[funini.com] -> [kei@sodan] -> Kernel Reading

root/arch/x86/mm/numa_64.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. populate_memnodemap
  2. allocate_cachealigned_memnodemap
  3. extract_lsb_from_nodes
  4. compute_hash_shift
  5. early_pfn_to_nid
  6. early_node_mem
  7. setup_node_bootmem
  8. numa_init_array
  9. setup_node_range
  10. split_nodes_equally
  11. split_nodes_by_size
  12. numa_emulation
  13. initmem_init
  14. numa_free_all_bootmem
  15. paging_init
  16. numa_setup
  17. init_cpu_to_node

/*
 * Generic VM initialization for x86-64 NUMA setups.
 * Copyright 2002,2003 Andi Kleen, SuSE Labs.
 */
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/mmzone.h>
#include <linux/ctype.h>
#include <linux/module.h>
#include <linux/nodemask.h>
#include <linux/sched.h>

#include <asm/e820.h>
#include <asm/proto.h>
#include <asm/dma.h>
#include <asm/numa.h>
#include <asm/acpi.h>
#include <asm/k8.h>

struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
EXPORT_SYMBOL(node_data);

struct memnode memnode;

s16 apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
        [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
};

int numa_off __initdata;
static unsigned long __initdata nodemap_addr;
static unsigned long __initdata nodemap_size;

/*
 * Given a shift value, try to populate memnodemap[]
 * Returns :
 * 1 if OK
 * 0 if memnodmap[] too small (of shift too small)
 * -1 if node overlap or lost ram (shift too big)
 */
static int __init populate_memnodemap(const struct bootnode *nodes,
                                      int numnodes, int shift, int *nodeids)
{
        unsigned long addr, end;
        int i, res = -1;

        memset(memnodemap, 0xff, sizeof(s16)*memnodemapsize);
        for (i = 0; i < numnodes; i++) {
                addr = nodes[i].start;
                end = nodes[i].end;
                if (addr >= end)
                        continue;
                if ((end >> shift) >= memnodemapsize)
                        return 0;
                do {
                        if (memnodemap[addr >> shift] != NUMA_NO_NODE)
                                return -1;

                        if (!nodeids)
                                memnodemap[addr >> shift] = i;
                        else
                                memnodemap[addr >> shift] = nodeids[i];

                        addr += (1UL << shift);
                } while (addr < end);
                res = 1;
        }
        return res;
}

static int __init allocate_cachealigned_memnodemap(void)
{
        unsigned long addr;

        memnodemap = memnode.embedded_map;
        if (memnodemapsize <= ARRAY_SIZE(memnode.embedded_map))
                return 0;

        addr = 0x8000;
        nodemap_size = roundup(sizeof(s16) * memnodemapsize, L1_CACHE_BYTES);
        nodemap_addr = find_e820_area(addr, max_pfn<<PAGE_SHIFT,
                                      nodemap_size, L1_CACHE_BYTES);
        if (nodemap_addr == -1UL) {
                printk(KERN_ERR
                       "NUMA: Unable to allocate Memory to Node hash map\n");
                nodemap_addr = nodemap_size = 0;
                return -1;
        }
        memnodemap = phys_to_virt(nodemap_addr);
        reserve_early(nodemap_addr, nodemap_addr + nodemap_size, "MEMNODEMAP");

        printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
               nodemap_addr, nodemap_addr + nodemap_size);
        return 0;
}

/*
 * The LSB of all start and end addresses in the node map is the value of the
 * maximum possible shift.
 */
static int __init extract_lsb_from_nodes(const struct bootnode *nodes,
                                         int numnodes)
{
        int i, nodes_used = 0;
        unsigned long start, end;
        unsigned long bitfield = 0, memtop = 0;

        for (i = 0; i < numnodes; i++) {
                start = nodes[i].start;
                end = nodes[i].end;
                if (start >= end)
                        continue;
                bitfield |= start;
                nodes_used++;
                if (end > memtop)
                        memtop = end;
        }
        if (nodes_used <= 1)
                i = 63;
        else
                i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
        memnodemapsize = (memtop >> i)+1;
        return i;
}

int __init compute_hash_shift(struct bootnode *nodes, int numnodes,
                              int *nodeids)
{
        int shift;

        shift = extract_lsb_from_nodes(nodes, numnodes);
        if (allocate_cachealigned_memnodemap())
                return -1;
        printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
                shift);

        if (populate_memnodemap(nodes, numnodes, shift, nodeids) != 1) {
                printk(KERN_INFO "Your memory is not aligned you need to "
                       "rebuild your kernel with a bigger NODEMAPSIZE "
                       "shift=%d\n", shift);
                return -1;
        }
        return shift;
}

int early_pfn_to_nid(unsigned long pfn)
{
        return phys_to_nid(pfn << PAGE_SHIFT);
}

static void * __init early_node_mem(int nodeid, unsigned long start,
                                    unsigned long end, unsigned long size,
                                    unsigned long align)
{
        unsigned long mem = find_e820_area(start, end, size, align);
        void *ptr;

        if (mem != -1L)
                return __va(mem);

        ptr = __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
        if (ptr == NULL) {
                printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
                       size, nodeid);
                return NULL;
        }
        return ptr;
}

/* Initialize bootmem allocator for a node */
void __init setup_node_bootmem(int nodeid, unsigned long start,
                               unsigned long end)
{
        unsigned long start_pfn, last_pfn, bootmap_pages, bootmap_size;
        unsigned long bootmap_start, nodedata_phys;
        void *bootmap;
        const int pgdat_size = roundup(sizeof(pg_data_t), PAGE_SIZE);
        int nid;

        start = roundup(start, ZONE_ALIGN);

        printk(KERN_INFO "Bootmem setup node %d %016lx-%016lx\n", nodeid,
               start, end);

        start_pfn = start >> PAGE_SHIFT;
        last_pfn = end >> PAGE_SHIFT;

        node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size,
                                           SMP_CACHE_BYTES);
        if (node_data[nodeid] == NULL)
                return;
        nodedata_phys = __pa(node_data[nodeid]);
        printk(KERN_INFO "  NODE_DATA [%016lx - %016lx]\n", nodedata_phys,
                nodedata_phys + pgdat_size - 1);

        memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
        NODE_DATA(nodeid)->bdata = &bootmem_node_data[nodeid];
        NODE_DATA(nodeid)->node_start_pfn = start_pfn;
        NODE_DATA(nodeid)->node_spanned_pages = last_pfn - start_pfn;

        /*
         * Find a place for the bootmem map
         * nodedata_phys could be on other nodes by alloc_bootmem,
         * so need to sure bootmap_start not to be small, otherwise
         * early_node_mem will get that with find_e820_area instead
         * of alloc_bootmem, that could clash with reserved range
         */
        bootmap_pages = bootmem_bootmap_pages(last_pfn - start_pfn);
        nid = phys_to_nid(nodedata_phys);
        if (nid == nodeid)
                bootmap_start = roundup(nodedata_phys + pgdat_size, PAGE_SIZE);
        else
                bootmap_start = roundup(start, PAGE_SIZE);
        /*
         * SMP_CACHE_BYTES could be enough, but init_bootmem_node like
         * to use that to align to PAGE_SIZE
         */
        bootmap = early_node_mem(nodeid, bootmap_start, end,
                                 bootmap_pages<<PAGE_SHIFT, PAGE_SIZE);
        if (bootmap == NULL)  {
                if (nodedata_phys < start || nodedata_phys >= end)
                        free_bootmem(nodedata_phys, pgdat_size);
                node_data[nodeid] = NULL;
                return;
        }
        bootmap_start = __pa(bootmap);

        bootmap_size = init_bootmem_node(NODE_DATA(nodeid),
                                         bootmap_start >> PAGE_SHIFT,
                                         start_pfn, last_pfn);

        printk(KERN_INFO "  bootmap [%016lx -  %016lx] pages %lx\n",
                 bootmap_start, bootmap_start + bootmap_size - 1,
                 bootmap_pages);

        free_bootmem_with_active_regions(nodeid, end);

        /*
         * convert early reserve to bootmem reserve earlier
         * otherwise early_node_mem could use early reserved mem
         * on previous node
         */
        early_res_to_bootmem(start, end);

        /*
         * in some case early_node_mem could use alloc_bootmem
         * to get range on other node, don't reserve that again
         */
        if (nid != nodeid)
                printk(KERN_INFO "    NODE_DATA(%d) on node %d\n", nodeid, nid);
        else
                reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys,
                                        pgdat_size, BOOTMEM_DEFAULT);
        nid = phys_to_nid(bootmap_start);
        if (nid != nodeid)
                printk(KERN_INFO "    bootmap(%d) on node %d\n", nodeid, nid);
        else
                reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start,
                                 bootmap_pages<<PAGE_SHIFT, BOOTMEM_DEFAULT);

#ifdef CONFIG_ACPI_NUMA
        srat_reserve_add_area(nodeid);
#endif
        node_set_online(nodeid);
}

/*
 * There are unfortunately some poorly designed mainboards around that
 * only connect memory to a single CPU. This breaks the 1:1 cpu->node
 * mapping. To avoid this fill in the mapping for all possible CPUs,
 * as the number of CPUs is not known yet. We round robin the existing
 * nodes.
 */
void __init numa_init_array(void)
{
        int rr, i;

        rr = first_node(node_online_map);
        for (i = 0; i < NR_CPUS; i++) {
                if (early_cpu_to_node(i) != NUMA_NO_NODE)
                        continue;
                numa_set_node(i, rr);
                rr = next_node(rr, node_online_map);
                if (rr == MAX_NUMNODES)
                        rr = first_node(node_online_map);
        }
}

#ifdef CONFIG_NUMA_EMU
/* Numa emulation */
static char *cmdline __initdata;

/*
 * Setups up nid to range from addr to addr + size.  If the end
 * boundary is greater than max_addr, then max_addr is used instead.
 * The return value is 0 if there is additional memory left for
 * allocation past addr and -1 otherwise.  addr is adjusted to be at
 * the end of the node.
 */
static int __init setup_node_range(int nid, struct bootnode *nodes, u64 *addr,
                                   u64 size, u64 max_addr)
{
        int ret = 0;

        nodes[nid].start = *addr;
        *addr += size;
        if (*addr >= max_addr) {
                *addr = max_addr;
                ret = -1;
        }
        nodes[nid].end = *addr;
        node_set(nid, node_possible_map);
        printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
               nodes[nid].start, nodes[nid].end,
               (nodes[nid].end - nodes[nid].start) >> 20);
        return ret;
}

/*
 * Splits num_nodes nodes up equally starting at node_start.  The return value
 * is the number of nodes split up and addr is adjusted to be at the end of the
 * last node allocated.
 */
static int __init split_nodes_equally(struct bootnode *nodes, u64 *addr,
                                      u64 max_addr, int node_start,
                                      int num_nodes)
{
        unsigned int big;
        u64 size;
        int i;

        if (num_nodes <= 0)
                return -1;
        if (num_nodes > MAX_NUMNODES)
                num_nodes = MAX_NUMNODES;
        size = (max_addr - *addr - e820_hole_size(*addr, max_addr)) /
               num_nodes;
        /*
         * Calculate the number of big nodes that can be allocated as a result
         * of consolidating the leftovers.
         */
        big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * num_nodes) /
              FAKE_NODE_MIN_SIZE;

        /* Round down to nearest FAKE_NODE_MIN_SIZE. */
        size &= FAKE_NODE_MIN_HASH_MASK;
        if (!size) {
                printk(KERN_ERR "Not enough memory for each node.  "
                       "NUMA emulation disabled.\n");
                return -1;
        }

        for (i = node_start; i < num_nodes + node_start; i++) {
                u64 end = *addr + size;

                if (i < big)
                        end += FAKE_NODE_MIN_SIZE;
                /*
                 * The final node can have the remaining system RAM.  Other
                 * nodes receive roughly the same amount of available pages.
                 */
                if (i == num_nodes + node_start - 1)
                        end = max_addr;
                else
                        while (end - *addr - e820_hole_size(*addr, end) <
                               size) {
                                end += FAKE_NODE_MIN_SIZE;
                                if (end > max_addr) {
                                        end = max_addr;
                                        break;
                                }
                        }
                if (setup_node_range(i, nodes, addr, end - *addr, max_addr) < 0)
                        break;
        }
        return i - node_start + 1;
}

/*
 * Splits the remaining system RAM into chunks of size.  The remaining memory is
 * always assigned to a final node and can be asymmetric.  Returns the number of
 * nodes split.
 */
static int __init split_nodes_by_size(struct bootnode *nodes, u64 *addr,
                                      u64 max_addr, int node_start, u64 size)
{
        int i = node_start;
        size = (size << 20) & FAKE_NODE_MIN_HASH_MASK;
        while (!setup_node_range(i++, nodes, addr, size, max_addr))
                ;
        return i - node_start;
}

/*
 * Sets up the system RAM area from start_pfn to last_pfn according to the
 * numa=fake command-line option.
 */
static struct bootnode nodes[MAX_NUMNODES] __initdata;

static int __init numa_emulation(unsigned long start_pfn, unsigned long last_pfn)
{
        u64 size, addr = start_pfn << PAGE_SHIFT;
        u64 max_addr = last_pfn << PAGE_SHIFT;
        int num_nodes = 0, num = 0, coeff_flag, coeff = -1, i;

        memset(&nodes, 0, sizeof(nodes));
        /*
         * If the numa=fake command-line is just a single number N, split the
         * system RAM into N fake nodes.
         */
        if (!strchr(cmdline, '*') && !strchr(cmdline, ',')) {
                long n = simple_strtol(cmdline, NULL, 0);

                num_nodes = split_nodes_equally(nodes, &addr, max_addr, 0, n);
                if (num_nodes < 0)
                        return num_nodes;
                goto out;
        }

        /* Parse the command line. */
        for (coeff_flag = 0; ; cmdline++) {
                if (*cmdline && isdigit(*cmdline)) {
                        num = num * 10 + *cmdline - '0';
                        continue;
                }
                if (*cmdline == '*') {
                        if (num > 0)
                                coeff = num;
                        coeff_flag = 1;
                }
                if (!*cmdline || *cmdline == ',') {
                        if (!coeff_flag)
                                coeff = 1;
                        /*
                         * Round down to the nearest FAKE_NODE_MIN_SIZE.
                         * Command-line coefficients are in megabytes.
                         */
                        size = ((u64)num << 20) & FAKE_NODE_MIN_HASH_MASK;
                        if (size)
                                for (i = 0; i < coeff; i++, num_nodes++)
                                        if (setup_node_range(num_nodes, nodes,
                                                &addr, size, max_addr) < 0)
                                                goto done;
                        if (!*cmdline)
                                break;
                        coeff_flag = 0;
                        coeff = -1;
                }
                num = 0;
        }
done:
        if (!num_nodes)
                return -1;
        /* Fill remainder of system RAM, if appropriate. */
        if (addr < max_addr) {
                if (coeff_flag && coeff < 0) {
                        /* Split remaining nodes into num-sized chunks */
                        num_nodes += split_nodes_by_size(nodes, &addr, max_addr,
                                                         num_nodes, num);
                        goto out;
                }
                switch (*(cmdline - 1)) {
                case '*':
                        /* Split remaining nodes into coeff chunks */
                        if (coeff <= 0)
                                break;
                        num_nodes += split_nodes_equally(nodes, &addr, max_addr,
                                                         num_nodes, coeff);
                        break;
                case ',':
                        /* Do not allocate remaining system RAM */
                        break;
                default:
                        /* Give one final node */
                        setup_node_range(num_nodes, nodes, &addr,
                                         max_addr - addr, max_addr);
                        num_nodes++;
                }
        }
out:
        memnode_shift = compute_hash_shift(nodes, num_nodes, NULL);
        if (memnode_shift < 0) {
                memnode_shift = 0;
                printk(KERN_ERR "No NUMA hash function found.  NUMA emulation "
                       "disabled.\n");
                return -1;
        }

        /*
         * We need to vacate all active ranges that may have been registered by
         * SRAT and set acpi_numa to -1 so that srat_disabled() always returns
         * true.  NUMA emulation has succeeded so we will not scan ACPI nodes.
         */
        remove_all_active_ranges();
#ifdef CONFIG_ACPI_NUMA
        acpi_numa = -1;
#endif
        for_each_node_mask(i, node_possible_map) {
                e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
                                                nodes[i].end >> PAGE_SHIFT);
                setup_node_bootmem(i, nodes[i].start, nodes[i].end);
        }
        acpi_fake_nodes(nodes, num_nodes);
        numa_init_array();
        return 0;
}
#endif /* CONFIG_NUMA_EMU */

void __init initmem_init(unsigned long start_pfn, unsigned long last_pfn)
{
        int i;

        nodes_clear(node_possible_map);
        nodes_clear(node_online_map);

#ifdef CONFIG_NUMA_EMU
        if (cmdline && !numa_emulation(start_pfn, last_pfn))
                return;
        nodes_clear(node_possible_map);
        nodes_clear(node_online_map);
#endif

#ifdef CONFIG_ACPI_NUMA
        if (!numa_off && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
                                          last_pfn << PAGE_SHIFT))
                return;
        nodes_clear(node_possible_map);
        nodes_clear(node_online_map);
#endif

#ifdef CONFIG_K8_NUMA
        if (!numa_off && !k8_scan_nodes(start_pfn<<PAGE_SHIFT,
                                        last_pfn<<PAGE_SHIFT))
                return;
        nodes_clear(node_possible_map);
        nodes_clear(node_online_map);
#endif
        printk(KERN_INFO "%s\n",
               numa_off ? "NUMA turned off" : "No NUMA configuration found");

        printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
               start_pfn << PAGE_SHIFT,
               last_pfn << PAGE_SHIFT);
        /* setup dummy node covering all memory */
        memnode_shift = 63;
        memnodemap = memnode.embedded_map;
        memnodemap[0] = 0;
        node_set_online(0);
        node_set(0, node_possible_map);
        for (i = 0; i < NR_CPUS; i++)
                numa_set_node(i, 0);
        e820_register_active_regions(0, start_pfn, last_pfn);
        setup_node_bootmem(0, start_pfn << PAGE_SHIFT, last_pfn << PAGE_SHIFT);
}

unsigned long __init numa_free_all_bootmem(void)
{
        unsigned long pages = 0;
        int i;

        for_each_online_node(i)
                pages += free_all_bootmem_node(NODE_DATA(i));

        return pages;
}

void __init paging_init(void)
{
        unsigned long max_zone_pfns[MAX_NR_ZONES];

        memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
        max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
        max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
        max_zone_pfns[ZONE_NORMAL] = max_pfn;

        sparse_memory_present_with_active_regions(MAX_NUMNODES);
        sparse_init();

        free_area_init_nodes(max_zone_pfns);
}

static __init int numa_setup(char *opt)
{
        if (!opt)
                return -EINVAL;
        if (!strncmp(opt, "off", 3))
                numa_off = 1;
#ifdef CONFIG_NUMA_EMU
        if (!strncmp(opt, "fake=", 5))
                cmdline = opt + 5;
#endif
#ifdef CONFIG_ACPI_NUMA
        if (!strncmp(opt, "noacpi", 6))
                acpi_numa = -1;
        if (!strncmp(opt, "hotadd=", 7))
                hotadd_percent = simple_strtoul(opt+7, NULL, 10);
#endif
        return 0;
}
early_param("numa", numa_setup);

#ifdef CONFIG_NUMA
/*
 * Setup early cpu_to_node.
 *
 * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
 * and apicid_to_node[] tables have valid entries for a CPU.
 * This means we skip cpu_to_node[] initialisation for NUMA
 * emulation and faking node case (when running a kernel compiled
 * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
 * is already initialized in a round robin manner at numa_init_array,
 * prior to this call, and this initialization is good enough
 * for the fake NUMA cases.
 *
 * Called before the per_cpu areas are setup.
 */
void __init init_cpu_to_node(void)
{
        int cpu;
        u16 *cpu_to_apicid = early_per_cpu_ptr(x86_cpu_to_apicid);

        BUG_ON(cpu_to_apicid == NULL);

        for_each_possible_cpu(cpu) {
                int node;
                u16 apicid = cpu_to_apicid[cpu];

                if (apicid == BAD_APICID)
                        continue;
                node = apicid_to_node[apicid];
                if (node == NUMA_NO_NODE)
                        continue;
                if (!node_online(node))
                        continue;
                numa_set_node(cpu, node);
        }
}
#endif



/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading