[funini.com] -> [kei@sodan] -> Kernel Reading

root/sound/pci/ymfpci/ymfpci_main.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. snd_ymfpci_readb
  2. snd_ymfpci_writeb
  3. snd_ymfpci_readw
  4. snd_ymfpci_writew
  5. snd_ymfpci_readl
  6. snd_ymfpci_writel
  7. snd_ymfpci_codec_ready
  8. snd_ymfpci_codec_write
  9. snd_ymfpci_codec_read
  10. snd_ymfpci_calc_delta
  11. snd_ymfpci_calc_lpfK
  12. snd_ymfpci_calc_lpfQ
  13. snd_ymfpci_hw_start
  14. snd_ymfpci_hw_stop
  15. voice_alloc
  16. snd_ymfpci_voice_alloc
  17. snd_ymfpci_voice_free
  18. snd_ymfpci_pcm_interrupt
  19. snd_ymfpci_pcm_capture_interrupt
  20. snd_ymfpci_playback_trigger
  21. snd_ymfpci_capture_trigger
  22. snd_ymfpci_pcm_voice_alloc
  23. snd_ymfpci_pcm_init_voice
  24. snd_ymfpci_ac3_init
  25. snd_ymfpci_ac3_done
  26. snd_ymfpci_playback_hw_params
  27. snd_ymfpci_playback_hw_free
  28. snd_ymfpci_playback_prepare
  29. snd_ymfpci_capture_hw_params
  30. snd_ymfpci_capture_hw_free
  31. snd_ymfpci_capture_prepare
  32. snd_ymfpci_playback_pointer
  33. snd_ymfpci_capture_pointer
  34. snd_ymfpci_irq_wait
  35. snd_ymfpci_interrupt
  36. snd_ymfpci_pcm_free_substream
  37. snd_ymfpci_playback_open_1
  38. ymfpci_open_extension
  39. ymfpci_close_extension
  40. snd_ymfpci_playback_open
  41. snd_ymfpci_playback_spdif_open
  42. snd_ymfpci_playback_4ch_open
  43. snd_ymfpci_capture_open
  44. snd_ymfpci_capture_rec_open
  45. snd_ymfpci_capture_ac97_open
  46. snd_ymfpci_playback_close_1
  47. snd_ymfpci_playback_close
  48. snd_ymfpci_playback_spdif_close
  49. snd_ymfpci_playback_4ch_close
  50. snd_ymfpci_capture_close
  51. snd_ymfpci_pcm
  52. snd_ymfpci_pcm2
  53. snd_ymfpci_pcm_spdif
  54. snd_ymfpci_pcm_4ch
  55. snd_ymfpci_spdif_default_info
  56. snd_ymfpci_spdif_default_get
  57. snd_ymfpci_spdif_default_put
  58. snd_ymfpci_spdif_mask_info
  59. snd_ymfpci_spdif_mask_get
  60. snd_ymfpci_spdif_stream_info
  61. snd_ymfpci_spdif_stream_get
  62. snd_ymfpci_spdif_stream_put
  63. snd_ymfpci_drec_source_info
  64. snd_ymfpci_drec_source_get
  65. snd_ymfpci_drec_source_put
  66. snd_ymfpci_get_single
  67. snd_ymfpci_put_single
  68. snd_ymfpci_info_double
  69. snd_ymfpci_get_double
  70. snd_ymfpci_put_double
  71. snd_ymfpci_put_nativedacvol
  72. snd_ymfpci_get_dup4ch
  73. snd_ymfpci_put_dup4ch
  74. snd_ymfpci_get_gpio_out
  75. snd_ymfpci_set_gpio_out
  76. snd_ymfpci_gpio_sw_get
  77. snd_ymfpci_gpio_sw_put
  78. snd_ymfpci_pcm_vol_info
  79. snd_ymfpci_pcm_vol_get
  80. snd_ymfpci_pcm_vol_put
  81. snd_ymfpci_mixer_free_ac97_bus
  82. snd_ymfpci_mixer_free_ac97
  83. snd_ymfpci_mixer
  84. snd_ymfpci_timer_start
  85. snd_ymfpci_timer_stop
  86. snd_ymfpci_timer_precise_resolution
  87. snd_ymfpci_timer
  88. snd_ymfpci_proc_read
  89. snd_ymfpci_proc_init
  90. snd_ymfpci_aclink_reset
  91. snd_ymfpci_enable_dsp
  92. snd_ymfpci_disable_dsp
  93. snd_ymfpci_request_firmware
  94. snd_ymfpci_download_image
  95. snd_ymfpci_memalloc
  96. snd_ymfpci_free
  97. snd_ymfpci_dev_free
  98. snd_ymfpci_suspend
  99. snd_ymfpci_resume
  100. snd_ymfpci_create

/*
 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
 *  Routines for control of YMF724/740/744/754 chips
 *
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 *
 */

#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/mutex.h>

#include <sound/core.h>
#include <sound/control.h>
#include <sound/info.h>
#include <sound/tlv.h>
#include <sound/ymfpci.h>
#include <sound/asoundef.h>
#include <sound/mpu401.h>

#include <asm/io.h>
#include <asm/byteorder.h>

/*
 *  common I/O routines
 */

static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip);

static inline u8 snd_ymfpci_readb(struct snd_ymfpci *chip, u32 offset)
{
        return readb(chip->reg_area_virt + offset);
}

static inline void snd_ymfpci_writeb(struct snd_ymfpci *chip, u32 offset, u8 val)
{
        writeb(val, chip->reg_area_virt + offset);
}

static inline u16 snd_ymfpci_readw(struct snd_ymfpci *chip, u32 offset)
{
        return readw(chip->reg_area_virt + offset);
}

static inline void snd_ymfpci_writew(struct snd_ymfpci *chip, u32 offset, u16 val)
{
        writew(val, chip->reg_area_virt + offset);
}

static inline u32 snd_ymfpci_readl(struct snd_ymfpci *chip, u32 offset)
{
        return readl(chip->reg_area_virt + offset);
}

static inline void snd_ymfpci_writel(struct snd_ymfpci *chip, u32 offset, u32 val)
{
        writel(val, chip->reg_area_virt + offset);
}

static int snd_ymfpci_codec_ready(struct snd_ymfpci *chip, int secondary)
{
        unsigned long end_time;
        u32 reg = secondary ? YDSXGR_SECSTATUSADR : YDSXGR_PRISTATUSADR;
        
        end_time = jiffies + msecs_to_jiffies(750);
        do {
                if ((snd_ymfpci_readw(chip, reg) & 0x8000) == 0)
                        return 0;
                schedule_timeout_uninterruptible(1);
        } while (time_before(jiffies, end_time));
        snd_printk(KERN_ERR "codec_ready: codec %i is not ready [0x%x]\n", secondary, snd_ymfpci_readw(chip, reg));
        return -EBUSY;
}

static void snd_ymfpci_codec_write(struct snd_ac97 *ac97, u16 reg, u16 val)
{
        struct snd_ymfpci *chip = ac97->private_data;
        u32 cmd;
        
        snd_ymfpci_codec_ready(chip, 0);
        cmd = ((YDSXG_AC97WRITECMD | reg) << 16) | val;
        snd_ymfpci_writel(chip, YDSXGR_AC97CMDDATA, cmd);
}

static u16 snd_ymfpci_codec_read(struct snd_ac97 *ac97, u16 reg)
{
        struct snd_ymfpci *chip = ac97->private_data;

        if (snd_ymfpci_codec_ready(chip, 0))
                return ~0;
        snd_ymfpci_writew(chip, YDSXGR_AC97CMDADR, YDSXG_AC97READCMD | reg);
        if (snd_ymfpci_codec_ready(chip, 0))
                return ~0;
        if (chip->device_id == PCI_DEVICE_ID_YAMAHA_744 && chip->rev < 2) {
                int i;
                for (i = 0; i < 600; i++)
                        snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
        }
        return snd_ymfpci_readw(chip, YDSXGR_PRISTATUSDATA);
}

/*
 *  Misc routines
 */

static u32 snd_ymfpci_calc_delta(u32 rate)
{
        switch (rate) {
        case 8000:      return 0x02aaab00;
        case 11025:     return 0x03accd00;
        case 16000:     return 0x05555500;
        case 22050:     return 0x07599a00;
        case 32000:     return 0x0aaaab00;
        case 44100:     return 0x0eb33300;
        default:        return ((rate << 16) / 375) << 5;
        }
}

static u32 def_rate[8] = {
        100, 2000, 8000, 11025, 16000, 22050, 32000, 48000
};

static u32 snd_ymfpci_calc_lpfK(u32 rate)
{
        u32 i;
        static u32 val[8] = {
                0x00570000, 0x06AA0000, 0x18B20000, 0x20930000,
                0x2B9A0000, 0x35A10000, 0x3EAA0000, 0x40000000
        };
        
        if (rate == 44100)
                return 0x40000000;      /* FIXME: What's the right value? */
        for (i = 0; i < 8; i++)
                if (rate <= def_rate[i])
                        return val[i];
        return val[0];
}

static u32 snd_ymfpci_calc_lpfQ(u32 rate)
{
        u32 i;
        static u32 val[8] = {
                0x35280000, 0x34A70000, 0x32020000, 0x31770000,
                0x31390000, 0x31C90000, 0x33D00000, 0x40000000
        };
        
        if (rate == 44100)
                return 0x370A0000;
        for (i = 0; i < 8; i++)
                if (rate <= def_rate[i])
                        return val[i];
        return val[0];
}

/*
 *  Hardware start management
 */

static void snd_ymfpci_hw_start(struct snd_ymfpci *chip)
{
        unsigned long flags;

        spin_lock_irqsave(&chip->reg_lock, flags);
        if (chip->start_count++ > 0)
                goto __end;
        snd_ymfpci_writel(chip, YDSXGR_MODE,
                          snd_ymfpci_readl(chip, YDSXGR_MODE) | 3);
        chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
      __end:
        spin_unlock_irqrestore(&chip->reg_lock, flags);
}

static void snd_ymfpci_hw_stop(struct snd_ymfpci *chip)
{
        unsigned long flags;
        long timeout = 1000;

        spin_lock_irqsave(&chip->reg_lock, flags);
        if (--chip->start_count > 0)
                goto __end;
        snd_ymfpci_writel(chip, YDSXGR_MODE,
                          snd_ymfpci_readl(chip, YDSXGR_MODE) & ~3);
        while (timeout-- > 0) {
                if ((snd_ymfpci_readl(chip, YDSXGR_STATUS) & 2) == 0)
                        break;
        }
        if (atomic_read(&chip->interrupt_sleep_count)) {
                atomic_set(&chip->interrupt_sleep_count, 0);
                wake_up(&chip->interrupt_sleep);
        }
      __end:
        spin_unlock_irqrestore(&chip->reg_lock, flags);
}

/*
 *  Playback voice management
 */

static int voice_alloc(struct snd_ymfpci *chip,
                       enum snd_ymfpci_voice_type type, int pair,
                       struct snd_ymfpci_voice **rvoice)
{
        struct snd_ymfpci_voice *voice, *voice2;
        int idx;
        
        *rvoice = NULL;
        for (idx = 0; idx < YDSXG_PLAYBACK_VOICES; idx += pair ? 2 : 1) {
                voice = &chip->voices[idx];
                voice2 = pair ? &chip->voices[idx+1] : NULL;
                if (voice->use || (voice2 && voice2->use))
                        continue;
                voice->use = 1;
                if (voice2)
                        voice2->use = 1;
                switch (type) {
                case YMFPCI_PCM:
                        voice->pcm = 1;
                        if (voice2)
                                voice2->pcm = 1;
                        break;
                case YMFPCI_SYNTH:
                        voice->synth = 1;
                        break;
                case YMFPCI_MIDI:
                        voice->midi = 1;
                        break;
                }
                snd_ymfpci_hw_start(chip);
                if (voice2)
                        snd_ymfpci_hw_start(chip);
                *rvoice = voice;
                return 0;
        }
        return -ENOMEM;
}

static int snd_ymfpci_voice_alloc(struct snd_ymfpci *chip,
                                  enum snd_ymfpci_voice_type type, int pair,
                                  struct snd_ymfpci_voice **rvoice)
{
        unsigned long flags;
        int result;
        
        if (snd_BUG_ON(!rvoice))
                return -EINVAL;
        if (snd_BUG_ON(pair && type != YMFPCI_PCM))
                return -EINVAL;
        
        spin_lock_irqsave(&chip->voice_lock, flags);
        for (;;) {
                result = voice_alloc(chip, type, pair, rvoice);
                if (result == 0 || type != YMFPCI_PCM)
                        break;
                /* TODO: synth/midi voice deallocation */
                break;
        }
        spin_unlock_irqrestore(&chip->voice_lock, flags);       
        return result;          
}

static int snd_ymfpci_voice_free(struct snd_ymfpci *chip, struct snd_ymfpci_voice *pvoice)
{
        unsigned long flags;
        
        if (snd_BUG_ON(!pvoice))
                return -EINVAL;
        snd_ymfpci_hw_stop(chip);
        spin_lock_irqsave(&chip->voice_lock, flags);
        if (pvoice->number == chip->src441_used) {
                chip->src441_used = -1;
                pvoice->ypcm->use_441_slot = 0;
        }
        pvoice->use = pvoice->pcm = pvoice->synth = pvoice->midi = 0;
        pvoice->ypcm = NULL;
        pvoice->interrupt = NULL;
        spin_unlock_irqrestore(&chip->voice_lock, flags);
        return 0;
}

/*
 *  PCM part
 */

static void snd_ymfpci_pcm_interrupt(struct snd_ymfpci *chip, struct snd_ymfpci_voice *voice)
{
        struct snd_ymfpci_pcm *ypcm;
        u32 pos, delta;
        
        if ((ypcm = voice->ypcm) == NULL)
                return;
        if (ypcm->substream == NULL)
                return;
        spin_lock(&chip->reg_lock);
        if (ypcm->running) {
                pos = le32_to_cpu(voice->bank[chip->active_bank].start);
                if (pos < ypcm->last_pos)
                        delta = pos + (ypcm->buffer_size - ypcm->last_pos);
                else
                        delta = pos - ypcm->last_pos;
                ypcm->period_pos += delta;
                ypcm->last_pos = pos;
                if (ypcm->period_pos >= ypcm->period_size) {
                        // printk("done - active_bank = 0x%x, start = 0x%x\n", chip->active_bank, voice->bank[chip->active_bank].start);
                        ypcm->period_pos %= ypcm->period_size;
                        spin_unlock(&chip->reg_lock);
                        snd_pcm_period_elapsed(ypcm->substream);
                        spin_lock(&chip->reg_lock);
                }

                if (unlikely(ypcm->update_pcm_vol)) {
                        unsigned int subs = ypcm->substream->number;
                        unsigned int next_bank = 1 - chip->active_bank;
                        struct snd_ymfpci_playback_bank *bank;
                        u32 volume;
                        
                        bank = &voice->bank[next_bank];
                        volume = cpu_to_le32(chip->pcm_mixer[subs].left << 15);
                        bank->left_gain_end = volume;
                        if (ypcm->output_rear)
                                bank->eff2_gain_end = volume;
                        if (ypcm->voices[1])
                                bank = &ypcm->voices[1]->bank[next_bank];
                        volume = cpu_to_le32(chip->pcm_mixer[subs].right << 15);
                        bank->right_gain_end = volume;
                        if (ypcm->output_rear)
                                bank->eff3_gain_end = volume;
                        ypcm->update_pcm_vol--;
                }
        }
        spin_unlock(&chip->reg_lock);
}

static void snd_ymfpci_pcm_capture_interrupt(struct snd_pcm_substream *substream)
{
        struct snd_pcm_runtime *runtime = substream->runtime;
        struct snd_ymfpci_pcm *ypcm = runtime->private_data;
        struct snd_ymfpci *chip = ypcm->chip;
        u32 pos, delta;
        
        spin_lock(&chip->reg_lock);
        if (ypcm->running) {
                pos = le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
                if (pos < ypcm->last_pos)
                        delta = pos + (ypcm->buffer_size - ypcm->last_pos);
                else
                        delta = pos - ypcm->last_pos;
                ypcm->period_pos += delta;
                ypcm->last_pos = pos;
                if (ypcm->period_pos >= ypcm->period_size) {
                        ypcm->period_pos %= ypcm->period_size;
                        // printk("done - active_bank = 0x%x, start = 0x%x\n", chip->active_bank, voice->bank[chip->active_bank].start);
                        spin_unlock(&chip->reg_lock);
                        snd_pcm_period_elapsed(substream);
                        spin_lock(&chip->reg_lock);
                }
        }
        spin_unlock(&chip->reg_lock);
}

static int snd_ymfpci_playback_trigger(struct snd_pcm_substream *substream,
                                       int cmd)
{
        struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
        struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
        struct snd_kcontrol *kctl = NULL;
        int result = 0;

        spin_lock(&chip->reg_lock);
        if (ypcm->voices[0] == NULL) {
                result = -EINVAL;
                goto __unlock;
        }
        switch (cmd) {
        case SNDRV_PCM_TRIGGER_START:
        case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
        case SNDRV_PCM_TRIGGER_RESUME:
                chip->ctrl_playback[ypcm->voices[0]->number + 1] = cpu_to_le32(ypcm->voices[0]->bank_addr);
                if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
                        chip->ctrl_playback[ypcm->voices[1]->number + 1] = cpu_to_le32(ypcm->voices[1]->bank_addr);
                ypcm->running = 1;
                break;
        case SNDRV_PCM_TRIGGER_STOP:
                if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
                        kctl = chip->pcm_mixer[substream->number].ctl;
                        kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
                }
                /* fall through */
        case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
        case SNDRV_PCM_TRIGGER_SUSPEND:
                chip->ctrl_playback[ypcm->voices[0]->number + 1] = 0;
                if (ypcm->voices[1] != NULL && !ypcm->use_441_slot)
                        chip->ctrl_playback[ypcm->voices[1]->number + 1] = 0;
                ypcm->running = 0;
                break;
        default:
                result = -EINVAL;
                break;
        }
      __unlock:
        spin_unlock(&chip->reg_lock);
        if (kctl)
                snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
        return result;
}
static int snd_ymfpci_capture_trigger(struct snd_pcm_substream *substream,
                                      int cmd)
{
        struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
        struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
        int result = 0;
        u32 tmp;

        spin_lock(&chip->reg_lock);
        switch (cmd) {
        case SNDRV_PCM_TRIGGER_START:
        case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
        case SNDRV_PCM_TRIGGER_RESUME:
                tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) | (1 << ypcm->capture_bank_number);
                snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
                ypcm->running = 1;
                break;
        case SNDRV_PCM_TRIGGER_STOP:
        case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
        case SNDRV_PCM_TRIGGER_SUSPEND:
                tmp = snd_ymfpci_readl(chip, YDSXGR_MAPOFREC) & ~(1 << ypcm->capture_bank_number);
                snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, tmp);
                ypcm->running = 0;
                break;
        default:
                result = -EINVAL;
                break;
        }
        spin_unlock(&chip->reg_lock);
        return result;
}

static int snd_ymfpci_pcm_voice_alloc(struct snd_ymfpci_pcm *ypcm, int voices)
{
        int err;

        if (ypcm->voices[1] != NULL && voices < 2) {
                snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[1]);
                ypcm->voices[1] = NULL;
        }
        if (voices == 1 && ypcm->voices[0] != NULL)
                return 0;               /* already allocated */
        if (voices == 2 && ypcm->voices[0] != NULL && ypcm->voices[1] != NULL)
                return 0;               /* already allocated */
        if (voices > 1) {
                if (ypcm->voices[0] != NULL && ypcm->voices[1] == NULL) {
                        snd_ymfpci_voice_free(ypcm->chip, ypcm->voices[0]);
                        ypcm->voices[0] = NULL;
                }               
        }
        err = snd_ymfpci_voice_alloc(ypcm->chip, YMFPCI_PCM, voices > 1, &ypcm->voices[0]);
        if (err < 0)
                return err;
        ypcm->voices[0]->ypcm = ypcm;
        ypcm->voices[0]->interrupt = snd_ymfpci_pcm_interrupt;
        if (voices > 1) {
                ypcm->voices[1] = &ypcm->chip->voices[ypcm->voices[0]->number + 1];
                ypcm->voices[1]->ypcm = ypcm;
        }
        return 0;
}

static void snd_ymfpci_pcm_init_voice(struct snd_ymfpci_pcm *ypcm, unsigned int voiceidx,
                                      struct snd_pcm_runtime *runtime,
                                      int has_pcm_volume)
{
        struct snd_ymfpci_voice *voice = ypcm->voices[voiceidx];
        u32 format;
        u32 delta = snd_ymfpci_calc_delta(runtime->rate);
        u32 lpfQ = snd_ymfpci_calc_lpfQ(runtime->rate);
        u32 lpfK = snd_ymfpci_calc_lpfK(runtime->rate);
        struct snd_ymfpci_playback_bank *bank;
        unsigned int nbank;
        u32 vol_left, vol_right;
        u8 use_left, use_right;
        unsigned long flags;

        if (snd_BUG_ON(!voice))
                return;
        if (runtime->channels == 1) {
                use_left = 1;
                use_right = 1;
        } else {
                use_left = (voiceidx & 1) == 0;
                use_right = !use_left;
        }
        if (has_pcm_volume) {
                vol_left = cpu_to_le32(ypcm->chip->pcm_mixer
                                       [ypcm->substream->number].left << 15);
                vol_right = cpu_to_le32(ypcm->chip->pcm_mixer
                                        [ypcm->substream->number].right << 15);
        } else {
                vol_left = cpu_to_le32(0x40000000);
                vol_right = cpu_to_le32(0x40000000);
        }
        spin_lock_irqsave(&ypcm->chip->voice_lock, flags);
        format = runtime->channels == 2 ? 0x00010000 : 0;
        if (snd_pcm_format_width(runtime->format) == 8)
                format |= 0x80000000;
        else if (ypcm->chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
                 runtime->rate == 44100 && runtime->channels == 2 &&
                 voiceidx == 0 && (ypcm->chip->src441_used == -1 ||
                                   ypcm->chip->src441_used == voice->number)) {
                ypcm->chip->src441_used = voice->number;
                ypcm->use_441_slot = 1;
                format |= 0x10000000;
        }
        if (ypcm->chip->src441_used == voice->number &&
            (format & 0x10000000) == 0) {
                ypcm->chip->src441_used = -1;
                ypcm->use_441_slot = 0;
        }
        if (runtime->channels == 2 && (voiceidx & 1) != 0)
                format |= 1;
        spin_unlock_irqrestore(&ypcm->chip->voice_lock, flags);
        for (nbank = 0; nbank < 2; nbank++) {
                bank = &voice->bank[nbank];
                memset(bank, 0, sizeof(*bank));
                bank->format = cpu_to_le32(format);
                bank->base = cpu_to_le32(runtime->dma_addr);
                bank->loop_end = cpu_to_le32(ypcm->buffer_size);
                bank->lpfQ = cpu_to_le32(lpfQ);
                bank->delta =
                bank->delta_end = cpu_to_le32(delta);
                bank->lpfK =
                bank->lpfK_end = cpu_to_le32(lpfK);
                bank->eg_gain =
                bank->eg_gain_end = cpu_to_le32(0x40000000);

                if (ypcm->output_front) {
                        if (use_left) {
                                bank->left_gain =
                                bank->left_gain_end = vol_left;
                        }
                        if (use_right) {
                                bank->right_gain =
                                bank->right_gain_end = vol_right;
                        }
                }
                if (ypcm->output_rear) {
                        if (!ypcm->swap_rear) {
                                if (use_left) {
                                        bank->eff2_gain =
                                        bank->eff2_gain_end = vol_left;
                                }
                                if (use_right) {
                                        bank->eff3_gain =
                                        bank->eff3_gain_end = vol_right;
                                }
                        } else {
                                /* The SPDIF out channels seem to be swapped, so we have
                                 * to swap them here, too.  The rear analog out channels
                                 * will be wrong, but otherwise AC3 would not work.
                                 */
                                if (use_left) {
                                        bank->eff3_gain =
                                        bank->eff3_gain_end = vol_left;
                                }
                                if (use_right) {
                                        bank->eff2_gain =
                                        bank->eff2_gain_end = vol_right;
                                }
                        }
                }
        }
}

static int __devinit snd_ymfpci_ac3_init(struct snd_ymfpci *chip)
{
        if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
                                4096, &chip->ac3_tmp_base) < 0)
                return -ENOMEM;

        chip->bank_effect[3][0]->base =
        chip->bank_effect[3][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr);
        chip->bank_effect[3][0]->loop_end =
        chip->bank_effect[3][1]->loop_end = cpu_to_le32(1024);
        chip->bank_effect[4][0]->base =
        chip->bank_effect[4][1]->base = cpu_to_le32(chip->ac3_tmp_base.addr + 2048);
        chip->bank_effect[4][0]->loop_end =
        chip->bank_effect[4][1]->loop_end = cpu_to_le32(1024);

        spin_lock_irq(&chip->reg_lock);
        snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
                          snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) | 3 << 3);
        spin_unlock_irq(&chip->reg_lock);
        return 0;
}

static int snd_ymfpci_ac3_done(struct snd_ymfpci *chip)
{
        spin_lock_irq(&chip->reg_lock);
        snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT,
                          snd_ymfpci_readl(chip, YDSXGR_MAPOFEFFECT) & ~(3 << 3));
        spin_unlock_irq(&chip->reg_lock);
        // snd_ymfpci_irq_wait(chip);
        if (chip->ac3_tmp_base.area) {
                snd_dma_free_pages(&chip->ac3_tmp_base);
                chip->ac3_tmp_base.area = NULL;
        }
        return 0;
}

static int snd_ymfpci_playback_hw_params(struct snd_pcm_substream *substream,
                                         struct snd_pcm_hw_params *hw_params)
{
        struct snd_pcm_runtime *runtime = substream->runtime;
        struct snd_ymfpci_pcm *ypcm = runtime->private_data;
        int err;

        if ((err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params))) < 0)
                return err;
        if ((err = snd_ymfpci_pcm_voice_alloc(ypcm, params_channels(hw_params))) < 0)
                return err;
        return 0;
}

static int snd_ymfpci_playback_hw_free(struct snd_pcm_substream *substream)
{
        struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;
        struct snd_ymfpci_pcm *ypcm;
        
        if (runtime->private_data == NULL)
                return 0;
        ypcm = runtime->private_data;

        /* wait, until the PCI operations are not finished */
        snd_ymfpci_irq_wait(chip);
        snd_pcm_lib_free_pages(substream);
        if (ypcm->voices[1]) {
                snd_ymfpci_voice_free(chip, ypcm->voices[1]);
                ypcm->voices[1] = NULL;
        }
        if (ypcm->voices[0]) {
                snd_ymfpci_voice_free(chip, ypcm->voices[0]);
                ypcm->voices[0] = NULL;
        }
        return 0;
}

static int snd_ymfpci_playback_prepare(struct snd_pcm_substream *substream)
{
        struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;
        struct snd_ymfpci_pcm *ypcm = runtime->private_data;
        struct snd_kcontrol *kctl;
        unsigned int nvoice;

        ypcm->period_size = runtime->period_size;
        ypcm->buffer_size = runtime->buffer_size;
        ypcm->period_pos = 0;
        ypcm->last_pos = 0;
        for (nvoice = 0; nvoice < runtime->channels; nvoice++)
                snd_ymfpci_pcm_init_voice(ypcm, nvoice, runtime,
                                          substream->pcm == chip->pcm);

        if (substream->pcm == chip->pcm && !ypcm->use_441_slot) {
                kctl = chip->pcm_mixer[substream->number].ctl;
                kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
                snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_INFO, &kctl->id);
        }
        return 0;
}

static int snd_ymfpci_capture_hw_params(struct snd_pcm_substream *substream,
                                        struct snd_pcm_hw_params *hw_params)
{
        return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
}

static int snd_ymfpci_capture_hw_free(struct snd_pcm_substream *substream)
{
        struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);

        /* wait, until the PCI operations are not finished */
        snd_ymfpci_irq_wait(chip);
        return snd_pcm_lib_free_pages(substream);
}

static int snd_ymfpci_capture_prepare(struct snd_pcm_substream *substream)
{
        struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;
        struct snd_ymfpci_pcm *ypcm = runtime->private_data;
        struct snd_ymfpci_capture_bank * bank;
        int nbank;
        u32 rate, format;

        ypcm->period_size = runtime->period_size;
        ypcm->buffer_size = runtime->buffer_size;
        ypcm->period_pos = 0;
        ypcm->last_pos = 0;
        ypcm->shift = 0;
        rate = ((48000 * 4096) / runtime->rate) - 1;
        format = 0;
        if (runtime->channels == 2) {
                format |= 2;
                ypcm->shift++;
        }
        if (snd_pcm_format_width(runtime->format) == 8)
                format |= 1;
        else
                ypcm->shift++;
        switch (ypcm->capture_bank_number) {
        case 0:
                snd_ymfpci_writel(chip, YDSXGR_RECFORMAT, format);
                snd_ymfpci_writel(chip, YDSXGR_RECSLOTSR, rate);
                break;
        case 1:
                snd_ymfpci_writel(chip, YDSXGR_ADCFORMAT, format);
                snd_ymfpci_writel(chip, YDSXGR_ADCSLOTSR, rate);
                break;
        }
        for (nbank = 0; nbank < 2; nbank++) {
                bank = chip->bank_capture[ypcm->capture_bank_number][nbank];
                bank->base = cpu_to_le32(runtime->dma_addr);
                bank->loop_end = cpu_to_le32(ypcm->buffer_size << ypcm->shift);
                bank->start = 0;
                bank->num_of_loops = 0;
        }
        return 0;
}

static snd_pcm_uframes_t snd_ymfpci_playback_pointer(struct snd_pcm_substream *substream)
{
        struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;
        struct snd_ymfpci_pcm *ypcm = runtime->private_data;
        struct snd_ymfpci_voice *voice = ypcm->voices[0];

        if (!(ypcm->running && voice))
                return 0;
        return le32_to_cpu(voice->bank[chip->active_bank].start);
}

static snd_pcm_uframes_t snd_ymfpci_capture_pointer(struct snd_pcm_substream *substream)
{
        struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;
        struct snd_ymfpci_pcm *ypcm = runtime->private_data;

        if (!ypcm->running)
                return 0;
        return le32_to_cpu(chip->bank_capture[ypcm->capture_bank_number][chip->active_bank]->start) >> ypcm->shift;
}

static void snd_ymfpci_irq_wait(struct snd_ymfpci *chip)
{
        wait_queue_t wait;
        int loops = 4;

        while (loops-- > 0) {
                if ((snd_ymfpci_readl(chip, YDSXGR_MODE) & 3) == 0)
                        continue;
                init_waitqueue_entry(&wait, current);
                add_wait_queue(&chip->interrupt_sleep, &wait);
                atomic_inc(&chip->interrupt_sleep_count);
                schedule_timeout_uninterruptible(msecs_to_jiffies(50));
                remove_wait_queue(&chip->interrupt_sleep, &wait);
        }
}

static irqreturn_t snd_ymfpci_interrupt(int irq, void *dev_id)
{
        struct snd_ymfpci *chip = dev_id;
        u32 status, nvoice, mode;
        struct snd_ymfpci_voice *voice;

        status = snd_ymfpci_readl(chip, YDSXGR_STATUS);
        if (status & 0x80000000) {
                chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT) & 1;
                spin_lock(&chip->voice_lock);
                for (nvoice = 0; nvoice < YDSXG_PLAYBACK_VOICES; nvoice++) {
                        voice = &chip->voices[nvoice];
                        if (voice->interrupt)
                                voice->interrupt(chip, voice);
                }
                for (nvoice = 0; nvoice < YDSXG_CAPTURE_VOICES; nvoice++) {
                        if (chip->capture_substream[nvoice])
                                snd_ymfpci_pcm_capture_interrupt(chip->capture_substream[nvoice]);
                }
#if 0
                for (nvoice = 0; nvoice < YDSXG_EFFECT_VOICES; nvoice++) {
                        if (chip->effect_substream[nvoice])
                                snd_ymfpci_pcm_effect_interrupt(chip->effect_substream[nvoice]);
                }
#endif
                spin_unlock(&chip->voice_lock);
                spin_lock(&chip->reg_lock);
                snd_ymfpci_writel(chip, YDSXGR_STATUS, 0x80000000);
                mode = snd_ymfpci_readl(chip, YDSXGR_MODE) | 2;
                snd_ymfpci_writel(chip, YDSXGR_MODE, mode);
                spin_unlock(&chip->reg_lock);

                if (atomic_read(&chip->interrupt_sleep_count)) {
                        atomic_set(&chip->interrupt_sleep_count, 0);
                        wake_up(&chip->interrupt_sleep);
                }
        }

        status = snd_ymfpci_readw(chip, YDSXGR_INTFLAG);
        if (status & 1) {
                if (chip->timer)
                        snd_timer_interrupt(chip->timer, chip->timer->sticks);
        }
        snd_ymfpci_writew(chip, YDSXGR_INTFLAG, status);

        if (chip->rawmidi)
                snd_mpu401_uart_interrupt(irq, chip->rawmidi->private_data);
        return IRQ_HANDLED;
}

static struct snd_pcm_hardware snd_ymfpci_playback =
{
        .info =                 (SNDRV_PCM_INFO_MMAP |
                                 SNDRV_PCM_INFO_MMAP_VALID | 
                                 SNDRV_PCM_INFO_INTERLEAVED |
                                 SNDRV_PCM_INFO_BLOCK_TRANSFER |
                                 SNDRV_PCM_INFO_PAUSE |
                                 SNDRV_PCM_INFO_RESUME),
        .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
        .rates =                SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
        .rate_min =             8000,
        .rate_max =             48000,
        .channels_min =         1,
        .channels_max =         2,
        .buffer_bytes_max =     256 * 1024, /* FIXME: enough? */
        .period_bytes_min =     64,
        .period_bytes_max =     256 * 1024, /* FIXME: enough? */
        .periods_min =          3,
        .periods_max =          1024,
        .fifo_size =            0,
};

static struct snd_pcm_hardware snd_ymfpci_capture =
{
        .info =                 (SNDRV_PCM_INFO_MMAP |
                                 SNDRV_PCM_INFO_MMAP_VALID |
                                 SNDRV_PCM_INFO_INTERLEAVED |
                                 SNDRV_PCM_INFO_BLOCK_TRANSFER |
                                 SNDRV_PCM_INFO_PAUSE |
                                 SNDRV_PCM_INFO_RESUME),
        .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
        .rates =                SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
        .rate_min =             8000,
        .rate_max =             48000,
        .channels_min =         1,
        .channels_max =         2,
        .buffer_bytes_max =     256 * 1024, /* FIXME: enough? */
        .period_bytes_min =     64,
        .period_bytes_max =     256 * 1024, /* FIXME: enough? */
        .periods_min =          3,
        .periods_max =          1024,
        .fifo_size =            0,
};

static void snd_ymfpci_pcm_free_substream(struct snd_pcm_runtime *runtime)
{
        kfree(runtime->private_data);
}

static int snd_ymfpci_playback_open_1(struct snd_pcm_substream *substream)
{
        struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;
        struct snd_ymfpci_pcm *ypcm;

        ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
        if (ypcm == NULL)
                return -ENOMEM;
        ypcm->chip = chip;
        ypcm->type = PLAYBACK_VOICE;
        ypcm->substream = substream;
        runtime->hw = snd_ymfpci_playback;
        runtime->private_data = ypcm;
        runtime->private_free = snd_ymfpci_pcm_free_substream;
        /* FIXME? True value is 256/48 = 5.33333 ms */
        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5333, UINT_MAX);
        return 0;
}

/* call with spinlock held */
static void ymfpci_open_extension(struct snd_ymfpci *chip)
{
        if (! chip->rear_opened) {
                if (! chip->spdif_opened) /* set AC3 */
                        snd_ymfpci_writel(chip, YDSXGR_MODE,
                                          snd_ymfpci_readl(chip, YDSXGR_MODE) | (1 << 30));
                /* enable second codec (4CHEN) */
                snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
                                  (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) | 0x0010);
        }
}

/* call with spinlock held */
static void ymfpci_close_extension(struct snd_ymfpci *chip)
{
        if (! chip->rear_opened) {
                if (! chip->spdif_opened)
                        snd_ymfpci_writel(chip, YDSXGR_MODE,
                                          snd_ymfpci_readl(chip, YDSXGR_MODE) & ~(1 << 30));
                snd_ymfpci_writew(chip, YDSXGR_SECCONFIG,
                                  (snd_ymfpci_readw(chip, YDSXGR_SECCONFIG) & ~0x0330) & ~0x0010);
        }
}

static int snd_ymfpci_playback_open(struct snd_pcm_substream *substream)
{
        struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;
        struct snd_ymfpci_pcm *ypcm;
        int err;
        
        if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
                return err;
        ypcm = runtime->private_data;
        ypcm->output_front = 1;
        ypcm->output_rear = chip->mode_dup4ch ? 1 : 0;
        ypcm->swap_rear = 0;
        spin_lock_irq(&chip->reg_lock);
        if (ypcm->output_rear) {
                ymfpci_open_extension(chip);
                chip->rear_opened++;
        }
        spin_unlock_irq(&chip->reg_lock);
        return 0;
}

static int snd_ymfpci_playback_spdif_open(struct snd_pcm_substream *substream)
{
        struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;
        struct snd_ymfpci_pcm *ypcm;
        int err;
        
        if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
                return err;
        ypcm = runtime->private_data;
        ypcm->output_front = 0;
        ypcm->output_rear = 1;
        ypcm->swap_rear = 1;
        spin_lock_irq(&chip->reg_lock);
        snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
                          snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) | 2);
        ymfpci_open_extension(chip);
        chip->spdif_pcm_bits = chip->spdif_bits;
        snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
        chip->spdif_opened++;
        spin_unlock_irq(&chip->reg_lock);

        chip->spdif_pcm_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
        snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
                       SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
        return 0;
}

static int snd_ymfpci_playback_4ch_open(struct snd_pcm_substream *substream)
{
        struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;
        struct snd_ymfpci_pcm *ypcm;
        int err;
        
        if ((err = snd_ymfpci_playback_open_1(substream)) < 0)
                return err;
        ypcm = runtime->private_data;
        ypcm->output_front = 0;
        ypcm->output_rear = 1;
        ypcm->swap_rear = 0;
        spin_lock_irq(&chip->reg_lock);
        ymfpci_open_extension(chip);
        chip->rear_opened++;
        spin_unlock_irq(&chip->reg_lock);
        return 0;
}

static int snd_ymfpci_capture_open(struct snd_pcm_substream *substream,
                                   u32 capture_bank_number)
{
        struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;
        struct snd_ymfpci_pcm *ypcm;

        ypcm = kzalloc(sizeof(*ypcm), GFP_KERNEL);
        if (ypcm == NULL)
                return -ENOMEM;
        ypcm->chip = chip;
        ypcm->type = capture_bank_number + CAPTURE_REC;
        ypcm->substream = substream;    
        ypcm->capture_bank_number = capture_bank_number;
        chip->capture_substream[capture_bank_number] = substream;
        runtime->hw = snd_ymfpci_capture;
        /* FIXME? True value is 256/48 = 5.33333 ms */
        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_TIME, 5333, UINT_MAX);
        runtime->private_data = ypcm;
        runtime->private_free = snd_ymfpci_pcm_free_substream;
        snd_ymfpci_hw_start(chip);
        return 0;
}

static int snd_ymfpci_capture_rec_open(struct snd_pcm_substream *substream)
{
        return snd_ymfpci_capture_open(substream, 0);
}

static int snd_ymfpci_capture_ac97_open(struct snd_pcm_substream *substream)
{
        return snd_ymfpci_capture_open(substream, 1);
}

static int snd_ymfpci_playback_close_1(struct snd_pcm_substream *substream)
{
        return 0;
}

static int snd_ymfpci_playback_close(struct snd_pcm_substream *substream)
{
        struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
        struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;

        spin_lock_irq(&chip->reg_lock);
        if (ypcm->output_rear && chip->rear_opened > 0) {
                chip->rear_opened--;
                ymfpci_close_extension(chip);
        }
        spin_unlock_irq(&chip->reg_lock);
        return snd_ymfpci_playback_close_1(substream);
}

static int snd_ymfpci_playback_spdif_close(struct snd_pcm_substream *substream)
{
        struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);

        spin_lock_irq(&chip->reg_lock);
        chip->spdif_opened = 0;
        ymfpci_close_extension(chip);
        snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL,
                          snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & ~2);
        snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
        spin_unlock_irq(&chip->reg_lock);
        chip->spdif_pcm_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
        snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE |
                       SNDRV_CTL_EVENT_MASK_INFO, &chip->spdif_pcm_ctl->id);
        return snd_ymfpci_playback_close_1(substream);
}

static int snd_ymfpci_playback_4ch_close(struct snd_pcm_substream *substream)
{
        struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);

        spin_lock_irq(&chip->reg_lock);
        if (chip->rear_opened > 0) {
                chip->rear_opened--;
                ymfpci_close_extension(chip);
        }
        spin_unlock_irq(&chip->reg_lock);
        return snd_ymfpci_playback_close_1(substream);
}

static int snd_ymfpci_capture_close(struct snd_pcm_substream *substream)
{
        struct snd_ymfpci *chip = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;
        struct snd_ymfpci_pcm *ypcm = runtime->private_data;

        if (ypcm != NULL) {
                chip->capture_substream[ypcm->capture_bank_number] = NULL;
                snd_ymfpci_hw_stop(chip);
        }
        return 0;
}

static struct snd_pcm_ops snd_ymfpci_playback_ops = {
        .open =                 snd_ymfpci_playback_open,
        .close =                snd_ymfpci_playback_close,
        .ioctl =                snd_pcm_lib_ioctl,
        .hw_params =            snd_ymfpci_playback_hw_params,
        .hw_free =              snd_ymfpci_playback_hw_free,
        .prepare =              snd_ymfpci_playback_prepare,
        .trigger =              snd_ymfpci_playback_trigger,
        .pointer =              snd_ymfpci_playback_pointer,
};

static struct snd_pcm_ops snd_ymfpci_capture_rec_ops = {
        .open =                 snd_ymfpci_capture_rec_open,
        .close =                snd_ymfpci_capture_close,
        .ioctl =                snd_pcm_lib_ioctl,
        .hw_params =            snd_ymfpci_capture_hw_params,
        .hw_free =              snd_ymfpci_capture_hw_free,
        .prepare =              snd_ymfpci_capture_prepare,
        .trigger =              snd_ymfpci_capture_trigger,
        .pointer =              snd_ymfpci_capture_pointer,
};

int __devinit snd_ymfpci_pcm(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
{
        struct snd_pcm *pcm;
        int err;

        if (rpcm)
                *rpcm = NULL;
        if ((err = snd_pcm_new(chip->card, "YMFPCI", device, 32, 1, &pcm)) < 0)
                return err;
        pcm->private_data = chip;

        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_ops);
        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_rec_ops);

        /* global setup */
        pcm->info_flags = 0;
        strcpy(pcm->name, "YMFPCI");
        chip->pcm = pcm;

        snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
                                              snd_dma_pci_data(chip->pci), 64*1024, 256*1024);

        if (rpcm)
                *rpcm = pcm;
        return 0;
}

static struct snd_pcm_ops snd_ymfpci_capture_ac97_ops = {
        .open =                 snd_ymfpci_capture_ac97_open,
        .close =                snd_ymfpci_capture_close,
        .ioctl =                snd_pcm_lib_ioctl,
        .hw_params =            snd_ymfpci_capture_hw_params,
        .hw_free =              snd_ymfpci_capture_hw_free,
        .prepare =              snd_ymfpci_capture_prepare,
        .trigger =              snd_ymfpci_capture_trigger,
        .pointer =              snd_ymfpci_capture_pointer,
};

int __devinit snd_ymfpci_pcm2(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
{
        struct snd_pcm *pcm;
        int err;

        if (rpcm)
                *rpcm = NULL;
        if ((err = snd_pcm_new(chip->card, "YMFPCI - PCM2", device, 0, 1, &pcm)) < 0)
                return err;
        pcm->private_data = chip;

        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_ymfpci_capture_ac97_ops);

        /* global setup */
        pcm->info_flags = 0;
        sprintf(pcm->name, "YMFPCI - %s",
                chip->device_id == PCI_DEVICE_ID_YAMAHA_754 ? "Direct Recording" : "AC'97");
        chip->pcm2 = pcm;

        snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
                                              snd_dma_pci_data(chip->pci), 64*1024, 256*1024);

        if (rpcm)
                *rpcm = pcm;
        return 0;
}

static struct snd_pcm_ops snd_ymfpci_playback_spdif_ops = {
        .open =                 snd_ymfpci_playback_spdif_open,
        .close =                snd_ymfpci_playback_spdif_close,
        .ioctl =                snd_pcm_lib_ioctl,
        .hw_params =            snd_ymfpci_playback_hw_params,
        .hw_free =              snd_ymfpci_playback_hw_free,
        .prepare =              snd_ymfpci_playback_prepare,
        .trigger =              snd_ymfpci_playback_trigger,
        .pointer =              snd_ymfpci_playback_pointer,
};

int __devinit snd_ymfpci_pcm_spdif(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
{
        struct snd_pcm *pcm;
        int err;

        if (rpcm)
                *rpcm = NULL;
        if ((err = snd_pcm_new(chip->card, "YMFPCI - IEC958", device, 1, 0, &pcm)) < 0)
                return err;
        pcm->private_data = chip;

        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_spdif_ops);

        /* global setup */
        pcm->info_flags = 0;
        strcpy(pcm->name, "YMFPCI - IEC958");
        chip->pcm_spdif = pcm;

        snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
                                              snd_dma_pci_data(chip->pci), 64*1024, 256*1024);

        if (rpcm)
                *rpcm = pcm;
        return 0;
}

static struct snd_pcm_ops snd_ymfpci_playback_4ch_ops = {
        .open =                 snd_ymfpci_playback_4ch_open,
        .close =                snd_ymfpci_playback_4ch_close,
        .ioctl =                snd_pcm_lib_ioctl,
        .hw_params =            snd_ymfpci_playback_hw_params,
        .hw_free =              snd_ymfpci_playback_hw_free,
        .prepare =              snd_ymfpci_playback_prepare,
        .trigger =              snd_ymfpci_playback_trigger,
        .pointer =              snd_ymfpci_playback_pointer,
};

int __devinit snd_ymfpci_pcm_4ch(struct snd_ymfpci *chip, int device, struct snd_pcm ** rpcm)
{
        struct snd_pcm *pcm;
        int err;

        if (rpcm)
                *rpcm = NULL;
        if ((err = snd_pcm_new(chip->card, "YMFPCI - Rear", device, 1, 0, &pcm)) < 0)
                return err;
        pcm->private_data = chip;

        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_ymfpci_playback_4ch_ops);

        /* global setup */
        pcm->info_flags = 0;
        strcpy(pcm->name, "YMFPCI - Rear PCM");
        chip->pcm_4ch = pcm;

        snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
                                              snd_dma_pci_data(chip->pci), 64*1024, 256*1024);

        if (rpcm)
                *rpcm = pcm;
        return 0;
}

static int snd_ymfpci_spdif_default_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
        uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
        uinfo->count = 1;
        return 0;
}

static int snd_ymfpci_spdif_default_get(struct snd_kcontrol *kcontrol,
                                        struct snd_ctl_elem_value *ucontrol)
{
        struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);

        spin_lock_irq(&chip->reg_lock);
        ucontrol->value.iec958.status[0] = (chip->spdif_bits >> 0) & 0xff;
        ucontrol->value.iec958.status[1] = (chip->spdif_bits >> 8) & 0xff;
        ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
        spin_unlock_irq(&chip->reg_lock);
        return 0;
}

static int snd_ymfpci_spdif_default_put(struct snd_kcontrol *kcontrol,
                                         struct snd_ctl_elem_value *ucontrol)
{
        struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
        unsigned int val;
        int change;

        val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
              (ucontrol->value.iec958.status[1] << 8);
        spin_lock_irq(&chip->reg_lock);
        change = chip->spdif_bits != val;
        chip->spdif_bits = val;
        if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 1) && chip->pcm_spdif == NULL)
                snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);
        spin_unlock_irq(&chip->reg_lock);
        return change;
}

static struct snd_kcontrol_new snd_ymfpci_spdif_default __devinitdata =
{
        .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
        .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
        .info =         snd_ymfpci_spdif_default_info,
        .get =          snd_ymfpci_spdif_default_get,
        .put =          snd_ymfpci_spdif_default_put
};

static int snd_ymfpci_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
        uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
        uinfo->count = 1;
        return 0;
}

static int snd_ymfpci_spdif_mask_get(struct snd_kcontrol *kcontrol,
                                      struct snd_ctl_elem_value *ucontrol)
{
        struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);

        spin_lock_irq(&chip->reg_lock);
        ucontrol->value.iec958.status[0] = 0x3e;
        ucontrol->value.iec958.status[1] = 0xff;
        spin_unlock_irq(&chip->reg_lock);
        return 0;
}

static struct snd_kcontrol_new snd_ymfpci_spdif_mask __devinitdata =
{
        .access =       SNDRV_CTL_ELEM_ACCESS_READ,
        .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
        .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
        .info =         snd_ymfpci_spdif_mask_info,
        .get =          snd_ymfpci_spdif_mask_get,
};

static int snd_ymfpci_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
        uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
        uinfo->count = 1;
        return 0;
}

static int snd_ymfpci_spdif_stream_get(struct snd_kcontrol *kcontrol,
                                        struct snd_ctl_elem_value *ucontrol)
{
        struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);

        spin_lock_irq(&chip->reg_lock);
        ucontrol->value.iec958.status[0] = (chip->spdif_pcm_bits >> 0) & 0xff;
        ucontrol->value.iec958.status[1] = (chip->spdif_pcm_bits >> 8) & 0xff;
        ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000;
        spin_unlock_irq(&chip->reg_lock);
        return 0;
}

static int snd_ymfpci_spdif_stream_put(struct snd_kcontrol *kcontrol,
                                        struct snd_ctl_elem_value *ucontrol)
{
        struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
        unsigned int val;
        int change;

        val = ((ucontrol->value.iec958.status[0] & 0x3e) << 0) |
              (ucontrol->value.iec958.status[1] << 8);
        spin_lock_irq(&chip->reg_lock);
        change = chip->spdif_pcm_bits != val;
        chip->spdif_pcm_bits = val;
        if ((snd_ymfpci_readw(chip, YDSXGR_SPDIFOUTCTRL) & 2))
                snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_pcm_bits);
        spin_unlock_irq(&chip->reg_lock);
        return change;
}

static struct snd_kcontrol_new snd_ymfpci_spdif_stream __devinitdata =
{
        .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
        .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
        .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
        .info =         snd_ymfpci_spdif_stream_info,
        .get =          snd_ymfpci_spdif_stream_get,
        .put =          snd_ymfpci_spdif_stream_put
};

static int snd_ymfpci_drec_source_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info)
{
        static char *texts[3] = {"AC'97", "IEC958", "ZV Port"};

        info->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
        info->count = 1;
        info->value.enumerated.items = 3;
        if (info->value.enumerated.item > 2)
                info->value.enumerated.item = 2;
        strcpy(info->value.enumerated.name, texts[info->value.enumerated.item]);
        return 0;
}

static int snd_ymfpci_drec_source_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
{
        struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
        u16 reg;

        spin_lock_irq(&chip->reg_lock);
        reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
        spin_unlock_irq(&chip->reg_lock);
        if (!(reg & 0x100))
                value->value.enumerated.item[0] = 0;
        else
                value->value.enumerated.item[0] = 1 + ((reg & 0x200) != 0);
        return 0;
}

static int snd_ymfpci_drec_source_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value)
{
        struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
        u16 reg, old_reg;

        spin_lock_irq(&chip->reg_lock);
        old_reg = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
        if (value->value.enumerated.item[0] == 0)
                reg = old_reg & ~0x100;
        else
                reg = (old_reg & ~0x300) | 0x100 | ((value->value.enumerated.item[0] == 2) << 9);
        snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, reg);
        spin_unlock_irq(&chip->reg_lock);
        return reg != old_reg;
}

static struct snd_kcontrol_new snd_ymfpci_drec_source __devinitdata = {
        .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE,
        .iface =        SNDRV_CTL_ELEM_IFACE_MIXER,
        .name =         "Direct Recording Source",
        .info =         snd_ymfpci_drec_source_info,
        .get =          snd_ymfpci_drec_source_get,
        .put =          snd_ymfpci_drec_source_put
};

/*
 *  Mixer controls
 */

#define YMFPCI_SINGLE(xname, xindex, reg, shift) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
  .info = snd_ymfpci_info_single, \
  .get = snd_ymfpci_get_single, .put = snd_ymfpci_put_single, \
  .private_value = ((reg) | ((shift) << 16)) }

#define snd_ymfpci_info_single          snd_ctl_boolean_mono_info

static int snd_ymfpci_get_single(struct snd_kcontrol *kcontrol,
                                 struct snd_ctl_elem_value *ucontrol)
{
        struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
        int reg = kcontrol->private_value & 0xffff;
        unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
        unsigned int mask = 1;
        
        switch (reg) {
        case YDSXGR_SPDIFOUTCTRL: break;
        case YDSXGR_SPDIFINCTRL: break;
        default: return -EINVAL;
        }
        ucontrol->value.integer.value[0] =
                (snd_ymfpci_readl(chip, reg) >> shift) & mask;
        return 0;
}

static int snd_ymfpci_put_single(struct snd_kcontrol *kcontrol,
                                 struct snd_ctl_elem_value *ucontrol)
{
        struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
        int reg = kcontrol->private_value & 0xffff;
        unsigned int shift = (kcontrol->private_value >> 16) & 0xff;
        unsigned int mask = 1;
        int change;
        unsigned int val, oval;
        
        switch (reg) {
        case YDSXGR_SPDIFOUTCTRL: break;
        case YDSXGR_SPDIFINCTRL: break;
        default: return -EINVAL;
        }
        val = (ucontrol->value.integer.value[0] & mask);
        val <<= shift;
        spin_lock_irq(&chip->reg_lock);
        oval = snd_ymfpci_readl(chip, reg);
        val = (oval & ~(mask << shift)) | val;
        change = val != oval;
        snd_ymfpci_writel(chip, reg, val);
        spin_unlock_irq(&chip->reg_lock);
        return change;
}

static const DECLARE_TLV_DB_LINEAR(db_scale_native, TLV_DB_GAIN_MUTE, 0);

#define YMFPCI_DOUBLE(xname, xindex, reg) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .index = xindex, \
  .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
  .info = snd_ymfpci_info_double, \
  .get = snd_ymfpci_get_double, .put = snd_ymfpci_put_double, \
  .private_value = reg, \
  .tlv = { .p = db_scale_native } }

static int snd_ymfpci_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
        unsigned int reg = kcontrol->private_value;

        if (reg < 0x80 || reg >= 0xc0)
                return -EINVAL;
        uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
        uinfo->count = 2;
        uinfo->value.integer.min = 0;
        uinfo->value.integer.max = 16383;
        return 0;
}

static int snd_ymfpci_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
        struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
        unsigned int reg = kcontrol->private_value;
        unsigned int shift_left = 0, shift_right = 16, mask = 16383;
        unsigned int val;
        
        if (reg < 0x80 || reg >= 0xc0)
                return -EINVAL;
        spin_lock_irq(&chip->reg_lock);
        val = snd_ymfpci_readl(chip, reg);
        spin_unlock_irq(&chip->reg_lock);
        ucontrol->value.integer.value[0] = (val >> shift_left) & mask;
        ucontrol->value.integer.value[1] = (val >> shift_right) & mask;
        return 0;
}

static int snd_ymfpci_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
        struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
        unsigned int reg = kcontrol->private_value;
        unsigned int shift_left = 0, shift_right = 16, mask = 16383;
        int change;
        unsigned int val1, val2, oval;
        
        if (reg < 0x80 || reg >= 0xc0)
                return -EINVAL;
        val1 = ucontrol->value.integer.value[0] & mask;
        val2 = ucontrol->value.integer.value[1] & mask;
        val1 <<= shift_left;
        val2 <<= shift_right;
        spin_lock_irq(&chip->reg_lock);
        oval = snd_ymfpci_readl(chip, reg);
        val1 = (oval & ~((mask << shift_left) | (mask << shift_right))) | val1 | val2;
        change = val1 != oval;
        snd_ymfpci_writel(chip, reg, val1);
        spin_unlock_irq(&chip->reg_lock);
        return change;
}

static int snd_ymfpci_put_nativedacvol(struct snd_kcontrol *kcontrol,
                                       struct snd_ctl_elem_value *ucontrol)
{
        struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
        unsigned int reg = YDSXGR_NATIVEDACOUTVOL;
        unsigned int reg2 = YDSXGR_BUF441OUTVOL;
        int change;
        unsigned int value, oval;
        
        value = ucontrol->value.integer.value[0] & 0x3fff;
        value |= (ucontrol->value.integer.value[1] & 0x3fff) << 16;
        spin_lock_irq(&chip->reg_lock);
        oval = snd_ymfpci_readl(chip, reg);
        change = value != oval;
        snd_ymfpci_writel(chip, reg, value);
        snd_ymfpci_writel(chip, reg2, value);
        spin_unlock_irq(&chip->reg_lock);
        return change;
}

/*
 * 4ch duplication
 */
#define snd_ymfpci_info_dup4ch          snd_ctl_boolean_mono_info

static int snd_ymfpci_get_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
        struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
        ucontrol->value.integer.value[0] = chip->mode_dup4ch;
        return 0;
}

static int snd_ymfpci_put_dup4ch(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
        struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
        int change;
        change = (ucontrol->value.integer.value[0] != chip->mode_dup4ch);
        if (change)
                chip->mode_dup4ch = !!ucontrol->value.integer.value[0];
        return change;
}


static struct snd_kcontrol_new snd_ymfpci_controls[] __devinitdata = {
{
        .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
        .name = "Wave Playback Volume",
        .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
                  SNDRV_CTL_ELEM_ACCESS_TLV_READ,
        .info = snd_ymfpci_info_double,
        .get = snd_ymfpci_get_double,
        .put = snd_ymfpci_put_nativedacvol,
        .private_value = YDSXGR_NATIVEDACOUTVOL,
        .tlv = { .p = db_scale_native },
},
YMFPCI_DOUBLE("Wave Capture Volume", 0, YDSXGR_NATIVEDACLOOPVOL),
YMFPCI_DOUBLE("Digital Capture Volume", 0, YDSXGR_NATIVEDACINVOL),
YMFPCI_DOUBLE("Digital Capture Volume", 1, YDSXGR_NATIVEADCINVOL),
YMFPCI_DOUBLE("ADC Playback Volume", 0, YDSXGR_PRIADCOUTVOL),
YMFPCI_DOUBLE("ADC Capture Volume", 0, YDSXGR_PRIADCLOOPVOL),
YMFPCI_DOUBLE("ADC Playback Volume", 1, YDSXGR_SECADCOUTVOL),
YMFPCI_DOUBLE("ADC Capture Volume", 1, YDSXGR_SECADCLOOPVOL),
YMFPCI_DOUBLE("FM Legacy Volume", 0, YDSXGR_LEGACYOUTVOL),
YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ", PLAYBACK,VOLUME), 0, YDSXGR_ZVOUTVOL),
YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("", CAPTURE,VOLUME), 0, YDSXGR_ZVLOOPVOL),
YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("AC97 ",PLAYBACK,VOLUME), 1, YDSXGR_SPDIFOUTVOL),
YMFPCI_DOUBLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,VOLUME), 1, YDSXGR_SPDIFLOOPVOL),
YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), 0, YDSXGR_SPDIFOUTCTRL, 0),
YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), 0, YDSXGR_SPDIFINCTRL, 0),
YMFPCI_SINGLE(SNDRV_CTL_NAME_IEC958("Loop",NONE,NONE), 0, YDSXGR_SPDIFINCTRL, 4),
{
        .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
        .name = "4ch Duplication",
        .info = snd_ymfpci_info_dup4ch,
        .get = snd_ymfpci_get_dup4ch,
        .put = snd_ymfpci_put_dup4ch,
},
};


/*
 * GPIO
 */

static int snd_ymfpci_get_gpio_out(struct snd_ymfpci *chip, int pin)
{
        u16 reg, mode;
        unsigned long flags;

        spin_lock_irqsave(&chip->reg_lock, flags);
        reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
        reg &= ~(1 << (pin + 8));
        reg |= (1 << pin);
        snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
        /* set the level mode for input line */
        mode = snd_ymfpci_readw(chip, YDSXGR_GPIOTYPECONFIG);
        mode &= ~(3 << (pin * 2));
        snd_ymfpci_writew(chip, YDSXGR_GPIOTYPECONFIG, mode);
        snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
        mode = snd_ymfpci_readw(chip, YDSXGR_GPIOINSTATUS);
        spin_unlock_irqrestore(&chip->reg_lock, flags);
        return (mode >> pin) & 1;
}

static int snd_ymfpci_set_gpio_out(struct snd_ymfpci *chip, int pin, int enable)
{
        u16 reg;
        unsigned long flags;

        spin_lock_irqsave(&chip->reg_lock, flags);
        reg = snd_ymfpci_readw(chip, YDSXGR_GPIOFUNCENABLE);
        reg &= ~(1 << pin);
        reg &= ~(1 << (pin + 8));
        snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg);
        snd_ymfpci_writew(chip, YDSXGR_GPIOOUTCTRL, enable << pin);
        snd_ymfpci_writew(chip, YDSXGR_GPIOFUNCENABLE, reg | (1 << (pin + 8)));
        spin_unlock_irqrestore(&chip->reg_lock, flags);

        return 0;
}

#define snd_ymfpci_gpio_sw_info         snd_ctl_boolean_mono_info

static int snd_ymfpci_gpio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
        struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
        int pin = (int)kcontrol->private_value;
        ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
        return 0;
}

static int snd_ymfpci_gpio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
        struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
        int pin = (int)kcontrol->private_value;

        if (snd_ymfpci_get_gpio_out(chip, pin) != ucontrol->value.integer.value[0]) {
                snd_ymfpci_set_gpio_out(chip, pin, !!ucontrol->value.integer.value[0]);
                ucontrol->value.integer.value[0] = snd_ymfpci_get_gpio_out(chip, pin);
                return 1;
        }
        return 0;
}

static struct snd_kcontrol_new snd_ymfpci_rear_shared __devinitdata = {
        .name = "Shared Rear/Line-In Switch",
        .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
        .info = snd_ymfpci_gpio_sw_info,
        .get = snd_ymfpci_gpio_sw_get,
        .put = snd_ymfpci_gpio_sw_put,
        .private_value = 2,
};

/*
 * PCM voice volume
 */

static int snd_ymfpci_pcm_vol_info(struct snd_kcontrol *kcontrol,
                                   struct snd_ctl_elem_info *uinfo)
{
        uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
        uinfo->count = 2;
        uinfo->value.integer.min = 0;
        uinfo->value.integer.max = 0x8000;
        return 0;
}

static int snd_ymfpci_pcm_vol_get(struct snd_kcontrol *kcontrol,
                                  struct snd_ctl_elem_value *ucontrol)
{
        struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
        unsigned int subs = kcontrol->id.subdevice;

        ucontrol->value.integer.value[0] = chip->pcm_mixer[subs].left;
        ucontrol->value.integer.value[1] = chip->pcm_mixer[subs].right;
        return 0;
}

static int snd_ymfpci_pcm_vol_put(struct snd_kcontrol *kcontrol,
                                  struct snd_ctl_elem_value *ucontrol)
{
        struct snd_ymfpci *chip = snd_kcontrol_chip(kcontrol);
        unsigned int subs = kcontrol->id.subdevice;
        struct snd_pcm_substream *substream;
        unsigned long flags;

        if (ucontrol->value.integer.value[0] != chip->pcm_mixer[subs].left ||
            ucontrol->value.integer.value[1] != chip->pcm_mixer[subs].right) {
                chip->pcm_mixer[subs].left = ucontrol->value.integer.value[0];
                chip->pcm_mixer[subs].right = ucontrol->value.integer.value[1];
                if (chip->pcm_mixer[subs].left > 0x8000)
                        chip->pcm_mixer[subs].left = 0x8000;
                if (chip->pcm_mixer[subs].right > 0x8000)
                        chip->pcm_mixer[subs].right = 0x8000;

                substream = (struct snd_pcm_substream *)kcontrol->private_value;
                spin_lock_irqsave(&chip->voice_lock, flags);
                if (substream->runtime && substream->runtime->private_data) {
                        struct snd_ymfpci_pcm *ypcm = substream->runtime->private_data;
                        if (!ypcm->use_441_slot)
                                ypcm->update_pcm_vol = 2;
                }
                spin_unlock_irqrestore(&chip->voice_lock, flags);
                return 1;
        }
        return 0;
}

static struct snd_kcontrol_new snd_ymfpci_pcm_volume __devinitdata = {
        .iface = SNDRV_CTL_ELEM_IFACE_PCM,
        .name = "PCM Playback Volume",
        .access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
                SNDRV_CTL_ELEM_ACCESS_INACTIVE,
        .info = snd_ymfpci_pcm_vol_info,
        .get = snd_ymfpci_pcm_vol_get,
        .put = snd_ymfpci_pcm_vol_put,
};


/*
 *  Mixer routines
 */

static void snd_ymfpci_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
{
        struct snd_ymfpci *chip = bus->private_data;
        chip->ac97_bus = NULL;
}

static void snd_ymfpci_mixer_free_ac97(struct snd_ac97 *ac97)
{
        struct snd_ymfpci *chip = ac97->private_data;
        chip->ac97 = NULL;
}

int __devinit snd_ymfpci_mixer(struct snd_ymfpci *chip, int rear_switch)
{
        struct snd_ac97_template ac97;
        struct snd_kcontrol *kctl;
        struct snd_pcm_substream *substream;
        unsigned int idx;
        int err;
        static struct snd_ac97_bus_ops ops = {
                .write = snd_ymfpci_codec_write,
                .read = snd_ymfpci_codec_read,
        };

        if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
                return err;
        chip->ac97_bus->private_free = snd_ymfpci_mixer_free_ac97_bus;
        chip->ac97_bus->no_vra = 1; /* YMFPCI doesn't need VRA */

        memset(&ac97, 0, sizeof(ac97));
        ac97.private_data = chip;
        ac97.private_free = snd_ymfpci_mixer_free_ac97;
        if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
                return err;

        /* to be sure */
        snd_ac97_update_bits(chip->ac97, AC97_EXTENDED_STATUS,
                             AC97_EA_VRA|AC97_EA_VRM, 0);

        for (idx = 0; idx < ARRAY_SIZE(snd_ymfpci_controls); idx++) {
                if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_controls[idx], chip))) < 0)
                        return err;
        }

        /* add S/PDIF control */
        if (snd_BUG_ON(!chip->pcm_spdif))
                return -ENXIO;
        if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_default, chip))) < 0)
                return err;
        kctl->id.device = chip->pcm_spdif->device;
        if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_mask, chip))) < 0)
                return err;
        kctl->id.device = chip->pcm_spdif->device;
        if ((err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_spdif_stream, chip))) < 0)
                return err;
        kctl->id.device = chip->pcm_spdif->device;
        chip->spdif_pcm_ctl = kctl;

        /* direct recording source */
        if (chip->device_id == PCI_DEVICE_ID_YAMAHA_754 &&
            (err = snd_ctl_add(chip->card, kctl = snd_ctl_new1(&snd_ymfpci_drec_source, chip))) < 0)
                return err;

        /*
         * shared rear/line-in
         */
        if (rear_switch) {
                if ((err = snd_ctl_add(chip->card, snd_ctl_new1(&snd_ymfpci_rear_shared, chip))) < 0)
                        return err;
        }

        /* per-voice volume */
        substream = chip->pcm->streams[SNDRV_PCM_STREAM_PLAYBACK].substream;
        for (idx = 0; idx < 32; ++idx) {
                kctl = snd_ctl_new1(&snd_ymfpci_pcm_volume, chip);
                if (!kctl)
                        return -ENOMEM;
                kctl->id.device = chip->pcm->device;
                kctl->id.subdevice = idx;
                kctl->private_value = (unsigned long)substream;
                if ((err = snd_ctl_add(chip->card, kctl)) < 0)
                        return err;
                chip->pcm_mixer[idx].left = 0x8000;
                chip->pcm_mixer[idx].right = 0x8000;
                chip->pcm_mixer[idx].ctl = kctl;
                substream = substream->next;
        }

        return 0;
}


/*
 * timer
 */

static int snd_ymfpci_timer_start(struct snd_timer *timer)
{
        struct snd_ymfpci *chip;
        unsigned long flags;
        unsigned int count;

        chip = snd_timer_chip(timer);
        count = (timer->sticks << 1) - 1;
        spin_lock_irqsave(&chip->reg_lock, flags);
        snd_ymfpci_writew(chip, YDSXGR_TIMERCOUNT, count);
        snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x03);
        spin_unlock_irqrestore(&chip->reg_lock, flags);
        return 0;
}

static int snd_ymfpci_timer_stop(struct snd_timer *timer)
{
        struct snd_ymfpci *chip;
        unsigned long flags;

        chip = snd_timer_chip(timer);
        spin_lock_irqsave(&chip->reg_lock, flags);
        snd_ymfpci_writeb(chip, YDSXGR_TIMERCTRL, 0x00);
        spin_unlock_irqrestore(&chip->reg_lock, flags);
        return 0;
}

static int snd_ymfpci_timer_precise_resolution(struct snd_timer *timer,
                                               unsigned long *num, unsigned long *den)
{
        *num = 1;
        *den = 48000;
        return 0;
}

static struct snd_timer_hardware snd_ymfpci_timer_hw = {
        .flags = SNDRV_TIMER_HW_AUTO,
        .resolution = 20833, /* 1/fs = 20.8333...us */
        .ticks = 0x8000,
        .start = snd_ymfpci_timer_start,
        .stop = snd_ymfpci_timer_stop,
        .precise_resolution = snd_ymfpci_timer_precise_resolution,
};

int __devinit snd_ymfpci_timer(struct snd_ymfpci *chip, int device)
{
        struct snd_timer *timer = NULL;
        struct snd_timer_id tid;
        int err;

        tid.dev_class = SNDRV_TIMER_CLASS_CARD;
        tid.dev_sclass = SNDRV_TIMER_SCLASS_NONE;
        tid.card = chip->card->number;
        tid.device = device;
        tid.subdevice = 0;
        if ((err = snd_timer_new(chip->card, "YMFPCI", &tid, &timer)) >= 0) {
                strcpy(timer->name, "YMFPCI timer");
                timer->private_data = chip;
                timer->hw = snd_ymfpci_timer_hw;
        }
        chip->timer = timer;
        return err;
}


/*
 *  proc interface
 */

static void snd_ymfpci_proc_read(struct snd_info_entry *entry, 
                                 struct snd_info_buffer *buffer)
{
        struct snd_ymfpci *chip = entry->private_data;
        int i;
        
        snd_iprintf(buffer, "YMFPCI\n\n");
        for (i = 0; i <= YDSXGR_WORKBASE; i += 4)
                snd_iprintf(buffer, "%04x: %04x\n", i, snd_ymfpci_readl(chip, i));
}

static int __devinit snd_ymfpci_proc_init(struct snd_card *card, struct snd_ymfpci *chip)
{
        struct snd_info_entry *entry;
        
        if (! snd_card_proc_new(card, "ymfpci", &entry))
                snd_info_set_text_ops(entry, chip, snd_ymfpci_proc_read);
        return 0;
}

/*
 *  initialization routines
 */

static void snd_ymfpci_aclink_reset(struct pci_dev * pci)
{
        u8 cmd;

        pci_read_config_byte(pci, PCIR_DSXG_CTRL, &cmd);
#if 0 // force to reset
        if (cmd & 0x03) {
#endif
                pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
                pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd | 0x03);
                pci_write_config_byte(pci, PCIR_DSXG_CTRL, cmd & 0xfc);
                pci_write_config_word(pci, PCIR_DSXG_PWRCTRL1, 0);
                pci_write_config_word(pci, PCIR_DSXG_PWRCTRL2, 0);
#if 0
        }
#endif
}

static void snd_ymfpci_enable_dsp(struct snd_ymfpci *chip)
{
        snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000001);
}

static void snd_ymfpci_disable_dsp(struct snd_ymfpci *chip)
{
        u32 val;
        int timeout = 1000;

        val = snd_ymfpci_readl(chip, YDSXGR_CONFIG);
        if (val)
                snd_ymfpci_writel(chip, YDSXGR_CONFIG, 0x00000000);
        while (timeout-- > 0) {
                val = snd_ymfpci_readl(chip, YDSXGR_STATUS);
                if ((val & 0x00000002) == 0)
                        break;
        }
}

static int snd_ymfpci_request_firmware(struct snd_ymfpci *chip)
{
        int err, is_1e;
        const char *name;

        err = request_firmware(&chip->dsp_microcode, "yamaha/ds1_dsp.fw",
                               &chip->pci->dev);
        if (err >= 0) {
                if (chip->dsp_microcode->size != YDSXG_DSPLENGTH) {
                        snd_printk(KERN_ERR "DSP microcode has wrong size\n");
                        err = -EINVAL;
                }
        }
        if (err < 0)
                return err;
        is_1e = chip->device_id == PCI_DEVICE_ID_YAMAHA_724F ||
                chip->device_id == PCI_DEVICE_ID_YAMAHA_740C ||
                chip->device_id == PCI_DEVICE_ID_YAMAHA_744 ||
                chip->device_id == PCI_DEVICE_ID_YAMAHA_754;
        name = is_1e ? "yamaha/ds1e_ctrl.fw" : "yamaha/ds1_ctrl.fw";
        err = request_firmware(&chip->controller_microcode, name,
                               &chip->pci->dev);
        if (err >= 0) {
                if (chip->controller_microcode->size != YDSXG_CTRLLENGTH) {
                        snd_printk(KERN_ERR "controller microcode"
                                   " has wrong size\n");
                        err = -EINVAL;
                }
        }
        if (err < 0)
                return err;
        return 0;
}

MODULE_FIRMWARE("yamaha/ds1_dsp.fw");
MODULE_FIRMWARE("yamaha/ds1_ctrl.fw");
MODULE_FIRMWARE("yamaha/ds1e_ctrl.fw");

static void snd_ymfpci_download_image(struct snd_ymfpci *chip)
{
        int i;
        u16 ctrl;
        const __le32 *inst;

        snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x00000000);
        snd_ymfpci_disable_dsp(chip);
        snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00010000);
        snd_ymfpci_writel(chip, YDSXGR_MODE, 0x00000000);
        snd_ymfpci_writel(chip, YDSXGR_MAPOFREC, 0x00000000);
        snd_ymfpci_writel(chip, YDSXGR_MAPOFEFFECT, 0x00000000);
        snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0x00000000);
        snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0x00000000);
        snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0x00000000);
        ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
        snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);

        /* setup DSP instruction code */
        inst = (const __le32 *)chip->dsp_microcode->data;
        for (i = 0; i < YDSXG_DSPLENGTH / 4; i++)
                snd_ymfpci_writel(chip, YDSXGR_DSPINSTRAM + (i << 2),
                                  le32_to_cpu(inst[i]));

        /* setup control instruction code */
        inst = (const __le32 *)chip->controller_microcode->data;
        for (i = 0; i < YDSXG_CTRLLENGTH / 4; i++)
                snd_ymfpci_writel(chip, YDSXGR_CTRLINSTRAM + (i << 2),
                                  le32_to_cpu(inst[i]));

        snd_ymfpci_enable_dsp(chip);
}

static int __devinit snd_ymfpci_memalloc(struct snd_ymfpci *chip)
{
        long size, playback_ctrl_size;
        int voice, bank, reg;
        u8 *ptr;
        dma_addr_t ptr_addr;

        playback_ctrl_size = 4 + 4 * YDSXG_PLAYBACK_VOICES;
        chip->bank_size_playback = snd_ymfpci_readl(chip, YDSXGR_PLAYCTRLSIZE) << 2;
        chip->bank_size_capture = snd_ymfpci_readl(chip, YDSXGR_RECCTRLSIZE) << 2;
        chip->bank_size_effect = snd_ymfpci_readl(chip, YDSXGR_EFFCTRLSIZE) << 2;
        chip->work_size = YDSXG_DEFAULT_WORK_SIZE;
        
        size = ALIGN(playback_ctrl_size, 0x100) +
               ALIGN(chip->bank_size_playback * 2 * YDSXG_PLAYBACK_VOICES, 0x100) +
               ALIGN(chip->bank_size_capture * 2 * YDSXG_CAPTURE_VOICES, 0x100) +
               ALIGN(chip->bank_size_effect * 2 * YDSXG_EFFECT_VOICES, 0x100) +
               chip->work_size;
        /* work_ptr must be aligned to 256 bytes, but it's already
           covered with the kernel page allocation mechanism */
        if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(chip->pci),
                                size, &chip->work_ptr) < 0) 
                return -ENOMEM;
        ptr = chip->work_ptr.area;
        ptr_addr = chip->work_ptr.addr;
        memset(ptr, 0, size);   /* for sure */

        chip->bank_base_playback = ptr;
        chip->bank_base_playback_addr = ptr_addr;
        chip->ctrl_playback = (u32 *)ptr;
        chip->ctrl_playback[0] = cpu_to_le32(YDSXG_PLAYBACK_VOICES);
        ptr += ALIGN(playback_ctrl_size, 0x100);
        ptr_addr += ALIGN(playback_ctrl_size, 0x100);
        for (voice = 0; voice < YDSXG_PLAYBACK_VOICES; voice++) {
                chip->voices[voice].number = voice;
                chip->voices[voice].bank = (struct snd_ymfpci_playback_bank *)ptr;
                chip->voices[voice].bank_addr = ptr_addr;
                for (bank = 0; bank < 2; bank++) {
                        chip->bank_playback[voice][bank] = (struct snd_ymfpci_playback_bank *)ptr;
                        ptr += chip->bank_size_playback;
                        ptr_addr += chip->bank_size_playback;
                }
        }
        ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
        ptr_addr = ALIGN(ptr_addr, 0x100);
        chip->bank_base_capture = ptr;
        chip->bank_base_capture_addr = ptr_addr;
        for (voice = 0; voice < YDSXG_CAPTURE_VOICES; voice++)
                for (bank = 0; bank < 2; bank++) {
                        chip->bank_capture[voice][bank] = (struct snd_ymfpci_capture_bank *)ptr;
                        ptr += chip->bank_size_capture;
                        ptr_addr += chip->bank_size_capture;
                }
        ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
        ptr_addr = ALIGN(ptr_addr, 0x100);
        chip->bank_base_effect = ptr;
        chip->bank_base_effect_addr = ptr_addr;
        for (voice = 0; voice < YDSXG_EFFECT_VOICES; voice++)
                for (bank = 0; bank < 2; bank++) {
                        chip->bank_effect[voice][bank] = (struct snd_ymfpci_effect_bank *)ptr;
                        ptr += chip->bank_size_effect;
                        ptr_addr += chip->bank_size_effect;
                }
        ptr = (char *)ALIGN((unsigned long)ptr, 0x100);
        ptr_addr = ALIGN(ptr_addr, 0x100);
        chip->work_base = ptr;
        chip->work_base_addr = ptr_addr;
        
        snd_BUG_ON(ptr + chip->work_size !=
                   chip->work_ptr.area + chip->work_ptr.bytes);

        snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, chip->bank_base_playback_addr);
        snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, chip->bank_base_capture_addr);
        snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, chip->bank_base_effect_addr);
        snd_ymfpci_writel(chip, YDSXGR_WORKBASE, chip->work_base_addr);
        snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, chip->work_size >> 2);

        /* S/PDIF output initialization */
        chip->spdif_bits = chip->spdif_pcm_bits = SNDRV_PCM_DEFAULT_CON_SPDIF & 0xffff;
        snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTCTRL, 0);
        snd_ymfpci_writew(chip, YDSXGR_SPDIFOUTSTATUS, chip->spdif_bits);

        /* S/PDIF input initialization */
        snd_ymfpci_writew(chip, YDSXGR_SPDIFINCTRL, 0);

        /* digital mixer setup */
        for (reg = 0x80; reg < 0xc0; reg += 4)
                snd_ymfpci_writel(chip, reg, 0);
        snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0x3fff3fff);
        snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0x3fff3fff);
        snd_ymfpci_writel(chip, YDSXGR_ZVOUTVOL, 0x3fff3fff);
        snd_ymfpci_writel(chip, YDSXGR_SPDIFOUTVOL, 0x3fff3fff);
        snd_ymfpci_writel(chip, YDSXGR_NATIVEADCINVOL, 0x3fff3fff);
        snd_ymfpci_writel(chip, YDSXGR_NATIVEDACINVOL, 0x3fff3fff);
        snd_ymfpci_writel(chip, YDSXGR_PRIADCLOOPVOL, 0x3fff3fff);
        snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0x3fff3fff);
        
        return 0;
}

static int snd_ymfpci_free(struct snd_ymfpci *chip)
{
        u16 ctrl;

        if (snd_BUG_ON(!chip))
                return -EINVAL;

        if (chip->res_reg_area) {       /* don't touch busy hardware */
                snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
                snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
                snd_ymfpci_writel(chip, YDSXGR_LEGACYOUTVOL, 0);
                snd_ymfpci_writel(chip, YDSXGR_STATUS, ~0);
                snd_ymfpci_disable_dsp(chip);
                snd_ymfpci_writel(chip, YDSXGR_PLAYCTRLBASE, 0);
                snd_ymfpci_writel(chip, YDSXGR_RECCTRLBASE, 0);
                snd_ymfpci_writel(chip, YDSXGR_EFFCTRLBASE, 0);
                snd_ymfpci_writel(chip, YDSXGR_WORKBASE, 0);
                snd_ymfpci_writel(chip, YDSXGR_WORKSIZE, 0);
                ctrl = snd_ymfpci_readw(chip, YDSXGR_GLOBALCTRL);
                snd_ymfpci_writew(chip, YDSXGR_GLOBALCTRL, ctrl & ~0x0007);
        }

        snd_ymfpci_ac3_done(chip);

        /* Set PCI device to D3 state */
#if 0
        /* FIXME: temporarily disabled, otherwise we cannot fire up
         * the chip again unless reboot.  ACPI bug?
         */
        pci_set_power_state(chip->pci, 3);
#endif

#ifdef CONFIG_PM
        vfree(chip->saved_regs);
#endif
        if (chip->irq >= 0)
                free_irq(chip->irq, chip);
        release_and_free_resource(chip->mpu_res);
        release_and_free_resource(chip->fm_res);
        snd_ymfpci_free_gameport(chip);
        if (chip->reg_area_virt)
                iounmap(chip->reg_area_virt);
        if (chip->work_ptr.area)
                snd_dma_free_pages(&chip->work_ptr);
        
        release_and_free_resource(chip->res_reg_area);

        pci_write_config_word(chip->pci, 0x40, chip->old_legacy_ctrl);
        
        pci_disable_device(chip->pci);
        release_firmware(chip->dsp_microcode);
        release_firmware(chip->controller_microcode);
        kfree(chip);
        return 0;
}

static int snd_ymfpci_dev_free(struct snd_device *device)
{
        struct snd_ymfpci *chip = device->device_data;
        return snd_ymfpci_free(chip);
}

#ifdef CONFIG_PM
static int saved_regs_index[] = {
        /* spdif */
        YDSXGR_SPDIFOUTCTRL,
        YDSXGR_SPDIFOUTSTATUS,
        YDSXGR_SPDIFINCTRL,
        /* volumes */
        YDSXGR_PRIADCLOOPVOL,
        YDSXGR_NATIVEDACINVOL,
        YDSXGR_NATIVEDACOUTVOL,
        YDSXGR_BUF441OUTVOL,
        YDSXGR_NATIVEADCINVOL,
        YDSXGR_SPDIFLOOPVOL,
        YDSXGR_SPDIFOUTVOL,
        YDSXGR_ZVOUTVOL,
        YDSXGR_LEGACYOUTVOL,
        /* address bases */
        YDSXGR_PLAYCTRLBASE,
        YDSXGR_RECCTRLBASE,
        YDSXGR_EFFCTRLBASE,
        YDSXGR_WORKBASE,
        /* capture set up */
        YDSXGR_MAPOFREC,
        YDSXGR_RECFORMAT,
        YDSXGR_RECSLOTSR,
        YDSXGR_ADCFORMAT,
        YDSXGR_ADCSLOTSR,
};
#define YDSXGR_NUM_SAVED_REGS   ARRAY_SIZE(saved_regs_index)

int snd_ymfpci_suspend(struct pci_dev *pci, pm_message_t state)
{
        struct snd_card *card = pci_get_drvdata(pci);
        struct snd_ymfpci *chip = card->private_data;
        unsigned int i;
        
        snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
        snd_pcm_suspend_all(chip->pcm);
        snd_pcm_suspend_all(chip->pcm2);
        snd_pcm_suspend_all(chip->pcm_spdif);
        snd_pcm_suspend_all(chip->pcm_4ch);
        snd_ac97_suspend(chip->ac97);
        for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
                chip->saved_regs[i] = snd_ymfpci_readl(chip, saved_regs_index[i]);
        chip->saved_ydsxgr_mode = snd_ymfpci_readl(chip, YDSXGR_MODE);
        snd_ymfpci_writel(chip, YDSXGR_NATIVEDACOUTVOL, 0);
        snd_ymfpci_writel(chip, YDSXGR_BUF441OUTVOL, 0);
        snd_ymfpci_disable_dsp(chip);
        pci_disable_device(pci);
        pci_save_state(pci);
        pci_set_power_state(pci, pci_choose_state(pci, state));
        return 0;
}

int snd_ymfpci_resume(struct pci_dev *pci)
{
        struct snd_card *card = pci_get_drvdata(pci);
        struct snd_ymfpci *chip = card->private_data;
        unsigned int i;

        pci_set_power_state(pci, PCI_D0);
        pci_restore_state(pci);
        if (pci_enable_device(pci) < 0) {
                printk(KERN_ERR "ymfpci: pci_enable_device failed, "
                       "disabling device\n");
                snd_card_disconnect(card);
                return -EIO;
        }
        pci_set_master(pci);
        snd_ymfpci_aclink_reset(pci);
        snd_ymfpci_codec_ready(chip, 0);
        snd_ymfpci_download_image(chip);
        udelay(100);

        for (i = 0; i < YDSXGR_NUM_SAVED_REGS; i++)
                snd_ymfpci_writel(chip, saved_regs_index[i], chip->saved_regs[i]);

        snd_ac97_resume(chip->ac97);

        /* start hw again */
        if (chip->start_count > 0) {
                spin_lock_irq(&chip->reg_lock);
                snd_ymfpci_writel(chip, YDSXGR_MODE, chip->saved_ydsxgr_mode);
                chip->active_bank = snd_ymfpci_readl(chip, YDSXGR_CTRLSELECT);
                spin_unlock_irq(&chip->reg_lock);
        }
        snd_power_change_state(card, SNDRV_CTL_POWER_D0);
        return 0;
}
#endif /* CONFIG_PM */

int __devinit snd_ymfpci_create(struct snd_card *card,
                                struct pci_dev * pci,
                                unsigned short old_legacy_ctrl,
                                struct snd_ymfpci ** rchip)
{
        struct snd_ymfpci *chip;
        int err;
        static struct snd_device_ops ops = {
                .dev_free =     snd_ymfpci_dev_free,
        };
        
        *rchip = NULL;

        /* enable PCI device */
        if ((err = pci_enable_device(pci)) < 0)
                return err;

        chip = kzalloc(sizeof(*chip), GFP_KERNEL);
        if (chip == NULL) {
                pci_disable_device(pci);
                return -ENOMEM;
        }
        chip->old_legacy_ctrl = old_legacy_ctrl;
        spin_lock_init(&chip->reg_lock);
        spin_lock_init(&chip->voice_lock);
        init_waitqueue_head(&chip->interrupt_sleep);
        atomic_set(&chip->interrupt_sleep_count, 0);
        chip->card = card;
        chip->pci = pci;
        chip->irq = -1;
        chip->device_id = pci->device;
        chip->rev = pci->revision;
        chip->reg_area_phys = pci_resource_start(pci, 0);
        chip->reg_area_virt = ioremap_nocache(chip->reg_area_phys, 0x8000);
        pci_set_master(pci);
        chip->src441_used = -1;

        if ((chip->res_reg_area = request_mem_region(chip->reg_area_phys, 0x8000, "YMFPCI")) == NULL) {
                snd_printk(KERN_ERR "unable to grab memory region 0x%lx-0x%lx\n", chip->reg_area_phys, chip->reg_area_phys + 0x8000 - 1);
                snd_ymfpci_free(chip);
                return -EBUSY;
        }
        if (request_irq(pci->irq, snd_ymfpci_interrupt, IRQF_SHARED,
                        "YMFPCI", chip)) {
                snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
                snd_ymfpci_free(chip);
                return -EBUSY;
        }
        chip->irq = pci->irq;

        snd_ymfpci_aclink_reset(pci);
        if (snd_ymfpci_codec_ready(chip, 0) < 0) {
                snd_ymfpci_free(chip);
                return -EIO;
        }

        err = snd_ymfpci_request_firmware(chip);
        if (err < 0) {
                snd_printk(KERN_ERR "firmware request failed: %d\n", err);
                snd_ymfpci_free(chip);
                return err;
        }
        snd_ymfpci_download_image(chip);

        udelay(100); /* seems we need a delay after downloading image.. */

        if (snd_ymfpci_memalloc(chip) < 0) {
                snd_ymfpci_free(chip);
                return -EIO;
        }

        if ((err = snd_ymfpci_ac3_init(chip)) < 0) {
                snd_ymfpci_free(chip);
                return err;
        }

#ifdef CONFIG_PM
        chip->saved_regs = vmalloc(YDSXGR_NUM_SAVED_REGS * sizeof(u32));
        if (chip->saved_regs == NULL) {
                snd_ymfpci_free(chip);
                return -ENOMEM;
        }
#endif

        if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
                snd_ymfpci_free(chip);
                return err;
        }

        snd_ymfpci_proc_init(card, chip);

        snd_card_set_dev(card, &pci->dev);

        *rchip = chip;
        return 0;
}

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading