[funini.com] -> [kei@sodan] -> Kernel Reading

root/arch/x86/mm/init_64.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. parse_direct_gbpages_off
  2. parse_direct_gbpages_on
  3. nonx_setup
  4. check_efer
  5. nonx32_setup
  6. spp_getpage
  7. set_pte_vaddr_pud
  8. set_pte_vaddr
  9. __init_extra_mapping
  10. init_extra_mapping_wb
  11. init_extra_mapping_uc
  12. cleanup_highmap
  13. alloc_low_page
  14. unmap_low_page
  15. phys_pte_init
  16. phys_pte_update
  17. phys_pmd_init
  18. phys_pmd_update
  19. phys_pud_init
  20. phys_pud_update
  21. find_early_table_space
  22. init_gbpages
  23. kernel_physical_mapping_init
  24. save_mr
  25. init_memory_mapping
  26. initmem_init
  27. paging_init
  28. arch_add_memory
  29. memory_add_physaddr_to_nid
  30. devmem_is_allowed
  31. mem_init
  32. free_init_pages
  33. free_initmem
  34. mark_rodata_ro
  35. free_initrd_mem
  36. reserve_bootmem_generic
  37. kern_addr_valid
  38. get_gate_vma
  39. in_gate_area
  40. in_gate_area_no_task
  41. arch_vma_name
  42. vmemmap_populate
  43. vmemmap_populate_print_last

/*
 *  linux/arch/x86_64/mm/init.c
 *
 *  Copyright (C) 1995  Linus Torvalds
 *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
 *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
 */

#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/ptrace.h>
#include <linux/mman.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/initrd.h>
#include <linux/pagemap.h>
#include <linux/bootmem.h>
#include <linux/proc_fs.h>
#include <linux/pci.h>
#include <linux/pfn.h>
#include <linux/poison.h>
#include <linux/dma-mapping.h>
#include <linux/module.h>
#include <linux/memory_hotplug.h>
#include <linux/nmi.h>

#include <asm/processor.h>
#include <asm/bios_ebda.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/dma.h>
#include <asm/fixmap.h>
#include <asm/e820.h>
#include <asm/apic.h>
#include <asm/tlb.h>
#include <asm/mmu_context.h>
#include <asm/proto.h>
#include <asm/smp.h>
#include <asm/sections.h>
#include <asm/kdebug.h>
#include <asm/numa.h>
#include <asm/cacheflush.h>

/*
 * end_pfn only includes RAM, while max_pfn_mapped includes all e820 entries.
 * The direct mapping extends to max_pfn_mapped, so that we can directly access
 * apertures, ACPI and other tables without having to play with fixmaps.
 */
unsigned long max_low_pfn_mapped;
unsigned long max_pfn_mapped;

static unsigned long dma_reserve __initdata;

DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);

int direct_gbpages
#ifdef CONFIG_DIRECT_GBPAGES
                                = 1
#endif
;

static int __init parse_direct_gbpages_off(char *arg)
{
        direct_gbpages = 0;
        return 0;
}
early_param("nogbpages", parse_direct_gbpages_off);

static int __init parse_direct_gbpages_on(char *arg)
{
        direct_gbpages = 1;
        return 0;
}
early_param("gbpages", parse_direct_gbpages_on);

/*
 * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
 * physical space so we can cache the place of the first one and move
 * around without checking the pgd every time.
 */

int after_bootmem;

pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
EXPORT_SYMBOL_GPL(__supported_pte_mask);

static int do_not_nx __cpuinitdata;

/*
 * noexec=on|off
 * Control non-executable mappings for 64-bit processes.
 *
 * on   Enable (default)
 * off  Disable
 */
static int __init nonx_setup(char *str)
{
        if (!str)
                return -EINVAL;
        if (!strncmp(str, "on", 2)) {
                __supported_pte_mask |= _PAGE_NX;
                do_not_nx = 0;
        } else if (!strncmp(str, "off", 3)) {
                do_not_nx = 1;
                __supported_pte_mask &= ~_PAGE_NX;
        }
        return 0;
}
early_param("noexec", nonx_setup);

void __cpuinit check_efer(void)
{
        unsigned long efer;

        rdmsrl(MSR_EFER, efer);
        if (!(efer & EFER_NX) || do_not_nx)
                __supported_pte_mask &= ~_PAGE_NX;
}

int force_personality32;

/*
 * noexec32=on|off
 * Control non executable heap for 32bit processes.
 * To control the stack too use noexec=off
 *
 * on   PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
 * off  PROT_READ implies PROT_EXEC
 */
static int __init nonx32_setup(char *str)
{
        if (!strcmp(str, "on"))
                force_personality32 &= ~READ_IMPLIES_EXEC;
        else if (!strcmp(str, "off"))
                force_personality32 |= READ_IMPLIES_EXEC;
        return 1;
}
__setup("noexec32=", nonx32_setup);

/*
 * NOTE: This function is marked __ref because it calls __init function
 * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
 */
static __ref void *spp_getpage(void)
{
        void *ptr;

        if (after_bootmem)
                ptr = (void *) get_zeroed_page(GFP_ATOMIC);
        else
                ptr = alloc_bootmem_pages(PAGE_SIZE);

        if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
                panic("set_pte_phys: cannot allocate page data %s\n",
                        after_bootmem ? "after bootmem" : "");
        }

        pr_debug("spp_getpage %p\n", ptr);

        return ptr;
}

void
set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
{
        pud_t *pud;
        pmd_t *pmd;
        pte_t *pte;

        pud = pud_page + pud_index(vaddr);
        if (pud_none(*pud)) {
                pmd = (pmd_t *) spp_getpage();
                pud_populate(&init_mm, pud, pmd);
                if (pmd != pmd_offset(pud, 0)) {
                        printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
                                pmd, pmd_offset(pud, 0));
                        return;
                }
        }
        pmd = pmd_offset(pud, vaddr);
        if (pmd_none(*pmd)) {
                pte = (pte_t *) spp_getpage();
                pmd_populate_kernel(&init_mm, pmd, pte);
                if (pte != pte_offset_kernel(pmd, 0)) {
                        printk(KERN_ERR "PAGETABLE BUG #02!\n");
                        return;
                }
        }

        pte = pte_offset_kernel(pmd, vaddr);
        set_pte(pte, new_pte);

        /*
         * It's enough to flush this one mapping.
         * (PGE mappings get flushed as well)
         */
        __flush_tlb_one(vaddr);
}

void
set_pte_vaddr(unsigned long vaddr, pte_t pteval)
{
        pgd_t *pgd;
        pud_t *pud_page;

        pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));

        pgd = pgd_offset_k(vaddr);
        if (pgd_none(*pgd)) {
                printk(KERN_ERR
                        "PGD FIXMAP MISSING, it should be setup in head.S!\n");
                return;
        }
        pud_page = (pud_t*)pgd_page_vaddr(*pgd);
        set_pte_vaddr_pud(pud_page, vaddr, pteval);
}

/*
 * Create large page table mappings for a range of physical addresses.
 */
static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
                                                pgprot_t prot)
{
        pgd_t *pgd;
        pud_t *pud;
        pmd_t *pmd;

        BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
        for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
                pgd = pgd_offset_k((unsigned long)__va(phys));
                if (pgd_none(*pgd)) {
                        pud = (pud_t *) spp_getpage();
                        set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
                                                _PAGE_USER));
                }
                pud = pud_offset(pgd, (unsigned long)__va(phys));
                if (pud_none(*pud)) {
                        pmd = (pmd_t *) spp_getpage();
                        set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
                                                _PAGE_USER));
                }
                pmd = pmd_offset(pud, phys);
                BUG_ON(!pmd_none(*pmd));
                set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
        }
}

void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
{
        __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
}

void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
{
        __init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
}

/*
 * The head.S code sets up the kernel high mapping:
 *
 *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
 *
 * phys_addr holds the negative offset to the kernel, which is added
 * to the compile time generated pmds. This results in invalid pmds up
 * to the point where we hit the physaddr 0 mapping.
 *
 * We limit the mappings to the region from _text to _end.  _end is
 * rounded up to the 2MB boundary. This catches the invalid pmds as
 * well, as they are located before _text:
 */
void __init cleanup_highmap(void)
{
        unsigned long vaddr = __START_KERNEL_map;
        unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
        pmd_t *pmd = level2_kernel_pgt;
        pmd_t *last_pmd = pmd + PTRS_PER_PMD;

        for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
                if (pmd_none(*pmd))
                        continue;
                if (vaddr < (unsigned long) _text || vaddr > end)
                        set_pmd(pmd, __pmd(0));
        }
}

static unsigned long __initdata table_start;
static unsigned long __meminitdata table_end;
static unsigned long __meminitdata table_top;

static __ref void *alloc_low_page(unsigned long *phys)
{
        unsigned long pfn = table_end++;
        void *adr;

        if (after_bootmem) {
                adr = (void *)get_zeroed_page(GFP_ATOMIC);
                *phys = __pa(adr);

                return adr;
        }

        if (pfn >= table_top)
                panic("alloc_low_page: ran out of memory");

        adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
        memset(adr, 0, PAGE_SIZE);
        *phys  = pfn * PAGE_SIZE;
        return adr;
}

static __ref void unmap_low_page(void *adr)
{
        if (after_bootmem)
                return;

        early_iounmap(adr, PAGE_SIZE);
}

static unsigned long __meminit
phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
              pgprot_t prot)
{
        unsigned pages = 0;
        unsigned long last_map_addr = end;
        int i;

        pte_t *pte = pte_page + pte_index(addr);

        for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {

                if (addr >= end) {
                        if (!after_bootmem) {
                                for(; i < PTRS_PER_PTE; i++, pte++)
                                        set_pte(pte, __pte(0));
                        }
                        break;
                }

                /*
                 * We will re-use the existing mapping.
                 * Xen for example has some special requirements, like mapping
                 * pagetable pages as RO. So assume someone who pre-setup
                 * these mappings are more intelligent.
                 */
                if (pte_val(*pte))
                        continue;

                if (0)
                        printk("   pte=%p addr=%lx pte=%016lx\n",
                               pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
                pages++;
                set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
                last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
        }

        update_page_count(PG_LEVEL_4K, pages);

        return last_map_addr;
}

static unsigned long __meminit
phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end,
                pgprot_t prot)
{
        pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);

        return phys_pte_init(pte, address, end, prot);
}

static unsigned long __meminit
phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
              unsigned long page_size_mask, pgprot_t prot)
{
        unsigned long pages = 0;
        unsigned long last_map_addr = end;

        int i = pmd_index(address);

        for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
                unsigned long pte_phys;
                pmd_t *pmd = pmd_page + pmd_index(address);
                pte_t *pte;
                pgprot_t new_prot = prot;

                if (address >= end) {
                        if (!after_bootmem) {
                                for (; i < PTRS_PER_PMD; i++, pmd++)
                                        set_pmd(pmd, __pmd(0));
                        }
                        break;
                }

                if (pmd_val(*pmd)) {
                        if (!pmd_large(*pmd)) {
                                spin_lock(&init_mm.page_table_lock);
                                last_map_addr = phys_pte_update(pmd, address,
                                                                end, prot);
                                spin_unlock(&init_mm.page_table_lock);
                                continue;
                        }
                        /*
                         * If we are ok with PG_LEVEL_2M mapping, then we will
                         * use the existing mapping,
                         *
                         * Otherwise, we will split the large page mapping but
                         * use the same existing protection bits except for
                         * large page, so that we don't violate Intel's TLB
                         * Application note (317080) which says, while changing
                         * the page sizes, new and old translations should
                         * not differ with respect to page frame and
                         * attributes.
                         */
                        if (page_size_mask & (1 << PG_LEVEL_2M))
                                continue;
                        new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
                }

                if (page_size_mask & (1<<PG_LEVEL_2M)) {
                        pages++;
                        spin_lock(&init_mm.page_table_lock);
                        set_pte((pte_t *)pmd,
                                pfn_pte(address >> PAGE_SHIFT,
                                        __pgprot(pgprot_val(prot) | _PAGE_PSE)));
                        spin_unlock(&init_mm.page_table_lock);
                        last_map_addr = (address & PMD_MASK) + PMD_SIZE;
                        continue;
                }

                pte = alloc_low_page(&pte_phys);
                last_map_addr = phys_pte_init(pte, address, end, new_prot);
                unmap_low_page(pte);

                spin_lock(&init_mm.page_table_lock);
                pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
                spin_unlock(&init_mm.page_table_lock);
        }
        update_page_count(PG_LEVEL_2M, pages);
        return last_map_addr;
}

static unsigned long __meminit
phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
                unsigned long page_size_mask, pgprot_t prot)
{
        pmd_t *pmd = pmd_offset(pud, 0);
        unsigned long last_map_addr;

        last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot);
        __flush_tlb_all();
        return last_map_addr;
}

static unsigned long __meminit
phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
                         unsigned long page_size_mask)
{
        unsigned long pages = 0;
        unsigned long last_map_addr = end;
        int i = pud_index(addr);

        for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
                unsigned long pmd_phys;
                pud_t *pud = pud_page + pud_index(addr);
                pmd_t *pmd;
                pgprot_t prot = PAGE_KERNEL;

                if (addr >= end)
                        break;

                if (!after_bootmem &&
                                !e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
                        set_pud(pud, __pud(0));
                        continue;
                }

                if (pud_val(*pud)) {
                        if (!pud_large(*pud)) {
                                last_map_addr = phys_pmd_update(pud, addr, end,
                                                         page_size_mask, prot);
                                continue;
                        }
                        /*
                         * If we are ok with PG_LEVEL_1G mapping, then we will
                         * use the existing mapping.
                         *
                         * Otherwise, we will split the gbpage mapping but use
                         * the same existing protection  bits except for large
                         * page, so that we don't violate Intel's TLB
                         * Application note (317080) which says, while changing
                         * the page sizes, new and old translations should
                         * not differ with respect to page frame and
                         * attributes.
                         */
                        if (page_size_mask & (1 << PG_LEVEL_1G))
                                continue;
                        prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
                }

                if (page_size_mask & (1<<PG_LEVEL_1G)) {
                        pages++;
                        spin_lock(&init_mm.page_table_lock);
                        set_pte((pte_t *)pud,
                                pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
                        spin_unlock(&init_mm.page_table_lock);
                        last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
                        continue;
                }

                pmd = alloc_low_page(&pmd_phys);
                last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
                                              prot);
                unmap_low_page(pmd);

                spin_lock(&init_mm.page_table_lock);
                pud_populate(&init_mm, pud, __va(pmd_phys));
                spin_unlock(&init_mm.page_table_lock);
        }
        __flush_tlb_all();

        update_page_count(PG_LEVEL_1G, pages);

        return last_map_addr;
}

static unsigned long __meminit
phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
                 unsigned long page_size_mask)
{
        pud_t *pud;

        pud = (pud_t *)pgd_page_vaddr(*pgd);

        return phys_pud_init(pud, addr, end, page_size_mask);
}

static void __init find_early_table_space(unsigned long end, int use_pse,
                                          int use_gbpages)
{
        unsigned long puds, pmds, ptes, tables, start;

        puds = (end + PUD_SIZE - 1) >> PUD_SHIFT;
        tables = roundup(puds * sizeof(pud_t), PAGE_SIZE);
        if (use_gbpages) {
                unsigned long extra;
                extra = end - ((end>>PUD_SHIFT) << PUD_SHIFT);
                pmds = (extra + PMD_SIZE - 1) >> PMD_SHIFT;
        } else
                pmds = (end + PMD_SIZE - 1) >> PMD_SHIFT;
        tables += roundup(pmds * sizeof(pmd_t), PAGE_SIZE);

        if (use_pse) {
                unsigned long extra;
                extra = end - ((end>>PMD_SHIFT) << PMD_SHIFT);
                ptes = (extra + PAGE_SIZE - 1) >> PAGE_SHIFT;
        } else
                ptes = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
        tables += roundup(ptes * sizeof(pte_t), PAGE_SIZE);

        /*
         * RED-PEN putting page tables only on node 0 could
         * cause a hotspot and fill up ZONE_DMA. The page tables
         * need roughly 0.5KB per GB.
         */
        start = 0x8000;
        table_start = find_e820_area(start, end, tables, PAGE_SIZE);
        if (table_start == -1UL)
                panic("Cannot find space for the kernel page tables");

        table_start >>= PAGE_SHIFT;
        table_end = table_start;
        table_top = table_start + (tables >> PAGE_SHIFT);

        printk(KERN_DEBUG "kernel direct mapping tables up to %lx @ %lx-%lx\n",
                end, table_start << PAGE_SHIFT, table_top << PAGE_SHIFT);
}

static void __init init_gbpages(void)
{
        if (direct_gbpages && cpu_has_gbpages)
                printk(KERN_INFO "Using GB pages for direct mapping\n");
        else
                direct_gbpages = 0;
}

static unsigned long __init kernel_physical_mapping_init(unsigned long start,
                                                unsigned long end,
                                                unsigned long page_size_mask)
{

        unsigned long next, last_map_addr = end;

        start = (unsigned long)__va(start);
        end = (unsigned long)__va(end);

        for (; start < end; start = next) {
                pgd_t *pgd = pgd_offset_k(start);
                unsigned long pud_phys;
                pud_t *pud;

                next = (start + PGDIR_SIZE) & PGDIR_MASK;
                if (next > end)
                        next = end;

                if (pgd_val(*pgd)) {
                        last_map_addr = phys_pud_update(pgd, __pa(start),
                                                 __pa(end), page_size_mask);
                        continue;
                }

                pud = alloc_low_page(&pud_phys);
                last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
                                                 page_size_mask);
                unmap_low_page(pud);

                spin_lock(&init_mm.page_table_lock);
                pgd_populate(&init_mm, pgd, __va(pud_phys));
                spin_unlock(&init_mm.page_table_lock);
        }
        __flush_tlb_all();

        return last_map_addr;
}

struct map_range {
        unsigned long start;
        unsigned long end;
        unsigned page_size_mask;
};

#define NR_RANGE_MR 5

static int save_mr(struct map_range *mr, int nr_range,
                   unsigned long start_pfn, unsigned long end_pfn,
                   unsigned long page_size_mask)
{

        if (start_pfn < end_pfn) {
                if (nr_range >= NR_RANGE_MR)
                        panic("run out of range for init_memory_mapping\n");
                mr[nr_range].start = start_pfn<<PAGE_SHIFT;
                mr[nr_range].end   = end_pfn<<PAGE_SHIFT;
                mr[nr_range].page_size_mask = page_size_mask;
                nr_range++;
        }

        return nr_range;
}

/*
 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
 * This runs before bootmem is initialized and gets pages directly from
 * the physical memory. To access them they are temporarily mapped.
 */
unsigned long __init_refok init_memory_mapping(unsigned long start,
                                               unsigned long end)
{
        unsigned long last_map_addr = 0;
        unsigned long page_size_mask = 0;
        unsigned long start_pfn, end_pfn;

        struct map_range mr[NR_RANGE_MR];
        int nr_range, i;
        int use_pse, use_gbpages;

        printk(KERN_INFO "init_memory_mapping\n");

        /*
         * Find space for the kernel direct mapping tables.
         *
         * Later we should allocate these tables in the local node of the
         * memory mapped. Unfortunately this is done currently before the
         * nodes are discovered.
         */
        if (!after_bootmem)
                init_gbpages();

#ifdef CONFIG_DEBUG_PAGEALLOC
        /*
         * For CONFIG_DEBUG_PAGEALLOC, identity mapping will use small pages.
         * This will simplify cpa(), which otherwise needs to support splitting
         * large pages into small in interrupt context, etc.
         */
        use_pse = use_gbpages = 0;
#else
        use_pse = cpu_has_pse;
        use_gbpages = direct_gbpages;
#endif

        if (use_gbpages)
                page_size_mask |= 1 << PG_LEVEL_1G;
        if (use_pse)
                page_size_mask |= 1 << PG_LEVEL_2M;

        memset(mr, 0, sizeof(mr));
        nr_range = 0;

        /* head if not big page alignment ?*/
        start_pfn = start >> PAGE_SHIFT;
        end_pfn = ((start + (PMD_SIZE - 1)) >> PMD_SHIFT)
                        << (PMD_SHIFT - PAGE_SHIFT);
        nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);

        /* big page (2M) range*/
        start_pfn = ((start + (PMD_SIZE - 1))>>PMD_SHIFT)
                         << (PMD_SHIFT - PAGE_SHIFT);
        end_pfn = ((start + (PUD_SIZE - 1))>>PUD_SHIFT)
                         << (PUD_SHIFT - PAGE_SHIFT);
        if (end_pfn > ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT)))
                end_pfn = ((end>>PUD_SHIFT)<<(PUD_SHIFT - PAGE_SHIFT));
        nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
                        page_size_mask & (1<<PG_LEVEL_2M));

        /* big page (1G) range */
        start_pfn = end_pfn;
        end_pfn = (end>>PUD_SHIFT) << (PUD_SHIFT - PAGE_SHIFT);
        nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
                                page_size_mask &
                                 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));

        /* tail is not big page (1G) alignment */
        start_pfn = end_pfn;
        end_pfn = (end>>PMD_SHIFT) << (PMD_SHIFT - PAGE_SHIFT);
        nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
                        page_size_mask & (1<<PG_LEVEL_2M));

        /* tail is not big page (2M) alignment */
        start_pfn = end_pfn;
        end_pfn = end>>PAGE_SHIFT;
        nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);

        /* try to merge same page size and continuous */
        for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
                unsigned long old_start;
                if (mr[i].end != mr[i+1].start ||
                    mr[i].page_size_mask != mr[i+1].page_size_mask)
                        continue;
                /* move it */
                old_start = mr[i].start;
                memmove(&mr[i], &mr[i+1],
                         (nr_range - 1 - i) * sizeof (struct map_range));
                mr[i--].start = old_start;
                nr_range--;
        }

        for (i = 0; i < nr_range; i++)
                printk(KERN_DEBUG " %010lx - %010lx page %s\n",
                                mr[i].start, mr[i].end,
                        (mr[i].page_size_mask & (1<<PG_LEVEL_1G))?"1G":(
                         (mr[i].page_size_mask & (1<<PG_LEVEL_2M))?"2M":"4k"));

        if (!after_bootmem)
                find_early_table_space(end, use_pse, use_gbpages);

        for (i = 0; i < nr_range; i++)
                last_map_addr = kernel_physical_mapping_init(
                                        mr[i].start, mr[i].end,
                                        mr[i].page_size_mask);

        if (!after_bootmem)
                mmu_cr4_features = read_cr4();
        __flush_tlb_all();

        if (!after_bootmem && table_end > table_start)
                reserve_early(table_start << PAGE_SHIFT,
                                 table_end << PAGE_SHIFT, "PGTABLE");

        printk(KERN_INFO "last_map_addr: %lx end: %lx\n",
                         last_map_addr, end);

        if (!after_bootmem)
                early_memtest(start, end);

        return last_map_addr >> PAGE_SHIFT;
}

#ifndef CONFIG_NUMA
void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
{
        unsigned long bootmap_size, bootmap;

        bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
        bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
                                 PAGE_SIZE);
        if (bootmap == -1L)
                panic("Cannot find bootmem map of size %ld\n", bootmap_size);
        /* don't touch min_low_pfn */
        bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
                                         0, end_pfn);
        e820_register_active_regions(0, start_pfn, end_pfn);
        free_bootmem_with_active_regions(0, end_pfn);
        early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
        reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
}

void __init paging_init(void)
{
        unsigned long max_zone_pfns[MAX_NR_ZONES];

        memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
        max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
        max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
        max_zone_pfns[ZONE_NORMAL] = max_pfn;

        memory_present(0, 0, max_pfn);
        sparse_init();
        free_area_init_nodes(max_zone_pfns);
}
#endif

/*
 * Memory hotplug specific functions
 */
#ifdef CONFIG_MEMORY_HOTPLUG
/*
 * Memory is added always to NORMAL zone. This means you will never get
 * additional DMA/DMA32 memory.
 */
int arch_add_memory(int nid, u64 start, u64 size)
{
        struct pglist_data *pgdat = NODE_DATA(nid);
        struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
        unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
        unsigned long nr_pages = size >> PAGE_SHIFT;
        int ret;

        last_mapped_pfn = init_memory_mapping(start, start + size-1);
        if (last_mapped_pfn > max_pfn_mapped)
                max_pfn_mapped = last_mapped_pfn;

        ret = __add_pages(zone, start_pfn, nr_pages);
        WARN_ON(1);

        return ret;
}
EXPORT_SYMBOL_GPL(arch_add_memory);

#if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
int memory_add_physaddr_to_nid(u64 start)
{
        return 0;
}
EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
#endif

#endif /* CONFIG_MEMORY_HOTPLUG */

/*
 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
 * is valid. The argument is a physical page number.
 *
 *
 * On x86, access has to be given to the first megabyte of ram because that area
 * contains bios code and data regions used by X and dosemu and similar apps.
 * Access has to be given to non-kernel-ram areas as well, these contain the PCI
 * mmio resources as well as potential bios/acpi data regions.
 */
int devmem_is_allowed(unsigned long pagenr)
{
        if (pagenr <= 256)
                return 1;
        if (!page_is_ram(pagenr))
                return 1;
        return 0;
}


static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
                         kcore_modules, kcore_vsyscall;

void __init mem_init(void)
{
        long codesize, reservedpages, datasize, initsize;

        start_periodic_check_for_corruption();

        pci_iommu_alloc();

        /* clear_bss() already clear the empty_zero_page */

        reservedpages = 0;

        /* this will put all low memory onto the freelists */
#ifdef CONFIG_NUMA
        totalram_pages = numa_free_all_bootmem();
#else
        totalram_pages = free_all_bootmem();
#endif
        reservedpages = max_pfn - totalram_pages -
                                        absent_pages_in_range(0, max_pfn);
        after_bootmem = 1;

        codesize =  (unsigned long) &_etext - (unsigned long) &_text;
        datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
        initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;

        /* Register memory areas for /proc/kcore */
        kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
        kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
                   VMALLOC_END-VMALLOC_START);
        kclist_add(&kcore_kernel, &_stext, _end - _stext);
        kclist_add(&kcore_modules, (void *)MODULES_VADDR, MODULES_LEN);
        kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
                                 VSYSCALL_END - VSYSCALL_START);

        printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
                                "%ldk reserved, %ldk data, %ldk init)\n",
                (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
                max_pfn << (PAGE_SHIFT-10),
                codesize >> 10,
                reservedpages << (PAGE_SHIFT-10),
                datasize >> 10,
                initsize >> 10);
}

void free_init_pages(char *what, unsigned long begin, unsigned long end)
{
        unsigned long addr = begin;

        if (addr >= end)
                return;

        /*
         * If debugging page accesses then do not free this memory but
         * mark them not present - any buggy init-section access will
         * create a kernel page fault:
         */
#ifdef CONFIG_DEBUG_PAGEALLOC
        printk(KERN_INFO "debug: unmapping init memory %08lx..%08lx\n",
                begin, PAGE_ALIGN(end));
        set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
#else
        printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);

        for (; addr < end; addr += PAGE_SIZE) {
                ClearPageReserved(virt_to_page(addr));
                init_page_count(virt_to_page(addr));
                memset((void *)(addr & ~(PAGE_SIZE-1)),
                        POISON_FREE_INITMEM, PAGE_SIZE);
                free_page(addr);
                totalram_pages++;
        }
#endif
}

void free_initmem(void)
{
        free_init_pages("unused kernel memory",
                        (unsigned long)(&__init_begin),
                        (unsigned long)(&__init_end));
}

#ifdef CONFIG_DEBUG_RODATA
const int rodata_test_data = 0xC3;
EXPORT_SYMBOL_GPL(rodata_test_data);

void mark_rodata_ro(void)
{
        unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
        unsigned long rodata_start =
                ((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;

#ifdef CONFIG_DYNAMIC_FTRACE
        /* Dynamic tracing modifies the kernel text section */
        start = rodata_start;
#endif

        printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
               (end - start) >> 10);
        set_memory_ro(start, (end - start) >> PAGE_SHIFT);

        /*
         * The rodata section (but not the kernel text!) should also be
         * not-executable.
         */
        set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);

        rodata_test();

#ifdef CONFIG_CPA_DEBUG
        printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
        set_memory_rw(start, (end-start) >> PAGE_SHIFT);

        printk(KERN_INFO "Testing CPA: again\n");
        set_memory_ro(start, (end-start) >> PAGE_SHIFT);
#endif
}

#endif

#ifdef CONFIG_BLK_DEV_INITRD
void free_initrd_mem(unsigned long start, unsigned long end)
{
        free_init_pages("initrd memory", start, end);
}
#endif

int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
                                   int flags)
{
#ifdef CONFIG_NUMA
        int nid, next_nid;
        int ret;
#endif
        unsigned long pfn = phys >> PAGE_SHIFT;

        if (pfn >= max_pfn) {
                /*
                 * This can happen with kdump kernels when accessing
                 * firmware tables:
                 */
                if (pfn < max_pfn_mapped)
                        return -EFAULT;

                printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
                                phys, len);
                return -EFAULT;
        }

        /* Should check here against the e820 map to avoid double free */
#ifdef CONFIG_NUMA
        nid = phys_to_nid(phys);
        next_nid = phys_to_nid(phys + len - 1);
        if (nid == next_nid)
                ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
        else
                ret = reserve_bootmem(phys, len, flags);

        if (ret != 0)
                return ret;

#else
        reserve_bootmem(phys, len, BOOTMEM_DEFAULT);
#endif

        if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
                dma_reserve += len / PAGE_SIZE;
                set_dma_reserve(dma_reserve);
        }

        return 0;
}

int kern_addr_valid(unsigned long addr)
{
        unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
        pgd_t *pgd;
        pud_t *pud;
        pmd_t *pmd;
        pte_t *pte;

        if (above != 0 && above != -1UL)
                return 0;

        pgd = pgd_offset_k(addr);
        if (pgd_none(*pgd))
                return 0;

        pud = pud_offset(pgd, addr);
        if (pud_none(*pud))
                return 0;

        pmd = pmd_offset(pud, addr);
        if (pmd_none(*pmd))
                return 0;

        if (pmd_large(*pmd))
                return pfn_valid(pmd_pfn(*pmd));

        pte = pte_offset_kernel(pmd, addr);
        if (pte_none(*pte))
                return 0;

        return pfn_valid(pte_pfn(*pte));
}

/*
 * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
 * not need special handling anymore:
 */
static struct vm_area_struct gate_vma = {
        .vm_start       = VSYSCALL_START,
        .vm_end         = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
        .vm_page_prot   = PAGE_READONLY_EXEC,
        .vm_flags       = VM_READ | VM_EXEC
};

struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
{
#ifdef CONFIG_IA32_EMULATION
        if (test_tsk_thread_flag(tsk, TIF_IA32))
                return NULL;
#endif
        return &gate_vma;
}

int in_gate_area(struct task_struct *task, unsigned long addr)
{
        struct vm_area_struct *vma = get_gate_vma(task);

        if (!vma)
                return 0;

        return (addr >= vma->vm_start) && (addr < vma->vm_end);
}

/*
 * Use this when you have no reliable task/vma, typically from interrupt
 * context. It is less reliable than using the task's vma and may give
 * false positives:
 */
int in_gate_area_no_task(unsigned long addr)
{
        return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
}

const char *arch_vma_name(struct vm_area_struct *vma)
{
        if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
                return "[vdso]";
        if (vma == &gate_vma)
                return "[vsyscall]";
        return NULL;
}

#ifdef CONFIG_SPARSEMEM_VMEMMAP
/*
 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
 */
static long __meminitdata addr_start, addr_end;
static void __meminitdata *p_start, *p_end;
static int __meminitdata node_start;

int __meminit
vmemmap_populate(struct page *start_page, unsigned long size, int node)
{
        unsigned long addr = (unsigned long)start_page;
        unsigned long end = (unsigned long)(start_page + size);
        unsigned long next;
        pgd_t *pgd;
        pud_t *pud;
        pmd_t *pmd;

        for (; addr < end; addr = next) {
                void *p = NULL;

                pgd = vmemmap_pgd_populate(addr, node);
                if (!pgd)
                        return -ENOMEM;

                pud = vmemmap_pud_populate(pgd, addr, node);
                if (!pud)
                        return -ENOMEM;

                if (!cpu_has_pse) {
                        next = (addr + PAGE_SIZE) & PAGE_MASK;
                        pmd = vmemmap_pmd_populate(pud, addr, node);

                        if (!pmd)
                                return -ENOMEM;

                        p = vmemmap_pte_populate(pmd, addr, node);

                        if (!p)
                                return -ENOMEM;

                        addr_end = addr + PAGE_SIZE;
                        p_end = p + PAGE_SIZE;
                } else {
                        next = pmd_addr_end(addr, end);

                        pmd = pmd_offset(pud, addr);
                        if (pmd_none(*pmd)) {
                                pte_t entry;

                                p = vmemmap_alloc_block(PMD_SIZE, node);
                                if (!p)
                                        return -ENOMEM;

                                entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
                                                PAGE_KERNEL_LARGE);
                                set_pmd(pmd, __pmd(pte_val(entry)));

                                /* check to see if we have contiguous blocks */
                                if (p_end != p || node_start != node) {
                                        if (p_start)
                                                printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
                                                       addr_start, addr_end-1, p_start, p_end-1, node_start);
                                        addr_start = addr;
                                        node_start = node;
                                        p_start = p;
                                }

                                addr_end = addr + PMD_SIZE;
                                p_end = p + PMD_SIZE;
                        } else
                                vmemmap_verify((pte_t *)pmd, node, addr, next);
                }

        }
        return 0;
}

void __meminit vmemmap_populate_print_last(void)
{
        if (p_start) {
                printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
                        addr_start, addr_end-1, p_start, p_end-1, node_start);
                p_start = NULL;
                p_end = NULL;
                node_start = 0;
        }
}
#endif

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading