[funini.com] -> [kei@sodan] -> Kernel Reading

root/fs/splice.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. page_cache_pipe_buf_steal
  2. page_cache_pipe_buf_release
  3. page_cache_pipe_buf_confirm
  4. user_page_pipe_buf_steal
  5. splice_to_pipe
  6. spd_release_page
  7. __generic_file_splice_read
  8. generic_file_splice_read
  9. pipe_to_sendpage
  10. pipe_to_file
  11. __splice_from_pipe
  12. splice_from_pipe
  13. generic_file_splice_write_nolock
  14. generic_file_splice_write
  15. generic_splice_sendpage
  16. do_splice_from
  17. do_splice_to
  18. splice_direct_to_actor
  19. direct_splice_actor
  20. do_splice_direct
  21. pipe_info
  22. do_splice
  23. get_iovec_page_array
  24. pipe_to_user
  25. vmsplice_to_user
  26. vmsplice_to_pipe
  27. sys_vmsplice
  28. sys_splice
  29. link_ipipe_prep
  30. link_opipe_prep
  31. link_pipe
  32. do_tee
  33. sys_tee

/*
 * "splice": joining two ropes together by interweaving their strands.
 *
 * This is the "extended pipe" functionality, where a pipe is used as
 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
 * buffer that you can use to transfer data from one end to the other.
 *
 * The traditional unix read/write is extended with a "splice()" operation
 * that transfers data buffers to or from a pipe buffer.
 *
 * Named by Larry McVoy, original implementation from Linus, extended by
 * Jens to support splicing to files, network, direct splicing, etc and
 * fixing lots of bugs.
 *
 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
 *
 */
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/pagemap.h>
#include <linux/splice.h>
#include <linux/mm_inline.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/buffer_head.h>
#include <linux/module.h>
#include <linux/syscalls.h>
#include <linux/uio.h>
#include <linux/security.h>

/*
 * Attempt to steal a page from a pipe buffer. This should perhaps go into
 * a vm helper function, it's already simplified quite a bit by the
 * addition of remove_mapping(). If success is returned, the caller may
 * attempt to reuse this page for another destination.
 */
static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
                                     struct pipe_buffer *buf)
{
        struct page *page = buf->page;
        struct address_space *mapping;

        lock_page(page);

        mapping = page_mapping(page);
        if (mapping) {
                WARN_ON(!PageUptodate(page));

                /*
                 * At least for ext2 with nobh option, we need to wait on
                 * writeback completing on this page, since we'll remove it
                 * from the pagecache.  Otherwise truncate wont wait on the
                 * page, allowing the disk blocks to be reused by someone else
                 * before we actually wrote our data to them. fs corruption
                 * ensues.
                 */
                wait_on_page_writeback(page);

                if (PagePrivate(page) && !try_to_release_page(page, GFP_KERNEL))
                        goto out_unlock;

                /*
                 * If we succeeded in removing the mapping, set LRU flag
                 * and return good.
                 */
                if (remove_mapping(mapping, page)) {
                        buf->flags |= PIPE_BUF_FLAG_LRU;
                        return 0;
                }
        }

        /*
         * Raced with truncate or failed to remove page from current
         * address space, unlock and return failure.
         */
out_unlock:
        unlock_page(page);
        return 1;
}

static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
                                        struct pipe_buffer *buf)
{
        page_cache_release(buf->page);
        buf->flags &= ~PIPE_BUF_FLAG_LRU;
}

/*
 * Check whether the contents of buf is OK to access. Since the content
 * is a page cache page, IO may be in flight.
 */
static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
                                       struct pipe_buffer *buf)
{
        struct page *page = buf->page;
        int err;

        if (!PageUptodate(page)) {
                lock_page(page);

                /*
                 * Page got truncated/unhashed. This will cause a 0-byte
                 * splice, if this is the first page.
                 */
                if (!page->mapping) {
                        err = -ENODATA;
                        goto error;
                }

                /*
                 * Uh oh, read-error from disk.
                 */
                if (!PageUptodate(page)) {
                        err = -EIO;
                        goto error;
                }

                /*
                 * Page is ok afterall, we are done.
                 */
                unlock_page(page);
        }

        return 0;
error:
        unlock_page(page);
        return err;
}

static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
        .can_merge = 0,
        .map = generic_pipe_buf_map,
        .unmap = generic_pipe_buf_unmap,
        .confirm = page_cache_pipe_buf_confirm,
        .release = page_cache_pipe_buf_release,
        .steal = page_cache_pipe_buf_steal,
        .get = generic_pipe_buf_get,
};

static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
                                    struct pipe_buffer *buf)
{
        if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
                return 1;

        buf->flags |= PIPE_BUF_FLAG_LRU;
        return generic_pipe_buf_steal(pipe, buf);
}

static const struct pipe_buf_operations user_page_pipe_buf_ops = {
        .can_merge = 0,
        .map = generic_pipe_buf_map,
        .unmap = generic_pipe_buf_unmap,
        .confirm = generic_pipe_buf_confirm,
        .release = page_cache_pipe_buf_release,
        .steal = user_page_pipe_buf_steal,
        .get = generic_pipe_buf_get,
};

/**
 * splice_to_pipe - fill passed data into a pipe
 * @pipe:       pipe to fill
 * @spd:        data to fill
 *
 * Description:
 *    @spd contains a map of pages and len/offset tuples, along with
 *    the struct pipe_buf_operations associated with these pages. This
 *    function will link that data to the pipe.
 *
 */
ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
                       struct splice_pipe_desc *spd)
{
        unsigned int spd_pages = spd->nr_pages;
        int ret, do_wakeup, page_nr;

        ret = 0;
        do_wakeup = 0;
        page_nr = 0;

        if (pipe->inode)
                mutex_lock(&pipe->inode->i_mutex);

        for (;;) {
                if (!pipe->readers) {
                        send_sig(SIGPIPE, current, 0);
                        if (!ret)
                                ret = -EPIPE;
                        break;
                }

                if (pipe->nrbufs < PIPE_BUFFERS) {
                        int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
                        struct pipe_buffer *buf = pipe->bufs + newbuf;

                        buf->page = spd->pages[page_nr];
                        buf->offset = spd->partial[page_nr].offset;
                        buf->len = spd->partial[page_nr].len;
                        buf->private = spd->partial[page_nr].private;
                        buf->ops = spd->ops;
                        if (spd->flags & SPLICE_F_GIFT)
                                buf->flags |= PIPE_BUF_FLAG_GIFT;

                        pipe->nrbufs++;
                        page_nr++;
                        ret += buf->len;

                        if (pipe->inode)
                                do_wakeup = 1;

                        if (!--spd->nr_pages)
                                break;
                        if (pipe->nrbufs < PIPE_BUFFERS)
                                continue;

                        break;
                }

                if (spd->flags & SPLICE_F_NONBLOCK) {
                        if (!ret)
                                ret = -EAGAIN;
                        break;
                }

                if (signal_pending(current)) {
                        if (!ret)
                                ret = -ERESTARTSYS;
                        break;
                }

                if (do_wakeup) {
                        smp_mb();
                        if (waitqueue_active(&pipe->wait))
                                wake_up_interruptible_sync(&pipe->wait);
                        kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
                        do_wakeup = 0;
                }

                pipe->waiting_writers++;
                pipe_wait(pipe);
                pipe->waiting_writers--;
        }

        if (pipe->inode) {
                mutex_unlock(&pipe->inode->i_mutex);

                if (do_wakeup) {
                        smp_mb();
                        if (waitqueue_active(&pipe->wait))
                                wake_up_interruptible(&pipe->wait);
                        kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
                }
        }

        while (page_nr < spd_pages)
                spd->spd_release(spd, page_nr++);

        return ret;
}

static void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
{
        page_cache_release(spd->pages[i]);
}

static int
__generic_file_splice_read(struct file *in, loff_t *ppos,
                           struct pipe_inode_info *pipe, size_t len,
                           unsigned int flags)
{
        struct address_space *mapping = in->f_mapping;
        unsigned int loff, nr_pages, req_pages;
        struct page *pages[PIPE_BUFFERS];
        struct partial_page partial[PIPE_BUFFERS];
        struct page *page;
        pgoff_t index, end_index;
        loff_t isize;
        int error, page_nr;
        struct splice_pipe_desc spd = {
                .pages = pages,
                .partial = partial,
                .flags = flags,
                .ops = &page_cache_pipe_buf_ops,
                .spd_release = spd_release_page,
        };

        index = *ppos >> PAGE_CACHE_SHIFT;
        loff = *ppos & ~PAGE_CACHE_MASK;
        req_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
        nr_pages = min(req_pages, (unsigned)PIPE_BUFFERS);

        /*
         * Lookup the (hopefully) full range of pages we need.
         */
        spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
        index += spd.nr_pages;

        /*
         * If find_get_pages_contig() returned fewer pages than we needed,
         * readahead/allocate the rest and fill in the holes.
         */
        if (spd.nr_pages < nr_pages)
                page_cache_sync_readahead(mapping, &in->f_ra, in,
                                index, req_pages - spd.nr_pages);

        error = 0;
        while (spd.nr_pages < nr_pages) {
                /*
                 * Page could be there, find_get_pages_contig() breaks on
                 * the first hole.
                 */
                page = find_get_page(mapping, index);
                if (!page) {
                        /*
                         * page didn't exist, allocate one.
                         */
                        page = page_cache_alloc_cold(mapping);
                        if (!page)
                                break;

                        error = add_to_page_cache_lru(page, mapping, index,
                                                mapping_gfp_mask(mapping));
                        if (unlikely(error)) {
                                page_cache_release(page);
                                if (error == -EEXIST)
                                        continue;
                                break;
                        }
                        /*
                         * add_to_page_cache() locks the page, unlock it
                         * to avoid convoluting the logic below even more.
                         */
                        unlock_page(page);
                }

                pages[spd.nr_pages++] = page;
                index++;
        }

        /*
         * Now loop over the map and see if we need to start IO on any
         * pages, fill in the partial map, etc.
         */
        index = *ppos >> PAGE_CACHE_SHIFT;
        nr_pages = spd.nr_pages;
        spd.nr_pages = 0;
        for (page_nr = 0; page_nr < nr_pages; page_nr++) {
                unsigned int this_len;

                if (!len)
                        break;

                /*
                 * this_len is the max we'll use from this page
                 */
                this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
                page = pages[page_nr];

                if (PageReadahead(page))
                        page_cache_async_readahead(mapping, &in->f_ra, in,
                                        page, index, req_pages - page_nr);

                /*
                 * If the page isn't uptodate, we may need to start io on it
                 */
                if (!PageUptodate(page)) {
                        /*
                         * If in nonblock mode then dont block on waiting
                         * for an in-flight io page
                         */
                        if (flags & SPLICE_F_NONBLOCK) {
                                if (!trylock_page(page)) {
                                        error = -EAGAIN;
                                        break;
                                }
                        } else
                                lock_page(page);

                        /*
                         * Page was truncated, or invalidated by the
                         * filesystem.  Redo the find/create, but this time the
                         * page is kept locked, so there's no chance of another
                         * race with truncate/invalidate.
                         */
                        if (!page->mapping) {
                                unlock_page(page);
                                page = find_or_create_page(mapping, index,
                                                mapping_gfp_mask(mapping));

                                if (!page) {
                                        error = -ENOMEM;
                                        break;
                                }
                                page_cache_release(pages[page_nr]);
                                pages[page_nr] = page;
                        }
                        /*
                         * page was already under io and is now done, great
                         */
                        if (PageUptodate(page)) {
                                unlock_page(page);
                                goto fill_it;
                        }

                        /*
                         * need to read in the page
                         */
                        error = mapping->a_ops->readpage(in, page);
                        if (unlikely(error)) {
                                /*
                                 * We really should re-lookup the page here,
                                 * but it complicates things a lot. Instead
                                 * lets just do what we already stored, and
                                 * we'll get it the next time we are called.
                                 */
                                if (error == AOP_TRUNCATED_PAGE)
                                        error = 0;

                                break;
                        }
                }
fill_it:
                /*
                 * i_size must be checked after PageUptodate.
                 */
                isize = i_size_read(mapping->host);
                end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
                if (unlikely(!isize || index > end_index))
                        break;

                /*
                 * if this is the last page, see if we need to shrink
                 * the length and stop
                 */
                if (end_index == index) {
                        unsigned int plen;

                        /*
                         * max good bytes in this page
                         */
                        plen = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
                        if (plen <= loff)
                                break;

                        /*
                         * force quit after adding this page
                         */
                        this_len = min(this_len, plen - loff);
                        len = this_len;
                }

                partial[page_nr].offset = loff;
                partial[page_nr].len = this_len;
                len -= this_len;
                loff = 0;
                spd.nr_pages++;
                index++;
        }

        /*
         * Release any pages at the end, if we quit early. 'page_nr' is how far
         * we got, 'nr_pages' is how many pages are in the map.
         */
        while (page_nr < nr_pages)
                page_cache_release(pages[page_nr++]);
        in->f_ra.prev_pos = (loff_t)index << PAGE_CACHE_SHIFT;

        if (spd.nr_pages)
                return splice_to_pipe(pipe, &spd);

        return error;
}

/**
 * generic_file_splice_read - splice data from file to a pipe
 * @in:         file to splice from
 * @ppos:       position in @in
 * @pipe:       pipe to splice to
 * @len:        number of bytes to splice
 * @flags:      splice modifier flags
 *
 * Description:
 *    Will read pages from given file and fill them into a pipe. Can be
 *    used as long as the address_space operations for the source implements
 *    a readpage() hook.
 *
 */
ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
                                 struct pipe_inode_info *pipe, size_t len,
                                 unsigned int flags)
{
        loff_t isize, left;
        int ret;

        isize = i_size_read(in->f_mapping->host);
        if (unlikely(*ppos >= isize))
                return 0;

        left = isize - *ppos;
        if (unlikely(left < len))
                len = left;

        ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
        if (ret > 0)
                *ppos += ret;

        return ret;
}

EXPORT_SYMBOL(generic_file_splice_read);

/*
 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
 * using sendpage(). Return the number of bytes sent.
 */
static int pipe_to_sendpage(struct pipe_inode_info *pipe,
                            struct pipe_buffer *buf, struct splice_desc *sd)
{
        struct file *file = sd->u.file;
        loff_t pos = sd->pos;
        int ret, more;

        ret = buf->ops->confirm(pipe, buf);
        if (!ret) {
                more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;

                ret = file->f_op->sendpage(file, buf->page, buf->offset,
                                           sd->len, &pos, more);
        }

        return ret;
}

/*
 * This is a little more tricky than the file -> pipe splicing. There are
 * basically three cases:
 *
 *      - Destination page already exists in the address space and there
 *        are users of it. For that case we have no other option that
 *        copying the data. Tough luck.
 *      - Destination page already exists in the address space, but there
 *        are no users of it. Make sure it's uptodate, then drop it. Fall
 *        through to last case.
 *      - Destination page does not exist, we can add the pipe page to
 *        the page cache and avoid the copy.
 *
 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
 * sd->flags), we attempt to migrate pages from the pipe to the output
 * file address space page cache. This is possible if no one else has
 * the pipe page referenced outside of the pipe and page cache. If
 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
 * a new page in the output file page cache and fill/dirty that.
 */
static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
                        struct splice_desc *sd)
{
        struct file *file = sd->u.file;
        struct address_space *mapping = file->f_mapping;
        unsigned int offset, this_len;
        struct page *page;
        void *fsdata;
        int ret;

        /*
         * make sure the data in this buffer is uptodate
         */
        ret = buf->ops->confirm(pipe, buf);
        if (unlikely(ret))
                return ret;

        offset = sd->pos & ~PAGE_CACHE_MASK;

        this_len = sd->len;
        if (this_len + offset > PAGE_CACHE_SIZE)
                this_len = PAGE_CACHE_SIZE - offset;

        ret = pagecache_write_begin(file, mapping, sd->pos, this_len,
                                AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
        if (unlikely(ret))
                goto out;

        if (buf->page != page) {
                /*
                 * Careful, ->map() uses KM_USER0!
                 */
                char *src = buf->ops->map(pipe, buf, 1);
                char *dst = kmap_atomic(page, KM_USER1);

                memcpy(dst + offset, src + buf->offset, this_len);
                flush_dcache_page(page);
                kunmap_atomic(dst, KM_USER1);
                buf->ops->unmap(pipe, buf, src);
        }
        ret = pagecache_write_end(file, mapping, sd->pos, this_len, this_len,
                                page, fsdata);
out:
        return ret;
}

/**
 * __splice_from_pipe - splice data from a pipe to given actor
 * @pipe:       pipe to splice from
 * @sd:         information to @actor
 * @actor:      handler that splices the data
 *
 * Description:
 *    This function does little more than loop over the pipe and call
 *    @actor to do the actual moving of a single struct pipe_buffer to
 *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
 *    pipe_to_user.
 *
 */
ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
                           splice_actor *actor)
{
        int ret, do_wakeup, err;

        ret = 0;
        do_wakeup = 0;

        for (;;) {
                if (pipe->nrbufs) {
                        struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
                        const struct pipe_buf_operations *ops = buf->ops;

                        sd->len = buf->len;
                        if (sd->len > sd->total_len)
                                sd->len = sd->total_len;

                        err = actor(pipe, buf, sd);
                        if (err <= 0) {
                                if (!ret && err != -ENODATA)
                                        ret = err;

                                break;
                        }

                        ret += err;
                        buf->offset += err;
                        buf->len -= err;

                        sd->len -= err;
                        sd->pos += err;
                        sd->total_len -= err;
                        if (sd->len)
                                continue;

                        if (!buf->len) {
                                buf->ops = NULL;
                                ops->release(pipe, buf);
                                pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
                                pipe->nrbufs--;
                                if (pipe->inode)
                                        do_wakeup = 1;
                        }

                        if (!sd->total_len)
                                break;
                }

                if (pipe->nrbufs)
                        continue;
                if (!pipe->writers)
                        break;
                if (!pipe->waiting_writers) {
                        if (ret)
                                break;
                }

                if (sd->flags & SPLICE_F_NONBLOCK) {
                        if (!ret)
                                ret = -EAGAIN;
                        break;
                }

                if (signal_pending(current)) {
                        if (!ret)
                                ret = -ERESTARTSYS;
                        break;
                }

                if (do_wakeup) {
                        smp_mb();
                        if (waitqueue_active(&pipe->wait))
                                wake_up_interruptible_sync(&pipe->wait);
                        kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
                        do_wakeup = 0;
                }

                pipe_wait(pipe);
        }

        if (do_wakeup) {
                smp_mb();
                if (waitqueue_active(&pipe->wait))
                        wake_up_interruptible(&pipe->wait);
                kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
        }

        return ret;
}
EXPORT_SYMBOL(__splice_from_pipe);

/**
 * splice_from_pipe - splice data from a pipe to a file
 * @pipe:       pipe to splice from
 * @out:        file to splice to
 * @ppos:       position in @out
 * @len:        how many bytes to splice
 * @flags:      splice modifier flags
 * @actor:      handler that splices the data
 *
 * Description:
 *    See __splice_from_pipe. This function locks the input and output inodes,
 *    otherwise it's identical to __splice_from_pipe().
 *
 */
ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
                         loff_t *ppos, size_t len, unsigned int flags,
                         splice_actor *actor)
{
        ssize_t ret;
        struct inode *inode = out->f_mapping->host;
        struct splice_desc sd = {
                .total_len = len,
                .flags = flags,
                .pos = *ppos,
                .u.file = out,
        };

        /*
         * The actor worker might be calling ->prepare_write and
         * ->commit_write. Most of the time, these expect i_mutex to
         * be held. Since this may result in an ABBA deadlock with
         * pipe->inode, we have to order lock acquiry here.
         */
        inode_double_lock(inode, pipe->inode);
        ret = __splice_from_pipe(pipe, &sd, actor);
        inode_double_unlock(inode, pipe->inode);

        return ret;
}

/**
 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
 * @pipe:       pipe info
 * @out:        file to write to
 * @ppos:       position in @out
 * @len:        number of bytes to splice
 * @flags:      splice modifier flags
 *
 * Description:
 *    Will either move or copy pages (determined by @flags options) from
 *    the given pipe inode to the given file. The caller is responsible
 *    for acquiring i_mutex on both inodes.
 *
 */
ssize_t
generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
                                 loff_t *ppos, size_t len, unsigned int flags)
{
        struct address_space *mapping = out->f_mapping;
        struct inode *inode = mapping->host;
        struct splice_desc sd = {
                .total_len = len,
                .flags = flags,
                .pos = *ppos,
                .u.file = out,
        };
        ssize_t ret;
        int err;

        err = file_remove_suid(out);
        if (unlikely(err))
                return err;

        ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
        if (ret > 0) {
                unsigned long nr_pages;

                *ppos += ret;
                nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;

                /*
                 * If file or inode is SYNC and we actually wrote some data,
                 * sync it.
                 */
                if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
                        err = generic_osync_inode(inode, mapping,
                                                  OSYNC_METADATA|OSYNC_DATA);

                        if (err)
                                ret = err;
                }
                balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
        }

        return ret;
}

EXPORT_SYMBOL(generic_file_splice_write_nolock);

/**
 * generic_file_splice_write - splice data from a pipe to a file
 * @pipe:       pipe info
 * @out:        file to write to
 * @ppos:       position in @out
 * @len:        number of bytes to splice
 * @flags:      splice modifier flags
 *
 * Description:
 *    Will either move or copy pages (determined by @flags options) from
 *    the given pipe inode to the given file.
 *
 */
ssize_t
generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
                          loff_t *ppos, size_t len, unsigned int flags)
{
        struct address_space *mapping = out->f_mapping;
        struct inode *inode = mapping->host;
        struct splice_desc sd = {
                .total_len = len,
                .flags = flags,
                .pos = *ppos,
                .u.file = out,
        };
        ssize_t ret;

        inode_double_lock(inode, pipe->inode);
        ret = file_remove_suid(out);
        if (likely(!ret))
                ret = __splice_from_pipe(pipe, &sd, pipe_to_file);
        inode_double_unlock(inode, pipe->inode);
        if (ret > 0) {
                unsigned long nr_pages;

                *ppos += ret;
                nr_pages = (ret + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;

                /*
                 * If file or inode is SYNC and we actually wrote some data,
                 * sync it.
                 */
                if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
                        int err;

                        mutex_lock(&inode->i_mutex);
                        err = generic_osync_inode(inode, mapping,
                                                  OSYNC_METADATA|OSYNC_DATA);
                        mutex_unlock(&inode->i_mutex);

                        if (err)
                                ret = err;
                }
                balance_dirty_pages_ratelimited_nr(mapping, nr_pages);
        }

        return ret;
}

EXPORT_SYMBOL(generic_file_splice_write);

/**
 * generic_splice_sendpage - splice data from a pipe to a socket
 * @pipe:       pipe to splice from
 * @out:        socket to write to
 * @ppos:       position in @out
 * @len:        number of bytes to splice
 * @flags:      splice modifier flags
 *
 * Description:
 *    Will send @len bytes from the pipe to a network socket. No data copying
 *    is involved.
 *
 */
ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
                                loff_t *ppos, size_t len, unsigned int flags)
{
        return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
}

EXPORT_SYMBOL(generic_splice_sendpage);

/*
 * Attempt to initiate a splice from pipe to file.
 */
static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
                           loff_t *ppos, size_t len, unsigned int flags)
{
        int ret;

        if (unlikely(!out->f_op || !out->f_op->splice_write))
                return -EINVAL;

        if (unlikely(!(out->f_mode & FMODE_WRITE)))
                return -EBADF;

        if (unlikely(out->f_flags & O_APPEND))
                return -EINVAL;

        ret = rw_verify_area(WRITE, out, ppos, len);
        if (unlikely(ret < 0))
                return ret;

        return out->f_op->splice_write(pipe, out, ppos, len, flags);
}

/*
 * Attempt to initiate a splice from a file to a pipe.
 */
static long do_splice_to(struct file *in, loff_t *ppos,
                         struct pipe_inode_info *pipe, size_t len,
                         unsigned int flags)
{
        int ret;

        if (unlikely(!in->f_op || !in->f_op->splice_read))
                return -EINVAL;

        if (unlikely(!(in->f_mode & FMODE_READ)))
                return -EBADF;

        ret = rw_verify_area(READ, in, ppos, len);
        if (unlikely(ret < 0))
                return ret;

        return in->f_op->splice_read(in, ppos, pipe, len, flags);
}

/**
 * splice_direct_to_actor - splices data directly between two non-pipes
 * @in:         file to splice from
 * @sd:         actor information on where to splice to
 * @actor:      handles the data splicing
 *
 * Description:
 *    This is a special case helper to splice directly between two
 *    points, without requiring an explicit pipe. Internally an allocated
 *    pipe is cached in the process, and reused during the lifetime of
 *    that process.
 *
 */
ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
                               splice_direct_actor *actor)
{
        struct pipe_inode_info *pipe;
        long ret, bytes;
        umode_t i_mode;
        size_t len;
        int i, flags;

        /*
         * We require the input being a regular file, as we don't want to
         * randomly drop data for eg socket -> socket splicing. Use the
         * piped splicing for that!
         */
        i_mode = in->f_path.dentry->d_inode->i_mode;
        if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
                return -EINVAL;

        /*
         * neither in nor out is a pipe, setup an internal pipe attached to
         * 'out' and transfer the wanted data from 'in' to 'out' through that
         */
        pipe = current->splice_pipe;
        if (unlikely(!pipe)) {
                pipe = alloc_pipe_info(NULL);
                if (!pipe)
                        return -ENOMEM;

                /*
                 * We don't have an immediate reader, but we'll read the stuff
                 * out of the pipe right after the splice_to_pipe(). So set
                 * PIPE_READERS appropriately.
                 */
                pipe->readers = 1;

                current->splice_pipe = pipe;
        }

        /*
         * Do the splice.
         */
        ret = 0;
        bytes = 0;
        len = sd->total_len;
        flags = sd->flags;

        /*
         * Don't block on output, we have to drain the direct pipe.
         */
        sd->flags &= ~SPLICE_F_NONBLOCK;

        while (len) {
                size_t read_len;
                loff_t pos = sd->pos, prev_pos = pos;

                ret = do_splice_to(in, &pos, pipe, len, flags);
                if (unlikely(ret <= 0))
                        goto out_release;

                read_len = ret;
                sd->total_len = read_len;

                /*
                 * NOTE: nonblocking mode only applies to the input. We
                 * must not do the output in nonblocking mode as then we
                 * could get stuck data in the internal pipe:
                 */
                ret = actor(pipe, sd);
                if (unlikely(ret <= 0)) {
                        sd->pos = prev_pos;
                        goto out_release;
                }

                bytes += ret;
                len -= ret;
                sd->pos = pos;

                if (ret < read_len) {
                        sd->pos = prev_pos + ret;
                        goto out_release;
                }
        }

done:
        pipe->nrbufs = pipe->curbuf = 0;
        file_accessed(in);
        return bytes;

out_release:
        /*
         * If we did an incomplete transfer we must release
         * the pipe buffers in question:
         */
        for (i = 0; i < PIPE_BUFFERS; i++) {
                struct pipe_buffer *buf = pipe->bufs + i;

                if (buf->ops) {
                        buf->ops->release(pipe, buf);
                        buf->ops = NULL;
                }
        }

        if (!bytes)
                bytes = ret;

        goto done;
}
EXPORT_SYMBOL(splice_direct_to_actor);

static int direct_splice_actor(struct pipe_inode_info *pipe,
                               struct splice_desc *sd)
{
        struct file *file = sd->u.file;

        return do_splice_from(pipe, file, &sd->pos, sd->total_len, sd->flags);
}

/**
 * do_splice_direct - splices data directly between two files
 * @in:         file to splice from
 * @ppos:       input file offset
 * @out:        file to splice to
 * @len:        number of bytes to splice
 * @flags:      splice modifier flags
 *
 * Description:
 *    For use by do_sendfile(). splice can easily emulate sendfile, but
 *    doing it in the application would incur an extra system call
 *    (splice in + splice out, as compared to just sendfile()). So this helper
 *    can splice directly through a process-private pipe.
 *
 */
long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
                      size_t len, unsigned int flags)
{
        struct splice_desc sd = {
                .len            = len,
                .total_len      = len,
                .flags          = flags,
                .pos            = *ppos,
                .u.file         = out,
        };
        long ret;

        ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
        if (ret > 0)
                *ppos = sd.pos;

        return ret;
}

/*
 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
 * location, so checking ->i_pipe is not enough to verify that this is a
 * pipe.
 */
static inline struct pipe_inode_info *pipe_info(struct inode *inode)
{
        if (S_ISFIFO(inode->i_mode))
                return inode->i_pipe;

        return NULL;
}

/*
 * Determine where to splice to/from.
 */
static long do_splice(struct file *in, loff_t __user *off_in,
                      struct file *out, loff_t __user *off_out,
                      size_t len, unsigned int flags)
{
        struct pipe_inode_info *pipe;
        loff_t offset, *off;
        long ret;

        pipe = pipe_info(in->f_path.dentry->d_inode);
        if (pipe) {
                if (off_in)
                        return -ESPIPE;
                if (off_out) {
                        if (out->f_op->llseek == no_llseek)
                                return -EINVAL;
                        if (copy_from_user(&offset, off_out, sizeof(loff_t)))
                                return -EFAULT;
                        off = &offset;
                } else
                        off = &out->f_pos;

                ret = do_splice_from(pipe, out, off, len, flags);

                if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
                        ret = -EFAULT;

                return ret;
        }

        pipe = pipe_info(out->f_path.dentry->d_inode);
        if (pipe) {
                if (off_out)
                        return -ESPIPE;
                if (off_in) {
                        if (in->f_op->llseek == no_llseek)
                                return -EINVAL;
                        if (copy_from_user(&offset, off_in, sizeof(loff_t)))
                                return -EFAULT;
                        off = &offset;
                } else
                        off = &in->f_pos;

                ret = do_splice_to(in, off, pipe, len, flags);

                if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
                        ret = -EFAULT;

                return ret;
        }

        return -EINVAL;
}

/*
 * Map an iov into an array of pages and offset/length tupples. With the
 * partial_page structure, we can map several non-contiguous ranges into
 * our ones pages[] map instead of splitting that operation into pieces.
 * Could easily be exported as a generic helper for other users, in which
 * case one would probably want to add a 'max_nr_pages' parameter as well.
 */
static int get_iovec_page_array(const struct iovec __user *iov,
                                unsigned int nr_vecs, struct page **pages,
                                struct partial_page *partial, int aligned)
{
        int buffers = 0, error = 0;

        while (nr_vecs) {
                unsigned long off, npages;
                struct iovec entry;
                void __user *base;
                size_t len;
                int i;

                error = -EFAULT;
                if (copy_from_user(&entry, iov, sizeof(entry)))
                        break;

                base = entry.iov_base;
                len = entry.iov_len;

                /*
                 * Sanity check this iovec. 0 read succeeds.
                 */
                error = 0;
                if (unlikely(!len))
                        break;
                error = -EFAULT;
                if (!access_ok(VERIFY_READ, base, len))
                        break;

                /*
                 * Get this base offset and number of pages, then map
                 * in the user pages.
                 */
                off = (unsigned long) base & ~PAGE_MASK;

                /*
                 * If asked for alignment, the offset must be zero and the
                 * length a multiple of the PAGE_SIZE.
                 */
                error = -EINVAL;
                if (aligned && (off || len & ~PAGE_MASK))
                        break;

                npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
                if (npages > PIPE_BUFFERS - buffers)
                        npages = PIPE_BUFFERS - buffers;

                error = get_user_pages_fast((unsigned long)base, npages,
                                        0, &pages[buffers]);

                if (unlikely(error <= 0))
                        break;

                /*
                 * Fill this contiguous range into the partial page map.
                 */
                for (i = 0; i < error; i++) {
                        const int plen = min_t(size_t, len, PAGE_SIZE - off);

                        partial[buffers].offset = off;
                        partial[buffers].len = plen;

                        off = 0;
                        len -= plen;
                        buffers++;
                }

                /*
                 * We didn't complete this iov, stop here since it probably
                 * means we have to move some of this into a pipe to
                 * be able to continue.
                 */
                if (len)
                        break;

                /*
                 * Don't continue if we mapped fewer pages than we asked for,
                 * or if we mapped the max number of pages that we have
                 * room for.
                 */
                if (error < npages || buffers == PIPE_BUFFERS)
                        break;

                nr_vecs--;
                iov++;
        }

        if (buffers)
                return buffers;

        return error;
}

static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
                        struct splice_desc *sd)
{
        char *src;
        int ret;

        ret = buf->ops->confirm(pipe, buf);
        if (unlikely(ret))
                return ret;

        /*
         * See if we can use the atomic maps, by prefaulting in the
         * pages and doing an atomic copy
         */
        if (!fault_in_pages_writeable(sd->u.userptr, sd->len)) {
                src = buf->ops->map(pipe, buf, 1);
                ret = __copy_to_user_inatomic(sd->u.userptr, src + buf->offset,
                                                        sd->len);
                buf->ops->unmap(pipe, buf, src);
                if (!ret) {
                        ret = sd->len;
                        goto out;
                }
        }

        /*
         * No dice, use slow non-atomic map and copy
         */
        src = buf->ops->map(pipe, buf, 0);

        ret = sd->len;
        if (copy_to_user(sd->u.userptr, src + buf->offset, sd->len))
                ret = -EFAULT;

        buf->ops->unmap(pipe, buf, src);
out:
        if (ret > 0)
                sd->u.userptr += ret;
        return ret;
}

/*
 * For lack of a better implementation, implement vmsplice() to userspace
 * as a simple copy of the pipes pages to the user iov.
 */
static long vmsplice_to_user(struct file *file, const struct iovec __user *iov,
                             unsigned long nr_segs, unsigned int flags)
{
        struct pipe_inode_info *pipe;
        struct splice_desc sd;
        ssize_t size;
        int error;
        long ret;

        pipe = pipe_info(file->f_path.dentry->d_inode);
        if (!pipe)
                return -EBADF;

        if (pipe->inode)
                mutex_lock(&pipe->inode->i_mutex);

        error = ret = 0;
        while (nr_segs) {
                void __user *base;
                size_t len;

                /*
                 * Get user address base and length for this iovec.
                 */
                error = get_user(base, &iov->iov_base);
                if (unlikely(error))
                        break;
                error = get_user(len, &iov->iov_len);
                if (unlikely(error))
                        break;

                /*
                 * Sanity check this iovec. 0 read succeeds.
                 */
                if (unlikely(!len))
                        break;
                if (unlikely(!base)) {
                        error = -EFAULT;
                        break;
                }

                if (unlikely(!access_ok(VERIFY_WRITE, base, len))) {
                        error = -EFAULT;
                        break;
                }

                sd.len = 0;
                sd.total_len = len;
                sd.flags = flags;
                sd.u.userptr = base;
                sd.pos = 0;

                size = __splice_from_pipe(pipe, &sd, pipe_to_user);
                if (size < 0) {
                        if (!ret)
                                ret = size;

                        break;
                }

                ret += size;

                if (size < len)
                        break;

                nr_segs--;
                iov++;
        }

        if (pipe->inode)
                mutex_unlock(&pipe->inode->i_mutex);

        if (!ret)
                ret = error;

        return ret;
}

/*
 * vmsplice splices a user address range into a pipe. It can be thought of
 * as splice-from-memory, where the regular splice is splice-from-file (or
 * to file). In both cases the output is a pipe, naturally.
 */
static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
                             unsigned long nr_segs, unsigned int flags)
{
        struct pipe_inode_info *pipe;
        struct page *pages[PIPE_BUFFERS];
        struct partial_page partial[PIPE_BUFFERS];
        struct splice_pipe_desc spd = {
                .pages = pages,
                .partial = partial,
                .flags = flags,
                .ops = &user_page_pipe_buf_ops,
                .spd_release = spd_release_page,
        };

        pipe = pipe_info(file->f_path.dentry->d_inode);
        if (!pipe)
                return -EBADF;

        spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
                                            flags & SPLICE_F_GIFT);
        if (spd.nr_pages <= 0)
                return spd.nr_pages;

        return splice_to_pipe(pipe, &spd);
}

/*
 * Note that vmsplice only really supports true splicing _from_ user memory
 * to a pipe, not the other way around. Splicing from user memory is a simple
 * operation that can be supported without any funky alignment restrictions
 * or nasty vm tricks. We simply map in the user memory and fill them into
 * a pipe. The reverse isn't quite as easy, though. There are two possible
 * solutions for that:
 *
 *      - memcpy() the data internally, at which point we might as well just
 *        do a regular read() on the buffer anyway.
 *      - Lots of nasty vm tricks, that are neither fast nor flexible (it
 *        has restriction limitations on both ends of the pipe).
 *
 * Currently we punt and implement it as a normal copy, see pipe_to_user().
 *
 */
asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
                             unsigned long nr_segs, unsigned int flags)
{
        struct file *file;
        long error;
        int fput;

        if (unlikely(nr_segs > UIO_MAXIOV))
                return -EINVAL;
        else if (unlikely(!nr_segs))
                return 0;

        error = -EBADF;
        file = fget_light(fd, &fput);
        if (file) {
                if (file->f_mode & FMODE_WRITE)
                        error = vmsplice_to_pipe(file, iov, nr_segs, flags);
                else if (file->f_mode & FMODE_READ)
                        error = vmsplice_to_user(file, iov, nr_segs, flags);

                fput_light(file, fput);
        }

        return error;
}

asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
                           int fd_out, loff_t __user *off_out,
                           size_t len, unsigned int flags)
{
        long error;
        struct file *in, *out;
        int fput_in, fput_out;

        if (unlikely(!len))
                return 0;

        error = -EBADF;
        in = fget_light(fd_in, &fput_in);
        if (in) {
                if (in->f_mode & FMODE_READ) {
                        out = fget_light(fd_out, &fput_out);
                        if (out) {
                                if (out->f_mode & FMODE_WRITE)
                                        error = do_splice(in, off_in,
                                                          out, off_out,
                                                          len, flags);
                                fput_light(out, fput_out);
                        }
                }

                fput_light(in, fput_in);
        }

        return error;
}

/*
 * Make sure there's data to read. Wait for input if we can, otherwise
 * return an appropriate error.
 */
static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
{
        int ret;

        /*
         * Check ->nrbufs without the inode lock first. This function
         * is speculative anyways, so missing one is ok.
         */
        if (pipe->nrbufs)
                return 0;

        ret = 0;
        mutex_lock(&pipe->inode->i_mutex);

        while (!pipe->nrbufs) {
                if (signal_pending(current)) {
                        ret = -ERESTARTSYS;
                        break;
                }
                if (!pipe->writers)
                        break;
                if (!pipe->waiting_writers) {
                        if (flags & SPLICE_F_NONBLOCK) {
                                ret = -EAGAIN;
                                break;
                        }
                }
                pipe_wait(pipe);
        }

        mutex_unlock(&pipe->inode->i_mutex);
        return ret;
}

/*
 * Make sure there's writeable room. Wait for room if we can, otherwise
 * return an appropriate error.
 */
static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
{
        int ret;

        /*
         * Check ->nrbufs without the inode lock first. This function
         * is speculative anyways, so missing one is ok.
         */
        if (pipe->nrbufs < PIPE_BUFFERS)
                return 0;

        ret = 0;
        mutex_lock(&pipe->inode->i_mutex);

        while (pipe->nrbufs >= PIPE_BUFFERS) {
                if (!pipe->readers) {
                        send_sig(SIGPIPE, current, 0);
                        ret = -EPIPE;
                        break;
                }
                if (flags & SPLICE_F_NONBLOCK) {
                        ret = -EAGAIN;
                        break;
                }
                if (signal_pending(current)) {
                        ret = -ERESTARTSYS;
                        break;
                }
                pipe->waiting_writers++;
                pipe_wait(pipe);
                pipe->waiting_writers--;
        }

        mutex_unlock(&pipe->inode->i_mutex);
        return ret;
}

/*
 * Link contents of ipipe to opipe.
 */
static int link_pipe(struct pipe_inode_info *ipipe,
                     struct pipe_inode_info *opipe,
                     size_t len, unsigned int flags)
{
        struct pipe_buffer *ibuf, *obuf;
        int ret = 0, i = 0, nbuf;

        /*
         * Potential ABBA deadlock, work around it by ordering lock
         * grabbing by inode address. Otherwise two different processes
         * could deadlock (one doing tee from A -> B, the other from B -> A).
         */
        inode_double_lock(ipipe->inode, opipe->inode);

        do {
                if (!opipe->readers) {
                        send_sig(SIGPIPE, current, 0);
                        if (!ret)
                                ret = -EPIPE;
                        break;
                }

                /*
                 * If we have iterated all input buffers or ran out of
                 * output room, break.
                 */
                if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
                        break;

                ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
                nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);

                /*
                 * Get a reference to this pipe buffer,
                 * so we can copy the contents over.
                 */
                ibuf->ops->get(ipipe, ibuf);

                obuf = opipe->bufs + nbuf;
                *obuf = *ibuf;

                /*
                 * Don't inherit the gift flag, we need to
                 * prevent multiple steals of this page.
                 */
                obuf->flags &= ~PIPE_BUF_FLAG_GIFT;

                if (obuf->len > len)
                        obuf->len = len;

                opipe->nrbufs++;
                ret += obuf->len;
                len -= obuf->len;
                i++;
        } while (len);

        /*
         * return EAGAIN if we have the potential of some data in the
         * future, otherwise just return 0
         */
        if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
                ret = -EAGAIN;

        inode_double_unlock(ipipe->inode, opipe->inode);

        /*
         * If we put data in the output pipe, wakeup any potential readers.
         */
        if (ret > 0) {
                smp_mb();
                if (waitqueue_active(&opipe->wait))
                        wake_up_interruptible(&opipe->wait);
                kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
        }

        return ret;
}

/*
 * This is a tee(1) implementation that works on pipes. It doesn't copy
 * any data, it simply references the 'in' pages on the 'out' pipe.
 * The 'flags' used are the SPLICE_F_* variants, currently the only
 * applicable one is SPLICE_F_NONBLOCK.
 */
static long do_tee(struct file *in, struct file *out, size_t len,
                   unsigned int flags)
{
        struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
        struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
        int ret = -EINVAL;

        /*
         * Duplicate the contents of ipipe to opipe without actually
         * copying the data.
         */
        if (ipipe && opipe && ipipe != opipe) {
                /*
                 * Keep going, unless we encounter an error. The ipipe/opipe
                 * ordering doesn't really matter.
                 */
                ret = link_ipipe_prep(ipipe, flags);
                if (!ret) {
                        ret = link_opipe_prep(opipe, flags);
                        if (!ret)
                                ret = link_pipe(ipipe, opipe, len, flags);
                }
        }

        return ret;
}

asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
{
        struct file *in;
        int error, fput_in;

        if (unlikely(!len))
                return 0;

        error = -EBADF;
        in = fget_light(fdin, &fput_in);
        if (in) {
                if (in->f_mode & FMODE_READ) {
                        int fput_out;
                        struct file *out = fget_light(fdout, &fput_out);

                        if (out) {
                                if (out->f_mode & FMODE_WRITE)
                                        error = do_tee(in, out, len, flags);
                                fput_light(out, fput_out);
                        }
                }
                fput_light(in, fput_in);
        }

        return error;
}

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading