[funini.com] -> [kei@sodan] -> Kernel Reading

root/mm/readahead.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. default_unplug_io_fn
  2. file_ra_state_init
  3. read_cache_pages
  4. read_pages
  5. __do_page_cache_readahead
  6. force_page_cache_readahead
  7. do_page_cache_readahead
  8. max_sane_readahead
  9. readahead_init
  10. ra_submit
  11. get_init_ra_size
  12. get_next_ra_size
  13. ondemand_readahead
  14. page_cache_sync_readahead
  15. page_cache_async_readahead

/*
 * mm/readahead.c - address_space-level file readahead.
 *
 * Copyright (C) 2002, Linus Torvalds
 *
 * 09Apr2002    akpm@zip.com.au
 *              Initial version.
 */

#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/pagevec.h>
#include <linux/pagemap.h>

void default_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
{
}
EXPORT_SYMBOL(default_unplug_io_fn);

struct backing_dev_info default_backing_dev_info = {
        .ra_pages       = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE,
        .state          = 0,
        .capabilities   = BDI_CAP_MAP_COPY,
        .unplug_io_fn   = default_unplug_io_fn,
};
EXPORT_SYMBOL_GPL(default_backing_dev_info);

/*
 * Initialise a struct file's readahead state.  Assumes that the caller has
 * memset *ra to zero.
 */
void
file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
{
        ra->ra_pages = mapping->backing_dev_info->ra_pages;
        ra->prev_pos = -1;
}
EXPORT_SYMBOL_GPL(file_ra_state_init);

#define list_to_page(head) (list_entry((head)->prev, struct page, lru))

/**
 * read_cache_pages - populate an address space with some pages & start reads against them
 * @mapping: the address_space
 * @pages: The address of a list_head which contains the target pages.  These
 *   pages have their ->index populated and are otherwise uninitialised.
 * @filler: callback routine for filling a single page.
 * @data: private data for the callback routine.
 *
 * Hides the details of the LRU cache etc from the filesystems.
 */
int read_cache_pages(struct address_space *mapping, struct list_head *pages,
                        int (*filler)(void *, struct page *), void *data)
{
        struct page *page;
        int ret = 0;

        while (!list_empty(pages)) {
                page = list_to_page(pages);
                list_del(&page->lru);
                if (add_to_page_cache_lru(page, mapping,
                                        page->index, GFP_KERNEL)) {
                        page_cache_release(page);
                        continue;
                }
                page_cache_release(page);

                ret = filler(data, page);
                if (unlikely(ret)) {
                        put_pages_list(pages);
                        break;
                }
                task_io_account_read(PAGE_CACHE_SIZE);
        }
        return ret;
}

EXPORT_SYMBOL(read_cache_pages);

static int read_pages(struct address_space *mapping, struct file *filp,
                struct list_head *pages, unsigned nr_pages)
{
        unsigned page_idx;
        int ret;

        if (mapping->a_ops->readpages) {
                ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
                /* Clean up the remaining pages */
                put_pages_list(pages);
                goto out;
        }

        for (page_idx = 0; page_idx < nr_pages; page_idx++) {
                struct page *page = list_to_page(pages);
                list_del(&page->lru);
                if (!add_to_page_cache_lru(page, mapping,
                                        page->index, GFP_KERNEL)) {
                        mapping->a_ops->readpage(filp, page);
                }
                page_cache_release(page);
        }
        ret = 0;
out:
        return ret;
}

/*
 * do_page_cache_readahead actually reads a chunk of disk.  It allocates all
 * the pages first, then submits them all for I/O. This avoids the very bad
 * behaviour which would occur if page allocations are causing VM writeback.
 * We really don't want to intermingle reads and writes like that.
 *
 * Returns the number of pages requested, or the maximum amount of I/O allowed.
 *
 * do_page_cache_readahead() returns -1 if it encountered request queue
 * congestion.
 */
static int
__do_page_cache_readahead(struct address_space *mapping, struct file *filp,
                        pgoff_t offset, unsigned long nr_to_read,
                        unsigned long lookahead_size)
{
        struct inode *inode = mapping->host;
        struct page *page;
        unsigned long end_index;        /* The last page we want to read */
        LIST_HEAD(page_pool);
        int page_idx;
        int ret = 0;
        loff_t isize = i_size_read(inode);

        if (isize == 0)
                goto out;

        end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);

        /*
         * Preallocate as many pages as we will need.
         */
        for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
                pgoff_t page_offset = offset + page_idx;

                if (page_offset > end_index)
                        break;

                rcu_read_lock();
                page = radix_tree_lookup(&mapping->page_tree, page_offset);
                rcu_read_unlock();
                if (page)
                        continue;

                page = page_cache_alloc_cold(mapping);
                if (!page)
                        break;
                page->index = page_offset;
                list_add(&page->lru, &page_pool);
                if (page_idx == nr_to_read - lookahead_size)
                        SetPageReadahead(page);
                ret++;
        }

        /*
         * Now start the IO.  We ignore I/O errors - if the page is not
         * uptodate then the caller will launch readpage again, and
         * will then handle the error.
         */
        if (ret)
                read_pages(mapping, filp, &page_pool, ret);
        BUG_ON(!list_empty(&page_pool));
out:
        return ret;
}

/*
 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
 * memory at once.
 */
int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
                pgoff_t offset, unsigned long nr_to_read)
{
        int ret = 0;

        if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
                return -EINVAL;

        while (nr_to_read) {
                int err;

                unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;

                if (this_chunk > nr_to_read)
                        this_chunk = nr_to_read;
                err = __do_page_cache_readahead(mapping, filp,
                                                offset, this_chunk, 0);
                if (err < 0) {
                        ret = err;
                        break;
                }
                ret += err;
                offset += this_chunk;
                nr_to_read -= this_chunk;
        }
        return ret;
}

/*
 * This version skips the IO if the queue is read-congested, and will tell the
 * block layer to abandon the readahead if request allocation would block.
 *
 * force_page_cache_readahead() will ignore queue congestion and will block on
 * request queues.
 */
int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
                        pgoff_t offset, unsigned long nr_to_read)
{
        if (bdi_read_congested(mapping->backing_dev_info))
                return -1;

        return __do_page_cache_readahead(mapping, filp, offset, nr_to_read, 0);
}

/*
 * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
 * sensible upper limit.
 */
unsigned long max_sane_readahead(unsigned long nr)
{
        return min(nr, (node_page_state(numa_node_id(), NR_INACTIVE)
                + node_page_state(numa_node_id(), NR_FREE_PAGES)) / 2);
}

static int __init readahead_init(void)
{
        int err;

        err = bdi_init(&default_backing_dev_info);
        if (!err)
                bdi_register(&default_backing_dev_info, NULL, "default");

        return err;
}
subsys_initcall(readahead_init);

/*
 * Submit IO for the read-ahead request in file_ra_state.
 */
static unsigned long ra_submit(struct file_ra_state *ra,
                       struct address_space *mapping, struct file *filp)
{
        int actual;

        actual = __do_page_cache_readahead(mapping, filp,
                                        ra->start, ra->size, ra->async_size);

        return actual;
}

/*
 * Set the initial window size, round to next power of 2 and square
 * for small size, x 4 for medium, and x 2 for large
 * for 128k (32 page) max ra
 * 1-8 page = 32k initial, > 8 page = 128k initial
 */
static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
{
        unsigned long newsize = roundup_pow_of_two(size);

        if (newsize <= max / 32)
                newsize = newsize * 4;
        else if (newsize <= max / 4)
                newsize = newsize * 2;
        else
                newsize = max;

        return newsize;
}

/*
 *  Get the previous window size, ramp it up, and
 *  return it as the new window size.
 */
static unsigned long get_next_ra_size(struct file_ra_state *ra,
                                                unsigned long max)
{
        unsigned long cur = ra->size;
        unsigned long newsize;

        if (cur < max / 16)
                newsize = 4 * cur;
        else
                newsize = 2 * cur;

        return min(newsize, max);
}

/*
 * On-demand readahead design.
 *
 * The fields in struct file_ra_state represent the most-recently-executed
 * readahead attempt:
 *
 *                        |<----- async_size ---------|
 *     |------------------- size -------------------->|
 *     |==================#===========================|
 *     ^start             ^page marked with PG_readahead
 *
 * To overlap application thinking time and disk I/O time, we do
 * `readahead pipelining': Do not wait until the application consumed all
 * readahead pages and stalled on the missing page at readahead_index;
 * Instead, submit an asynchronous readahead I/O as soon as there are
 * only async_size pages left in the readahead window. Normally async_size
 * will be equal to size, for maximum pipelining.
 *
 * In interleaved sequential reads, concurrent streams on the same fd can
 * be invalidating each other's readahead state. So we flag the new readahead
 * page at (start+size-async_size) with PG_readahead, and use it as readahead
 * indicator. The flag won't be set on already cached pages, to avoid the
 * readahead-for-nothing fuss, saving pointless page cache lookups.
 *
 * prev_pos tracks the last visited byte in the _previous_ read request.
 * It should be maintained by the caller, and will be used for detecting
 * small random reads. Note that the readahead algorithm checks loosely
 * for sequential patterns. Hence interleaved reads might be served as
 * sequential ones.
 *
 * There is a special-case: if the first page which the application tries to
 * read happens to be the first page of the file, it is assumed that a linear
 * read is about to happen and the window is immediately set to the initial size
 * based on I/O request size and the max_readahead.
 *
 * The code ramps up the readahead size aggressively at first, but slow down as
 * it approaches max_readhead.
 */

/*
 * A minimal readahead algorithm for trivial sequential/random reads.
 */
static unsigned long
ondemand_readahead(struct address_space *mapping,
                   struct file_ra_state *ra, struct file *filp,
                   bool hit_readahead_marker, pgoff_t offset,
                   unsigned long req_size)
{
        int     max = ra->ra_pages;     /* max readahead pages */
        pgoff_t prev_offset;
        int     sequential;

        /*
         * It's the expected callback offset, assume sequential access.
         * Ramp up sizes, and push forward the readahead window.
         */
        if (offset && (offset == (ra->start + ra->size - ra->async_size) ||
                        offset == (ra->start + ra->size))) {
                ra->start += ra->size;
                ra->size = get_next_ra_size(ra, max);
                ra->async_size = ra->size;
                goto readit;
        }

        prev_offset = ra->prev_pos >> PAGE_CACHE_SHIFT;
        sequential = offset - prev_offset <= 1UL || req_size > max;

        /*
         * Standalone, small read.
         * Read as is, and do not pollute the readahead state.
         */
        if (!hit_readahead_marker && !sequential) {
                return __do_page_cache_readahead(mapping, filp,
                                                offset, req_size, 0);
        }

        /*
         * Hit a marked page without valid readahead state.
         * E.g. interleaved reads.
         * Query the pagecache for async_size, which normally equals to
         * readahead size. Ramp it up and use it as the new readahead size.
         */
        if (hit_readahead_marker) {
                pgoff_t start;

                rcu_read_lock();
                start = radix_tree_next_hole(&mapping->page_tree, offset,max+1);
                rcu_read_unlock();

                if (!start || start - offset > max)
                        return 0;

                ra->start = start;
                ra->size = start - offset;      /* old async_size */
                ra->size = get_next_ra_size(ra, max);
                ra->async_size = ra->size;
                goto readit;
        }

        /*
         * It may be one of
         *      - first read on start of file
         *      - sequential cache miss
         *      - oversize random read
         * Start readahead for it.
         */
        ra->start = offset;
        ra->size = get_init_ra_size(req_size, max);
        ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;

readit:
        return ra_submit(ra, mapping, filp);
}

/**
 * page_cache_sync_readahead - generic file readahead
 * @mapping: address_space which holds the pagecache and I/O vectors
 * @ra: file_ra_state which holds the readahead state
 * @filp: passed on to ->readpage() and ->readpages()
 * @offset: start offset into @mapping, in pagecache page-sized units
 * @req_size: hint: total size of the read which the caller is performing in
 *            pagecache pages
 *
 * page_cache_sync_readahead() should be called when a cache miss happened:
 * it will submit the read.  The readahead logic may decide to piggyback more
 * pages onto the read request if access patterns suggest it will improve
 * performance.
 */
void page_cache_sync_readahead(struct address_space *mapping,
                               struct file_ra_state *ra, struct file *filp,
                               pgoff_t offset, unsigned long req_size)
{
        /* no read-ahead */
        if (!ra->ra_pages)
                return;

        /* do read-ahead */
        ondemand_readahead(mapping, ra, filp, false, offset, req_size);
}
EXPORT_SYMBOL_GPL(page_cache_sync_readahead);

/**
 * page_cache_async_readahead - file readahead for marked pages
 * @mapping: address_space which holds the pagecache and I/O vectors
 * @ra: file_ra_state which holds the readahead state
 * @filp: passed on to ->readpage() and ->readpages()
 * @page: the page at @offset which has the PG_readahead flag set
 * @offset: start offset into @mapping, in pagecache page-sized units
 * @req_size: hint: total size of the read which the caller is performing in
 *            pagecache pages
 *
 * page_cache_async_ondemand() should be called when a page is used which
 * has the PG_readahead flag; this is a marker to suggest that the application
 * has used up enough of the readahead window that we should start pulling in
 * more pages.
 */
void
page_cache_async_readahead(struct address_space *mapping,
                           struct file_ra_state *ra, struct file *filp,
                           struct page *page, pgoff_t offset,
                           unsigned long req_size)
{
        /* no read-ahead */
        if (!ra->ra_pages)
                return;

        /*
         * Same bit is used for PG_readahead and PG_reclaim.
         */
        if (PageWriteback(page))
                return;

        ClearPageReadahead(page);

        /*
         * Defer asynchronous read-ahead on IO congestion.
         */
        if (bdi_read_congested(mapping->backing_dev_info))
                return;

        /* do read-ahead */
        ondemand_readahead(mapping, ra, filp, true, offset, req_size);
}
EXPORT_SYMBOL_GPL(page_cache_async_readahead);

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading