block limit ?
         *
         * If we have written data it becomes a short write.  If we have
         * exceeded without writing data we send a signal and return EFBIG.
         * Linus frestrict idea will clean these up nicely..
         */
        if (likely(!isblk)) {
                if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
                        if (*count || *pos > inode->i_sb->s_maxbytes) {
                                return -EFBIG;
                        }
                        /* zero-length writes at ->s_maxbytes are OK */
                }

                if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
                        *count = inode->i_sb->s_maxbytes - *pos;
        } else {
#ifdef CONFIG_BLOCK
                loff_t isize;
                if (bdev_read_only(I_BDEV(inode)))
                        return -EPERM;
                isize = i_size_read(inode);
                if (*pos >= isize) {
                        if (*count || *pos > isize)
                                return -ENOSPC;
                }

                if (*pos + *count > isize)
                        *count = isize - *pos;
#else
                return -EPERM;
#endif
        }
        return 0;
}
EXPORT_SYMBOL(generic_write_checks);

int pagecache_write_begin(struct file *file, struct address_space *mapping,
                                loff_t pos, unsigned len, unsigned flags,
                                struct page **pagep, void **fsdata)
{
        const struct address_space_operations *aops = mapping->a_ops;

        if (aops->write_begin) {
                return aops->write_begin(file, mapping, pos, len, flags,
                                                        pagep, fsdata);
        } else {
                int ret;
                pgoff_t index = pos >> PAGE_CACHE_SHIFT;
                unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
                struct inode *inode = mapping->host;
                struct page *page;
again:
                page = __grab_cache_page(mapping, index);
                *pagep = page;
                if (!page)
                        return -ENOMEM;

                if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
                        /*
                         * There is no way to resolve a short write situation
                         * for a !Uptodate page (except by double copying in
                         * the caller done by generic_perform_write_2copy).
                         *
                         * Instead, we have to bring it uptodate here.
                         */
                        ret = aops->readpage(file, page);
                        page_cache_release(page);
                        if (ret) {
                                if (ret == AOP_TRUNCATED_PAGE)
                                        goto again;
                                return ret;
                        }
                        goto again;
                }

                ret = aops->prepare_write(file, page, offset, offset+len);
                if (ret) {
                        unlock_page(page);
                        page_cache_release(page);
                        if (pos + len > inode->i_size)
                                vmtruncate(inode, inode->i_size);
                }
                return ret;
        }
}
EXPORT_SYMBOL(pagecache_write_begin);

int pagecache_write_end(struct file *file, struct address_space *mapping,
                                loff_t pos, unsigned len, unsigned copied,
                                struct page *page, void *fsdata)
{
        const struct address_space_operations *aops = mapping->a_ops;
        int ret;

        if (aops->write_end) {
                mark_page_accessed(page);
                ret = aops->write_end(file, mapping, pos, len, copied,
                                                        page, fsdata);
        } else {
                unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
                struct inode *inode = mapping->host;

                flush_dcache_page(page);
                ret = aops->commit_write(file, page, offset, offset+len);
                unlock_page(page);
                mark_page_accessed(page);
                page_cache_release(page);

                if (ret < 0) {
                        if (pos + len > inode->i_size)
                                vmtruncate(inode, inode->i_size);
                } else if (ret > 0)
                        ret = min_t(size_t, copied, ret);
                else
                        ret = copied;
        }

        return ret;
}
EXPORT_SYMBOL(pagecache_write_end);

ssize_t
generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
                unsigned long *nr_segs, loff_t pos, loff_t *ppos,
                size_t count, size_t ocount)
{
        struct file     *file = iocb->ki_filp;
        struct address_space *mapping = file->f_mapping;
        struct inode    *inode = mapping->host;
        ssize_t         written;
        size_t          write_len;
        pgoff_t         end;

        if (count != ocount)
                *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);

        /*
         * Unmap all mmappings of the file up-front.
         *
         * This will cause any pte dirty bits to be propagated into the
         * pageframes for the subsequent filemap_write_and_wait().
         */
        write_len = iov_length(iov, *nr_segs);
        end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
        if (mapping_mapped(mapping))
                unmap_mapping_range(mapping, pos, write_len, 0);

        written = filemap_write_and_wait(mapping);
        if (written)
                goto out;

        /*
         * After a write we want buffered reads to be sure to go to disk to get
         * the new data.  We invalidate clean cached page from the region we're
         * about to write.  We do this *before* the write so that we can return
         * without clobbering -EIOCBQUEUED from ->direct_IO().
         */
        if (mapping->nrpages) {
                written = invalidate_inode_pages2_range(mapping,
                                        pos >> PAGE_CACHE_SHIFT, end);
                /*
                 * If a page can not be invalidated, return 0 to fall back
                 * to buffered write.
                 */
                if (written) {
                        if (written == -EBUSY)
                                return 0;
                        goto out;
                }
        }

        written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);

        /*
         * Finally, try again to invalidate clean pages which might have been
         * cached by non-direct readahead, or faulted in by get_user_pages()
         * if the source of the write was an mmap'ed region of the file
         * we're writing.  Either one is a pretty crazy thing to do,
         * so we don't support it 100%.  If this invalidation
         * fails, tough, the write still worked...
         */
        if (mapping->nrpages) {
                invalidate_inode_pages2_range(mapping,
                                              pos >> PAGE_CACHE_SHIFT, end);
        }

        if (written > 0) {
                loff_t end = pos + written;
                if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
                        i_size_write(inode,  end);
                        mark_inode_dirty(inode);
                }
                *ppos = end;
        }

        /*
         * Sync the fs metadata but not the minor inode changes and
         * of course not the data as we did direct DMA for the IO.
         * i_mutex is held, which protects generic_osync_inode() from
         * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
         */
out:
        if ((written >= 0 || written == -EIOCBQUEUED) &&
            ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
                int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
                if (err < 0)
                        written = err;
        }
        return written;
}
EXPORT_SYMBOL(generic_file_direct_write);

/*
 * Find or create a page at the given pagecache position. Return the locked
 * page. This function is specifically for buffered writes.
 */
struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
{
        int status;
        struct page *page;
repeat:
        page = find_lock_page(mapping, index);
        if (likely(page))
                return page;

        page = page_cache_alloc(mapping);
        if (!page)
                return NULL;
        status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
        if (unlikely(status)) {
                page_cache_release(page);
                if (status == -EEXIST)
                        goto repeat;
                return NULL;
        }
        return page;
}
EXPORT_SYMBOL(__grab_cache_page);

static ssize_t generic_perform_write_2copy(struct file *file,
                                struct iov_iter *i, loff_t pos)
{
        struct address_space *mapping = file->f_mapping;
        const struct address_space_operations *a_ops = mapping->a_ops;
        struct inode *inode = mapping->host;
        long status = 0;
        ssize_t written = 0;

        do {
                struct page *src_page;
                struct page *page;
                pgoff_t index;          /* Pagecache index for current page */
                unsigned long offset;   /* Offset into pagecache page */
                unsigned long bytes;    /* Bytes to write to page */
                size_t copied;          /* Bytes copied from user */

                offset = (pos & (PAGE_CACHE_SIZE - 1));
                index = pos >> PAGE_CACHE_SHIFT;
                bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
                                                iov_iter_count(i));

                /*
                 * a non-NULL src_page indicates that we're doing the
                 * copy via get_user_pages and kmap.
                 */
                src_page = NULL;

                /*
                 * Bring in the user page that we will copy from _first_.
                 * Otherwise there's a nasty deadlock on copying from the
                 * same page as we're writing to, without it being marked
                 * up-to-date.
                 *
                 * Not only is this an optimisation, but it is also required
                 * to check that the address is actually valid, when atomic
                 * usercopies are used, below.
                 */
                if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
                        status = -EFAULT;
                        break;
                }

                page = __grab_cache_page(mapping, index);
                if (!page) {
                        status = -ENOMEM;
                        break;
                }

                /*
                 * non-uptodate pages cannot cope with short copies, and we
                 * cannot take a pagefault with the destination page locked.
                 * So pin the source page to copy it.
                 */
                if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
                        unlock_page(page);

                        src_page = alloc_page(GFP_KERNEL);
                        if (!src_page) {
                                page_cache_release(page);
                                status = -ENOMEM;
                                break;
                        }

                        /*
                         * Cannot get_user_pages with a page locked for the
                         * same reason as we can't take a page fault with a
                         * page locked (as explained below).
                         */
                        copied = iov_iter_copy_from_user(src_page, i,
                                                                offset, bytes);
                        if (unlikely(copied == 0)) {
                                status = -EFAULT;
                                page_cache_release(page);
                                page_cache_release(src_page);
                                break;
                        }
                        bytes = copied;

                        lock_page(page);
                        /*
                         * Can't handle the page going uptodate here, because
                         * that means we would use non-atomic usercopies, which
                         * zero out the tail of the page, which can cause
                         * zeroes to become transiently visible. We could just
                         * use a non-zeroing copy, but the APIs aren't too
                         * consistent.
                         */
                        if (unlikely(!page->mapping || PageUptodate(page))) {
                                unlock_page(page);
                                page_cache_release(page);
                                page_cache_release(src_page);
                                continue;
                        }
                }

                status = a_ops->prepare_write(file, page, offset, offset+bytes);
                if (unlikely(status))
                        goto fs_write_aop_error;

                if (!src_page) {
                        /*
                         * Must not enter the pagefault handler here, because
                         * we hold the page lock, so we might recursively
                         * deadlock on the same lock, or get an ABBA deadlock
                         * against a different lock, or against the mmap_sem
                         * (which nests outside the page lock).  So increment
                         * preempt count, and use _atomic usercopies.
                         *
                         * The page is uptodate so we are OK to encounter a
                         * short copy: if unmodified parts of the page are
                         * marked dirty and written out to disk, it doesn't
                         * really matter.
                         */
                        pagefault_disable();
                        copied = iov_iter_copy_from_user_atomic(page, i,
                                                                offset, bytes);
                        pagefault_enable();
                } else {
                        void *src, *dst;
                        src = kmap_atomic(src_page, KM_USER0);
                        dst = kmap_atomic(page, KM_USER1);
                        memcpy(dst + offset, src + offset, bytes);
                        kunmap_atomic(dst, KM_USER1);
                        kunmap_atomic(src, KM_USER0);
                        copied = bytes;
                }
                flush_dcache_page(page);

                status = a_ops->commit_write(file, page, offset, offset+bytes);
                if (unlikely(status < 0))
                        goto fs_write_aop_error;
                if (unlikely(status > 0)) /* filesystem did partial write */
                        copied = min_t(size_t, copied, status);

                unlock_page(page);
                mark_page_accessed(page);
                page_cache_release(page);
                if (src_page)
                        page_cache_release(src_page);

                iov_iter_advance(i, copied);
                pos += copied;
                written += copied;

                balance_dirty_pages_ratelimited(mapping);
                cond_resched();
                continue;

fs_write_aop_error:
                unlock_page(page);
                page_cache_release(page);
                if (src_page)
                        page_cache_release(src_page);

                /*
                 * prepare_write() may have instantiated a few blocks
                 * outside i_size.  Trim these off again. Don't need
                 * i_size_read because we hold i_mutex.
                 */
                if (pos + bytes > inode->i_size)
                        vmtruncate(inode, inode->i_size);
                break;
        } while (iov_iter_count(i));

        return written ? written : status;
}

static ssize_t generic_perform_write(struct file *file,
                                struct iov_iter *i, loff_t pos)
{
        struct address_space *mapping = file->f_mapping;
        const struct address_space_operations *a_ops = mapping->a_ops;
        long status = 0;
        ssize_t written = 0;
        unsigned int flags = 0;

        /*
         * Copies from kernel address space cannot fail (NFSD is a big user).
         */
        if (segment_eq(get_fs(), KERNEL_DS))
                flags |= AOP_FLAG_UNINTERRUPTIBLE;

        do {
                struct page *page;
                pgoff_t index;          /* Pagecache index for current page */
                unsigned long offset;   /* Offset into pagecache page */
                unsigned long bytes;    /* Bytes to write to page */
                size_t copied;          /* Bytes copied from user */
                void *fsdata;

                offset = (pos & (PAGE_CACHE_SIZE - 1));
                index = pos >> PAGE_CACHE_SHIFT;
                bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
                                                iov_iter_count(i));

again:

                /*
                 * Bring in the user page that we will copy from _first_.
                 * Otherwise there's a nasty deadlock on copying from the
                 * same page as we're writing to, without it being marked
                 * up-to-date.
                 *
                 * Not only is this an optimisation, but it is also required
                 * to check that the address is actually valid, when atomic
                 * usercopies are used, below.
                 */
                if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
                        status = -EFAULT;
                        break;
                }

                status = a_ops->write_begin(file, mapping, pos, bytes, flags,
                                                &page, &fsdata);
                if (unlikely(status))
                        break;

                pagefault_disable();
                copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
                pagefault_enable();
                flush_dcache_page(page);

                status = a_ops->write_end(file, mapping, pos, bytes, copied,
                                                page, fsdata);
                if (unlikely(status < 0))
                        break;
                copied = status;

                cond_resched();

                iov_iter_advance(i, copied);
                if (unlikely(copied == 0)) {
                        /*
                         * If we were unable to copy any data at all, we must
                         * fall back to a single segment length write.
                         *
                         * If we didn't fallback here, we could livelock
                         * because not all segments in the iov can be copied at
                         * once without a pagefault.
                         */
                        bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
                                                iov_iter_single_seg_count(i));
                        goto again;
                }
                pos += copied;
                written += copied;

                balance_dirty_pages_ratelimited(mapping);

        } while (iov_iter_count(i));

        return written ? written : status;
}

ssize_t
generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
                unsigned long nr_segs, loff_t pos, loff_t *ppos,
                size_t count, ssize_t written)
{
        struct file *file = iocb->ki_filp;
        struct address_space *mapping = file->f_mapping;
        const struct address_space_operations *a_ops = mapping->a_ops;
        struct inode *inode = mapping->host;
        ssize_t status;
        struct iov_iter i;

        iov_iter_init(&i, iov, nr_segs, count, written);
        if (a_ops->write_begin)
                status = generic_perform_write(file, &i, pos);
        else
                status = generic_perform_write_2copy(file, &i, pos);

        if (likely(status >= 0)) {
                written += status;
                *ppos = pos + status;

                /*
                 * For now, when the user asks for O_SYNC, we'll actually give
                 * O_DSYNC
                 */
                if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
                        if (!a_ops->writepage || !is_sync_kiocb(iocb))
                                status = generic_osync_inode(inode, mapping,
                                                OSYNC_METADATA|OSYNC_DATA);
                }
        }
        
        /*
         * If we get here for O_DIRECT writes then we must have fallen through
         * to buffered writes (block instantiation inside i_size).  So we sync
         * the file data here, to try to honour O_DIRECT expectations.
         */
        if (unlikely(file->f_flags & O_DIRECT) && written)
                status = filemap_write_and_wait(mapping);

        return written ? written : status;
}
EXPORT_SYMBOL(generic_file_buffered_write);

static ssize_t
__generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
                                unsigned long nr_segs, loff_t *ppos)
{
        struct file *file = iocb->ki_filp;
        struct address_space * mapping = file->f_mapping;
        size_t ocount;          /* original count */
        size_t count;           /* after file limit checks */
        struct inode    *inode = mapping->host;
        loff_t          pos;
        ssize_t         written;
        ssize_t         err;

        ocount = 0;
        err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
        if (err)
                return err;

        count = ocount;
        pos = *ppos;

        vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);

        /* We can write back this queue in page reclaim */
        current->backing_dev_info = mapping->backing_dev_info;
        written = 0;

        err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
        if (err)
                goto out;

        if (count == 0)
                goto out;

        err = file_remove_suid(file);
        if (err)
                goto out;

        file_update_time(file);

        /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
        if (unlikely(file->f_flags & O_DIRECT)) {
                loff_t endbyte;
                ssize_t written_buffered;

                written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
                                                        ppos, count, ocount);
                if (written < 0 || written == count)
                        goto out;
                /*
                 * direct-io write to a hole: fall through to buffered I/O
                 * for completing the rest of the request.
                 */
                pos += written;
                count -= written;
                written_buffered = generic_file_buffered_write(iocb, iov,
                                                nr_segs, pos, ppos, count,
                                                written);
                /*
                 * If generic_file_buffered_write() retuned a synchronous error
                 * then we want to return the number of bytes which were
                 * direct-written, or the error code if that was zero.  Note
                 * that this differs from normal direct-io semantics, which
                 * will return -EFOO even if some bytes were written.
                 */
                if (written_buffered < 0) {
                        err = written_buffered;
                        goto out;
                }

                /*
                 * We need to ensure that the page cache pages are written to
                 * disk and invalidated to preserve the expected O_DIRECT
                 * semantics.
                 */
                endbyte = pos + written_buffered - written - 1;
                err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
                                            SYNC_FILE_RANGE_WAIT_BEFORE|
                                            SYNC_FILE_RANGE_WRITE|
                                            SYNC_FILE_RANGE_WAIT_AFTER);
                if (err == 0) {
                        written = written_buffered;
                        invalidate_mapping_pages(mapping,
                                                 pos >> PAGE_CACHE_SHIFT,
                                                 endbyte >> PAGE_CACHE_SHIFT);
                } else {
                        /*
                         * We don't know how much we wrote, so just return
                         * the number of bytes which were direct-written
                         */
                }
        } else {
                written = generic_file_buffered_write(iocb, iov, nr_segs,
                                pos, ppos, count, written);
        }
out:
        current->backing_dev_info = NULL;
        return written ? written : err;
}

ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
                const struct iovec *iov, unsigned long nr_segs, loff_t pos)
{
        struct file *file = iocb->ki_filp;
        struct address_space *mapping = file->f_mapping;
        struct inode *inode = mapping->host;
        ssize_t ret;

        BUG_ON(iocb->ki_pos != pos);

        ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
                        &iocb->ki_pos);

        if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
                ssize_t err;

                err = sync_page_range_nolock(inode, mapping, pos, ret);
                if (err < 0)
                        ret = err;
        }
        return ret;
}
EXPORT_SYMBOL(generic_file_aio_write_nolock);

ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
                unsigned long nr_segs, loff_t pos)
{
        struct file *file = iocb->ki_filp;
        struct address_space *mapping = file->f_mapping;
        struct inode *inode = mapping->host;
        ssize_t ret;

        BUG_ON(iocb->ki_pos != pos);

        mutex_lock(&inode->i_mutex);
        ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
                        &iocb->ki_pos);
        mutex_unlock(&inode->i_mutex);

        if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
                ssize_t err;

                err = sync_page_range(inode, mapping, pos, ret);
                if (err < 0)
                        ret = err;
        }
        return ret;
}
EXPORT_SYMBOL(generic_file_aio_write);

/**
 * try_to_release_page() - release old fs-specific metadata on a page
 *
 * @page: the page which the kernel is trying to free
 * @gfp_mask: memory allocation flags (and I/O mode)
 *
 * The address_space is to try to release any data against the page
 * (presumably at page->private).  If the release was successful, return `1'.
 * Otherwise return zero.
 *
 * The @gfp_mask argument specifies whether I/O may be performed to release
 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
 *
 */
int try_to_release_page(struct page *page, gfp_t gfp_mask)
{
        struct address_space * const mapping = page->mapping;

        BUG_ON(!PageLocked(page));
        if (PageWriteback(page))
                return 0;

        if (mapping && mapping->a_ops->releasepage)
                return mapping->a_ops->releasepage(page, gfp_mask);
        return try_to_free_buffers(page);
}

EXPORT_SYMBOL(try_to_release_page);

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading