[funini.com] -> [kei@sodan] -> Kernel Reading

root/sound/oss/opl3.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. enter_4op_mode
  2. opl3_ioctl
  3. opl3_detect
  4. opl3_kill_note
  5. store_instr
  6. opl3_set_instr
  7. calc_vol
  8. set_voice_volume
  9. opl3_start_note
  10. freq_to_fnum
  11. opl3_command
  12. opl3_reset
  13. opl3_open
  14. opl3_close
  15. opl3_hw_control
  16. opl3_load_patch
  17. opl3_panning
  18. opl3_volume_method
  19. opl3_aftertouch
  20. bend_pitch
  21. opl3_controller
  22. opl3_bender
  23. opl3_alloc_voice
  24. opl3_setup_voice
  25. opl3_init
  26. init_opl3
  27. cleanup_opl3
  28. setup_opl3

/*
 * sound/oss/opl3.c
 *
 * A low level driver for Yamaha YM3812 and OPL-3 -chips
 *
 *
 * Copyright (C) by Hannu Savolainen 1993-1997
 *
 * OSS/Free for Linux is distributed under the GNU GENERAL PUBLIC LICENSE (GPL)
 * Version 2 (June 1991). See the "COPYING" file distributed with this software
 * for more info.
 *
 *
 * Changes
 *      Thomas Sailer           ioctl code reworked (vmalloc/vfree removed)
 *      Alan Cox                modularisation, fixed sound_mem allocs.
 *      Christoph Hellwig       Adapted to module_init/module_exit
 *      Arnaldo C. de Melo      get rid of check_region, use request_region for
 *                              OPL4, release it on exit, some cleanups.
 *
 * Status
 *      Believed to work. Badly needs rewriting a bit to support multiple
 *      OPL3 devices.
 */

#include <linux/init.h>
#include <linux/module.h>
#include <linux/delay.h>

/*
 * Major improvements to the FM handling 30AUG92 by Rob Hooft,
 * hooft@chem.ruu.nl
 */

#include "sound_config.h"

#include "opl3_hw.h"

#define MAX_VOICE       18
#define OFFS_4OP        11

struct voice_info
{
        unsigned char   keyon_byte;
        long            bender;
        long            bender_range;
        unsigned long   orig_freq;
        unsigned long   current_freq;
        int             volume;
        int             mode;
        int             panning;        /* 0xffff means not set */
};

typedef struct opl_devinfo
{
        int             base;
        int             left_io, right_io;
        int             nr_voice;
        int             lv_map[MAX_VOICE];

        struct voice_info voc[MAX_VOICE];
        struct voice_alloc_info *v_alloc;
        struct channel_info *chn_info;

        struct sbi_instrument i_map[SBFM_MAXINSTR];
        struct sbi_instrument *act_i[MAX_VOICE];

        struct synth_info fm_info;

        int             busy;
        int             model;
        unsigned char   cmask;

        int             is_opl4;
} opl_devinfo;

static struct opl_devinfo *devc = NULL;

static int      detected_model;

static int      store_instr(int instr_no, struct sbi_instrument *instr);
static void     freq_to_fnum(int freq, int *block, int *fnum);
static void     opl3_command(int io_addr, unsigned int addr, unsigned int val);
static int      opl3_kill_note(int dev, int voice, int note, int velocity);

static void enter_4op_mode(void)
{
        int i;
        static int v4op[MAX_VOICE] = {
                0, 1, 2, 9, 10, 11, 6, 7, 8, 15, 16, 17
        };

        devc->cmask = 0x3f;     /* Connect all possible 4 OP voice operators */
        opl3_command(devc->right_io, CONNECTION_SELECT_REGISTER, 0x3f);

        for (i = 0; i < 3; i++)
                pv_map[i].voice_mode = 4;
        for (i = 3; i < 6; i++)
                pv_map[i].voice_mode = 0;

        for (i = 9; i < 12; i++)
                pv_map[i].voice_mode = 4;
        for (i = 12; i < 15; i++)
                pv_map[i].voice_mode = 0;

        for (i = 0; i < 12; i++)
                devc->lv_map[i] = v4op[i];
        devc->v_alloc->max_voice = devc->nr_voice = 12;
}

static int opl3_ioctl(int dev, unsigned int cmd, void __user * arg)
{
        struct sbi_instrument ins;
        
        switch (cmd) {
                case SNDCTL_FM_LOAD_INSTR:
                        printk(KERN_WARNING "Warning: Obsolete ioctl(SNDCTL_FM_LOAD_INSTR) used. Fix the program.\n");
                        if (copy_from_user(&ins, arg, sizeof(ins)))
                                return -EFAULT;
                        if (ins.channel < 0 || ins.channel >= SBFM_MAXINSTR) {
                                printk(KERN_WARNING "FM Error: Invalid instrument number %d\n", ins.channel);
                                return -EINVAL;
                        }
                        return store_instr(ins.channel, &ins);

                case SNDCTL_SYNTH_INFO:
                        devc->fm_info.nr_voices = (devc->nr_voice == 12) ? 6 : devc->nr_voice;
                        if (copy_to_user(arg, &devc->fm_info, sizeof(devc->fm_info)))
                                return -EFAULT;
                        return 0;

                case SNDCTL_SYNTH_MEMAVL:
                        return 0x7fffffff;

                case SNDCTL_FM_4OP_ENABLE:
                        if (devc->model == 2)
                                enter_4op_mode();
                        return 0;

                default:
                        return -EINVAL;
        }
}

static int opl3_detect(int ioaddr)
{
        /*
         * This function returns 1 if the FM chip is present at the given I/O port
         * The detection algorithm plays with the timer built in the FM chip and
         * looks for a change in the status register.
         *
         * Note! The timers of the FM chip are not connected to AdLib (and compatible)
         * boards.
         *
         * Note2! The chip is initialized if detected.
         */

        unsigned char stat1, signature;
        int i;

        if (devc != NULL)
        {
                printk(KERN_ERR "opl3: Only one OPL3 supported.\n");
                return 0;
        }

        devc = kzalloc(sizeof(*devc), GFP_KERNEL);

        if (devc == NULL)
        {
                printk(KERN_ERR "opl3: Can't allocate memory for the device control "
                        "structure \n ");
                return 0;
        }

        strcpy(devc->fm_info.name, "OPL2");

        if (!request_region(ioaddr, 4, devc->fm_info.name)) {
                printk(KERN_WARNING "opl3: I/O port 0x%x already in use\n", ioaddr);
                goto cleanup_devc;
        }

        devc->base = ioaddr;

        /* Reset timers 1 and 2 */
        opl3_command(ioaddr, TIMER_CONTROL_REGISTER, TIMER1_MASK | TIMER2_MASK);

        /* Reset the IRQ of the FM chip */
        opl3_command(ioaddr, TIMER_CONTROL_REGISTER, IRQ_RESET);

        signature = stat1 = inb(ioaddr);        /* Status register */

        if (signature != 0x00 && signature != 0x06 && signature != 0x02 &&
                signature != 0x0f)
        {
                MDB(printk(KERN_INFO "OPL3 not detected %x\n", signature));
                goto cleanup_region;
        }

        if (signature == 0x06)          /* OPL2 */
        {
                detected_model = 2;
        }
        else if (signature == 0x00 || signature == 0x0f)        /* OPL3 or OPL4 */
        {
                unsigned char tmp;

                detected_model = 3;

                /*
                 * Detect availability of OPL4 (_experimental_). Works probably
                 * only after a cold boot. In addition the OPL4 port
                 * of the chip may not be connected to the PC bus at all.
                 */

                opl3_command(ioaddr + 2, OPL3_MODE_REGISTER, 0x00);
                opl3_command(ioaddr + 2, OPL3_MODE_REGISTER, OPL3_ENABLE | OPL4_ENABLE);

                if ((tmp = inb(ioaddr)) == 0x02)        /* Have a OPL4 */
                {
                        detected_model = 4;
                }

                if (request_region(ioaddr - 8, 2, "OPL4"))      /* OPL4 port was free */
                {
                        int tmp;

                        outb((0x02), ioaddr - 8);       /* Select OPL4 ID register */
                        udelay(10);
                        tmp = inb(ioaddr - 7);          /* Read it */
                        udelay(10);

                        if (tmp == 0x20)        /* OPL4 should return 0x20 here */
                        {
                                detected_model = 4;
                                outb((0xF8), ioaddr - 8);       /* Select OPL4 FM mixer control */
                                udelay(10);
                                outb((0x1B), ioaddr - 7);       /* Write value */
                                udelay(10);
                        }
                        else
                        { /* release OPL4 port */
                                release_region(ioaddr - 8, 2);
                                detected_model = 3;
                        }
                }
                opl3_command(ioaddr + 2, OPL3_MODE_REGISTER, 0);
        }
        for (i = 0; i < 9; i++)
                opl3_command(ioaddr, KEYON_BLOCK + i, 0);       /*
                                                                 * Note off
                                                                 */

        opl3_command(ioaddr, TEST_REGISTER, ENABLE_WAVE_SELECT);
        opl3_command(ioaddr, PERCOSSION_REGISTER, 0x00);        /*
                                                                 * Melodic mode.
                                                                 */
        return 1;
cleanup_region:
        release_region(ioaddr, 4);
cleanup_devc:
        kfree(devc);
        devc = NULL;
        return 0;
}

static int opl3_kill_note  (int devno, int voice, int note, int velocity)
{
         struct physical_voice_info *map;

         if (voice < 0 || voice >= devc->nr_voice)
                 return 0;

         devc->v_alloc->map[voice] = 0;

         map = &pv_map[devc->lv_map[voice]];
         DEB(printk("Kill note %d\n", voice));

         if (map->voice_mode == 0)
                 return 0;

         opl3_command(map->ioaddr, KEYON_BLOCK + map->voice_num, devc->voc[voice].keyon_byte & ~0x20);
         devc->voc[voice].keyon_byte = 0;
         devc->voc[voice].bender = 0;
         devc->voc[voice].volume = 64;
         devc->voc[voice].panning = 0xffff;     /* Not set */
         devc->voc[voice].bender_range = 200;
         devc->voc[voice].orig_freq = 0;
         devc->voc[voice].current_freq = 0;
         devc->voc[voice].mode = 0;
         return 0;
}

#define HIHAT                   0
#define CYMBAL                  1
#define TOMTOM                  2
#define SNARE                   3
#define BDRUM                   4
#define UNDEFINED               TOMTOM
#define DEFAULT                 TOMTOM

static int store_instr(int instr_no, struct sbi_instrument *instr)
{
        if (instr->key != FM_PATCH && (instr->key != OPL3_PATCH || devc->model != 2))
                printk(KERN_WARNING "FM warning: Invalid patch format field (key) 0x%x\n", instr->key);
        memcpy((char *) &(devc->i_map[instr_no]), (char *) instr, sizeof(*instr));
        return 0;
}

static int opl3_set_instr  (int dev, int voice, int instr_no)
{
        if (voice < 0 || voice >= devc->nr_voice)
                return 0;
        if (instr_no < 0 || instr_no >= SBFM_MAXINSTR)
                instr_no = 0;   /* Acoustic piano (usually) */

        devc->act_i[voice] = &devc->i_map[instr_no];
        return 0;
}

/*
 * The next table looks magical, but it certainly is not. Its values have
 * been calculated as table[i]=8*log(i/64)/log(2) with an obvious exception
 * for i=0. This log-table converts a linear volume-scaling (0..127) to a
 * logarithmic scaling as present in the FM-synthesizer chips. so :    Volume
 * 64 =  0 db = relative volume  0 and:    Volume 32 = -6 db = relative
 * volume -8 it was implemented as a table because it is only 128 bytes and
 * it saves a lot of log() calculations. (RH)
 */

static char fm_volume_table[128] =
{
        -64, -48, -40, -35, -32, -29, -27, -26,
        -24, -23, -21, -20, -19, -18, -18, -17,
        -16, -15, -15, -14, -13, -13, -12, -12,
        -11, -11, -10, -10, -10, -9, -9, -8,
        -8, -8, -7, -7, -7, -6, -6, -6,
        -5, -5, -5, -5, -4, -4, -4, -4,
        -3, -3, -3, -3, -2, -2, -2, -2,
        -2, -1, -1, -1, -1, 0, 0, 0,
        0, 0, 0, 1, 1, 1, 1, 1,
        1, 2, 2, 2, 2, 2, 2, 2,
        3, 3, 3, 3, 3, 3, 3, 4,
        4, 4, 4, 4, 4, 4, 4, 5,
        5, 5, 5, 5, 5, 5, 5, 5,
        6, 6, 6, 6, 6, 6, 6, 6,
        6, 7, 7, 7, 7, 7, 7, 7,
        7, 7, 7, 8, 8, 8, 8, 8
};

static void calc_vol(unsigned char *regbyte, int volume, int main_vol)
{
        int level = (~*regbyte & 0x3f);

        if (main_vol > 127)
                main_vol = 127;
        volume = (volume * main_vol) / 127;

        if (level)
                level += fm_volume_table[volume];

        if (level > 0x3f)
                level = 0x3f;
        if (level < 0)
                level = 0;

        *regbyte = (*regbyte & 0xc0) | (~level & 0x3f);
}

static void set_voice_volume(int voice, int volume, int main_vol)
{
        unsigned char vol1, vol2, vol3, vol4;
        struct sbi_instrument *instr;
        struct physical_voice_info *map;

        if (voice < 0 || voice >= devc->nr_voice)
                return;

        map = &pv_map[devc->lv_map[voice]];
        instr = devc->act_i[voice];

        if (!instr)
                instr = &devc->i_map[0];

        if (instr->channel < 0)
                return;

        if (devc->voc[voice].mode == 0)
                return;

        if (devc->voc[voice].mode == 2)
        {
                vol1 = instr->operators[2];
                vol2 = instr->operators[3];
                if ((instr->operators[10] & 0x01))
                {
                        calc_vol(&vol1, volume, main_vol);
                        calc_vol(&vol2, volume, main_vol);
                }
                else
                {
                        calc_vol(&vol2, volume, main_vol);
                }
                opl3_command(map->ioaddr, KSL_LEVEL + map->op[0], vol1);
                opl3_command(map->ioaddr, KSL_LEVEL + map->op[1], vol2);
        }
        else
        {       /*
                 * 4 OP voice
                 */
                int connection;

                vol1 = instr->operators[2];
                vol2 = instr->operators[3];
                vol3 = instr->operators[OFFS_4OP + 2];
                vol4 = instr->operators[OFFS_4OP + 3];

                /*
                 * The connection method for 4 OP devc->voc is defined by the rightmost
                 * bits at the offsets 10 and 10+OFFS_4OP
                 */

                connection = ((instr->operators[10] & 0x01) << 1) | (instr->operators[10 + OFFS_4OP] & 0x01);

                switch (connection)
                {
                        case 0:
                                calc_vol(&vol4, volume, main_vol);
                                break;

                        case 1:
                                calc_vol(&vol2, volume, main_vol);
                                calc_vol(&vol4, volume, main_vol);
                                break;

                        case 2:
                                calc_vol(&vol1, volume, main_vol);
                                calc_vol(&vol4, volume, main_vol);
                                break;

                        case 3:
                                calc_vol(&vol1, volume, main_vol);
                                calc_vol(&vol3, volume, main_vol);
                                calc_vol(&vol4, volume, main_vol);
                                break;

                        default:
                                ;
                }
                opl3_command(map->ioaddr, KSL_LEVEL + map->op[0], vol1);
                opl3_command(map->ioaddr, KSL_LEVEL + map->op[1], vol2);
                opl3_command(map->ioaddr, KSL_LEVEL + map->op[2], vol3);
                opl3_command(map->ioaddr, KSL_LEVEL + map->op[3], vol4);
        }
}

static int opl3_start_note (int dev, int voice, int note, int volume)
{
        unsigned char data, fpc;
        int block, fnum, freq, voice_mode, pan;
        struct sbi_instrument *instr;
        struct physical_voice_info *map;

        if (voice < 0 || voice >= devc->nr_voice)
                return 0;

        map = &pv_map[devc->lv_map[voice]];
        pan = devc->voc[voice].panning;

        if (map->voice_mode == 0)
                return 0;

        if (note == 255)        /*
                                 * Just change the volume
                                 */
        {
                set_voice_volume(voice, volume, devc->voc[voice].volume);
                return 0;
        }

        /*
         * Kill previous note before playing
         */
        
        opl3_command(map->ioaddr, KSL_LEVEL + map->op[1], 0xff);        /*
                                                                         * Carrier
                                                                         * volume to
                                                                         * min
                                                                         */
        opl3_command(map->ioaddr, KSL_LEVEL + map->op[0], 0xff);        /*
                                                                         * Modulator
                                                                         * volume to
                                                                         */

        if (map->voice_mode == 4)
        {
                opl3_command(map->ioaddr, KSL_LEVEL + map->op[2], 0xff);
                opl3_command(map->ioaddr, KSL_LEVEL + map->op[3], 0xff);
        }

        opl3_command(map->ioaddr, KEYON_BLOCK + map->voice_num, 0x00);  /*
                                                                         * Note
                                                                         * off
                                                                         */

        instr = devc->act_i[voice];
        
        if (!instr)
                instr = &devc->i_map[0];

        if (instr->channel < 0)
        {
                printk(KERN_WARNING "opl3: Initializing voice %d with undefined instrument\n", voice);
                return 0;
        }

        if (map->voice_mode == 2 && instr->key == OPL3_PATCH)
                return 0;       /*
                                 * Cannot play
                                 */

        voice_mode = map->voice_mode;

        if (voice_mode == 4)
        {
                int voice_shift;

                voice_shift = (map->ioaddr == devc->left_io) ? 0 : 3;
                voice_shift += map->voice_num;

                if (instr->key != OPL3_PATCH)   /*
                                                 * Just 2 OP patch
                                                 */
                {
                        voice_mode = 2;
                        devc->cmask &= ~(1 << voice_shift);
                }
                else
                {
                        devc->cmask |= (1 << voice_shift);
                }

                opl3_command(devc->right_io, CONNECTION_SELECT_REGISTER, devc->cmask);
        }

        /*
         * Set Sound Characteristics
         */
        
        opl3_command(map->ioaddr, AM_VIB + map->op[0], instr->operators[0]);
        opl3_command(map->ioaddr, AM_VIB + map->op[1], instr->operators[1]);

        /*
         * Set Attack/Decay
         */
        
        opl3_command(map->ioaddr, ATTACK_DECAY + map->op[0], instr->operators[4]);
        opl3_command(map->ioaddr, ATTACK_DECAY + map->op[1], instr->operators[5]);

        /*
         * Set Sustain/Release
         */
        
        opl3_command(map->ioaddr, SUSTAIN_RELEASE + map->op[0], instr->operators[6]);
        opl3_command(map->ioaddr, SUSTAIN_RELEASE + map->op[1], instr->operators[7]);

        /*
         * Set Wave Select
         */

        opl3_command(map->ioaddr, WAVE_SELECT + map->op[0], instr->operators[8]);
        opl3_command(map->ioaddr, WAVE_SELECT + map->op[1], instr->operators[9]);

        /*
         * Set Feedback/Connection
         */
        
        fpc = instr->operators[10];

        if (pan != 0xffff)
        {
                fpc &= ~STEREO_BITS;
                if (pan < -64)
                        fpc |= VOICE_TO_LEFT;
                else
                        if (pan > 64)
                                fpc |= VOICE_TO_RIGHT;
                        else
                                fpc |= (VOICE_TO_LEFT | VOICE_TO_RIGHT);
        }

        if (!(fpc & 0x30))
                fpc |= 0x30;    /*
                                 * Ensure that at least one chn is enabled
                                 */
        opl3_command(map->ioaddr, FEEDBACK_CONNECTION + map->voice_num, fpc);

        /*
         * If the voice is a 4 OP one, initialize the operators 3 and 4 also
         */

        if (voice_mode == 4)
        {
                /*
                 * Set Sound Characteristics
                 */
        
                opl3_command(map->ioaddr, AM_VIB + map->op[2], instr->operators[OFFS_4OP + 0]);
                opl3_command(map->ioaddr, AM_VIB + map->op[3], instr->operators[OFFS_4OP + 1]);

                /*
                 * Set Attack/Decay
                 */
                
                opl3_command(map->ioaddr, ATTACK_DECAY + map->op[2], instr->operators[OFFS_4OP + 4]);
                opl3_command(map->ioaddr, ATTACK_DECAY + map->op[3], instr->operators[OFFS_4OP + 5]);

                /*
                 * Set Sustain/Release
                 */
                
                opl3_command(map->ioaddr, SUSTAIN_RELEASE + map->op[2], instr->operators[OFFS_4OP + 6]);
                opl3_command(map->ioaddr, SUSTAIN_RELEASE + map->op[3], instr->operators[OFFS_4OP + 7]);

                /*
                 * Set Wave Select
                 */
                
                opl3_command(map->ioaddr, WAVE_SELECT + map->op[2], instr->operators[OFFS_4OP + 8]);
                opl3_command(map->ioaddr, WAVE_SELECT + map->op[3], instr->operators[OFFS_4OP + 9]);

                /*
                 * Set Feedback/Connection
                 */
                
                fpc = instr->operators[OFFS_4OP + 10];
                if (!(fpc & 0x30))
                         fpc |= 0x30;   /*
                                         * Ensure that at least one chn is enabled
                                         */
                opl3_command(map->ioaddr, FEEDBACK_CONNECTION + map->voice_num + 3, fpc);
        }

        devc->voc[voice].mode = voice_mode;
        set_voice_volume(voice, volume, devc->voc[voice].volume);

        freq = devc->voc[voice].orig_freq = note_to_freq(note) / 1000;

        /*
         * Since the pitch bender may have been set before playing the note, we
         * have to calculate the bending now.
         */

        freq = compute_finetune(devc->voc[voice].orig_freq, devc->voc[voice].bender, devc->voc[voice].bender_range, 0);
        devc->voc[voice].current_freq = freq;

        freq_to_fnum(freq, &block, &fnum);

        /*
         * Play note
         */

        data = fnum & 0xff;     /*
                                 * Least significant bits of fnumber
                                 */
        opl3_command(map->ioaddr, FNUM_LOW + map->voice_num, data);

        data = 0x20 | ((block & 0x7) << 2) | ((fnum >> 8) & 0x3);
                 devc->voc[voice].keyon_byte = data;
        opl3_command(map->ioaddr, KEYON_BLOCK + map->voice_num, data);
        if (voice_mode == 4)
                opl3_command(map->ioaddr, KEYON_BLOCK + map->voice_num + 3, data);

        return 0;
}

static void freq_to_fnum    (int freq, int *block, int *fnum)
{
        int f, octave;

        /*
         * Converts the note frequency to block and fnum values for the FM chip
         */
        /*
         * First try to compute the block -value (octave) where the note belongs
         */

        f = freq;

        octave = 5;

        if (f == 0)
                octave = 0;
        else if (f < 261)
        {
                while (f < 261)
                {
                        octave--;
                        f <<= 1;
                }
        }
        else if (f > 493)
        {
                while (f > 493)
                {
                         octave++;
                         f >>= 1;
                }
        }

        if (octave > 7)
                octave = 7;

        *fnum = freq * (1 << (20 - octave)) / 49716;
        *block = octave;
}

static void opl3_command    (int io_addr, unsigned int addr, unsigned int val)
{
         int i;

        /*
         * The original 2-OP synth requires a quite long delay after writing to a
         * register. The OPL-3 survives with just two INBs
         */

        outb(((unsigned char) (addr & 0xff)), io_addr);

        if (devc->model != 2)
                udelay(10);
        else
                for (i = 0; i < 2; i++)
                        inb(io_addr);

        outb(((unsigned char) (val & 0xff)), io_addr + 1);

        if (devc->model != 2)
                udelay(30);
        else
                for (i = 0; i < 2; i++)
                        inb(io_addr);
}

static void opl3_reset(int devno)
{
        int i;

        for (i = 0; i < 18; i++)
                devc->lv_map[i] = i;

        for (i = 0; i < devc->nr_voice; i++)
        {
                opl3_command(pv_map[devc->lv_map[i]].ioaddr,
                        KSL_LEVEL + pv_map[devc->lv_map[i]].op[0], 0xff);

                opl3_command(pv_map[devc->lv_map[i]].ioaddr,
                        KSL_LEVEL + pv_map[devc->lv_map[i]].op[1], 0xff);

                if (pv_map[devc->lv_map[i]].voice_mode == 4)
                {
                        opl3_command(pv_map[devc->lv_map[i]].ioaddr,
                                KSL_LEVEL + pv_map[devc->lv_map[i]].op[2], 0xff);

                        opl3_command(pv_map[devc->lv_map[i]].ioaddr,
                                KSL_LEVEL + pv_map[devc->lv_map[i]].op[3], 0xff);
                }

                opl3_kill_note(devno, i, 0, 64);
        }

        if (devc->model == 2)
        {
                devc->v_alloc->max_voice = devc->nr_voice = 18;

                for (i = 0; i < 18; i++)
                        pv_map[i].voice_mode = 2;

        }
}

static int opl3_open(int dev, int mode)
{
        int i;

        if (devc->busy)
                return -EBUSY;
        devc->busy = 1;

        devc->v_alloc->max_voice = devc->nr_voice = (devc->model == 2) ? 18 : 9;
        devc->v_alloc->timestamp = 0;

        for (i = 0; i < 18; i++)
        {
                devc->v_alloc->map[i] = 0;
                devc->v_alloc->alloc_times[i] = 0;
        }

        devc->cmask = 0x00;     /*
                                 * Just 2 OP mode
                                 */
        if (devc->model == 2)
                opl3_command(devc->right_io, CONNECTION_SELECT_REGISTER, devc->cmask);
        return 0;
}

static void opl3_close(int dev)
{
        devc->busy = 0;
        devc->v_alloc->max_voice = devc->nr_voice = (devc->model == 2) ? 18 : 9;

        devc->fm_info.nr_drums = 0;
        devc->fm_info.perc_mode = 0;

        opl3_reset(dev);
}

static void opl3_hw_control(int dev, unsigned char *event)
{
}

static int opl3_load_patch(int dev, int format, const char __user *addr,
                int offs, int count, int pmgr_flag)
{
        struct sbi_instrument ins;

        if (count <sizeof(ins))
        {
                printk(KERN_WARNING "FM Error: Patch record too short\n");
                return -EINVAL;
        }

        /*
         * What the fuck is going on here?  We leave junk in the beginning
         * of ins and then check the field pretty close to that beginning?
         */
        if(copy_from_user(&((char *) &ins)[offs], addr + offs, sizeof(ins) - offs))
                return -EFAULT;

        if (ins.channel < 0 || ins.channel >= SBFM_MAXINSTR)
        {
                printk(KERN_WARNING "FM Error: Invalid instrument number %d\n", ins.channel);
                return -EINVAL;
        }
        ins.key = format;

        return store_instr(ins.channel, &ins);
}

static void opl3_panning(int dev, int voice, int value)
{
        devc->voc[voice].panning = value;
}

static void opl3_volume_method(int dev, int mode)
{
}

#define SET_VIBRATO(cell) { \
        tmp = instr->operators[(cell-1)+(((cell-1)/2)*OFFS_4OP)]; \
        if (pressure > 110) \
                tmp |= 0x40;            /* Vibrato on */ \
        opl3_command (map->ioaddr, AM_VIB + map->op[cell-1], tmp);}

static void opl3_aftertouch(int dev, int voice, int pressure)
{
        int tmp;
        struct sbi_instrument *instr;
        struct physical_voice_info *map;

        if (voice < 0 || voice >= devc->nr_voice)
                return;

        map = &pv_map[devc->lv_map[voice]];

        DEB(printk("Aftertouch %d\n", voice));

        if (map->voice_mode == 0)
                return;

        /*
         * Adjust the amount of vibrato depending the pressure
         */

        instr = devc->act_i[voice];

        if (!instr)
                instr = &devc->i_map[0];

        if (devc->voc[voice].mode == 4)
        {
                int connection = ((instr->operators[10] & 0x01) << 1) | (instr->operators[10 + OFFS_4OP] & 0x01);

                switch (connection)
                {
                        case 0:
                                SET_VIBRATO(4);
                                break;

                        case 1:
                                SET_VIBRATO(2);
                                SET_VIBRATO(4);
                                break;

                        case 2:
                                SET_VIBRATO(1);
                                SET_VIBRATO(4);
                                break;

                        case 3:
                                SET_VIBRATO(1);
                                SET_VIBRATO(3);
                                SET_VIBRATO(4);
                                break;

                }
                /*
                 * Not implemented yet
                 */
        }
        else
        {
                SET_VIBRATO(1);

                if ((instr->operators[10] & 0x01))      /*
                                                         * Additive synthesis
                                                         */
                        SET_VIBRATO(2);
        }
}

#undef SET_VIBRATO

static void bend_pitch(int dev, int voice, int value)
{
        unsigned char data;
        int block, fnum, freq;
        struct physical_voice_info *map;

        map = &pv_map[devc->lv_map[voice]];

        if (map->voice_mode == 0)
                return;

        devc->voc[voice].bender = value;
        if (!value)
                return;
        if (!(devc->voc[voice].keyon_byte & 0x20))
                return; /*
                         * Not keyed on
                         */

        freq = compute_finetune(devc->voc[voice].orig_freq, devc->voc[voice].bender, devc->voc[voice].bender_range, 0);
        devc->voc[voice].current_freq = freq;

        freq_to_fnum(freq, &block, &fnum);

        data = fnum & 0xff;     /*
                                 * Least significant bits of fnumber
                                 */
        opl3_command(map->ioaddr, FNUM_LOW + map->voice_num, data);

        data = 0x20 | ((block & 0x7) << 2) | ((fnum >> 8) & 0x3);
        devc->voc[voice].keyon_byte = data;
        opl3_command(map->ioaddr, KEYON_BLOCK + map->voice_num, data);
}

static void opl3_controller (int dev, int voice, int ctrl_num, int value)
{
        if (voice < 0 || voice >= devc->nr_voice)
                return;

        switch (ctrl_num)
        {
                case CTRL_PITCH_BENDER:
                        bend_pitch(dev, voice, value);
                        break;

                case CTRL_PITCH_BENDER_RANGE:
                        devc->voc[voice].bender_range = value;
                        break;

                case CTL_MAIN_VOLUME:
                        devc->voc[voice].volume = value / 128;
                        break;

                case CTL_PAN:
                        devc->voc[voice].panning = (value * 2) - 128;
                        break;
        }
}

static void opl3_bender(int dev, int voice, int value)
{
        if (voice < 0 || voice >= devc->nr_voice)
                return;

        bend_pitch(dev, voice, value - 8192);
}

static int opl3_alloc_voice(int dev, int chn, int note, struct voice_alloc_info *alloc)
{
        int i, p, best, first, avail, best_time = 0x7fffffff;
        struct sbi_instrument *instr;
        int is4op;
        int instr_no;

        if (chn < 0 || chn > 15)
                instr_no = 0;
        else
                instr_no = devc->chn_info[chn].pgm_num;

        instr = &devc->i_map[instr_no];
        if (instr->channel < 0 ||       /* Instrument not loaded */
                devc->nr_voice != 12)   /* Not in 4 OP mode */
                is4op = 0;
        else if (devc->nr_voice == 12)  /* 4 OP mode */
                is4op = (instr->key == OPL3_PATCH);
        else
                is4op = 0;

        if (is4op)
        {
                first = p = 0;
                avail = 6;
        }
        else
        {
                if (devc->nr_voice == 12)       /* 4 OP mode. Use the '2 OP only' operators first */
                        first = p = 6;
                else
                        first = p = 0;
                avail = devc->nr_voice;
        }

        /*
         *    Now try to find a free voice
         */
        best = first;

        for (i = 0; i < avail; i++)
        {
                if (alloc->map[p] == 0)
                {
                        return p;
                }
                if (alloc->alloc_times[p] < best_time)          /* Find oldest playing note */
                {
                        best_time = alloc->alloc_times[p];
                        best = p;
                }
                p = (p + 1) % avail;
        }

        /*
         *    Insert some kind of priority mechanism here.
         */

        if (best < 0)
                best = 0;
        if (best > devc->nr_voice)
                best -= devc->nr_voice;

        return best;    /* All devc->voc in use. Select the first one. */
}

static void opl3_setup_voice(int dev, int voice, int chn)
{
        struct channel_info *info =
        &synth_devs[dev]->chn_info[chn];

        opl3_set_instr(dev, voice, info->pgm_num);

        devc->voc[voice].bender = 0;
        devc->voc[voice].bender_range = info->bender_range;
        devc->voc[voice].volume = info->controllers[CTL_MAIN_VOLUME];
        devc->voc[voice].panning = (info->controllers[CTL_PAN] * 2) - 128;
}

static struct synth_operations opl3_operations =
{
        .owner          = THIS_MODULE,
        .id             = "OPL",
        .info           = NULL,
        .midi_dev       = 0,
        .synth_type     = SYNTH_TYPE_FM,
        .synth_subtype  = FM_TYPE_ADLIB,
        .open           = opl3_open,
        .close          = opl3_close,
        .ioctl          = opl3_ioctl,
        .kill_note      = opl3_kill_note,
        .start_note     = opl3_start_note,
        .set_instr      = opl3_set_instr,
        .reset          = opl3_reset,
        .hw_control     = opl3_hw_control,
        .load_patch     = opl3_load_patch,
        .aftertouch     = opl3_aftertouch,
        .controller     = opl3_controller,
        .panning        = opl3_panning,
        .volume_method  = opl3_volume_method,
        .bender         = opl3_bender,
        .alloc_voice    = opl3_alloc_voice,
        .setup_voice    = opl3_setup_voice
};

static int opl3_init(int ioaddr, struct module *owner)
{
        int i;
        int me;

        if (devc == NULL)
        {
                printk(KERN_ERR "opl3: Device control structure not initialized.\n");
                return -1;
        }

        if ((me = sound_alloc_synthdev()) == -1)
        {
                printk(KERN_WARNING "opl3: Too many synthesizers\n");
                return -1;
        }

        devc->nr_voice = 9;

        devc->fm_info.device = 0;
        devc->fm_info.synth_type = SYNTH_TYPE_FM;
        devc->fm_info.synth_subtype = FM_TYPE_ADLIB;
        devc->fm_info.perc_mode = 0;
        devc->fm_info.nr_voices = 9;
        devc->fm_info.nr_drums = 0;
        devc->fm_info.instr_bank_size = SBFM_MAXINSTR;
        devc->fm_info.capabilities = 0;
        devc->left_io = ioaddr;
        devc->right_io = ioaddr + 2;

        if (detected_model <= 2)
                devc->model = 1;
        else
        {
                devc->model = 2;
                if (detected_model == 4)
                        devc->is_opl4 = 1;
        }

        opl3_operations.info = &devc->fm_info;

        synth_devs[me] = &opl3_operations;

        if (owner)
                synth_devs[me]->owner = owner;
        
        sequencer_init();
        devc->v_alloc = &opl3_operations.alloc;
        devc->chn_info = &opl3_operations.chn_info[0];

        if (devc->model == 2)
        {
                if (devc->is_opl4) 
                        strcpy(devc->fm_info.name, "Yamaha OPL4/OPL3 FM");
                else 
                        strcpy(devc->fm_info.name, "Yamaha OPL3");

                devc->v_alloc->max_voice = devc->nr_voice = 18;
                devc->fm_info.nr_drums = 0;
                devc->fm_info.synth_subtype = FM_TYPE_OPL3;
                devc->fm_info.capabilities |= SYNTH_CAP_OPL3;

                for (i = 0; i < 18; i++)
                {
                        if (pv_map[i].ioaddr == USE_LEFT)
                                pv_map[i].ioaddr = devc->left_io;
                        else
                                pv_map[i].ioaddr = devc->right_io;
                }
                opl3_command(devc->right_io, OPL3_MODE_REGISTER, OPL3_ENABLE);
                opl3_command(devc->right_io, CONNECTION_SELECT_REGISTER, 0x00);
        }
        else
        {
                strcpy(devc->fm_info.name, "Yamaha OPL2");
                devc->v_alloc->max_voice = devc->nr_voice = 9;
                devc->fm_info.nr_drums = 0;

                for (i = 0; i < 18; i++)
                        pv_map[i].ioaddr = devc->left_io;
        };
        conf_printf2(devc->fm_info.name, ioaddr, 0, -1, -1);

        for (i = 0; i < SBFM_MAXINSTR; i++)
                devc->i_map[i].channel = -1;

        return me;
}

static int me;

static int io = -1;

module_param(io, int, 0);

static int __init init_opl3 (void)
{
        printk(KERN_INFO "YM3812 and OPL-3 driver Copyright (C) by Hannu Savolainen, Rob Hooft 1993-1996\n");

        if (io != -1)   /* User loading pure OPL3 module */
        {
                if (!opl3_detect(io))
                {
                        return -ENODEV;
                }

                me = opl3_init(io, THIS_MODULE);
        }

        return 0;
}

static void __exit cleanup_opl3(void)
{
        if (devc && io != -1)
        {
                if (devc->base) {
                        release_region(devc->base,4);
                        if (devc->is_opl4)
                                release_region(devc->base - 8, 2);
                }
                kfree(devc);
                devc = NULL;
                sound_unload_synthdev(me);
        }
}

module_init(init_opl3);
module_exit(cleanup_opl3);

#ifndef MODULE
static int __init setup_opl3(char *str)
{
        /* io  */
        int ints[2];
        
        str = get_options(str, ARRAY_SIZE(ints), ints);
        
        io = ints[1];

        return 1;
}

__setup("opl3=", setup_opl3);
#endif
MODULE_LICENSE("GPL");

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading