[funini.com] -> [kei@sodan] -> Kernel Reading

root/sound/pci/ac97/ac97_codec.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. snd_ac97_valid_reg
  2. snd_ac97_write
  3. snd_ac97_read
  4. snd_ac97_read_cache
  5. snd_ac97_write_cache
  6. snd_ac97_update
  7. snd_ac97_update_bits
  8. snd_ac97_update_bits_nolock
  9. snd_ac97_ad18xx_update_pcm_bits
  10. snd_ac97_info_enum_double
  11. snd_ac97_get_enum_double
  12. snd_ac97_put_enum_double
  13. snd_ac97_page_save
  14. snd_ac97_page_restore
  15. snd_ac97_info_volsw
  16. snd_ac97_get_volsw
  17. snd_ac97_put_volsw
  18. set_inv_eapd
  19. snd_ac97_spdif_mask_info
  20. snd_ac97_spdif_cmask_get
  21. snd_ac97_spdif_pmask_get
  22. snd_ac97_spdif_default_get
  23. snd_ac97_spdif_default_put
  24. snd_ac97_put_spsa
  25. snd_ac97_ad18xx_pcm_info_bits
  26. snd_ac97_ad18xx_pcm_get_bits
  27. snd_ac97_ad18xx_pcm_put_bits
  28. snd_ac97_ad18xx_pcm_info_volume
  29. snd_ac97_ad18xx_pcm_get_volume
  30. snd_ac97_ad18xx_pcm_put_volume
  31. snd_ac97_bus_free
  32. snd_ac97_bus_dev_free
  33. snd_ac97_free
  34. snd_ac97_dev_free
  35. snd_ac97_try_volume_mix
  36. check_volume_resolution
  37. snd_ac97_try_bit
  38. snd_ac97_change_volume_params2
  39. printable
  40. snd_ac97_cnew
  41. snd_ac97_cmute_new_stereo
  42. find_db_scale
  43. set_tlv_db_scale
  44. snd_ac97_cvol_new
  45. snd_ac97_cmix_new_stereo
  46. snd_ac97_mixer_build
  47. snd_ac97_modem_build
  48. snd_ac97_test_rate
  49. snd_ac97_determine_rates
  50. snd_ac97_determine_spdif_rates
  51. look_for_codec_id
  52. snd_ac97_get_name
  53. snd_ac97_get_short_name
  54. ac97_reset_wait
  55. snd_ac97_bus
  56. ac97_device_release
  57. snd_ac97_dev_register
  58. snd_ac97_dev_disconnect
  59. do_update_power
  60. snd_ac97_mixer
  61. snd_ac97_powerdown
  62. snd_ac97_update_power
  63. update_power_regs
  64. snd_ac97_suspend
  65. snd_ac97_restore_status
  66. snd_ac97_restore_iec958
  67. snd_ac97_resume
  68. set_ctl_name
  69. snd_ac97_remove_ctl
  70. ctl_find
  71. snd_ac97_rename_ctl
  72. snd_ac97_rename_vol_ctl
  73. snd_ac97_swap_ctl
  74. bind_hp_volsw_put
  75. tune_hp_only
  76. tune_hp_only
  77. tune_swap_hp
  78. tune_swap_surround
  79. tune_ad_sharing
  80. tune_alc_jack
  81. tune_inv_eapd
  82. master_mute_sw_put
  83. tune_mute_led
  84. hp_master_mute_sw_put
  85. tune_hp_mute_led
  86. apply_quirk
  87. apply_quirk_str
  88. snd_ac97_tune_hardware
  89. alsa_ac97_init
  90. alsa_ac97_exit

/*
 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
 *  Universal interface for Audio Codec '97
 *
 *  For more details look to AC '97 component specification revision 2.2
 *  by Intel Corporation (http://developer.intel.com).
 *
 *
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 *
 */

#include <linux/delay.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/moduleparam.h>
#include <linux/mutex.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/tlv.h>
#include <sound/ac97_codec.h>
#include <sound/asoundef.h>
#include <sound/initval.h>
#include "ac97_id.h"

#include "ac97_patch.c"

MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>");
MODULE_DESCRIPTION("Universal interface for Audio Codec '97");
MODULE_LICENSE("GPL");

static int enable_loopback;

module_param(enable_loopback, bool, 0444);
MODULE_PARM_DESC(enable_loopback, "Enable AC97 ADC/DAC Loopback Control");

#ifdef CONFIG_SND_AC97_POWER_SAVE
static int power_save = CONFIG_SND_AC97_POWER_SAVE_DEFAULT;
module_param(power_save, int, 0644);
MODULE_PARM_DESC(power_save, "Automatic power-saving timeout "
                 "(in second, 0 = disable).");
#endif
/*

 */

struct ac97_codec_id {
        unsigned int id;
        unsigned int mask;
        const char *name;
        int (*patch)(struct snd_ac97 *ac97);
        int (*mpatch)(struct snd_ac97 *ac97);
        unsigned int flags;
};

static const struct ac97_codec_id snd_ac97_codec_id_vendors[] = {
{ 0x41445300, 0xffffff00, "Analog Devices",     NULL,   NULL },
{ 0x414b4d00, 0xffffff00, "Asahi Kasei",        NULL,   NULL },
{ 0x414c4300, 0xffffff00, "Realtek",            NULL,   NULL },
{ 0x414c4700, 0xffffff00, "Realtek",            NULL,   NULL },
{ 0x434d4900, 0xffffff00, "C-Media Electronics", NULL,  NULL },
{ 0x43525900, 0xffffff00, "Cirrus Logic",       NULL,   NULL },
{ 0x43585400, 0xffffff00, "Conexant",           NULL,   NULL },
{ 0x44543000, 0xffffff00, "Diamond Technology", NULL,   NULL },
{ 0x454d4300, 0xffffff00, "eMicro",             NULL,   NULL },
{ 0x45838300, 0xffffff00, "ESS Technology",     NULL,   NULL },
{ 0x48525300, 0xffffff00, "Intersil",           NULL,   NULL },
{ 0x49434500, 0xffffff00, "ICEnsemble",         NULL,   NULL },
{ 0x49544500, 0xffffff00, "ITE Tech.Inc",       NULL,   NULL },
{ 0x4e534300, 0xffffff00, "National Semiconductor", NULL, NULL },
{ 0x50534300, 0xffffff00, "Philips",            NULL,   NULL },
{ 0x53494c00, 0xffffff00, "Silicon Laboratory", NULL,   NULL },
{ 0x54524100, 0xffffff00, "TriTech",            NULL,   NULL },
{ 0x54584e00, 0xffffff00, "Texas Instruments",  NULL,   NULL },
{ 0x56494100, 0xffffff00, "VIA Technologies",   NULL,   NULL },
{ 0x57454300, 0xffffff00, "Winbond",            NULL,   NULL },
{ 0x574d4c00, 0xffffff00, "Wolfson",            NULL,   NULL },
{ 0x594d4800, 0xffffff00, "Yamaha",             NULL,   NULL },
{ 0x83847600, 0xffffff00, "SigmaTel",           NULL,   NULL },
{ 0,          0,          NULL,                 NULL,   NULL }
};

static const struct ac97_codec_id snd_ac97_codec_ids[] = {
{ 0x41445303, 0xffffffff, "AD1819",             patch_ad1819,   NULL },
{ 0x41445340, 0xffffffff, "AD1881",             patch_ad1881,   NULL },
{ 0x41445348, 0xffffffff, "AD1881A",            patch_ad1881,   NULL },
{ 0x41445360, 0xffffffff, "AD1885",             patch_ad1885,   NULL },
{ 0x41445361, 0xffffffff, "AD1886",             patch_ad1886,   NULL },
{ 0x41445362, 0xffffffff, "AD1887",             patch_ad1881,   NULL },
{ 0x41445363, 0xffffffff, "AD1886A",            patch_ad1881,   NULL },
{ 0x41445368, 0xffffffff, "AD1888",             patch_ad1888,   NULL },
{ 0x41445370, 0xffffffff, "AD1980",             patch_ad1980,   NULL },
{ 0x41445372, 0xffffffff, "AD1981A",            patch_ad1981a,  NULL },
{ 0x41445374, 0xffffffff, "AD1981B",            patch_ad1981b,  NULL },
{ 0x41445375, 0xffffffff, "AD1985",             patch_ad1985,   NULL },
{ 0x41445378, 0xffffffff, "AD1986",             patch_ad1986,   NULL },
{ 0x414b4d00, 0xffffffff, "AK4540",             NULL,           NULL },
{ 0x414b4d01, 0xffffffff, "AK4542",             NULL,           NULL },
{ 0x414b4d02, 0xffffffff, "AK4543",             NULL,           NULL },
{ 0x414b4d06, 0xffffffff, "AK4544A",            NULL,           NULL },
{ 0x414b4d07, 0xffffffff, "AK4545",             NULL,           NULL },
{ 0x414c4300, 0xffffff00, "ALC100,100P",        NULL,           NULL },
{ 0x414c4710, 0xfffffff0, "ALC200,200P",        NULL,           NULL },
{ 0x414c4721, 0xffffffff, "ALC650D",            NULL,   NULL }, /* already patched */
{ 0x414c4722, 0xffffffff, "ALC650E",            NULL,   NULL }, /* already patched */
{ 0x414c4723, 0xffffffff, "ALC650F",            NULL,   NULL }, /* already patched */
{ 0x414c4720, 0xfffffff0, "ALC650",             patch_alc650,   NULL },
{ 0x414c4730, 0xffffffff, "ALC101",             NULL,           NULL },
{ 0x414c4740, 0xfffffff0, "ALC202",             NULL,           NULL },
{ 0x414c4750, 0xfffffff0, "ALC250",             NULL,           NULL },
{ 0x414c4760, 0xfffffff0, "ALC655",             patch_alc655,   NULL },
{ 0x414c4770, 0xfffffff0, "ALC203",             patch_alc203,   NULL },
{ 0x414c4781, 0xffffffff, "ALC658D",            NULL,   NULL }, /* already patched */
{ 0x414c4780, 0xfffffff0, "ALC658",             patch_alc655,   NULL },
{ 0x414c4790, 0xfffffff0, "ALC850",             patch_alc850,   NULL },
{ 0x434d4941, 0xffffffff, "CMI9738",            patch_cm9738,   NULL },
{ 0x434d4961, 0xffffffff, "CMI9739",            patch_cm9739,   NULL },
{ 0x434d4969, 0xffffffff, "CMI9780",            patch_cm9780,   NULL },
{ 0x434d4978, 0xffffffff, "CMI9761A",           patch_cm9761,   NULL },
{ 0x434d4982, 0xffffffff, "CMI9761B",           patch_cm9761,   NULL },
{ 0x434d4983, 0xffffffff, "CMI9761A+",          patch_cm9761,   NULL },
{ 0x43525900, 0xfffffff8, "CS4297",             NULL,           NULL },
{ 0x43525910, 0xfffffff8, "CS4297A",            patch_cirrus_spdif,     NULL },
{ 0x43525920, 0xfffffff8, "CS4298",             patch_cirrus_spdif,             NULL },
{ 0x43525928, 0xfffffff8, "CS4294",             NULL,           NULL },
{ 0x43525930, 0xfffffff8, "CS4299",             patch_cirrus_cs4299,    NULL },
{ 0x43525948, 0xfffffff8, "CS4201",             NULL,           NULL },
{ 0x43525958, 0xfffffff8, "CS4205",             patch_cirrus_spdif,     NULL },
{ 0x43525960, 0xfffffff8, "CS4291",             NULL,           NULL },
{ 0x43525970, 0xfffffff8, "CS4202",             NULL,           NULL },
{ 0x43585421, 0xffffffff, "HSD11246",           NULL,           NULL }, // SmartMC II
{ 0x43585428, 0xfffffff8, "Cx20468",            patch_conexant, NULL }, // SmartAMC fixme: the mask might be different
{ 0x43585431, 0xffffffff, "Cx20551",           patch_cx20551,  NULL },
{ 0x44543031, 0xfffffff0, "DT0398",             NULL,           NULL },
{ 0x454d4328, 0xffffffff, "EM28028",            NULL,           NULL },  // same as TR28028?
{ 0x45838308, 0xffffffff, "ESS1988",            NULL,           NULL },
{ 0x48525300, 0xffffff00, "HMP9701",            NULL,           NULL },
{ 0x49434501, 0xffffffff, "ICE1230",            NULL,           NULL },
{ 0x49434511, 0xffffffff, "ICE1232",            NULL,           NULL }, // alias VIA VT1611A?
{ 0x49434514, 0xffffffff, "ICE1232A",           NULL,           NULL },
{ 0x49434551, 0xffffffff, "VT1616",             patch_vt1616,   NULL }, 
{ 0x49434552, 0xffffffff, "VT1616i",            patch_vt1616,   NULL }, // VT1616 compatible (chipset integrated)
{ 0x49544520, 0xffffffff, "IT2226E",            NULL,           NULL },
{ 0x49544561, 0xffffffff, "IT2646E",            patch_it2646,   NULL },
{ 0x4e534300, 0xffffffff, "LM4540,43,45,46,48", NULL,           NULL }, // only guess --jk
{ 0x4e534331, 0xffffffff, "LM4549",             NULL,           NULL },
{ 0x4e534350, 0xffffffff, "LM4550",             patch_lm4550,   NULL }, // volume wrap fix 
{ 0x50534304, 0xffffffff, "UCB1400",            patch_ucb1400,  NULL },
{ 0x53494c20, 0xffffffe0, "Si3036,8",           mpatch_si3036,  mpatch_si3036, AC97_MODEM_PATCH },
{ 0x54524102, 0xffffffff, "TR28022",            NULL,           NULL },
{ 0x54524103, 0xffffffff, "TR28023",            NULL,           NULL },
{ 0x54524106, 0xffffffff, "TR28026",            NULL,           NULL },
{ 0x54524108, 0xffffffff, "TR28028",            patch_tritech_tr28028,  NULL }, // added by xin jin [07/09/99]
{ 0x54524123, 0xffffffff, "TR28602",            NULL,           NULL }, // only guess --jk [TR28023 = eMicro EM28023 (new CT1297)]
{ 0x54584e20, 0xffffffff, "TLC320AD9xC",        NULL,           NULL },
{ 0x56494161, 0xffffffff, "VIA1612A",           NULL,           NULL }, // modified ICE1232 with S/PDIF
{ 0x56494170, 0xffffffff, "VIA1617A",           patch_vt1617a,  NULL }, // modified VT1616 with S/PDIF
{ 0x56494182, 0xffffffff, "VIA1618",            patch_vt1618,   NULL },
{ 0x57454301, 0xffffffff, "W83971D",            NULL,           NULL },
{ 0x574d4c00, 0xffffffff, "WM9701,WM9701A",     NULL,           NULL },
{ 0x574d4C03, 0xffffffff, "WM9703,WM9707,WM9708,WM9717", patch_wolfson03, NULL},
{ 0x574d4C04, 0xffffffff, "WM9704M,WM9704Q",    patch_wolfson04, NULL},
{ 0x574d4C05, 0xffffffff, "WM9705,WM9710",      patch_wolfson05, NULL},
{ 0x574d4C09, 0xffffffff, "WM9709",             NULL,           NULL},
{ 0x574d4C12, 0xffffffff, "WM9711,WM9712",      patch_wolfson11, NULL},
{ 0x574d4c13, 0xffffffff, "WM9713,WM9714",      patch_wolfson13, NULL, AC97_DEFAULT_POWER_OFF},
{ 0x594d4800, 0xffffffff, "YMF743",             patch_yamaha_ymf743,    NULL },
{ 0x594d4802, 0xffffffff, "YMF752",             NULL,           NULL },
{ 0x594d4803, 0xffffffff, "YMF753",             patch_yamaha_ymf753,    NULL },
{ 0x83847600, 0xffffffff, "STAC9700,83,84",     patch_sigmatel_stac9700,        NULL },
{ 0x83847604, 0xffffffff, "STAC9701,3,4,5",     NULL,           NULL },
{ 0x83847605, 0xffffffff, "STAC9704",           NULL,           NULL },
{ 0x83847608, 0xffffffff, "STAC9708,11",        patch_sigmatel_stac9708,        NULL },
{ 0x83847609, 0xffffffff, "STAC9721,23",        patch_sigmatel_stac9721,        NULL },
{ 0x83847644, 0xffffffff, "STAC9744",           patch_sigmatel_stac9744,        NULL },
{ 0x83847650, 0xffffffff, "STAC9750,51",        NULL,           NULL }, // patch?
{ 0x83847652, 0xffffffff, "STAC9752,53",        NULL,           NULL }, // patch?
{ 0x83847656, 0xffffffff, "STAC9756,57",        patch_sigmatel_stac9756,        NULL },
{ 0x83847658, 0xffffffff, "STAC9758,59",        patch_sigmatel_stac9758,        NULL },
{ 0x83847666, 0xffffffff, "STAC9766,67",        NULL,           NULL }, // patch?
{ 0,          0,          NULL,                 NULL,           NULL }
};


static void update_power_regs(struct snd_ac97 *ac97);
#ifdef CONFIG_SND_AC97_POWER_SAVE
#define ac97_is_power_save_mode(ac97) \
        ((ac97->scaps & AC97_SCAP_POWER_SAVE) && power_save)
#else
#define ac97_is_power_save_mode(ac97) 0
#endif


/*
 *  I/O routines
 */

static int snd_ac97_valid_reg(struct snd_ac97 *ac97, unsigned short reg)
{
        /* filter some registers for buggy codecs */
        switch (ac97->id) {
        case AC97_ID_AK4540:
        case AC97_ID_AK4542:
                if (reg <= 0x1c || reg == 0x20 || reg == 0x26 || reg >= 0x7c)
                        return 1;
                return 0;
        case AC97_ID_AD1819:    /* AD1819 */
        case AC97_ID_AD1881:    /* AD1881 */
        case AC97_ID_AD1881A:   /* AD1881A */
                if (reg >= 0x3a && reg <= 0x6e) /* 0x59 */
                        return 0;
                return 1;
        case AC97_ID_AD1885:    /* AD1885 */
        case AC97_ID_AD1886:    /* AD1886 */
        case AC97_ID_AD1886A:   /* AD1886A - !!verify!! --jk */
        case AC97_ID_AD1887:    /* AD1887 - !!verify!! --jk */
                if (reg == 0x5a)
                        return 1;
                if (reg >= 0x3c && reg <= 0x6e) /* 0x59 */
                        return 0;
                return 1;
        case AC97_ID_STAC9700:
        case AC97_ID_STAC9704:
        case AC97_ID_STAC9705:
        case AC97_ID_STAC9708:
        case AC97_ID_STAC9721:
        case AC97_ID_STAC9744:
        case AC97_ID_STAC9756:
                if (reg <= 0x3a || reg >= 0x5a)
                        return 1;
                return 0;
        }
        return 1;
}

/**
 * snd_ac97_write - write a value on the given register
 * @ac97: the ac97 instance
 * @reg: the register to change
 * @value: the value to set
 *
 * Writes a value on the given register.  This will invoke the write
 * callback directly after the register check.
 * This function doesn't change the register cache unlike
 * #snd_ca97_write_cache(), so use this only when you don't want to
 * reflect the change to the suspend/resume state.
 */
void snd_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short value)
{
        if (!snd_ac97_valid_reg(ac97, reg))
                return;
        if ((ac97->id & 0xffffff00) == AC97_ID_ALC100) {
                /* Fix H/W bug of ALC100/100P */
                if (reg == AC97_MASTER || reg == AC97_HEADPHONE)
                        ac97->bus->ops->write(ac97, AC97_RESET, 0);     /* reset audio codec */
        }
        ac97->bus->ops->write(ac97, reg, value);
}

EXPORT_SYMBOL(snd_ac97_write);

/**
 * snd_ac97_read - read a value from the given register
 * 
 * @ac97: the ac97 instance
 * @reg: the register to read
 *
 * Reads a value from the given register.  This will invoke the read
 * callback directly after the register check.
 *
 * Returns the read value.
 */
unsigned short snd_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
{
        if (!snd_ac97_valid_reg(ac97, reg))
                return 0;
        return ac97->bus->ops->read(ac97, reg);
}

/* read a register - return the cached value if already read */
static inline unsigned short snd_ac97_read_cache(struct snd_ac97 *ac97, unsigned short reg)
{
        if (! test_bit(reg, ac97->reg_accessed)) {
                ac97->regs[reg] = ac97->bus->ops->read(ac97, reg);
                // set_bit(reg, ac97->reg_accessed);
        }
        return ac97->regs[reg];
}

EXPORT_SYMBOL(snd_ac97_read);

/**
 * snd_ac97_write_cache - write a value on the given register and update the cache
 * @ac97: the ac97 instance
 * @reg: the register to change
 * @value: the value to set
 *
 * Writes a value on the given register and updates the register
 * cache.  The cached values are used for the cached-read and the
 * suspend/resume.
 */
void snd_ac97_write_cache(struct snd_ac97 *ac97, unsigned short reg, unsigned short value)
{
        if (!snd_ac97_valid_reg(ac97, reg))
                return;
        mutex_lock(&ac97->reg_mutex);
        ac97->regs[reg] = value;
        ac97->bus->ops->write(ac97, reg, value);
        set_bit(reg, ac97->reg_accessed);
        mutex_unlock(&ac97->reg_mutex);
}

EXPORT_SYMBOL(snd_ac97_write_cache);

/**
 * snd_ac97_update - update the value on the given register
 * @ac97: the ac97 instance
 * @reg: the register to change
 * @value: the value to set
 *
 * Compares the value with the register cache and updates the value
 * only when the value is changed.
 *
 * Returns 1 if the value is changed, 0 if no change, or a negative
 * code on failure.
 */
int snd_ac97_update(struct snd_ac97 *ac97, unsigned short reg, unsigned short value)
{
        int change;

        if (!snd_ac97_valid_reg(ac97, reg))
                return -EINVAL;
        mutex_lock(&ac97->reg_mutex);
        change = ac97->regs[reg] != value;
        if (change) {
                ac97->regs[reg] = value;
                ac97->bus->ops->write(ac97, reg, value);
        }
        set_bit(reg, ac97->reg_accessed);
        mutex_unlock(&ac97->reg_mutex);
        return change;
}

EXPORT_SYMBOL(snd_ac97_update);

/**
 * snd_ac97_update_bits - update the bits on the given register
 * @ac97: the ac97 instance
 * @reg: the register to change
 * @mask: the bit-mask to change
 * @value: the value to set
 *
 * Updates the masked-bits on the given register only when the value
 * is changed.
 *
 * Returns 1 if the bits are changed, 0 if no change, or a negative
 * code on failure.
 */
int snd_ac97_update_bits(struct snd_ac97 *ac97, unsigned short reg, unsigned short mask, unsigned short value)
{
        int change;

        if (!snd_ac97_valid_reg(ac97, reg))
                return -EINVAL;
        mutex_lock(&ac97->reg_mutex);
        change = snd_ac97_update_bits_nolock(ac97, reg, mask, value);
        mutex_unlock(&ac97->reg_mutex);
        return change;
}

EXPORT_SYMBOL(snd_ac97_update_bits);

/* no lock version - see snd_ac97_updat_bits() */
int snd_ac97_update_bits_nolock(struct snd_ac97 *ac97, unsigned short reg,
                                unsigned short mask, unsigned short value)
{
        int change;
        unsigned short old, new;

        old = snd_ac97_read_cache(ac97, reg);
        new = (old & ~mask) | (value & mask);
        change = old != new;
        if (change) {
                ac97->regs[reg] = new;
                ac97->bus->ops->write(ac97, reg, new);
        }
        set_bit(reg, ac97->reg_accessed);
        return change;
}

static int snd_ac97_ad18xx_update_pcm_bits(struct snd_ac97 *ac97, int codec, unsigned short mask, unsigned short value)
{
        int change;
        unsigned short old, new, cfg;

        mutex_lock(&ac97->page_mutex);
        old = ac97->spec.ad18xx.pcmreg[codec];
        new = (old & ~mask) | (value & mask);
        change = old != new;
        if (change) {
                mutex_lock(&ac97->reg_mutex);
                cfg = snd_ac97_read_cache(ac97, AC97_AD_SERIAL_CFG);
                ac97->spec.ad18xx.pcmreg[codec] = new;
                /* select single codec */
                ac97->bus->ops->write(ac97, AC97_AD_SERIAL_CFG,
                                 (cfg & ~0x7000) |
                                 ac97->spec.ad18xx.unchained[codec] | ac97->spec.ad18xx.chained[codec]);
                /* update PCM bits */
                ac97->bus->ops->write(ac97, AC97_PCM, new);
                /* select all codecs */
                ac97->bus->ops->write(ac97, AC97_AD_SERIAL_CFG,
                                 cfg | 0x7000);
                mutex_unlock(&ac97->reg_mutex);
        }
        mutex_unlock(&ac97->page_mutex);
        return change;
}

/*
 * Controls
 */

static int snd_ac97_info_enum_double(struct snd_kcontrol *kcontrol,
                                     struct snd_ctl_elem_info *uinfo)
{
        struct ac97_enum *e = (struct ac97_enum *)kcontrol->private_value;
        
        uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
        uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
        uinfo->value.enumerated.items = e->mask;
        
        if (uinfo->value.enumerated.item > e->mask - 1)
                uinfo->value.enumerated.item = e->mask - 1;
        strcpy(uinfo->value.enumerated.name, e->texts[uinfo->value.enumerated.item]);
        return 0;
}

static int snd_ac97_get_enum_double(struct snd_kcontrol *kcontrol,
                                    struct snd_ctl_elem_value *ucontrol)
{
        struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
        struct ac97_enum *e = (struct ac97_enum *)kcontrol->private_value;
        unsigned short val, bitmask;
        
        for (bitmask = 1; bitmask < e->mask; bitmask <<= 1)
                ;
        val = snd_ac97_read_cache(ac97, e->reg);
        ucontrol->value.enumerated.item[0] = (val >> e->shift_l) & (bitmask - 1);
        if (e->shift_l != e->shift_r)
                ucontrol->value.enumerated.item[1] = (val >> e->shift_r) & (bitmask - 1);

        return 0;
}

static int snd_ac97_put_enum_double(struct snd_kcontrol *kcontrol,
                                    struct snd_ctl_elem_value *ucontrol)
{
        struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
        struct ac97_enum *e = (struct ac97_enum *)kcontrol->private_value;
        unsigned short val;
        unsigned short mask, bitmask;
        
        for (bitmask = 1; bitmask < e->mask; bitmask <<= 1)
                ;
        if (ucontrol->value.enumerated.item[0] > e->mask - 1)
                return -EINVAL;
        val = ucontrol->value.enumerated.item[0] << e->shift_l;
        mask = (bitmask - 1) << e->shift_l;
        if (e->shift_l != e->shift_r) {
                if (ucontrol->value.enumerated.item[1] > e->mask - 1)
                        return -EINVAL;
                val |= ucontrol->value.enumerated.item[1] << e->shift_r;
                mask |= (bitmask - 1) << e->shift_r;
        }
        return snd_ac97_update_bits(ac97, e->reg, mask, val);
}

/* save/restore ac97 v2.3 paging */
static int snd_ac97_page_save(struct snd_ac97 *ac97, int reg, struct snd_kcontrol *kcontrol)
{
        int page_save = -1;
        if ((kcontrol->private_value & (1<<25)) &&
            (ac97->ext_id & AC97_EI_REV_MASK) >= AC97_EI_REV_23 &&
            (reg >= 0x60 && reg < 0x70)) {
                unsigned short page = (kcontrol->private_value >> 26) & 0x0f;
                mutex_lock(&ac97->page_mutex); /* lock paging */
                page_save = snd_ac97_read(ac97, AC97_INT_PAGING) & AC97_PAGE_MASK;
                snd_ac97_update_bits(ac97, AC97_INT_PAGING, AC97_PAGE_MASK, page);
        }
        return page_save;
}

static void snd_ac97_page_restore(struct snd_ac97 *ac97, int page_save)
{
        if (page_save >= 0) {
                snd_ac97_update_bits(ac97, AC97_INT_PAGING, AC97_PAGE_MASK, page_save);
                mutex_unlock(&ac97->page_mutex); /* unlock paging */
        }
}

/* volume and switch controls */
static int snd_ac97_info_volsw(struct snd_kcontrol *kcontrol,
                               struct snd_ctl_elem_info *uinfo)
{
        int mask = (kcontrol->private_value >> 16) & 0xff;
        int shift = (kcontrol->private_value >> 8) & 0x0f;
        int rshift = (kcontrol->private_value >> 12) & 0x0f;

        uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
        uinfo->count = shift == rshift ? 1 : 2;
        uinfo->value.integer.min = 0;
        uinfo->value.integer.max = mask;
        return 0;
}

static int snd_ac97_get_volsw(struct snd_kcontrol *kcontrol,
                              struct snd_ctl_elem_value *ucontrol)
{
        struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
        int reg = kcontrol->private_value & 0xff;
        int shift = (kcontrol->private_value >> 8) & 0x0f;
        int rshift = (kcontrol->private_value >> 12) & 0x0f;
        int mask = (kcontrol->private_value >> 16) & 0xff;
        int invert = (kcontrol->private_value >> 24) & 0x01;
        int page_save;

        page_save = snd_ac97_page_save(ac97, reg, kcontrol);
        ucontrol->value.integer.value[0] = (snd_ac97_read_cache(ac97, reg) >> shift) & mask;
        if (shift != rshift)
                ucontrol->value.integer.value[1] = (snd_ac97_read_cache(ac97, reg) >> rshift) & mask;
        if (invert) {
                ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
                if (shift != rshift)
                        ucontrol->value.integer.value[1] = mask - ucontrol->value.integer.value[1];
        }
        snd_ac97_page_restore(ac97, page_save);
        return 0;
}

static int snd_ac97_put_volsw(struct snd_kcontrol *kcontrol,
                              struct snd_ctl_elem_value *ucontrol)
{
        struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
        int reg = kcontrol->private_value & 0xff;
        int shift = (kcontrol->private_value >> 8) & 0x0f;
        int rshift = (kcontrol->private_value >> 12) & 0x0f;
        int mask = (kcontrol->private_value >> 16) & 0xff;
        int invert = (kcontrol->private_value >> 24) & 0x01;
        int err, page_save;
        unsigned short val, val2, val_mask;
        
        page_save = snd_ac97_page_save(ac97, reg, kcontrol);
        val = (ucontrol->value.integer.value[0] & mask);
        if (invert)
                val = mask - val;
        val_mask = mask << shift;
        val = val << shift;
        if (shift != rshift) {
                val2 = (ucontrol->value.integer.value[1] & mask);
                if (invert)
                        val2 = mask - val2;
                val_mask |= mask << rshift;
                val |= val2 << rshift;
        }
        err = snd_ac97_update_bits(ac97, reg, val_mask, val);
        snd_ac97_page_restore(ac97, page_save);
#ifdef CONFIG_SND_AC97_POWER_SAVE
        /* check analog mixer power-down */
        if ((val_mask & 0x8000) &&
            (kcontrol->private_value & (1<<30))) {
                if (val & 0x8000)
                        ac97->power_up &= ~(1 << (reg>>1));
                else
                        ac97->power_up |= 1 << (reg>>1);
                update_power_regs(ac97);
        }
#endif
        return err;
}

static const struct snd_kcontrol_new snd_ac97_controls_master_mono[2] = {
AC97_SINGLE("Master Mono Playback Switch", AC97_MASTER_MONO, 15, 1, 1),
AC97_SINGLE("Master Mono Playback Volume", AC97_MASTER_MONO, 0, 31, 1)
};

static const struct snd_kcontrol_new snd_ac97_controls_tone[2] = {
AC97_SINGLE("Tone Control - Bass", AC97_MASTER_TONE, 8, 15, 1),
AC97_SINGLE("Tone Control - Treble", AC97_MASTER_TONE, 0, 15, 1)
};

static const struct snd_kcontrol_new snd_ac97_controls_pc_beep[2] = {
AC97_SINGLE("PC Speaker Playback Switch", AC97_PC_BEEP, 15, 1, 1),
AC97_SINGLE("PC Speaker Playback Volume", AC97_PC_BEEP, 1, 15, 1)
};

static const struct snd_kcontrol_new snd_ac97_controls_mic_boost =
        AC97_SINGLE("Mic Boost (+20dB)", AC97_MIC, 6, 1, 0);


static const char* std_rec_sel[] = {"Mic", "CD", "Video", "Aux", "Line", "Mix", "Mix Mono", "Phone"};
static const char* std_3d_path[] = {"pre 3D", "post 3D"};
static const char* std_mix[] = {"Mix", "Mic"};
static const char* std_mic[] = {"Mic1", "Mic2"};

static const struct ac97_enum std_enum[] = {
AC97_ENUM_DOUBLE(AC97_REC_SEL, 8, 0, 8, std_rec_sel),
AC97_ENUM_SINGLE(AC97_GENERAL_PURPOSE, 15, 2, std_3d_path),
AC97_ENUM_SINGLE(AC97_GENERAL_PURPOSE, 9, 2, std_mix),
AC97_ENUM_SINGLE(AC97_GENERAL_PURPOSE, 8, 2, std_mic),
};

static const struct snd_kcontrol_new snd_ac97_control_capture_src = 
AC97_ENUM("Capture Source", std_enum[0]); 

static const struct snd_kcontrol_new snd_ac97_control_capture_vol =
AC97_DOUBLE("Capture Volume", AC97_REC_GAIN, 8, 0, 15, 0);

static const struct snd_kcontrol_new snd_ac97_controls_mic_capture[2] = {
AC97_SINGLE("Mic Capture Switch", AC97_REC_GAIN_MIC, 15, 1, 1),
AC97_SINGLE("Mic Capture Volume", AC97_REC_GAIN_MIC, 0, 15, 0)
};

enum {
        AC97_GENERAL_PCM_OUT = 0,
        AC97_GENERAL_STEREO_ENHANCEMENT,
        AC97_GENERAL_3D,
        AC97_GENERAL_LOUDNESS,
        AC97_GENERAL_MONO,
        AC97_GENERAL_MIC,
        AC97_GENERAL_LOOPBACK
};

static const struct snd_kcontrol_new snd_ac97_controls_general[7] = {
AC97_ENUM("PCM Out Path & Mute", std_enum[1]),
AC97_SINGLE("Simulated Stereo Enhancement", AC97_GENERAL_PURPOSE, 14, 1, 0),
AC97_SINGLE("3D Control - Switch", AC97_GENERAL_PURPOSE, 13, 1, 0),
AC97_SINGLE("Loudness (bass boost)", AC97_GENERAL_PURPOSE, 12, 1, 0),
AC97_ENUM("Mono Output Select", std_enum[2]),
AC97_ENUM("Mic Select", std_enum[3]),
AC97_SINGLE("ADC/DAC Loopback", AC97_GENERAL_PURPOSE, 7, 1, 0)
};

static const struct snd_kcontrol_new snd_ac97_controls_3d[2] = {
AC97_SINGLE("3D Control - Center", AC97_3D_CONTROL, 8, 15, 0),
AC97_SINGLE("3D Control - Depth", AC97_3D_CONTROL, 0, 15, 0)
};

static const struct snd_kcontrol_new snd_ac97_controls_center[2] = {
AC97_SINGLE("Center Playback Switch", AC97_CENTER_LFE_MASTER, 7, 1, 1),
AC97_SINGLE("Center Playback Volume", AC97_CENTER_LFE_MASTER, 0, 31, 1)
};

static const struct snd_kcontrol_new snd_ac97_controls_lfe[2] = {
AC97_SINGLE("LFE Playback Switch", AC97_CENTER_LFE_MASTER, 15, 1, 1),
AC97_SINGLE("LFE Playback Volume", AC97_CENTER_LFE_MASTER, 8, 31, 1)
};

static const struct snd_kcontrol_new snd_ac97_control_eapd =
AC97_SINGLE("External Amplifier", AC97_POWERDOWN, 15, 1, 1);

static const struct snd_kcontrol_new snd_ac97_controls_modem_switches[2] = {
AC97_SINGLE("Off-hook Switch", AC97_GPIO_STATUS, 0, 1, 0),
AC97_SINGLE("Caller ID Switch", AC97_GPIO_STATUS, 2, 1, 0)
};

/* change the existing EAPD control as inverted */
static void set_inv_eapd(struct snd_ac97 *ac97, struct snd_kcontrol *kctl)
{
        kctl->private_value = AC97_SINGLE_VALUE(AC97_POWERDOWN, 15, 1, 0);
        snd_ac97_update_bits(ac97, AC97_POWERDOWN, (1<<15), (1<<15)); /* EAPD up */
        ac97->scaps |= AC97_SCAP_INV_EAPD;
}

static int snd_ac97_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
        uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
        uinfo->count = 1;
        return 0;
}
                        
static int snd_ac97_spdif_cmask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
        ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
                                           IEC958_AES0_NONAUDIO |
                                           IEC958_AES0_CON_EMPHASIS_5015 |
                                           IEC958_AES0_CON_NOT_COPYRIGHT;
        ucontrol->value.iec958.status[1] = IEC958_AES1_CON_CATEGORY |
                                           IEC958_AES1_CON_ORIGINAL;
        ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS;
        return 0;
}
                        
static int snd_ac97_spdif_pmask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
        /* FIXME: AC'97 spec doesn't say which bits are used for what */
        ucontrol->value.iec958.status[0] = IEC958_AES0_PROFESSIONAL |
                                           IEC958_AES0_NONAUDIO |
                                           IEC958_AES0_PRO_FS |
                                           IEC958_AES0_PRO_EMPHASIS_5015;
        return 0;
}

static int snd_ac97_spdif_default_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
        struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);

        mutex_lock(&ac97->reg_mutex);
        ucontrol->value.iec958.status[0] = ac97->spdif_status & 0xff;
        ucontrol->value.iec958.status[1] = (ac97->spdif_status >> 8) & 0xff;
        ucontrol->value.iec958.status[2] = (ac97->spdif_status >> 16) & 0xff;
        ucontrol->value.iec958.status[3] = (ac97->spdif_status >> 24) & 0xff;
        mutex_unlock(&ac97->reg_mutex);
        return 0;
}
                        
static int snd_ac97_spdif_default_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
        struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
        unsigned int new = 0;
        unsigned short val = 0;
        int change;

        new = val = ucontrol->value.iec958.status[0] & (IEC958_AES0_PROFESSIONAL|IEC958_AES0_NONAUDIO);
        if (ucontrol->value.iec958.status[0] & IEC958_AES0_PROFESSIONAL) {
                new |= ucontrol->value.iec958.status[0] & (IEC958_AES0_PRO_FS|IEC958_AES0_PRO_EMPHASIS_5015);
                switch (new & IEC958_AES0_PRO_FS) {
                case IEC958_AES0_PRO_FS_44100: val |= 0<<12; break;
                case IEC958_AES0_PRO_FS_48000: val |= 2<<12; break;
                case IEC958_AES0_PRO_FS_32000: val |= 3<<12; break;
                default:                       val |= 1<<12; break;
                }
                if ((new & IEC958_AES0_PRO_EMPHASIS) == IEC958_AES0_PRO_EMPHASIS_5015)
                        val |= 1<<3;
        } else {
                new |= ucontrol->value.iec958.status[0] & (IEC958_AES0_CON_EMPHASIS_5015|IEC958_AES0_CON_NOT_COPYRIGHT);
                new |= ((ucontrol->value.iec958.status[1] & (IEC958_AES1_CON_CATEGORY|IEC958_AES1_CON_ORIGINAL)) << 8);
                new |= ((ucontrol->value.iec958.status[3] & IEC958_AES3_CON_FS) << 24);
                if ((new & IEC958_AES0_CON_EMPHASIS) == IEC958_AES0_CON_EMPHASIS_5015)
                        val |= 1<<3;
                if (!(new & IEC958_AES0_CON_NOT_COPYRIGHT))
                        val |= 1<<2;
                val |= ((new >> 8) & 0xff) << 4;        // category + original
                switch ((new >> 24) & 0xff) {
                case IEC958_AES3_CON_FS_44100: val |= 0<<12; break;
                case IEC958_AES3_CON_FS_48000: val |= 2<<12; break;
                case IEC958_AES3_CON_FS_32000: val |= 3<<12; break;
                default:                       val |= 1<<12; break;
                }
        }

        mutex_lock(&ac97->reg_mutex);
        change = ac97->spdif_status != new;
        ac97->spdif_status = new;

        if (ac97->flags & AC97_CS_SPDIF) {
                int x = (val >> 12) & 0x03;
                switch (x) {
                case 0: x = 1; break;  // 44.1
                case 2: x = 0; break;  // 48.0
                default: x = 0; break; // illegal.
                }
                change |= snd_ac97_update_bits_nolock(ac97, AC97_CSR_SPDIF, 0x3fff, ((val & 0xcfff) | (x << 12)));
        } else if (ac97->flags & AC97_CX_SPDIF) {
                int v;
                v = new & (IEC958_AES0_CON_EMPHASIS_5015|IEC958_AES0_CON_NOT_COPYRIGHT) ? 0 : AC97_CXR_COPYRGT;
                v |= new & IEC958_AES0_NONAUDIO ? AC97_CXR_SPDIF_AC3 : AC97_CXR_SPDIF_PCM;
                change |= snd_ac97_update_bits_nolock(ac97, AC97_CXR_AUDIO_MISC, 
                                                      AC97_CXR_SPDIF_MASK | AC97_CXR_COPYRGT,
                                                      v);
        } else if (ac97->id == AC97_ID_YMF743) {
                change |= snd_ac97_update_bits_nolock(ac97,
                                                      AC97_YMF7X3_DIT_CTRL,
                                                      0xff38,
                                                      ((val << 4) & 0xff00) |
                                                      ((val << 2) & 0x0038));
        } else {
                unsigned short extst = snd_ac97_read_cache(ac97, AC97_EXTENDED_STATUS);
                snd_ac97_update_bits_nolock(ac97, AC97_EXTENDED_STATUS, AC97_EA_SPDIF, 0); /* turn off */

                change |= snd_ac97_update_bits_nolock(ac97, AC97_SPDIF, 0x3fff, val);
                if (extst & AC97_EA_SPDIF) {
                        snd_ac97_update_bits_nolock(ac97, AC97_EXTENDED_STATUS, AC97_EA_SPDIF, AC97_EA_SPDIF); /* turn on again */
                }
        }
        mutex_unlock(&ac97->reg_mutex);

        return change;
}

static int snd_ac97_put_spsa(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
        struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
        int reg = kcontrol->private_value & 0xff;
        int shift = (kcontrol->private_value >> 8) & 0xff;
        int mask = (kcontrol->private_value >> 16) & 0xff;
        // int invert = (kcontrol->private_value >> 24) & 0xff;
        unsigned short value, old, new;
        int change;

        value = (ucontrol->value.integer.value[0] & mask);

        mutex_lock(&ac97->reg_mutex);
        mask <<= shift;
        value <<= shift;
        old = snd_ac97_read_cache(ac97, reg);
        new = (old & ~mask) | value;
        change = old != new;

        if (change) {
                unsigned short extst = snd_ac97_read_cache(ac97, AC97_EXTENDED_STATUS);
                snd_ac97_update_bits_nolock(ac97, AC97_EXTENDED_STATUS, AC97_EA_SPDIF, 0); /* turn off */
                change = snd_ac97_update_bits_nolock(ac97, reg, mask, value);
                if (extst & AC97_EA_SPDIF)
                        snd_ac97_update_bits_nolock(ac97, AC97_EXTENDED_STATUS, AC97_EA_SPDIF, AC97_EA_SPDIF); /* turn on again */
        }
        mutex_unlock(&ac97->reg_mutex);
        return change;
}

static const struct snd_kcontrol_new snd_ac97_controls_spdif[5] = {
        {
                .access = SNDRV_CTL_ELEM_ACCESS_READ,
                .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
                .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
                .info = snd_ac97_spdif_mask_info,
                .get = snd_ac97_spdif_cmask_get,
        },
        {
                .access = SNDRV_CTL_ELEM_ACCESS_READ,
                .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
                .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
                .info = snd_ac97_spdif_mask_info,
                .get = snd_ac97_spdif_pmask_get,
        },
        {
                .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
                .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
                .info = snd_ac97_spdif_mask_info,
                .get = snd_ac97_spdif_default_get,
                .put = snd_ac97_spdif_default_put,
        },

        AC97_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH),AC97_EXTENDED_STATUS, 2, 1, 0),
        {
                .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
                .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,NONE) "AC97-SPSA",
                .info = snd_ac97_info_volsw,
                .get = snd_ac97_get_volsw,
                .put = snd_ac97_put_spsa,
                .private_value = AC97_SINGLE_VALUE(AC97_EXTENDED_STATUS, 4, 3, 0)
        },
};

#define AD18XX_PCM_BITS(xname, codec, lshift, rshift, mask) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_ac97_ad18xx_pcm_info_bits, \
  .get = snd_ac97_ad18xx_pcm_get_bits, .put = snd_ac97_ad18xx_pcm_put_bits, \
  .private_value = (codec) | ((lshift) << 8) | ((rshift) << 12) | ((mask) << 16) }

static int snd_ac97_ad18xx_pcm_info_bits(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
        struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
        int mask = (kcontrol->private_value >> 16) & 0x0f;
        int lshift = (kcontrol->private_value >> 8) & 0x0f;
        int rshift = (kcontrol->private_value >> 12) & 0x0f;

        uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
        if (lshift != rshift && (ac97->flags & AC97_STEREO_MUTES))
                uinfo->count = 2;
        else
                uinfo->count = 1;
        uinfo->value.integer.min = 0;
        uinfo->value.integer.max = mask;
        return 0;
}

static int snd_ac97_ad18xx_pcm_get_bits(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
        struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
        int codec = kcontrol->private_value & 3;
        int lshift = (kcontrol->private_value >> 8) & 0x0f;
        int rshift = (kcontrol->private_value >> 12) & 0x0f;
        int mask = (kcontrol->private_value >> 16) & 0xff;
        
        ucontrol->value.integer.value[0] = mask - ((ac97->spec.ad18xx.pcmreg[codec] >> lshift) & mask);
        if (lshift != rshift && (ac97->flags & AC97_STEREO_MUTES))
                ucontrol->value.integer.value[1] = mask - ((ac97->spec.ad18xx.pcmreg[codec] >> rshift) & mask);
        return 0;
}

static int snd_ac97_ad18xx_pcm_put_bits(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
        struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
        int codec = kcontrol->private_value & 3;
        int lshift = (kcontrol->private_value >> 8) & 0x0f;
        int rshift = (kcontrol->private_value >> 12) & 0x0f;
        int mask = (kcontrol->private_value >> 16) & 0xff;
        unsigned short val, valmask;
        
        val = (mask - (ucontrol->value.integer.value[0] & mask)) << lshift;
        valmask = mask << lshift;
        if (lshift != rshift && (ac97->flags & AC97_STEREO_MUTES)) {
                val |= (mask - (ucontrol->value.integer.value[1] & mask)) << rshift;
                valmask |= mask << rshift;
        }
        return snd_ac97_ad18xx_update_pcm_bits(ac97, codec, valmask, val);
}

#define AD18XX_PCM_VOLUME(xname, codec) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_ac97_ad18xx_pcm_info_volume, \
  .get = snd_ac97_ad18xx_pcm_get_volume, .put = snd_ac97_ad18xx_pcm_put_volume, \
  .private_value = codec }

static int snd_ac97_ad18xx_pcm_info_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
        uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
        uinfo->count = 2;
        uinfo->value.integer.min = 0;
        uinfo->value.integer.max = 31;
        return 0;
}

static int snd_ac97_ad18xx_pcm_get_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
        struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
        int codec = kcontrol->private_value & 3;
        
        mutex_lock(&ac97->page_mutex);
        ucontrol->value.integer.value[0] = 31 - ((ac97->spec.ad18xx.pcmreg[codec] >> 0) & 31);
        ucontrol->value.integer.value[1] = 31 - ((ac97->spec.ad18xx.pcmreg[codec] >> 8) & 31);
        mutex_unlock(&ac97->page_mutex);
        return 0;
}

static int snd_ac97_ad18xx_pcm_put_volume(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
        struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
        int codec = kcontrol->private_value & 3;
        unsigned short val1, val2;
        
        val1 = 31 - (ucontrol->value.integer.value[0] & 31);
        val2 = 31 - (ucontrol->value.integer.value[1] & 31);
        return snd_ac97_ad18xx_update_pcm_bits(ac97, codec, 0x1f1f, (val1 << 8) | val2);
}

static const struct snd_kcontrol_new snd_ac97_controls_ad18xx_pcm[2] = {
AD18XX_PCM_BITS("PCM Playback Switch", 0, 15, 7, 1),
AD18XX_PCM_VOLUME("PCM Playback Volume", 0)
};

static const struct snd_kcontrol_new snd_ac97_controls_ad18xx_surround[2] = {
AD18XX_PCM_BITS("Surround Playback Switch", 1, 15, 7, 1),
AD18XX_PCM_VOLUME("Surround Playback Volume", 1)
};

static const struct snd_kcontrol_new snd_ac97_controls_ad18xx_center[2] = {
AD18XX_PCM_BITS("Center Playback Switch", 2, 15, 15, 1),
AD18XX_PCM_BITS("Center Playback Volume", 2, 8, 8, 31)
};

static const struct snd_kcontrol_new snd_ac97_controls_ad18xx_lfe[2] = {
AD18XX_PCM_BITS("LFE Playback Switch", 2, 7, 7, 1),
AD18XX_PCM_BITS("LFE Playback Volume", 2, 0, 0, 31)
};

/*
 *
 */

static void snd_ac97_powerdown(struct snd_ac97 *ac97);

static int snd_ac97_bus_free(struct snd_ac97_bus *bus)
{
        if (bus) {
                snd_ac97_bus_proc_done(bus);
                kfree(bus->pcms);
                if (bus->private_free)
                        bus->private_free(bus);
                kfree(bus);
        }
        return 0;
}

static int snd_ac97_bus_dev_free(struct snd_device *device)
{
        struct snd_ac97_bus *bus = device->device_data;
        return snd_ac97_bus_free(bus);
}

static int snd_ac97_free(struct snd_ac97 *ac97)
{
        if (ac97) {
#ifdef CONFIG_SND_AC97_POWER_SAVE
                cancel_delayed_work(&ac97->power_work);
                flush_scheduled_work();
#endif
                snd_ac97_proc_done(ac97);
                if (ac97->bus)
                        ac97->bus->codec[ac97->num] = NULL;
                if (ac97->private_free)
                        ac97->private_free(ac97);
                kfree(ac97);
        }
        return 0;
}

static int snd_ac97_dev_free(struct snd_device *device)
{
        struct snd_ac97 *ac97 = device->device_data;
        snd_ac97_powerdown(ac97); /* for avoiding click noises during shut down */
        return snd_ac97_free(ac97);
}

static int snd_ac97_try_volume_mix(struct snd_ac97 * ac97, int reg)
{
        unsigned short val, mask = 0x8000;

        if (! snd_ac97_valid_reg(ac97, reg))
                return 0;

        switch (reg) {
        case AC97_MASTER_TONE:
                return ac97->caps & 0x04 ? 1 : 0;
        case AC97_HEADPHONE:
                return ac97->caps & 0x10 ? 1 : 0;
        case AC97_REC_GAIN_MIC:
                return ac97->caps & 0x01 ? 1 : 0;
        case AC97_3D_CONTROL:
                if (ac97->caps & 0x7c00) {
                        val = snd_ac97_read(ac97, reg);
                        /* if nonzero - fixed and we can't set it */
                        return val == 0;
                }
                return 0;
        case AC97_CENTER_LFE_MASTER:    /* center */
                if ((ac97->ext_id & AC97_EI_CDAC) == 0)
                        return 0;
                break;
        case AC97_CENTER_LFE_MASTER+1:  /* lfe */
                if ((ac97->ext_id & AC97_EI_LDAC) == 0)
                        return 0;
                reg = AC97_CENTER_LFE_MASTER;
                mask = 0x0080;
                break;
        case AC97_SURROUND_MASTER:
                if ((ac97->ext_id & AC97_EI_SDAC) == 0)
                        return 0;
                break;
        }

        val = snd_ac97_read(ac97, reg);
        if (!(val & mask)) {
                /* nothing seems to be here - mute flag is not set */
                /* try another test */
                snd_ac97_write_cache(ac97, reg, val | mask);
                val = snd_ac97_read(ac97, reg);
                val = snd_ac97_read(ac97, reg);
                if (!(val & mask))
                        return 0;       /* nothing here */
        }
        return 1;               /* success, useable */
}

static void check_volume_resolution(struct snd_ac97 *ac97, int reg, unsigned char *lo_max, unsigned char *hi_max)
{
        unsigned short cbit[3] = { 0x20, 0x10, 0x01 };
        unsigned char max[3] = { 63, 31, 15 };
        int i;

        /* first look up the static resolution table */
        if (ac97->res_table) {
                const struct snd_ac97_res_table *tbl;
                for (tbl = ac97->res_table; tbl->reg; tbl++) {
                        if (tbl->reg == reg) {
                                *lo_max = tbl->bits & 0xff;
                                *hi_max = (tbl->bits >> 8) & 0xff;
                                return;
                        }
                }
        }

        *lo_max = *hi_max = 0;
        for (i = 0 ; i < ARRAY_SIZE(cbit); i++) {
                unsigned short val;
                snd_ac97_write(ac97, reg, 0x8080 | cbit[i] | (cbit[i] << 8));
                /* Do the read twice due to buffers on some ac97 codecs.
                 * e.g. The STAC9704 returns exactly what you wrote to the register
                 * if you read it immediately. This causes the detect routine to fail.
                 */
                val = snd_ac97_read(ac97, reg);
                val = snd_ac97_read(ac97, reg);
                if (! *lo_max && (val & 0x7f) == cbit[i])
                        *lo_max = max[i];
                if (! *hi_max && ((val >> 8) & 0x7f) == cbit[i])
                        *hi_max = max[i];
                if (*lo_max && *hi_max)
                        break;
        }
}

static int snd_ac97_try_bit(struct snd_ac97 * ac97, int reg, int bit)
{
        unsigned short mask, val, orig, res;

        mask = 1 << bit;
        orig = snd_ac97_read(ac97, reg);
        val = orig ^ mask;
        snd_ac97_write(ac97, reg, val);
        res = snd_ac97_read(ac97, reg);
        snd_ac97_write_cache(ac97, reg, orig);
        return res == val;
}

/* check the volume resolution of center/lfe */
static void snd_ac97_change_volume_params2(struct snd_ac97 * ac97, int reg, int shift, unsigned char *max)
{
        unsigned short val, val1;

        *max = 63;
        val = 0x8080 | (0x20 << shift);
        snd_ac97_write(ac97, reg, val);
        val1 = snd_ac97_read(ac97, reg);
        if (val != val1) {
                *max = 31;
        }
        /* reset volume to zero */
        snd_ac97_write_cache(ac97, reg, 0x8080);
}

static inline int printable(unsigned int x)
{
        x &= 0xff;
        if (x < ' ' || x >= 0x71) {
                if (x <= 0x89)
                        return x - 0x71 + 'A';
                return '?';
        }
        return x;
}

static struct snd_kcontrol *snd_ac97_cnew(const struct snd_kcontrol_new *_template,
                                          struct snd_ac97 * ac97)
{
        struct snd_kcontrol_new template;
        memcpy(&template, _template, sizeof(template));
        template.index = ac97->num;
        return snd_ctl_new1(&template, ac97);
}

/*
 * create mute switch(es) for normal stereo controls
 */
static int snd_ac97_cmute_new_stereo(struct snd_card *card, char *name, int reg,
                                     int check_stereo, int check_amix,
                                     struct snd_ac97 *ac97)
{
        struct snd_kcontrol *kctl;
        int err;
        unsigned short val, val1, mute_mask;

        if (! snd_ac97_valid_reg(ac97, reg))
                return 0;

        mute_mask = 0x8000;
        val = snd_ac97_read(ac97, reg);
        if (check_stereo || (ac97->flags & AC97_STEREO_MUTES)) {
                /* check whether both mute bits work */
                val1 = val | 0x8080;
                snd_ac97_write(ac97, reg, val1);
                if (val1 == snd_ac97_read(ac97, reg))
                        mute_mask = 0x8080;
        }
        if (mute_mask == 0x8080) {
                struct snd_kcontrol_new tmp = AC97_DOUBLE(name, reg, 15, 7, 1, 1);
                if (check_amix)
                        tmp.private_value |= (1 << 30);
                tmp.index = ac97->num;
                kctl = snd_ctl_new1(&tmp, ac97);
        } else {
                struct snd_kcontrol_new tmp = AC97_SINGLE(name, reg, 15, 1, 1);
                if (check_amix)
                        tmp.private_value |= (1 << 30);
                tmp.index = ac97->num;
                kctl = snd_ctl_new1(&tmp, ac97);
        }
        err = snd_ctl_add(card, kctl);
        if (err < 0)
                return err;
        /* mute as default */
        snd_ac97_write_cache(ac97, reg, val | mute_mask);
        return 0;
}

/*
 * set dB information
 */
static const DECLARE_TLV_DB_SCALE(db_scale_4bit, -4500, 300, 0);
static const DECLARE_TLV_DB_SCALE(db_scale_5bit, -4650, 150, 0);
static const DECLARE_TLV_DB_SCALE(db_scale_6bit, -9450, 150, 0);
static const DECLARE_TLV_DB_SCALE(db_scale_5bit_12db_max, -3450, 150, 0);
static const DECLARE_TLV_DB_SCALE(db_scale_rec_gain, 0, 150, 0);

static const unsigned int *find_db_scale(unsigned int maxval)
{
        switch (maxval) {
        case 0x0f: return db_scale_4bit;
        case 0x1f: return db_scale_5bit;
        case 0x3f: return db_scale_6bit;
        }
        return NULL;
}

static void set_tlv_db_scale(struct snd_kcontrol *kctl, const unsigned int *tlv)
{
        kctl->tlv.p = tlv;
        if (tlv)
                kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_TLV_READ;
}

/*
 * create a volume for normal stereo/mono controls
 */
static int snd_ac97_cvol_new(struct snd_card *card, char *name, int reg, unsigned int lo_max,
                             unsigned int hi_max, struct snd_ac97 *ac97)
{
        int err;
        struct snd_kcontrol *kctl;

        if (! snd_ac97_valid_reg(ac97, reg))
                return 0;
        if (hi_max) {
                /* invert */
                struct snd_kcontrol_new tmp = AC97_DOUBLE(name, reg, 8, 0, lo_max, 1);
                tmp.index = ac97->num;
                kctl = snd_ctl_new1(&tmp, ac97);
        } else {
                /* invert */
                struct snd_kcontrol_new tmp = AC97_SINGLE(name, reg, 0, lo_max, 1);
                tmp.index = ac97->num;
                kctl = snd_ctl_new1(&tmp, ac97);
        }
        if (reg >= AC97_PHONE && reg <= AC97_PCM)
                set_tlv_db_scale(kctl, db_scale_5bit_12db_max);
        else
                set_tlv_db_scale(kctl, find_db_scale(lo_max));
        err = snd_ctl_add(card, kctl);
        if (err < 0)
                return err;
        snd_ac97_write_cache(ac97, reg,
                             (snd_ac97_read(ac97, reg) & 0x8080) |
                             lo_max | (hi_max << 8));
        return 0;
}

/*
 * create a mute-switch and a volume for normal stereo/mono controls
 */
static int snd_ac97_cmix_new_stereo(struct snd_card *card, const char *pfx,
                                    int reg, int check_stereo, int check_amix,
                                    struct snd_ac97 *ac97)
{
        int err;
        char name[44];
        unsigned char lo_max, hi_max;

        if (! snd_ac97_valid_reg(ac97, reg))
                return 0;

        if (snd_ac97_try_bit(ac97, reg, 15)) {
                sprintf(name, "%s Switch", pfx);
                if ((err = snd_ac97_cmute_new_stereo(card, name, reg,
                                                     check_stereo, check_amix,
                                                     ac97)) < 0)
                        return err;
        }
        check_volume_resolution(ac97, reg, &lo_max, &hi_max);
        if (lo_max) {
                sprintf(name, "%s Volume", pfx);
                if ((err = snd_ac97_cvol_new(card, name, reg, lo_max, hi_max, ac97)) < 0)
                        return err;
        }
        return 0;
}

#define snd_ac97_cmix_new(card, pfx, reg, acheck, ac97) \
        snd_ac97_cmix_new_stereo(card, pfx, reg, 0, acheck, ac97)
#define snd_ac97_cmute_new(card, name, reg, acheck, ac97) \
        snd_ac97_cmute_new_stereo(card, name, reg, 0, acheck, ac97)

static unsigned int snd_ac97_determine_spdif_rates(struct snd_ac97 *ac97);

static int snd_ac97_mixer_build(struct snd_ac97 * ac97)
{
        struct snd_card *card = ac97->bus->card;
        struct snd_kcontrol *kctl;
        int err;
        unsigned int idx;
        unsigned char max;

        /* build master controls */
        /* AD claims to remove this control from AD1887, although spec v2.2 does not allow this */
        if (snd_ac97_try_volume_mix(ac97, AC97_MASTER)) {
                if (ac97->flags & AC97_HAS_NO_MASTER_VOL)
                        err = snd_ac97_cmute_new(card, "Master Playback Switch",
                                                 AC97_MASTER, 0, ac97);
                else
                        err = snd_ac97_cmix_new(card, "Master Playback",
                                                AC97_MASTER, 0, ac97);
                if (err < 0)
                        return err;
        }

        ac97->regs[AC97_CENTER_LFE_MASTER] = 0x8080;

        /* build center controls */
        if ((snd_ac97_try_volume_mix(ac97, AC97_CENTER_LFE_MASTER)) 
                && !(ac97->flags & AC97_AD_MULTI)) {
                if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_center[0], ac97))) < 0)
                        return err;
                if ((err = snd_ctl_add(card, kctl = snd_ac97_cnew(&snd_ac97_controls_center[1], ac97))) < 0)
                        return err;
                snd_ac97_change_volume_params2(ac97, AC97_CENTER_LFE_MASTER, 0, &max);
                kctl->private_value &= ~(0xff << 16);
                kctl->private_value |= (int)max << 16;
                set_tlv_db_scale(kctl, find_db_scale(max));
                snd_ac97_write_cache(ac97, AC97_CENTER_LFE_MASTER, ac97->regs[AC97_CENTER_LFE_MASTER] | max);
        }

        /* build LFE controls */
        if ((snd_ac97_try_volume_mix(ac97, AC97_CENTER_LFE_MASTER+1))
                && !(ac97->flags & AC97_AD_MULTI)) {
                if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_lfe[0], ac97))) < 0)
                        return err;
                if ((err = snd_ctl_add(card, kctl = snd_ac97_cnew(&snd_ac97_controls_lfe[1], ac97))) < 0)
                        return err;
                snd_ac97_change_volume_params2(ac97, AC97_CENTER_LFE_MASTER, 8, &max);
                kctl->private_value &= ~(0xff << 16);
                kctl->private_value |= (int)max << 16;
                set_tlv_db_scale(kctl, find_db_scale(max));
                snd_ac97_write_cache(ac97, AC97_CENTER_LFE_MASTER, ac97->regs[AC97_CENTER_LFE_MASTER] | max << 8);
        }

        /* build surround controls */
        if ((snd_ac97_try_volume_mix(ac97, AC97_SURROUND_MASTER)) 
                && !(ac97->flags & AC97_AD_MULTI)) {
                /* Surround Master (0x38) is with stereo mutes */
                if ((err = snd_ac97_cmix_new_stereo(card, "Surround Playback",
                                                    AC97_SURROUND_MASTER, 1, 0,
                                                    ac97)) < 0)
                        return err;
        }

        /* build headphone controls */
        if (snd_ac97_try_volume_mix(ac97, AC97_HEADPHONE)) {
                if ((err = snd_ac97_cmix_new(card, "Headphone Playback",
                                             AC97_HEADPHONE, 0, ac97)) < 0)
                        return err;
        }
        
        /* build master mono controls */
        if (snd_ac97_try_volume_mix(ac97, AC97_MASTER_MONO)) {
                if ((err = snd_ac97_cmix_new(card, "Master Mono Playback",
                                             AC97_MASTER_MONO, 0, ac97)) < 0)
                        return err;
        }
        
        /* build master tone controls */
        if (!(ac97->flags & AC97_HAS_NO_TONE)) {
                if (snd_ac97_try_volume_mix(ac97, AC97_MASTER_TONE)) {
                        for (idx = 0; idx < 2; idx++) {
                                if ((err = snd_ctl_add(card, kctl = snd_ac97_cnew(&snd_ac97_controls_tone[idx], ac97))) < 0)
                                        return err;
                                if (ac97->id == AC97_ID_YMF743 ||
                                    ac97->id == AC97_ID_YMF753) {
                                        kctl->private_value &= ~(0xff << 16);
                                        kctl->private_value |= 7 << 16;
                                }
                        }
                        snd_ac97_write_cache(ac97, AC97_MASTER_TONE, 0x0f0f);
                }
        }
        
        /* build PC Speaker controls */
        if (!(ac97->flags & AC97_HAS_NO_PC_BEEP) && 
                ((ac97->flags & AC97_HAS_PC_BEEP) ||
            snd_ac97_try_volume_mix(ac97, AC97_PC_BEEP))) {
                for (idx = 0; idx < 2; idx++)
                        if ((err = snd_ctl_add(card, kctl = snd_ac97_cnew(&snd_ac97_controls_pc_beep[idx], ac97))) < 0)
                                return err;
                set_tlv_db_scale(kctl, db_scale_4bit);
                snd_ac97_write_cache(ac97, AC97_PC_BEEP,
                                     snd_ac97_read(ac97, AC97_PC_BEEP) | 0x801e);
        }
        
        /* build Phone controls */
        if (!(ac97->flags & AC97_HAS_NO_PHONE)) {
                if (snd_ac97_try_volume_mix(ac97, AC97_PHONE)) {
                        if ((err = snd_ac97_cmix_new(card, "Phone Playback",
                                                     AC97_PHONE, 1, ac97)) < 0)
                                return err;
                }
        }
        
        /* build MIC controls */
        if (!(ac97->flags & AC97_HAS_NO_MIC)) {
                if (snd_ac97_try_volume_mix(ac97, AC97_MIC)) {
                        if ((err = snd_ac97_cmix_new(card, "Mic Playback",
                                                     AC97_MIC, 1, ac97)) < 0)
                                return err;
                        if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_mic_boost, ac97))) < 0)
                                return err;
                }
        }

        /* build Line controls */
        if (snd_ac97_try_volume_mix(ac97, AC97_LINE)) {
                if ((err = snd_ac97_cmix_new(card, "Line Playback",
                                             AC97_LINE, 1, ac97)) < 0)
                        return err;
        }
        
        /* build CD controls */
        if (!(ac97->flags & AC97_HAS_NO_CD)) {
                if (snd_ac97_try_volume_mix(ac97, AC97_CD)) {
                        if ((err = snd_ac97_cmix_new(card, "CD Playback",
                                                     AC97_CD, 1, ac97)) < 0)
                                return err;
                }
        }
        
        /* build Video controls */
        if (!(ac97->flags & AC97_HAS_NO_VIDEO)) {
                if (snd_ac97_try_volume_mix(ac97, AC97_VIDEO)) {
                        if ((err = snd_ac97_cmix_new(card, "Video Playback",
                                                     AC97_VIDEO, 1, ac97)) < 0)
                                return err;
                }
        }

        /* build Aux controls */
        if (!(ac97->flags & AC97_HAS_NO_AUX)) {
                if (snd_ac97_try_volume_mix(ac97, AC97_AUX)) {
                        if ((err = snd_ac97_cmix_new(card, "Aux Playback",
                                                     AC97_AUX, 1, ac97)) < 0)
                                return err;
                }
        }

        /* build PCM controls */
        if (ac97->flags & AC97_AD_MULTI) {
                unsigned short init_val;
                if (ac97->flags & AC97_STEREO_MUTES)
                        init_val = 0x9f9f;
                else
                        init_val = 0x9f1f;
                for (idx = 0; idx < 2; idx++)
                        if ((err = snd_ctl_add(card, kctl = snd_ac97_cnew(&snd_ac97_controls_ad18xx_pcm[idx], ac97))) < 0)
                                return err;
                set_tlv_db_scale(kctl, db_scale_5bit);
                ac97->spec.ad18xx.pcmreg[0] = init_val;
                if (ac97->scaps & AC97_SCAP_SURROUND_DAC) {
                        for (idx = 0; idx < 2; idx++)
                                if ((err = snd_ctl_add(card, kctl = snd_ac97_cnew(&snd_ac97_controls_ad18xx_surround[idx], ac97))) < 0)
                                        return err;
                        set_tlv_db_scale(kctl, db_scale_5bit);
                        ac97->spec.ad18xx.pcmreg[1] = init_val;
                }
                if (ac97->scaps & AC97_SCAP_CENTER_LFE_DAC) {
                        for (idx = 0; idx < 2; idx++)
                                if ((err = snd_ctl_add(card, kctl = snd_ac97_cnew(&snd_ac97_controls_ad18xx_center[idx], ac97))) < 0)
                                        return err;
                        set_tlv_db_scale(kctl, db_scale_5bit);
                        for (idx = 0; idx < 2; idx++)
                                if ((err = snd_ctl_add(card, kctl = snd_ac97_cnew(&snd_ac97_controls_ad18xx_lfe[idx], ac97))) < 0)
                                        return err;
                        set_tlv_db_scale(kctl, db_scale_5bit);
                        ac97->spec.ad18xx.pcmreg[2] = init_val;
                }
                snd_ac97_write_cache(ac97, AC97_PCM, init_val);
        } else {
                if (!(ac97->flags & AC97_HAS_NO_STD_PCM)) {
                        if (ac97->flags & AC97_HAS_NO_PCM_VOL)
                                err = snd_ac97_cmute_new(card,
                                                         "PCM Playback Switch",
                                                         AC97_PCM, 0, ac97);
                        else
                                err = snd_ac97_cmix_new(card, "PCM Playback",
                                                        AC97_PCM, 0, ac97);
                        if (err < 0)
                                return err;
                }
        }

        /* build Capture controls */
        if (!(ac97->flags & AC97_HAS_NO_REC_GAIN)) {
                if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_control_capture_src, ac97))) < 0)
                        return err;
                if (snd_ac97_try_bit(ac97, AC97_REC_GAIN, 15)) {
                        err = snd_ac97_cmute_new(card, "Capture Switch",
                                                 AC97_REC_GAIN, 0, ac97);
                        if (err < 0)
                                return err;
                }
                if ((err = snd_ctl_add(card, kctl = snd_ac97_cnew(&snd_ac97_control_capture_vol, ac97))) < 0)
                        return err;
                set_tlv_db_scale(kctl, db_scale_rec_gain);
                snd_ac97_write_cache(ac97, AC97_REC_SEL, 0x0000);
                snd_ac97_write_cache(ac97, AC97_REC_GAIN, 0x0000);
        }
        /* build MIC Capture controls */
        if (snd_ac97_try_volume_mix(ac97, AC97_REC_GAIN_MIC)) {
                for (idx = 0; idx < 2; idx++)
                        if ((err = snd_ctl_add(card, kctl = snd_ac97_cnew(&snd_ac97_controls_mic_capture[idx], ac97))) < 0)
                                return err;
                set_tlv_db_scale(kctl, db_scale_rec_gain);
                snd_ac97_write_cache(ac97, AC97_REC_GAIN_MIC, 0x0000);
        }

        /* build PCM out path & mute control */
        if (snd_ac97_try_bit(ac97, AC97_GENERAL_PURPOSE, 15)) {
                if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_general[AC97_GENERAL_PCM_OUT], ac97))) < 0)
                        return err;
        }

        /* build Simulated Stereo Enhancement control */
        if (ac97->caps & 0x0008) {
                if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_general[AC97_GENERAL_STEREO_ENHANCEMENT], ac97))) < 0)
                        return err;
        }

        /* build 3D Stereo Enhancement control */
        if (snd_ac97_try_bit(ac97, AC97_GENERAL_PURPOSE, 13)) {
                if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_general[AC97_GENERAL_3D], ac97))) < 0)
                        return err;
        }

        /* build Loudness control */
        if (ac97->caps & 0x0020) {
                if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_general[AC97_GENERAL_LOUDNESS], ac97))) < 0)
                        return err;
        }

        /* build Mono output select control */
        if (snd_ac97_try_bit(ac97, AC97_GENERAL_PURPOSE, 9)) {
                if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_general[AC97_GENERAL_MONO], ac97))) < 0)
                        return err;
        }

        /* build Mic select control */
        if (snd_ac97_try_bit(ac97, AC97_GENERAL_PURPOSE, 8)) {
                if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_general[AC97_GENERAL_MIC], ac97))) < 0)
                        return err;
        }

        /* build ADC/DAC loopback control */
        if (enable_loopback && snd_ac97_try_bit(ac97, AC97_GENERAL_PURPOSE, 7)) {
                if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_general[AC97_GENERAL_LOOPBACK], ac97))) < 0)
                        return err;
        }

        snd_ac97_update_bits(ac97, AC97_GENERAL_PURPOSE, ~AC97_GP_DRSS_MASK, 0x0000);

        /* build 3D controls */
        if (ac97->build_ops->build_3d) {
                ac97->build_ops->build_3d(ac97);
        } else {
                if (snd_ac97_try_volume_mix(ac97, AC97_3D_CONTROL)) {
                        unsigned short val;
                        val = 0x0707;
                        snd_ac97_write(ac97, AC97_3D_CONTROL, val);
                        val = snd_ac97_read(ac97, AC97_3D_CONTROL);
                        val = val == 0x0606;
                        if ((err = snd_ctl_add(card, kctl = snd_ac97_cnew(&snd_ac97_controls_3d[0], ac97))) < 0)
                                return err;
                        if (val)
                                kctl->private_value = AC97_3D_CONTROL | (9 << 8) | (7 << 16);
                        if ((err = snd_ctl_add(card, kctl = snd_ac97_cnew(&snd_ac97_controls_3d[1], ac97))) < 0)
                                return err;
                        if (val)
                                kctl->private_value = AC97_3D_CONTROL | (1 << 8) | (7 << 16);
                        snd_ac97_write_cache(ac97, AC97_3D_CONTROL, 0x0000);
                }
        }

        /* build S/PDIF controls */

        /* Hack for ASUS P5P800-VM, which does not indicate S/PDIF capability */
        if (ac97->subsystem_vendor == 0x1043 &&
            ac97->subsystem_device == 0x810f)
                ac97->ext_id |= AC97_EI_SPDIF;

        if ((ac97->ext_id & AC97_EI_SPDIF) && !(ac97->scaps & AC97_SCAP_NO_SPDIF)) {
                if (ac97->build_ops->build_spdif) {
                        if ((err = ac97->build_ops->build_spdif(ac97)) < 0)
                                return err;
                } else {
                        for (idx = 0; idx < 5; idx++)
                                if ((err = snd_ctl_add(card, snd_ac97_cnew(&snd_ac97_controls_spdif[idx], ac97))) < 0)
                                        return err;
                        if (ac97->build_ops->build_post_spdif) {
                                if ((err = ac97->build_ops->build_post_spdif(ac97)) < 0)
                                        return err;
                        }
                        /* set default PCM S/PDIF params */
                        /* consumer,PCM audio,no copyright,no preemphasis,PCM coder,original,48000Hz */
                        snd_ac97_write_cache(ac97, AC97_SPDIF, 0x2a20);
                        ac97->rates[AC97_RATES_SPDIF] = snd_ac97_determine_spdif_rates(ac97);
                }
                ac97->spdif_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
        }
        
        /* build chip specific controls */
        if (ac97->build_ops->build_specific)
                if ((err = ac97->build_ops->build_specific(ac97)) < 0)
                        return err;

        if (snd_ac97_try_bit(ac97, AC97_POWERDOWN, 15)) {
                kctl = snd_ac97_cnew(&snd_ac97_control_eapd, ac97);
                if (! kctl)
                        return -ENOMEM;
                if (ac97->scaps & AC97_SCAP_INV_EAPD)
                        set_inv_eapd(ac97, kctl);
                if ((err = snd_ctl_add(card, kctl)) < 0)
                        return err;
        }

        return 0;
}

static int snd_ac97_modem_build(struct snd_card *card, struct snd_ac97 * ac97)
{
        int err, idx;

        //printk("AC97_GPIO_CFG = %x\n",snd_ac97_read(ac97,AC97_GPIO_CFG));
        snd_ac97_write(ac97, AC97_GPIO_CFG, 0xffff & ~(AC97_GPIO_LINE1_OH));
        snd_ac97_write(ac97, AC97_GPIO_POLARITY, 0xffff & ~(AC97_GPIO_LINE1_OH));
        snd_ac97_write(ac97, AC97_GPIO_STICKY, 0xffff);
        snd_ac97_write(ac97, AC97_GPIO_WAKEUP, 0x0);
        snd_ac97_write(ac97, AC97_MISC_AFE, 0x0);

        /* build modem switches */
        for (idx = 0; idx < ARRAY_SIZE(snd_ac97_controls_modem_switches); idx++)
                if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_ac97_controls_modem_switches[idx], ac97))) < 0)
                        return err;

        /* build chip specific controls */
        if (ac97->build_ops->build_specific)
                if ((err = ac97->build_ops->build_specific(ac97)) < 0)
                        return err;

        return 0;
}

static int snd_ac97_test_rate(struct snd_ac97 *ac97, int reg, int shadow_reg, int rate)
{
        unsigned short val;
        unsigned int tmp;

        tmp = ((unsigned int)rate * ac97->bus->clock) / 48000;
        snd_ac97_write_cache(ac97, reg, tmp & 0xffff);
        if (shadow_reg)
                snd_ac97_write_cache(ac97, shadow_reg, tmp & 0xffff);
        val = snd_ac97_read(ac97, reg);
        return val == (tmp & 0xffff);
}

static void snd_ac97_determine_rates(struct snd_ac97 *ac97, int reg, int shadow_reg, unsigned int *r_result)
{
        unsigned int result = 0;
        unsigned short saved;

        if (ac97->bus->no_vra) {
                *r_result = SNDRV_PCM_RATE_48000;
                if ((ac97->flags & AC97_DOUBLE_RATE) &&
                    reg == AC97_PCM_FRONT_DAC_RATE)
                        *r_result |= SNDRV_PCM_RATE_96000;
                return;
        }

        saved = snd_ac97_read(ac97, reg);
        if ((ac97->ext_id & AC97_EI_DRA) && reg == AC97_PCM_FRONT_DAC_RATE)
                snd_ac97_update_bits(ac97, AC97_EXTENDED_STATUS,
                                     AC97_EA_DRA, 0);
        /* test a non-standard rate */
        if (snd_ac97_test_rate(ac97, reg, shadow_reg, 11000))
                result |= SNDRV_PCM_RATE_CONTINUOUS;
        /* let's try to obtain standard rates */
        if (snd_ac97_test_rate(ac97, reg, shadow_reg, 8000))
                result |= SNDRV_PCM_RATE_8000;
        if (snd_ac97_test_rate(ac97, reg, shadow_reg, 11025))
                result |= SNDRV_PCM_RATE_11025;
        if (snd_ac97_test_rate(ac97, reg, shadow_reg, 16000))
                result |= SNDRV_PCM_RATE_16000;
        if (snd_ac97_test_rate(ac97, reg, shadow_reg, 22050))
                result |= SNDRV_PCM_RATE_22050;
        if (snd_ac97_test_rate(ac97, reg, shadow_reg, 32000))
                result |= SNDRV_PCM_RATE_32000;
        if (snd_ac97_test_rate(ac97, reg, shadow_reg, 44100))
                result |= SNDRV_PCM_RATE_44100;
        if (snd_ac97_test_rate(ac97, reg, shadow_reg, 48000))
                result |= SNDRV_PCM_RATE_48000;
        if ((ac97->flags & AC97_DOUBLE_RATE) &&
            reg == AC97_PCM_FRONT_DAC_RATE) {
                /* test standard double rates */
                snd_ac97_update_bits(ac97, AC97_EXTENDED_STATUS,
                                     AC97_EA_DRA, AC97_EA_DRA);
                if (snd_ac97_test_rate(ac97, reg, shadow_reg, 64000 / 2))
                        result |= SNDRV_PCM_RATE_64000;
                if (snd_ac97_test_rate(ac97, reg, shadow_reg, 88200 / 2))
                        result |= SNDRV_PCM_RATE_88200;
                if (snd_ac97_test_rate(ac97, reg, shadow_reg, 96000 / 2))
                        result |= SNDRV_PCM_RATE_96000;
                /* some codecs don't support variable double rates */
                if (!snd_ac97_test_rate(ac97, reg, shadow_reg, 76100 / 2))
                        result &= ~SNDRV_PCM_RATE_CONTINUOUS;
                snd_ac97_update_bits(ac97, AC97_EXTENDED_STATUS,
                                     AC97_EA_DRA, 0);
        }
        /* restore the default value */
        snd_ac97_write_cache(ac97, reg, saved);
        if (shadow_reg)
                snd_ac97_write_cache(ac97, shadow_reg, saved);
        *r_result = result;
}

/* check AC97_SPDIF register to accept which sample rates */
static unsigned int snd_ac97_determine_spdif_rates(struct snd_ac97 *ac97)
{
        unsigned int result = 0;
        int i;
        static unsigned short ctl_bits[] = {
                AC97_SC_SPSR_44K, AC97_SC_SPSR_32K, AC97_SC_SPSR_48K
        };
        static unsigned int rate_bits[] = {
                SNDRV_PCM_RATE_44100, SNDRV_PCM_RATE_32000, SNDRV_PCM_RATE_48000
        };

        for (i = 0; i < (int)ARRAY_SIZE(ctl_bits); i++) {
                snd_ac97_update_bits(ac97, AC97_SPDIF, AC97_SC_SPSR_MASK, ctl_bits[i]);
                if ((snd_ac97_read(ac97, AC97_SPDIF) & AC97_SC_SPSR_MASK) == ctl_bits[i])
                        result |= rate_bits[i];
        }
        return result;
}

/* look for the codec id table matching with the given id */
static const struct ac97_codec_id *look_for_codec_id(const struct ac97_codec_id *table,
                                                     unsigned int id)
{
        const struct ac97_codec_id *pid;

        for (pid = table; pid->id; pid++)
                if (pid->id == (id & pid->mask))
                        return pid;
        return NULL;
}

void snd_ac97_get_name(struct snd_ac97 *ac97, unsigned int id, char *name, int modem)
{
        const struct ac97_codec_id *pid;

        sprintf(name, "0x%x %c%c%c", id,
                printable(id >> 24),
                printable(id >> 16),
                printable(id >> 8));
        pid = look_for_codec_id(snd_ac97_codec_id_vendors, id);
        if (! pid)
                return;

        strcpy(name, pid->name);
        if (ac97 && pid->patch) {
                if ((modem && (pid->flags & AC97_MODEM_PATCH)) ||
                    (! modem && ! (pid->flags & AC97_MODEM_PATCH)))
                        pid->patch(ac97);
        } 

        pid = look_for_codec_id(snd_ac97_codec_ids, id);
        if (pid) {
                strcat(name, " ");
                strcat(name, pid->name);
                if (pid->mask != 0xffffffff)
                        sprintf(name + strlen(name), " rev %d", id & ~pid->mask);
                if (ac97 && pid->patch) {
                        if ((modem && (pid->flags & AC97_MODEM_PATCH)) ||
                            (! modem && ! (pid->flags & AC97_MODEM_PATCH)))
                                pid->patch(ac97);
                }
        } else
                sprintf(name + strlen(name), " id %x", id & 0xff);
}

/**
 * snd_ac97_get_short_name - retrieve codec name
 * @ac97: the codec instance
 *
 * Returns the short identifying name of the codec.
 */
const char *snd_ac97_get_short_name(struct snd_ac97 *ac97)
{
        const struct ac97_codec_id *pid;

        for (pid = snd_ac97_codec_ids; pid->id; pid++)
                if (pid->id == (ac97->id & pid->mask))
                        return pid->name;
        return "unknown codec";
}

EXPORT_SYMBOL(snd_ac97_get_short_name);

/* wait for a while until registers are accessible after RESET
 * return 0 if ok, negative not ready
 */
static int ac97_reset_wait(struct snd_ac97 *ac97, int timeout, int with_modem)
{
        unsigned long end_time;
        unsigned short val;

        end_time = jiffies + timeout;
        do {
                
                /* use preliminary reads to settle the communication */
                snd_ac97_read(ac97, AC97_RESET);
                snd_ac97_read(ac97, AC97_VENDOR_ID1);
                snd_ac97_read(ac97, AC97_VENDOR_ID2);
                /* modem? */
                if (with_modem) {
                        val = snd_ac97_read(ac97, AC97_EXTENDED_MID);
                        if (val != 0xffff && (val & 1) != 0)
                                return 0;
                }
                if (ac97->scaps & AC97_SCAP_DETECT_BY_VENDOR) {
                        /* probably only Xbox issue - all registers are read as zero */
                        val = snd_ac97_read(ac97, AC97_VENDOR_ID1);
                        if (val != 0 && val != 0xffff)
                                return 0;
                } else {
                        /* because the PCM or MASTER volume registers can be modified,
                         * the REC_GAIN register is used for tests
                         */
                        /* test if we can write to the record gain volume register */
                        snd_ac97_write_cache(ac97, AC97_REC_GAIN, 0x8a05);
                        if ((snd_ac97_read(ac97, AC97_REC_GAIN) & 0x7fff) == 0x0a05)
                                return 0;
                }
                schedule_timeout_uninterruptible(1);
        } while (time_after_eq(end_time, jiffies));
        return -ENODEV;
}

/**
 * snd_ac97_bus - create an AC97 bus component
 * @card: the card instance
 * @num: the bus number
 * @ops: the bus callbacks table
 * @private_data: private data pointer for the new instance
 * @rbus: the pointer to store the new AC97 bus instance.
 *
 * Creates an AC97 bus component.  An struct snd_ac97_bus instance is newly
 * allocated and initialized.
 *
 * The ops table must include valid callbacks (at least read and
 * write).  The other callbacks, wait and reset, are not mandatory.
 * 
 * The clock is set to 48000.  If another clock is needed, set
 * (*rbus)->clock manually.
 *
 * The AC97 bus instance is registered as a low-level device, so you don't
 * have to release it manually.
 *
 * Returns zero if successful, or a negative error code on failure.
 */
int snd_ac97_bus(struct snd_card *card, int num, struct snd_ac97_bus_ops *ops,
                 void *private_data, struct snd_ac97_bus **rbus)
{
        int err;
        struct snd_ac97_bus *bus;
        static struct snd_device_ops dev_ops = {
                .dev_free =     snd_ac97_bus_dev_free,
        };

        if (snd_BUG_ON(!card))
                return -EINVAL;
        bus = kzalloc(sizeof(*bus), GFP_KERNEL);
        if (bus == NULL)
                return -ENOMEM;
        bus->card = card;
        bus->num = num;
        bus->ops = ops;
        bus->private_data = private_data;
        bus->clock = 48000;
        spin_lock_init(&bus->bus_lock);
        snd_ac97_bus_proc_init(bus);
        if ((err = snd_device_new(card, SNDRV_DEV_BUS, bus, &dev_ops)) < 0) {
                snd_ac97_bus_free(bus);
                return err;
        }
        if (rbus)
                *rbus = bus;
        return 0;
}

EXPORT_SYMBOL(snd_ac97_bus);

/* stop no dev release warning */
static void ac97_device_release(struct device * dev)
{
}

/* register ac97 codec to bus */
static int snd_ac97_dev_register(struct snd_device *device)
{
        struct snd_ac97 *ac97 = device->device_data;
        int err;

        ac97->dev.bus = &ac97_bus_type;
        ac97->dev.parent = ac97->bus->card->dev;
        ac97->dev.release = ac97_device_release;
        snprintf(ac97->dev.bus_id, BUS_ID_SIZE, "%d-%d:%s",
                 ac97->bus->card->number, ac97->num,
                 snd_ac97_get_short_name(ac97));
        if ((err = device_register(&ac97->dev)) < 0) {
                snd_printk(KERN_ERR "Can't register ac97 bus\n");
                ac97->dev.bus = NULL;
                return err;
        }
        return 0;
}

/* disconnect ac97 codec */
static int snd_ac97_dev_disconnect(struct snd_device *device)
{
        struct snd_ac97 *ac97 = device->device_data;
        if (ac97->dev.bus)
                device_unregister(&ac97->dev);
        return 0;
}

/* build_ops to do nothing */
static struct snd_ac97_build_ops null_build_ops;

#ifdef CONFIG_SND_AC97_POWER_SAVE
static void do_update_power(struct work_struct *work)
{
        update_power_regs(
                container_of(work, struct snd_ac97, power_work.work));
}
#endif

/**
 * snd_ac97_mixer - create an Codec97 component
 * @bus: the AC97 bus which codec is attached to
 * @template: the template of ac97, including index, callbacks and
 *         the private data.
 * @rac97: the pointer to store the new ac97 instance.
 *
 * Creates an Codec97 component.  An struct snd_ac97 instance is newly
 * allocated and initialized from the template.  The codec
 * is then initialized by the standard procedure.
 *
 * The template must include the codec number (num) and address (addr),
 * and the private data (private_data).
 * 
 * The ac97 instance is registered as a low-level device, so you don't
 * have to release it manually.
 *
 * Returns zero if successful, or a negative error code on failure.
 */
int snd_ac97_mixer(struct snd_ac97_bus *bus, struct snd_ac97_template *template, struct snd_ac97 **rac97)
{
        int err;
        struct snd_ac97 *ac97;
        struct snd_card *card;
        char name[64];
        unsigned long end_time;
        unsigned int reg;
        const struct ac97_codec_id *pid;
        static struct snd_device_ops ops = {
                .dev_free =     snd_ac97_dev_free,
                .dev_register = snd_ac97_dev_register,
                .dev_disconnect =       snd_ac97_dev_disconnect,
        };

        if (rac97)
                *rac97 = NULL;
        if (snd_BUG_ON(!bus || !template))
                return -EINVAL;
        if (snd_BUG_ON(template->num >= 4))
                return -EINVAL;
        if (bus->codec[template->num])
                return -EBUSY;

        card = bus->card;
        ac97 = kzalloc(sizeof(*ac97), GFP_KERNEL);
        if (ac97 == NULL)
                return -ENOMEM;
        ac97->private_data = template->private_data;
        ac97->private_free = template->private_free;
        ac97->bus = bus;
        ac97->pci = template->pci;
        ac97->num = template->num;
        ac97->addr = template->addr;
        ac97->scaps = template->scaps;
        ac97->res_table = template->res_table;
        bus->codec[ac97->num] = ac97;
        mutex_init(&ac97->reg_mutex);
        mutex_init(&ac97->page_mutex);
#ifdef CONFIG_SND_AC97_POWER_SAVE
        INIT_DELAYED_WORK(&ac97->power_work, do_update_power);
#endif

#ifdef CONFIG_PCI
        if (ac97->pci) {
                pci_read_config_word(ac97->pci, PCI_SUBSYSTEM_VENDOR_ID, &ac97->subsystem_vendor);
                pci_read_config_word(ac97->pci, PCI_SUBSYSTEM_ID, &ac97->subsystem_device);
        }
#endif
        if (bus->ops->reset) {
                bus->ops->reset(ac97);
                goto __access_ok;
        }

        ac97->id = snd_ac97_read(ac97, AC97_VENDOR_ID1) << 16;
        ac97->id |= snd_ac97_read(ac97, AC97_VENDOR_ID2);
        if (ac97->id && ac97->id != (unsigned int)-1) {
                pid = look_for_codec_id(snd_ac97_codec_ids, ac97->id);
                if (pid && (pid->flags & AC97_DEFAULT_POWER_OFF))
                        goto __access_ok;
        }

        /* reset to defaults */
        if (!(ac97->scaps & AC97_SCAP_SKIP_AUDIO))
                snd_ac97_write(ac97, AC97_RESET, 0);
        if (!(ac97->scaps & AC97_SCAP_SKIP_MODEM))
                snd_ac97_write(ac97, AC97_EXTENDED_MID, 0);
        if (bus->ops->wait)
                bus->ops->wait(ac97);
        else {
                udelay(50);
                if (ac97->scaps & AC97_SCAP_SKIP_AUDIO)
                        err = ac97_reset_wait(ac97, msecs_to_jiffies(500), 1);
                else {
                        err = ac97_reset_wait(ac97, msecs_to_jiffies(500), 0);
                        if (err < 0)
                                err = ac97_reset_wait(ac97,
                                                      msecs_to_jiffies(500), 1);
                }
                if (err < 0) {
                        snd_printk(KERN_WARNING "AC'97 %d does not respond - RESET\n", ac97->num);
                        /* proceed anyway - it's often non-critical */
                }
        }
      __access_ok:
        ac97->id = snd_ac97_read(ac97, AC97_VENDOR_ID1) << 16;
        ac97->id |= snd_ac97_read(ac97, AC97_VENDOR_ID2);
        if (! (ac97->scaps & AC97_SCAP_DETECT_BY_VENDOR) &&
            (ac97->id == 0x00000000 || ac97->id == 0xffffffff)) {
                snd_printk(KERN_ERR "AC'97 %d access is not valid [0x%x], removing mixer.\n", ac97->num, ac97->id);
                snd_ac97_free(ac97);
                return -EIO;
        }
        pid = look_for_codec_id(snd_ac97_codec_ids, ac97->id);
        if (pid)
                ac97->flags |= pid->flags;
        
        /* test for AC'97 */
        if (!(ac97->scaps & AC97_SCAP_SKIP_AUDIO) && !(ac97->scaps & AC97_SCAP_AUDIO)) {
                /* test if we can write to the record gain volume register */
                snd_ac97_write_cache(ac97, AC97_REC_GAIN, 0x8a06);
                if (((err = snd_ac97_read(ac97, AC97_REC_GAIN)) & 0x7fff) == 0x0a06)
                        ac97->scaps |= AC97_SCAP_AUDIO;
        }
        if (ac97->scaps & AC97_SCAP_AUDIO) {
                ac97->caps = snd_ac97_read(ac97, AC97_RESET);
                ac97->ext_id = snd_ac97_read(ac97, AC97_EXTENDED_ID);
                if (ac97->ext_id == 0xffff)     /* invalid combination */
                        ac97->ext_id = 0;
        }

        /* test for MC'97 */
        if (!(ac97->scaps & AC97_SCAP_SKIP_MODEM) && !(ac97->scaps & AC97_SCAP_MODEM)) {
                ac97->ext_mid = snd_ac97_read(ac97, AC97_EXTENDED_MID);
                if (ac97->ext_mid == 0xffff)    /* invalid combination */
                        ac97->ext_mid = 0;
                if (ac97->ext_mid & 1)
                        ac97->scaps |= AC97_SCAP_MODEM;
        }

        if (!ac97_is_audio(ac97) && !ac97_is_modem(ac97)) {
                if (!(ac97->scaps & (AC97_SCAP_SKIP_AUDIO|AC97_SCAP_SKIP_MODEM)))
                        snd_printk(KERN_ERR "AC'97 %d access error (not audio or modem codec)\n", ac97->num);
                snd_ac97_free(ac97);
                return -EACCES;
        }

        if (bus->ops->reset) // FIXME: always skipping?
                goto __ready_ok;

        /* FIXME: add powerdown control */
        if (ac97_is_audio(ac97)) {
                /* nothing should be in powerdown mode */
                snd_ac97_write_cache(ac97, AC97_POWERDOWN, 0);
                if (! (ac97->flags & AC97_DEFAULT_POWER_OFF)) {
                        snd_ac97_write_cache(ac97, AC97_RESET, 0); /* reset to defaults */
                        udelay(100);
                        snd_ac97_write_cache(ac97, AC97_POWERDOWN, 0);
                }
                /* nothing should be in powerdown mode */
                snd_ac97_write_cache(ac97, AC97_GENERAL_PURPOSE, 0);
                end_time = jiffies + msecs_to_jiffies(100);
                do {
                        if ((snd_ac97_read(ac97, AC97_POWERDOWN) & 0x0f) == 0x0f)
                                goto __ready_ok;
                        schedule_timeout_uninterruptible(1);
                } while (time_after_eq(end_time, jiffies));
                snd_printk(KERN_WARNING "AC'97 %d analog subsections not ready\n", ac97->num);
        }

        /* FIXME: add powerdown control */
        if (ac97_is_modem(ac97)) {
                unsigned char tmp;

                /* nothing should be in powerdown mode */
                /* note: it's important to set the rate at first */
                tmp = AC97_MEA_GPIO;
                if (ac97->ext_mid & AC97_MEI_LINE1) {
                        snd_ac97_write_cache(ac97, AC97_LINE1_RATE, 8000);
                        tmp |= AC97_MEA_ADC1 | AC97_MEA_DAC1;
                }
                if (ac97->ext_mid & AC97_MEI_LINE2) {
                        snd_ac97_write_cache(ac97, AC97_LINE2_RATE, 8000);
                        tmp |= AC97_MEA_ADC2 | AC97_MEA_DAC2;
                }
                if (ac97->ext_mid & AC97_MEI_HANDSET) {
                        snd_ac97_write_cache(ac97, AC97_HANDSET_RATE, 8000);
                        tmp |= AC97_MEA_HADC | AC97_MEA_HDAC;
                }
                snd_ac97_write_cache(ac97, AC97_EXTENDED_MSTATUS, 0);
                udelay(100);
                /* nothing should be in powerdown mode */
                snd_ac97_write_cache(ac97, AC97_EXTENDED_MSTATUS, 0);
                end_time = jiffies + msecs_to_jiffies(100);
                do {
                        if ((snd_ac97_read(ac97, AC97_EXTENDED_MSTATUS) & tmp) == tmp)
                                goto __ready_ok;
                        schedule_timeout_uninterruptible(1);
                } while (time_after_eq(end_time, jiffies));
                snd_printk(KERN_WARNING "MC'97 %d converters and GPIO not ready (0x%x)\n", ac97->num, snd_ac97_read(ac97, AC97_EXTENDED_MSTATUS));
        }
        
      __ready_ok:
        if (ac97_is_audio(ac97))
                ac97->addr = (ac97->ext_id & AC97_EI_ADDR_MASK) >> AC97_EI_ADDR_SHIFT;
        else
                ac97->addr = (ac97->ext_mid & AC97_MEI_ADDR_MASK) >> AC97_MEI_ADDR_SHIFT;
        if (ac97->ext_id & 0x01c9) {    /* L/R, MIC, SDAC, LDAC VRA support */
                reg = snd_ac97_read(ac97, AC97_EXTENDED_STATUS);
                reg |= ac97->ext_id & 0x01c0; /* LDAC/SDAC/CDAC */
                if (! bus->no_vra)
                        reg |= ac97->ext_id & 0x0009; /* VRA/VRM */
                snd_ac97_write_cache(ac97, AC97_EXTENDED_STATUS, reg);
        }
        if ((ac97->ext_id & AC97_EI_DRA) && bus->dra) {
                /* Intel controllers require double rate data to be put in
                 * slots 7+8, so let's hope the codec supports it. */
                snd_ac97_update_bits(ac97, AC97_GENERAL_PURPOSE, AC97_GP_DRSS_MASK, AC97_GP_DRSS_78);
                if ((snd_ac97_read(ac97, AC97_GENERAL_PURPOSE) & AC97_GP_DRSS_MASK) == AC97_GP_DRSS_78)
                        ac97->flags |= AC97_DOUBLE_RATE;
                /* restore to slots 10/11 to avoid the confliction with surrounds */
                snd_ac97_update_bits(ac97, AC97_GENERAL_PURPOSE, AC97_GP_DRSS_MASK, 0);
        }
        if (ac97->ext_id & AC97_EI_VRA) {       /* VRA support */
                snd_ac97_determine_rates(ac97, AC97_PCM_FRONT_DAC_RATE, 0, &ac97->rates[AC97_RATES_FRONT_DAC]);
                snd_ac97_determine_rates(ac97, AC97_PCM_LR_ADC_RATE, 0, &ac97->rates[AC97_RATES_ADC]);
        } else {
                ac97->rates[AC97_RATES_FRONT_DAC] = SNDRV_PCM_RATE_48000;
                if (ac97->flags & AC97_DOUBLE_RATE)
                        ac97->rates[AC97_RATES_FRONT_DAC] |= SNDRV_PCM_RATE_96000;
                ac97->rates[AC97_RATES_ADC] = SNDRV_PCM_RATE_48000;
        }
        if (ac97->ext_id & AC97_EI_SPDIF) {
                /* codec specific code (patch) should override these values */
                ac97->rates[AC97_RATES_SPDIF] = SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_32000;
        }
        if (ac97->ext_id & AC97_EI_VRM) {       /* MIC VRA support */
                snd_ac97_determine_rates(ac97, AC97_PCM_MIC_ADC_RATE, 0, &ac97->rates[AC97_RATES_MIC_ADC]);
        } else {
                ac97->rates[AC97_RATES_MIC_ADC] = SNDRV_PCM_RATE_48000;
        }
        if (ac97->ext_id & AC97_EI_SDAC) {      /* SDAC support */
                snd_ac97_determine_rates(ac97, AC97_PCM_SURR_DAC_RATE, AC97_PCM_FRONT_DAC_RATE, &ac97->rates[AC97_RATES_SURR_DAC]);
                ac97->scaps |= AC97_SCAP_SURROUND_DAC;
        }
        if (ac97->ext_id & AC97_EI_LDAC) {      /* LDAC support */
                snd_ac97_determine_rates(ac97, AC97_PCM_LFE_DAC_RATE, AC97_PCM_FRONT_DAC_RATE, &ac97->rates[AC97_RATES_LFE_DAC]);
                ac97->scaps |= AC97_SCAP_CENTER_LFE_DAC;
        }
        /* additional initializations */
        if (bus->ops->init)
                bus->ops->init(ac97);
        snd_ac97_get_name(ac97, ac97->id, name, !ac97_is_audio(ac97));
        snd_ac97_get_name(NULL, ac97->id, name, !ac97_is_audio(ac97));  // ac97->id might be changed in the special setup code
        if (! ac97->build_ops)
                ac97->build_ops = &null_build_ops;

        if (ac97_is_audio(ac97)) {
                char comp[16];
                if (card->mixername[0] == '\0') {
                        strcpy(card->mixername, name);
                } else {
                        if (strlen(card->mixername) + 1 + strlen(name) + 1 <= sizeof(card->mixername)) {
                                strcat(card->mixername, ",");
                                strcat(card->mixername, name);
                        }
                }
                sprintf(comp, "AC97a:%08x", ac97->id);
                if ((err = snd_component_add(card, comp)) < 0) {
                        snd_ac97_free(ac97);
                        return err;
                }
                if (snd_ac97_mixer_build(ac97) < 0) {
                        snd_ac97_free(ac97);
                        return -ENOMEM;
                }
        }
        if (ac97_is_modem(ac97)) {
                char comp[16];
                if (card->mixername[0] == '\0') {
                        strcpy(card->mixername, name);
                } else {
                        if (strlen(card->mixername) + 1 + strlen(name) + 1 <= sizeof(card->mixername)) {
                                strcat(card->mixername, ",");
                                strcat(card->mixername, name);
                        }
                }
                sprintf(comp, "AC97m:%08x", ac97->id);
                if ((err = snd_component_add(card, comp)) < 0) {
                        snd_ac97_free(ac97);
                        return err;
                }
                if (snd_ac97_modem_build(card, ac97) < 0) {
                        snd_ac97_free(ac97);
                        return -ENOMEM;
                }
        }
        if (ac97_is_audio(ac97))
                update_power_regs(ac97);
        snd_ac97_proc_init(ac97);
        if ((err = snd_device_new(card, SNDRV_DEV_CODEC, ac97, &ops)) < 0) {
                snd_ac97_free(ac97);
                return err;
        }
        *rac97 = ac97;
        return 0;
}

EXPORT_SYMBOL(snd_ac97_mixer);

/*
 * Power down the chip.
 *
 * MASTER and HEADPHONE registers are muted but the register cache values
 * are not changed, so that the values can be restored in snd_ac97_resume().
 */
static void snd_ac97_powerdown(struct snd_ac97 *ac97)
{
        unsigned short power;

        if (ac97_is_audio(ac97)) {
                /* some codecs have stereo mute bits */
                snd_ac97_write(ac97, AC97_MASTER, 0x9f9f);
                snd_ac97_write(ac97, AC97_HEADPHONE, 0x9f9f);
        }

        /* surround, CLFE, mic powerdown */
        power = ac97->regs[AC97_EXTENDED_STATUS];
        if (ac97->scaps & AC97_SCAP_SURROUND_DAC)
                power |= AC97_EA_PRJ;
        if (ac97->scaps & AC97_SCAP_CENTER_LFE_DAC)
                power |= AC97_EA_PRI | AC97_EA_PRK;
        power |= AC97_EA_PRL;
        snd_ac97_write(ac97, AC97_EXTENDED_STATUS, power);

        /* powerdown external amplifier */
        if (ac97->scaps & AC97_SCAP_INV_EAPD)
                power = ac97->regs[AC97_POWERDOWN] & ~AC97_PD_EAPD;
        else if (! (ac97->scaps & AC97_SCAP_EAPD_LED))
                power = ac97->regs[AC97_POWERDOWN] | AC97_PD_EAPD;
        power |= AC97_PD_PR6;   /* Headphone amplifier powerdown */
        power |= AC97_PD_PR0 | AC97_PD_PR1;     /* ADC & DAC powerdown */
        snd_ac97_write(ac97, AC97_POWERDOWN, power);
        udelay(100);
        power |= AC97_PD_PR2;   /* Analog Mixer powerdown (Vref on) */
        snd_ac97_write(ac97, AC97_POWERDOWN, power);
        if (ac97_is_power_save_mode(ac97)) {
                power |= AC97_PD_PR3;   /* Analog Mixer powerdown */
                snd_ac97_write(ac97, AC97_POWERDOWN, power);
                udelay(100);
                /* AC-link powerdown, internal Clk disable */
                /* FIXME: this may cause click noises on some boards */
                power |= AC97_PD_PR4 | AC97_PD_PR5;
                snd_ac97_write(ac97, AC97_POWERDOWN, power);
        }
}


struct ac97_power_reg {
        unsigned short reg;
        unsigned short power_reg;
        unsigned short mask;
};

enum { PWIDX_ADC, PWIDX_FRONT, PWIDX_CLFE, PWIDX_SURR, PWIDX_MIC, PWIDX_SIZE };

static struct ac97_power_reg power_regs[PWIDX_SIZE] = {
        [PWIDX_ADC] = { AC97_PCM_LR_ADC_RATE, AC97_POWERDOWN, AC97_PD_PR0},
        [PWIDX_FRONT] = { AC97_PCM_FRONT_DAC_RATE, AC97_POWERDOWN, AC97_PD_PR1},
        [PWIDX_CLFE] = { AC97_PCM_LFE_DAC_RATE, AC97_EXTENDED_STATUS,
                         AC97_EA_PRI | AC97_EA_PRK},
        [PWIDX_SURR] = { AC97_PCM_SURR_DAC_RATE, AC97_EXTENDED_STATUS,
                         AC97_EA_PRJ},
        [PWIDX_MIC] = { AC97_PCM_MIC_ADC_RATE, AC97_EXTENDED_STATUS,
                        AC97_EA_PRL},
};

#ifdef CONFIG_SND_AC97_POWER_SAVE
/**
 * snd_ac97_update_power - update the powerdown register
 * @ac97: the codec instance
 * @reg: the rate register, e.g. AC97_PCM_FRONT_DAC_RATE
 * @powerup: non-zero when power up the part
 *
 * Update the AC97 powerdown register bits of the given part.
 */
int snd_ac97_update_power(struct snd_ac97 *ac97, int reg, int powerup)
{
        int i;

        if (! ac97)
                return 0;

        if (reg) {
                /* SPDIF requires DAC power, too */
                if (reg == AC97_SPDIF)
                        reg = AC97_PCM_FRONT_DAC_RATE;
                for (i = 0; i < PWIDX_SIZE; i++) {
                        if (power_regs[i].reg == reg) {
                                if (powerup)
                                        ac97->power_up |= (1 << i);
                                else
                                        ac97->power_up &= ~(1 << i);
                                break;
                        }
                }
        }

        if (ac97_is_power_save_mode(ac97) && !powerup)
                /* adjust power-down bits after two seconds delay
                 * (for avoiding loud click noises for many (OSS) apps
                 *  that open/close frequently)
                 */
                schedule_delayed_work(&ac97->power_work,
                                      msecs_to_jiffies(power_save * 1000));
        else {
                cancel_delayed_work(&ac97->power_work);
                update_power_regs(ac97);
        }

        return 0;
}

EXPORT_SYMBOL(snd_ac97_update_power);
#endif /* CONFIG_SND_AC97_POWER_SAVE */

static void update_power_regs(struct snd_ac97 *ac97)
{
        unsigned int power_up, bits;
        int i;

        power_up = (1 << PWIDX_FRONT) | (1 << PWIDX_ADC);
        power_up |= (1 << PWIDX_MIC);
        if (ac97->scaps & AC97_SCAP_SURROUND_DAC)
                power_up |= (1 << PWIDX_SURR);
        if (ac97->scaps & AC97_SCAP_CENTER_LFE_DAC)
                power_up |= (1 << PWIDX_CLFE);
#ifdef CONFIG_SND_AC97_POWER_SAVE
        if (ac97_is_power_save_mode(ac97))
                power_up = ac97->power_up;
#endif
        if (power_up) {
                if (ac97->regs[AC97_POWERDOWN] & AC97_PD_PR2) {
                        /* needs power-up analog mix and vref */
                        snd_ac97_update_bits(ac97, AC97_POWERDOWN,
                                             AC97_PD_PR3, 0);
                        msleep(1);
                        snd_ac97_update_bits(ac97, AC97_POWERDOWN,
                                             AC97_PD_PR2, 0);
                }
        }
        for (i = 0; i < PWIDX_SIZE; i++) {
                if (power_up & (1 << i))
                        bits = 0;
                else
                        bits = power_regs[i].mask;
                snd_ac97_update_bits(ac97, power_regs[i].power_reg,
                                     power_regs[i].mask, bits);
        }
        if (! power_up) {
                if (! (ac97->regs[AC97_POWERDOWN] & AC97_PD_PR2)) {
                        /* power down analog mix and vref */
                        snd_ac97_update_bits(ac97, AC97_POWERDOWN,
                                             AC97_PD_PR2, AC97_PD_PR2);
                        snd_ac97_update_bits(ac97, AC97_POWERDOWN,
                                             AC97_PD_PR3, AC97_PD_PR3);
                }
        }
}


#ifdef CONFIG_PM
/**
 * snd_ac97_suspend - General suspend function for AC97 codec
 * @ac97: the ac97 instance
 *
 * Suspends the codec, power down the chip.
 */
void snd_ac97_suspend(struct snd_ac97 *ac97)
{
        if (! ac97)
                return;
        if (ac97->build_ops->suspend)
                ac97->build_ops->suspend(ac97);
#ifdef CONFIG_SND_AC97_POWER_SAVE
        cancel_delayed_work(&ac97->power_work);
        flush_scheduled_work();
#endif
        snd_ac97_powerdown(ac97);
}

EXPORT_SYMBOL(snd_ac97_suspend);

/*
 * restore ac97 status
 */
static void snd_ac97_restore_status(struct snd_ac97 *ac97)
{
        int i;

        for (i = 2; i < 0x7c ; i += 2) {
                if (i == AC97_POWERDOWN || i == AC97_EXTENDED_ID)
                        continue;
                /* restore only accessible registers
                 * some chip (e.g. nm256) may hang up when unsupported registers
                 * are accessed..!
                 */
                if (test_bit(i, ac97->reg_accessed)) {
                        snd_ac97_write(ac97, i, ac97->regs[i]);
                        snd_ac97_read(ac97, i);
                }
        }
}

/*
 * restore IEC958 status
 */
static void snd_ac97_restore_iec958(struct snd_ac97 *ac97)
{
        if (ac97->ext_id & AC97_EI_SPDIF) {
                if (ac97->regs[AC97_EXTENDED_STATUS] & AC97_EA_SPDIF) {
                        /* reset spdif status */
                        snd_ac97_update_bits(ac97, AC97_EXTENDED_STATUS, AC97_EA_SPDIF, 0);
                        snd_ac97_write(ac97, AC97_EXTENDED_STATUS, ac97->regs[AC97_EXTENDED_STATUS]);
                        if (ac97->flags & AC97_CS_SPDIF)
                                snd_ac97_write(ac97, AC97_CSR_SPDIF, ac97->regs[AC97_CSR_SPDIF]);
                        else
                                snd_ac97_write(ac97, AC97_SPDIF, ac97->regs[AC97_SPDIF]);
                        snd_ac97_update_bits(ac97, AC97_EXTENDED_STATUS, AC97_EA_SPDIF, AC97_EA_SPDIF); /* turn on again */
                }
        }
}

/**
 * snd_ac97_resume - General resume function for AC97 codec
 * @ac97: the ac97 instance
 *
 * Do the standard resume procedure, power up and restoring the
 * old register values.
 */
void snd_ac97_resume(struct snd_ac97 *ac97)
{
        unsigned long end_time;

        if (! ac97)
                return;

        if (ac97->bus->ops->reset) {
                ac97->bus->ops->reset(ac97);
                goto  __reset_ready;
        }

        snd_ac97_write(ac97, AC97_POWERDOWN, 0);
        if (! (ac97->flags & AC97_DEFAULT_POWER_OFF)) {
                if (!(ac97->scaps & AC97_SCAP_SKIP_AUDIO))
                        snd_ac97_write(ac97, AC97_RESET, 0);
                else if (!(ac97->scaps & AC97_SCAP_SKIP_MODEM))
                        snd_ac97_write(ac97, AC97_EXTENDED_MID, 0);
                udelay(100);
                snd_ac97_write(ac97, AC97_POWERDOWN, 0);
        }
        snd_ac97_write(ac97, AC97_GENERAL_PURPOSE, 0);

        snd_ac97_write(ac97, AC97_POWERDOWN, ac97->regs[AC97_POWERDOWN]);
        if (ac97_is_audio(ac97)) {
                ac97->bus->ops->write(ac97, AC97_MASTER, 0x8101);
                end_time = jiffies + msecs_to_jiffies(100);
                do {
                        if (snd_ac97_read(ac97, AC97_MASTER) == 0x8101)
                                break;
                        schedule_timeout_uninterruptible(1);
                } while (time_after_eq(end_time, jiffies));
                /* FIXME: extra delay */
                ac97->bus->ops->write(ac97, AC97_MASTER, 0x8000);
                if (snd_ac97_read(ac97, AC97_MASTER) != 0x8000)
                        msleep(250);
        } else {
                end_time = jiffies + msecs_to_jiffies(100);
                do {
                        unsigned short val = snd_ac97_read(ac97, AC97_EXTENDED_MID);
                        if (val != 0xffff && (val & 1) != 0)
                                break;
                        schedule_timeout_uninterruptible(1);
                } while (time_after_eq(end_time, jiffies));
        }
__reset_ready:

        if (ac97->bus->ops->init)
                ac97->bus->ops->init(ac97);

        if (ac97->build_ops->resume)
                ac97->build_ops->resume(ac97);
        else {
                snd_ac97_restore_status(ac97);
                snd_ac97_restore_iec958(ac97);
        }
}

EXPORT_SYMBOL(snd_ac97_resume);
#endif


/*
 * Hardware tuning
 */
static void set_ctl_name(char *dst, const char *src, const char *suffix)
{
        if (suffix)
                sprintf(dst, "%s %s", src, suffix);
        else
                strcpy(dst, src);
}       

/* remove the control with the given name and optional suffix */
static int snd_ac97_remove_ctl(struct snd_ac97 *ac97, const char *name,
                               const char *suffix)
{
        struct snd_ctl_elem_id id;
        memset(&id, 0, sizeof(id));
        set_ctl_name(id.name, name, suffix);
        id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
        return snd_ctl_remove_id(ac97->bus->card, &id);
}

static struct snd_kcontrol *ctl_find(struct snd_ac97 *ac97, const char *name, const char *suffix)
{
        struct snd_ctl_elem_id sid;
        memset(&sid, 0, sizeof(sid));
        set_ctl_name(sid.name, name, suffix);
        sid.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
        return snd_ctl_find_id(ac97->bus->card, &sid);
}

/* rename the control with the given name and optional suffix */
static int snd_ac97_rename_ctl(struct snd_ac97 *ac97, const char *src,
                               const char *dst, const char *suffix)
{
        struct snd_kcontrol *kctl = ctl_find(ac97, src, suffix);
        if (kctl) {
                set_ctl_name(kctl->id.name, dst, suffix);
                return 0;
        }
        return -ENOENT;
}

/* rename both Volume and Switch controls - don't check the return value */
static void snd_ac97_rename_vol_ctl(struct snd_ac97 *ac97, const char *src,
                                    const char *dst)
{
        snd_ac97_rename_ctl(ac97, src, dst, "Switch");
        snd_ac97_rename_ctl(ac97, src, dst, "Volume");
}

/* swap controls */
static int snd_ac97_swap_ctl(struct snd_ac97 *ac97, const char *s1,
                             const char *s2, const char *suffix)
{
        struct snd_kcontrol *kctl1, *kctl2;
        kctl1 = ctl_find(ac97, s1, suffix);
        kctl2 = ctl_find(ac97, s2, suffix);
        if (kctl1 && kctl2) {
                set_ctl_name(kctl1->id.name, s2, suffix);
                set_ctl_name(kctl2->id.name, s1, suffix);
                return 0;
        }
        return -ENOENT;
}

#if 1
/* bind hp and master controls instead of using only hp control */
static int bind_hp_volsw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
        int err = snd_ac97_put_volsw(kcontrol, ucontrol);
        if (err > 0) {
                unsigned long priv_saved = kcontrol->private_value;
                kcontrol->private_value = (kcontrol->private_value & ~0xff) | AC97_HEADPHONE;
                snd_ac97_put_volsw(kcontrol, ucontrol);
                kcontrol->private_value = priv_saved;
        }
        return err;
}

/* ac97 tune: bind Master and Headphone controls */
static int tune_hp_only(struct snd_ac97 *ac97)
{
        struct snd_kcontrol *msw = ctl_find(ac97, "Master Playback Switch", NULL);
        struct snd_kcontrol *mvol = ctl_find(ac97, "Master Playback Volume", NULL);
        if (! msw || ! mvol)
                return -ENOENT;
        msw->put = bind_hp_volsw_put;
        mvol->put = bind_hp_volsw_put;
        snd_ac97_remove_ctl(ac97, "Headphone Playback", "Switch");
        snd_ac97_remove_ctl(ac97, "Headphone Playback", "Volume");
        return 0;
}

#else
/* ac97 tune: use Headphone control as master */
static int tune_hp_only(struct snd_ac97 *ac97)
{
        if (ctl_find(ac97, "Headphone Playback Switch", NULL) == NULL)
                return -ENOENT;
        snd_ac97_remove_ctl(ac97, "Master Playback", "Switch");
        snd_ac97_remove_ctl(ac97, "Master Playback", "Volume");
        snd_ac97_rename_vol_ctl(ac97, "Headphone Playback", "Master Playback");
        return 0;
}
#endif

/* ac97 tune: swap Headphone and Master controls */
static int tune_swap_hp(struct snd_ac97 *ac97)
{
        if (ctl_find(ac97, "Headphone Playback Switch", NULL) == NULL)
                return -ENOENT;
        snd_ac97_rename_vol_ctl(ac97, "Master Playback", "Line-Out Playback");
        snd_ac97_rename_vol_ctl(ac97, "Headphone Playback", "Master Playback");
        return 0;
}

/* ac97 tune: swap Surround and Master controls */
static int tune_swap_surround(struct snd_ac97 *ac97)
{
        if (snd_ac97_swap_ctl(ac97, "Master Playback", "Surround Playback", "Switch") ||
            snd_ac97_swap_ctl(ac97, "Master Playback", "Surround Playback", "Volume"))
                return -ENOENT;
        return 0;
}

/* ac97 tune: set up mic sharing for AD codecs */
static int tune_ad_sharing(struct snd_ac97 *ac97)
{
        unsigned short scfg;
        if ((ac97->id & 0xffffff00) != 0x41445300) {
                snd_printk(KERN_ERR "ac97_quirk AD_SHARING is only for AD codecs\n");
                return -EINVAL;
        }
        /* Turn on OMS bit to route microphone to back panel */
        scfg = snd_ac97_read(ac97, AC97_AD_SERIAL_CFG);
        snd_ac97_write_cache(ac97, AC97_AD_SERIAL_CFG, scfg | 0x0200);
        return 0;
}

static const struct snd_kcontrol_new snd_ac97_alc_jack_detect = 
AC97_SINGLE("Jack Detect", AC97_ALC650_CLOCK, 5, 1, 0);

/* ac97 tune: set up ALC jack-select */
static int tune_alc_jack(struct snd_ac97 *ac97)
{
        if ((ac97->id & 0xffffff00) != 0x414c4700) {
                snd_printk(KERN_ERR "ac97_quirk ALC_JACK is only for Realtek codecs\n");
                return -EINVAL;
        }
        snd_ac97_update_bits(ac97, 0x7a, 0x20, 0x20); /* select jack detect function */
        snd_ac97_update_bits(ac97, 0x7a, 0x01, 0x01); /* Line-out auto mute */
        if (ac97->id == AC97_ID_ALC658D)
                snd_ac97_update_bits(ac97, 0x74, 0x0800, 0x0800);
        return snd_ctl_add(ac97->bus->card, snd_ac97_cnew(&snd_ac97_alc_jack_detect, ac97));
}

/* ac97 tune: inversed EAPD bit */
static int tune_inv_eapd(struct snd_ac97 *ac97)
{
        struct snd_kcontrol *kctl = ctl_find(ac97, "External Amplifier", NULL);
        if (! kctl)
                return -ENOENT;
        set_inv_eapd(ac97, kctl);
        return 0;
}

static int master_mute_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
        int err = snd_ac97_put_volsw(kcontrol, ucontrol);
        if (err > 0) {
                struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
                int shift = (kcontrol->private_value >> 8) & 0x0f;
                int rshift = (kcontrol->private_value >> 12) & 0x0f;
                unsigned short mask;
                if (shift != rshift)
                        mask = 0x8080;
                else
                        mask = 0x8000;
                snd_ac97_update_bits(ac97, AC97_POWERDOWN, 0x8000,
                                     (ac97->regs[AC97_MASTER] & mask) == mask ?
                                     0x8000 : 0);
        }
        return err;
}

/* ac97 tune: EAPD controls mute LED bound with the master mute */
static int tune_mute_led(struct snd_ac97 *ac97)
{
        struct snd_kcontrol *msw = ctl_find(ac97, "Master Playback Switch", NULL);
        if (! msw)
                return -ENOENT;
        msw->put = master_mute_sw_put;
        snd_ac97_remove_ctl(ac97, "External Amplifier", NULL);
        snd_ac97_update_bits(ac97, AC97_POWERDOWN, 0x8000, 0x8000); /* mute LED on */
        ac97->scaps |= AC97_SCAP_EAPD_LED;
        return 0;
}

static int hp_master_mute_sw_put(struct snd_kcontrol *kcontrol,
                                 struct snd_ctl_elem_value *ucontrol)
{
        int err = bind_hp_volsw_put(kcontrol, ucontrol);
        if (err > 0) {
                struct snd_ac97 *ac97 = snd_kcontrol_chip(kcontrol);
                int shift = (kcontrol->private_value >> 8) & 0x0f;
                int rshift = (kcontrol->private_value >> 12) & 0x0f;
                unsigned short mask;
                if (shift != rshift)
                        mask = 0x8080;
                else
                        mask = 0x8000;
                snd_ac97_update_bits(ac97, AC97_POWERDOWN, 0x8000,
                                     (ac97->regs[AC97_MASTER] & mask) == mask ?
                                     0x8000 : 0);
        }
        return err;
}

static int tune_hp_mute_led(struct snd_ac97 *ac97)
{
        struct snd_kcontrol *msw = ctl_find(ac97, "Master Playback Switch", NULL);
        struct snd_kcontrol *mvol = ctl_find(ac97, "Master Playback Volume", NULL);
        if (! msw || ! mvol)
                return -ENOENT;
        msw->put = hp_master_mute_sw_put;
        mvol->put = bind_hp_volsw_put;
        snd_ac97_remove_ctl(ac97, "External Amplifier", NULL);
        snd_ac97_remove_ctl(ac97, "Headphone Playback", "Switch");
        snd_ac97_remove_ctl(ac97, "Headphone Playback", "Volume");
        snd_ac97_update_bits(ac97, AC97_POWERDOWN, 0x8000, 0x8000); /* mute LED on */
        return 0;
}

struct quirk_table {
        const char *name;
        int (*func)(struct snd_ac97 *);
};

static struct quirk_table applicable_quirks[] = {
        { "none", NULL },
        { "hp_only", tune_hp_only },
        { "swap_hp", tune_swap_hp },
        { "swap_surround", tune_swap_surround },
        { "ad_sharing", tune_ad_sharing },
        { "alc_jack", tune_alc_jack },
        { "inv_eapd", tune_inv_eapd },
        { "mute_led", tune_mute_led },
        { "hp_mute_led", tune_hp_mute_led },
};

/* apply the quirk with the given type */
static int apply_quirk(struct snd_ac97 *ac97, int type)
{
        if (type <= 0)
                return 0;
        else if (type >= ARRAY_SIZE(applicable_quirks))
                return -EINVAL;
        if (applicable_quirks[type].func)
                return applicable_quirks[type].func(ac97);
        return 0;
}

/* apply the quirk with the given name */
static int apply_quirk_str(struct snd_ac97 *ac97, const char *typestr)
{
        int i;
        struct quirk_table *q;

        for (i = 0; i < ARRAY_SIZE(applicable_quirks); i++) {
                q = &applicable_quirks[i];
                if (q->name && ! strcmp(typestr, q->name))
                        return apply_quirk(ac97, i);
        }
        /* for compatibility, accept the numbers, too */
        if (*typestr >= '0' && *typestr <= '9')
                return apply_quirk(ac97, (int)simple_strtoul(typestr, NULL, 10));
        return -EINVAL;
}

/**
 * snd_ac97_tune_hardware - tune up the hardware
 * @ac97: the ac97 instance
 * @quirk: quirk list
 * @override: explicit quirk value (overrides the list if non-NULL)
 *
 * Do some workaround for each pci device, such as renaming of the
 * headphone (true line-out) control as "Master".
 * The quirk-list must be terminated with a zero-filled entry.
 *
 * Returns zero if successful, or a negative error code on failure.
 */

int snd_ac97_tune_hardware(struct snd_ac97 *ac97, struct ac97_quirk *quirk, const char *override)
{
        int result;

        /* quirk overriden? */
        if (override && strcmp(override, "-1") && strcmp(override, "default")) {
                result = apply_quirk_str(ac97, override);
                if (result < 0)
                        snd_printk(KERN_ERR "applying quirk type %s failed (%d)\n", override, result);
                return result;
        }

        if (! quirk)
                return -EINVAL;

        for (; quirk->subvendor; quirk++) {
                if (quirk->subvendor != ac97->subsystem_vendor)
                        continue;
                if ((! quirk->mask && quirk->subdevice == ac97->subsystem_device) ||
                    quirk->subdevice == (quirk->mask & ac97->subsystem_device)) {
                        if (quirk->codec_id && quirk->codec_id != ac97->id)
                                continue;
                        snd_printdd("ac97 quirk for %s (%04x:%04x)\n", quirk->name, ac97->subsystem_vendor, ac97->subsystem_device);
                        result = apply_quirk(ac97, quirk->type);
                        if (result < 0)
                                snd_printk(KERN_ERR "applying quirk type %d for %s failed (%d)\n", quirk->type, quirk->name, result);
                        return result;
                }
        }
        return 0;
}

EXPORT_SYMBOL(snd_ac97_tune_hardware);

/*
 *  INIT part
 */

static int __init alsa_ac97_init(void)
{
        return 0;
}

static void __exit alsa_ac97_exit(void)
{
}

module_init(alsa_ac97_init)
module_exit(alsa_ac97_exit)

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading