[funini.com] -> [kei@sodan] -> Kernel Reading

root/sound/i2c/l3/uda1341.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. int2str_bin8
  2. snd_uda1341_codec_write
  3. snd_uda1341_codec_read
  4. snd_uda1341_valid_reg
  5. snd_uda1341_update_bits
  6. snd_uda1341_cfg_write
  7. snd_uda1341_proc_read
  8. snd_uda1341_proc_regs_read
  9. snd_uda1341_proc_init
  10. snd_uda1341_info_single
  11. snd_uda1341_get_single
  12. snd_uda1341_put_single
  13. snd_uda1341_info_enum
  14. snd_uda1341_get_enum
  15. snd_uda1341_put_enum
  16. snd_uda1341_info_2regs
  17. snd_uda1341_get_2regs
  18. snd_uda1341_put_2regs
  19. uda1341_free
  20. uda1341_dev_free
  21. snd_chip_uda1341_mixer_new
  22. uda1341_attach
  23. uda1341_detach
  24. uda1341_command
  25. uda1341_open
  26. uda1341_close
  27. uda1341_init
  28. uda1341_exit

/*
 * Philips UDA1341 mixer device driver
 * Copyright (c) 2002 Tomas Kasparek <tomas.kasparek@seznam.cz>
 *
 * Portions are Copyright (C) 2000 Lernout & Hauspie Speech Products, N.V.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License.
 *
 * History:
 *
 * 2002-03-13   Tomas Kasparek  initial release - based on uda1341.c from OSS
 * 2002-03-28   Tomas Kasparek  basic mixer is working (volume, bass, treble)
 * 2002-03-30   Tomas Kasparek  proc filesystem support, complete mixer and DSP
 *                              features support
 * 2002-04-12   Tomas Kasparek  proc interface update, code cleanup
 * 2002-05-12   Tomas Kasparek  another code cleanup
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <linux/ioctl.h>

#include <asm/uaccess.h>

#include <sound/core.h>
#include <sound/control.h>
#include <sound/initval.h>
#include <sound/info.h>

#include <linux/l3/l3.h>

#include <sound/uda1341.h>

/* {{{ HW regs definition */

#define STAT0                   0x00
#define STAT1                   0x80
#define STAT_MASK               0x80

#define DATA0_0                 0x00
#define DATA0_1                 0x40
#define DATA0_2                 0x80
#define DATA_MASK               0xc0

#define IS_DATA0(x)     ((x) >= data0_0 && (x) <= data0_2)
#define IS_DATA1(x)     ((x) == data1)
#define IS_STATUS(x)    ((x) == stat0 || (x) == stat1)
#define IS_EXTEND(x)   ((x) >= ext0 && (x) <= ext6)

/* }}} */


static const char *peak_names[] = {
        "before",
        "after",
};

static const char *filter_names[] = {
        "flat",
        "min",
        "min",
        "max",
};

static const char *mixer_names[] = {
        "double differential",
        "input channel 1 (line in)",
        "input channel 2 (microphone)",
        "digital mixer",
};

static const char *deemp_names[] = {
        "none",
        "32 kHz",
        "44.1 kHz",
        "48 kHz",        
};

enum uda1341_regs_names {
        stat0,
        stat1,
        data0_0,
        data0_1,
        data0_2,
        data1,
        ext0,
        ext1,
        ext2,
        empty,
        ext4,
        ext5,
        ext6,
        uda1341_reg_last,
};

static const char *uda1341_reg_names[] = {
        "stat 0 ",
        "stat 1 ",
        "data 00",
        "data 01",
        "data 02",
        "data 1 ",
        "ext 0",
        "ext 1",
        "ext 2",
        "empty",
        "ext 4",
        "ext 5",
        "ext 6",
};

static const int uda1341_enum_items[] = {
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        2, //peak - before/after
        4, //deemp - none/32/44.1/48
        0,
        4, //filter - flat/min/min/max
        0, 0, 0,
        4, //mixer - differ/line/mic/mixer
        0, 0, 0, 0, 0,
};

static const char ** uda1341_enum_names[] = {
        NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
        peak_names, //peak - before/after
        deemp_names, //deemp - none/32/44.1/48
        NULL,
        filter_names, //filter - flat/min/min/max
        NULL, NULL, NULL,
        mixer_names, //mixer - differ/line/mic/mixer
        NULL, NULL, NULL, NULL, NULL,
};

typedef int uda1341_cfg[CMD_LAST];

struct uda1341 {
        int (*write) (struct l3_client *uda1341, unsigned short reg, unsigned short val);
        int (*read) (struct l3_client *uda1341, unsigned short reg);        
        unsigned char regs[uda1341_reg_last];
        int active;
        spinlock_t reg_lock;
        struct snd_card *card;
        uda1341_cfg cfg;
#ifdef CONFIG_PM
        unsigned char suspend_regs[uda1341_reg_last];
        uda1341_cfg suspend_cfg;
#endif
};

/* transfer 8bit integer into string with binary representation */
static void int2str_bin8(uint8_t val, char *buf)
{
        const int size = sizeof(val) * 8;
        int i;

        for (i= 0; i < size; i++){
                *(buf++) = (val >> (size - 1)) ? '1' : '0';
                val <<= 1;
        }
        *buf = '\0'; //end the string with zero
}

/* {{{ HW manipulation routines */

static int snd_uda1341_codec_write(struct l3_client *clnt, unsigned short reg, unsigned short val)
{
        struct uda1341 *uda = clnt->driver_data;
        unsigned char buf[2] = { 0xc0, 0xe0 }; // for EXT addressing
        int err = 0;

        uda->regs[reg] = val;

        if (uda->active) {
                if (IS_DATA0(reg)) {
                        err = l3_write(clnt, UDA1341_DATA0, (const unsigned char *)&val, 1);
                } else if (IS_DATA1(reg)) {
                        err = l3_write(clnt, UDA1341_DATA1, (const unsigned char *)&val, 1);
                } else if (IS_STATUS(reg)) {
                        err = l3_write(clnt, UDA1341_STATUS, (const unsigned char *)&val, 1);
                } else if (IS_EXTEND(reg)) {
                        buf[0] |= (reg - ext0) & 0x7;   //EXT address
                        buf[1] |= val;                  //EXT data
                        err = l3_write(clnt, UDA1341_DATA0, (const unsigned char *)buf, 2);
                }
        } else
                printk(KERN_ERR "UDA1341 codec not active!\n");
        return err;
}

static int snd_uda1341_codec_read(struct l3_client *clnt, unsigned short reg)
{
        unsigned char val;
        int err;

        err = l3_read(clnt, reg, &val, 1);
        if (err == 1)
                // use just 6bits - the rest is address of the reg
                return val & 63;
        return err < 0 ? err : -EIO;
}

static inline int snd_uda1341_valid_reg(struct l3_client *clnt, unsigned short reg)
{
        return reg < uda1341_reg_last;
}

static int snd_uda1341_update_bits(struct l3_client *clnt, unsigned short reg,
                                   unsigned short mask, unsigned short shift,
                                   unsigned short value, int flush)
{
        int change;
        unsigned short old, new;
        struct uda1341 *uda = clnt->driver_data;

#if 0
        printk(KERN_DEBUG "update_bits: reg: %s mask: %d shift: %d val: %d\n",
               uda1341_reg_names[reg], mask, shift, value);
#endif
        
        if (!snd_uda1341_valid_reg(clnt, reg))
                return -EINVAL;
        spin_lock(&uda->reg_lock);
        old = uda->regs[reg];
        new = (old & ~(mask << shift)) | (value << shift);
        change = old != new;
        if (change) {
                if (flush) uda->write(clnt, reg, new);
                uda->regs[reg] = new;
        }
        spin_unlock(&uda->reg_lock);
        return change;
}

static int snd_uda1341_cfg_write(struct l3_client *clnt, unsigned short what,
                                 unsigned short value, int flush)
{
        struct uda1341 *uda = clnt->driver_data;
        int ret = 0;
#ifdef CONFIG_PM
        int reg;
#endif

#if 0
        printk(KERN_DEBUG "cfg_write what: %d value: %d\n", what, value);
#endif

        uda->cfg[what] = value;
        
        switch(what) {
        case CMD_RESET:
                ret = snd_uda1341_update_bits(clnt, data0_2, 1, 2, 1, flush);   // MUTE
                ret = snd_uda1341_update_bits(clnt, stat0, 1, 6, 1, flush);     // RESET
                ret = snd_uda1341_update_bits(clnt, stat0, 1, 6, 0, flush);     // RESTORE
                uda->cfg[CMD_RESET]=0;
                break;
        case CMD_FS:
                ret = snd_uda1341_update_bits(clnt, stat0, 3, 4, value, flush);
                break;
        case CMD_FORMAT:
                ret = snd_uda1341_update_bits(clnt, stat0, 7, 1, value, flush);
                break;
        case CMD_OGAIN:
                ret = snd_uda1341_update_bits(clnt, stat1, 1, 6, value, flush);
                break;
        case CMD_IGAIN:
                ret = snd_uda1341_update_bits(clnt, stat1, 1, 5, value, flush);
                break;
        case CMD_DAC:
                ret = snd_uda1341_update_bits(clnt, stat1, 1, 0, value, flush);
                break;
        case CMD_ADC:
                ret = snd_uda1341_update_bits(clnt, stat1, 1, 1, value, flush);
                break;
        case CMD_VOLUME:
                ret = snd_uda1341_update_bits(clnt, data0_0, 63, 0, value, flush);
                break;
        case CMD_BASS:
                ret = snd_uda1341_update_bits(clnt, data0_1, 15, 2, value, flush);
                break;
        case CMD_TREBBLE:
                ret = snd_uda1341_update_bits(clnt, data0_1, 3, 0, value, flush);
                break;
        case CMD_PEAK:
                ret = snd_uda1341_update_bits(clnt, data0_2, 1, 5, value, flush);
                break;
        case CMD_DEEMP:
                ret = snd_uda1341_update_bits(clnt, data0_2, 3, 3, value, flush);
                break;
        case CMD_MUTE:
                ret = snd_uda1341_update_bits(clnt, data0_2, 1, 2, value, flush);
                break;
        case CMD_FILTER:
                ret = snd_uda1341_update_bits(clnt, data0_2, 3, 0, value, flush);
                break;
        case CMD_CH1:
                ret = snd_uda1341_update_bits(clnt, ext0, 31, 0, value, flush);
                break;
        case CMD_CH2:
                ret = snd_uda1341_update_bits(clnt, ext1, 31, 0, value, flush);
                break;
        case CMD_MIC:
                ret = snd_uda1341_update_bits(clnt, ext2, 7, 2, value, flush);
                break;
        case CMD_MIXER:
                ret = snd_uda1341_update_bits(clnt, ext2, 3, 0, value, flush);
                break;
        case CMD_AGC:
                ret = snd_uda1341_update_bits(clnt, ext4, 1, 4, value, flush);
                break;
        case CMD_IG:
                ret = snd_uda1341_update_bits(clnt, ext4, 3, 0, value & 0x3, flush);
                ret = snd_uda1341_update_bits(clnt, ext5, 31, 0, value >> 2, flush);
                break;
        case CMD_AGC_TIME:
                ret = snd_uda1341_update_bits(clnt, ext6, 7, 2, value, flush);
                break;
        case CMD_AGC_LEVEL:
                ret = snd_uda1341_update_bits(clnt, ext6, 3, 0, value, flush);
                break;
#ifdef CONFIG_PM                
        case CMD_SUSPEND:
                for (reg = stat0; reg < uda1341_reg_last; reg++)
                        uda->suspend_regs[reg] = uda->regs[reg];
                for (reg = 0; reg < CMD_LAST; reg++)
                        uda->suspend_cfg[reg] = uda->cfg[reg];
                break;
        case CMD_RESUME:
                for (reg = stat0; reg < uda1341_reg_last; reg++)
                        snd_uda1341_codec_write(clnt, reg, uda->suspend_regs[reg]);
                for (reg = 0; reg < CMD_LAST; reg++)
                        uda->cfg[reg] = uda->suspend_cfg[reg];
                break;
#endif
        default:
                ret = -EINVAL;
                break;
        }
                
        if (!uda->active)
                printk(KERN_ERR "UDA1341 codec not active!\n");                
        return ret;
}

/* }}} */

/* {{{ Proc interface */
#ifdef CONFIG_PROC_FS

static const char *format_names[] = {
        "I2S-bus",
        "LSB 16bits",
        "LSB 18bits",
        "LSB 20bits",
        "MSB",
        "in LSB 16bits/out MSB",
        "in LSB 18bits/out MSB",
        "in LSB 20bits/out MSB",        
};

static const char *fs_names[] = {
        "512*fs",
        "384*fs",
        "256*fs",
        "Unused - bad value!",
};

static const char* bass_values[][16] = {
        {"0 dB", "0 dB", "0 dB", "0 dB", "0 dB", "0 dB", "0 dB", "0 dB", "0 dB", "0 dB", "0 dB",
         "0 dB", "0 dB", "0 dB", "0 dB", "undefined", }, //flat
        {"0 dB", "2 dB", "4 dB", "6 dB", "8 dB", "10 dB", "12 dB", "14 dB", "16 dB", "18 dB", "18 dB",
         "18 dB", "18 dB", "18 dB", "18 dB", "undefined",}, // min
        {"0 dB", "2 dB", "4 dB", "6 dB", "8 dB", "10 dB", "12 dB", "14 dB", "16 dB", "18 dB", "18 dB",
         "18 dB", "18 dB", "18 dB", "18 dB", "undefined",}, // min
        {"0 dB", "2 dB", "4 dB", "6 dB", "8 dB", "10 dB", "12 dB", "14 dB", "16 dB", "18 dB", "20 dB",
         "22 dB", "24 dB", "24 dB", "24 dB", "undefined",}, // max
};

static const char *mic_sens_value[] = {
        "-3 dB", "0 dB", "3 dB", "9 dB", "15 dB", "21 dB", "27 dB", "not used",
};

static const unsigned short AGC_atime[] = {
        11, 16, 11, 16, 21, 11, 16, 21,
};

static const unsigned short AGC_dtime[] = {
        100, 100, 200, 200, 200, 400, 400, 400,
};

static const char *AGC_level[] = {
        "-9.0", "-11.5", "-15.0", "-17.5",
};

static const char *ig_small_value[] = {
        "-3.0", "-2.5", "-2.0", "-1.5", "-1.0", "-0.5",
};

/*
 * this was computed as peak_value[i] = pow((63-i)*1.42,1.013)
 *
 * UDA1341 datasheet on page 21: Peak value (dB) = (Peak level - 63.5)*5*log2
 * There is an table with these values [level]=value: [3]=-90.31, [7]=-84.29
 * [61]=-2.78, [62] = -1.48, [63] = 0.0
 * I tried to compute it, but using but even using logarithm with base either 10 or 2
 * i was'n able to get values in the table from the formula. So I constructed another
 * formula (see above) to interpolate the values as good as possible. If there is some
 * mistake, please contact me on tomas.kasparek@seznam.cz. Thanks.
 * UDA1341TS datasheet is available at:
 *   http://www-us9.semiconductors.com/acrobat/datasheets/UDA1341TS_3.pdf 
 */
static const char *peak_value[] = {
        "-INF dB", "N.A.", "N.A", "90.31 dB", "N.A.", "N.A.", "N.A.", "-84.29 dB",
        "-82.65 dB", "-81.13 dB", "-79.61 dB", "-78.09 dB", "-76.57 dB", "-75.05 dB", "-73.53 dB",
        "-72.01 dB", "-70.49 dB", "-68.97 dB", "-67.45 dB", "-65.93 dB", "-64.41 dB", "-62.90 dB",
        "-61.38 dB", "-59.86 dB", "-58.35 dB", "-56.83 dB", "-55.32 dB", "-53.80 dB", "-52.29 dB",
        "-50.78 dB", "-49.26 dB", "-47.75 dB", "-46.24 dB", "-44.73 dB", "-43.22 dB", "-41.71 dB",
        "-40.20 dB", "-38.69 dB", "-37.19 dB", "-35.68 dB", "-34.17 dB", "-32.67 dB", "-31.17 dB",
        "-29.66 dB", "-28.16 dB", "-26.66 dB", "-25.16 dB", "-23.66 dB", "-22.16 dB", "-20.67 dB",
        "-19.17 dB", "-17.68 dB", "-16.19 dB", "-14.70 dB", "-13.21 dB", "-11.72 dB", "-10.24 dB",
        "-8.76 dB", "-7.28 dB", "-5.81 dB", "-4.34 dB", "-2.88 dB", "-1.43 dB", "0.00 dB",
};

static void snd_uda1341_proc_read(struct snd_info_entry *entry, 
                                  struct snd_info_buffer *buffer)
{
        struct l3_client *clnt = entry->private_data;
        struct uda1341 *uda = clnt->driver_data;
        int peak;

        peak = snd_uda1341_codec_read(clnt, UDA1341_DATA1);
        if (peak < 0)
                peak = 0;
        
        snd_iprintf(buffer, "%s\n\n", uda->card->longname);

        // for information about computed values see UDA1341TS datasheet pages 15 - 21
        snd_iprintf(buffer, "DAC power           : %s\n", uda->cfg[CMD_DAC] ? "on" : "off");
        snd_iprintf(buffer, "ADC power           : %s\n", uda->cfg[CMD_ADC] ? "on" : "off");
        snd_iprintf(buffer, "Clock frequency     : %s\n", fs_names[uda->cfg[CMD_FS]]);
        snd_iprintf(buffer, "Data format         : %s\n\n", format_names[uda->cfg[CMD_FORMAT]]);

        snd_iprintf(buffer, "Filter mode         : %s\n", filter_names[uda->cfg[CMD_FILTER]]);
        snd_iprintf(buffer, "Mixer mode          : %s\n", mixer_names[uda->cfg[CMD_MIXER]]);
        snd_iprintf(buffer, "De-emphasis         : %s\n", deemp_names[uda->cfg[CMD_DEEMP]]);    
        snd_iprintf(buffer, "Peak detection pos. : %s\n", uda->cfg[CMD_PEAK] ? "after" : "before");
        snd_iprintf(buffer, "Peak value          : %s\n\n", peak_value[peak]);          
        
        snd_iprintf(buffer, "Automatic Gain Ctrl : %s\n", uda->cfg[CMD_AGC] ? "on" : "off");
        snd_iprintf(buffer, "AGC attack time     : %d ms\n", AGC_atime[uda->cfg[CMD_AGC_TIME]]);
        snd_iprintf(buffer, "AGC decay time      : %d ms\n", AGC_dtime[uda->cfg[CMD_AGC_TIME]]);
        snd_iprintf(buffer, "AGC output level    : %s dB\n\n", AGC_level[uda->cfg[CMD_AGC_LEVEL]]);

        snd_iprintf(buffer, "Mute                : %s\n", uda->cfg[CMD_MUTE] ? "on" : "off");

        if (uda->cfg[CMD_VOLUME] == 0)
                snd_iprintf(buffer, "Volume              : 0 dB\n");
        else if (uda->cfg[CMD_VOLUME] < 62)
                snd_iprintf(buffer, "Volume              : %d dB\n", -1*uda->cfg[CMD_VOLUME] +1);
        else
                snd_iprintf(buffer, "Volume              : -INF dB\n");
        snd_iprintf(buffer, "Bass                : %s\n", bass_values[uda->cfg[CMD_FILTER]][uda->cfg[CMD_BASS]]);
        snd_iprintf(buffer, "Trebble             : %d dB\n", uda->cfg[CMD_FILTER] ? 2*uda->cfg[CMD_TREBBLE] : 0);
        snd_iprintf(buffer, "Input Gain (6dB)    : %s\n", uda->cfg[CMD_IGAIN] ? "on" : "off");
        snd_iprintf(buffer, "Output Gain (6dB)   : %s\n", uda->cfg[CMD_OGAIN] ? "on" : "off");
        snd_iprintf(buffer, "Mic sensitivity     : %s\n", mic_sens_value[uda->cfg[CMD_MIC]]);

        
        if(uda->cfg[CMD_CH1] < 31)
                snd_iprintf(buffer, "Mixer gain channel 1: -%d.%c dB\n",
                            ((uda->cfg[CMD_CH1] >> 1) * 3) + (uda->cfg[CMD_CH1] & 1),
                            uda->cfg[CMD_CH1] & 1 ? '5' : '0');
        else
                snd_iprintf(buffer, "Mixer gain channel 1: -INF dB\n");
        if(uda->cfg[CMD_CH2] < 31)
                snd_iprintf(buffer, "Mixer gain channel 2: -%d.%c dB\n",
                            ((uda->cfg[CMD_CH2] >> 1) * 3) + (uda->cfg[CMD_CH2] & 1),
                            uda->cfg[CMD_CH2] & 1 ? '5' : '0');
        else
                snd_iprintf(buffer, "Mixer gain channel 2: -INF dB\n");

        if(uda->cfg[CMD_IG] > 5)
                snd_iprintf(buffer, "Input Amp. Gain ch 2: %d.%c dB\n",
                            (uda->cfg[CMD_IG] >> 1) -3, uda->cfg[CMD_IG] & 1 ? '5' : '0');
        else
                snd_iprintf(buffer, "Input Amp. Gain ch 2: %s dB\n",  ig_small_value[uda->cfg[CMD_IG]]);
}

static void snd_uda1341_proc_regs_read(struct snd_info_entry *entry, 
                                       struct snd_info_buffer *buffer)
{
        struct l3_client *clnt = entry->private_data;
        struct uda1341 *uda = clnt->driver_data;                
        int reg;
        char buf[12];

        for (reg = 0; reg < uda1341_reg_last; reg ++) {
                if (reg == empty)
                        continue;
                int2str_bin8(uda->regs[reg], buf);
                snd_iprintf(buffer, "%s = %s\n", uda1341_reg_names[reg], buf);
        }

        int2str_bin8(snd_uda1341_codec_read(clnt, UDA1341_DATA1), buf);
        snd_iprintf(buffer, "DATA1 = %s\n", buf);
}
#endif /* CONFIG_PROC_FS */

static void __devinit snd_uda1341_proc_init(struct snd_card *card, struct l3_client *clnt)
{
        struct snd_info_entry *entry;

        if (! snd_card_proc_new(card, "uda1341", &entry))
                snd_info_set_text_ops(entry, clnt, snd_uda1341_proc_read);
        if (! snd_card_proc_new(card, "uda1341-regs", &entry))
                snd_info_set_text_ops(entry, clnt, snd_uda1341_proc_regs_read);
}

/* }}} */

/* {{{ Mixer controls setting */

/* {{{ UDA1341 single functions */

#define UDA1341_SINGLE(xname, where, reg, shift, mask, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_uda1341_info_single, \
  .get = snd_uda1341_get_single, .put = snd_uda1341_put_single, \
  .private_value = where | (reg << 5) | (shift << 9) | (mask << 12) | (invert << 18) \
}

static int snd_uda1341_info_single(struct snd_kcontrol *kcontrol,
                                   struct snd_ctl_elem_info *uinfo)
{
        int mask = (kcontrol->private_value >> 12) & 63;

        uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
        uinfo->count = 1;
        uinfo->value.integer.min = 0;
        uinfo->value.integer.max = mask;
        return 0;
}

static int snd_uda1341_get_single(struct snd_kcontrol *kcontrol,
                                  struct snd_ctl_elem_value *ucontrol)
{
        struct l3_client *clnt = snd_kcontrol_chip(kcontrol);
        struct uda1341 *uda = clnt->driver_data;
        int where = kcontrol->private_value & 31;        
        int mask = (kcontrol->private_value >> 12) & 63;
        int invert = (kcontrol->private_value >> 18) & 1;
        
        ucontrol->value.integer.value[0] = uda->cfg[where];
        if (invert)
                ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];

        return 0;
}

static int snd_uda1341_put_single(struct snd_kcontrol *kcontrol,
                                  struct snd_ctl_elem_value *ucontrol)
{
        struct l3_client *clnt = snd_kcontrol_chip(kcontrol);
        struct uda1341 *uda = clnt->driver_data;
        int where = kcontrol->private_value & 31;        
        int reg = (kcontrol->private_value >> 5) & 15;
        int shift = (kcontrol->private_value >> 9) & 7;
        int mask = (kcontrol->private_value >> 12) & 63;
        int invert = (kcontrol->private_value >> 18) & 1;
        unsigned short val;

        val = (ucontrol->value.integer.value[0] & mask);
        if (invert)
                val = mask - val;

        uda->cfg[where] = val;
        return snd_uda1341_update_bits(clnt, reg, mask, shift, val, FLUSH);
}

/* }}} */

/* {{{ UDA1341 enum functions */

#define UDA1341_ENUM(xname, where, reg, shift, mask, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_uda1341_info_enum, \
  .get = snd_uda1341_get_enum, .put = snd_uda1341_put_enum, \
  .private_value = where | (reg << 5) | (shift << 9) | (mask << 12) | (invert << 18) \
}

static int snd_uda1341_info_enum(struct snd_kcontrol *kcontrol,
                                 struct snd_ctl_elem_info *uinfo)
{
        int where = kcontrol->private_value & 31;
        const char **texts;
        
        // this register we don't handle this way
        if (!uda1341_enum_items[where])
                return -EINVAL;

        uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
        uinfo->count = 1;
        uinfo->value.enumerated.items = uda1341_enum_items[where];

        if (uinfo->value.enumerated.item >= uda1341_enum_items[where])
                uinfo->value.enumerated.item = uda1341_enum_items[where] - 1;

        texts = uda1341_enum_names[where];
        strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
        return 0;
}

static int snd_uda1341_get_enum(struct snd_kcontrol *kcontrol,
                                struct snd_ctl_elem_value *ucontrol)
{
        struct l3_client *clnt = snd_kcontrol_chip(kcontrol);
        struct uda1341 *uda = clnt->driver_data;
        int where = kcontrol->private_value & 31;        
        
        ucontrol->value.enumerated.item[0] = uda->cfg[where];   
        return 0;
}

static int snd_uda1341_put_enum(struct snd_kcontrol *kcontrol,
                                struct snd_ctl_elem_value *ucontrol)
{
        struct l3_client *clnt = snd_kcontrol_chip(kcontrol);
        struct uda1341 *uda = clnt->driver_data;
        int where = kcontrol->private_value & 31;        
        int reg = (kcontrol->private_value >> 5) & 15;
        int shift = (kcontrol->private_value >> 9) & 7;
        int mask = (kcontrol->private_value >> 12) & 63;

        uda->cfg[where] = (ucontrol->value.enumerated.item[0] & mask);
        
        return snd_uda1341_update_bits(clnt, reg, mask, shift, uda->cfg[where], FLUSH);
}

/* }}} */

/* {{{ UDA1341 2regs functions */

#define UDA1341_2REGS(xname, where, reg_1, reg_2, shift_1, shift_2, mask_1, mask_2, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname), .info = snd_uda1341_info_2regs, \
  .get = snd_uda1341_get_2regs, .put = snd_uda1341_put_2regs, \
  .private_value = where | (reg_1 << 5) | (reg_2 << 9) | (shift_1 << 13) | (shift_2 << 16) | \
                         (mask_1 << 19) | (mask_2 << 25) | (invert << 31) \
}


static int snd_uda1341_info_2regs(struct snd_kcontrol *kcontrol,
                                  struct snd_ctl_elem_info *uinfo)
{
        int mask_1 = (kcontrol->private_value >> 19) & 63;
        int mask_2 = (kcontrol->private_value >> 25) & 63;
        int mask;
        
        mask = (mask_2 + 1) * (mask_1 + 1) - 1;
        uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
        uinfo->count = 1;
        uinfo->value.integer.min = 0;
        uinfo->value.integer.max = mask;
        return 0;
}

static int snd_uda1341_get_2regs(struct snd_kcontrol *kcontrol,
                                 struct snd_ctl_elem_value *ucontrol)
{
        struct l3_client *clnt = snd_kcontrol_chip(kcontrol);
        struct uda1341 *uda = clnt->driver_data;
        int where = kcontrol->private_value & 31;
        int mask_1 = (kcontrol->private_value >> 19) & 63;
        int mask_2 = (kcontrol->private_value >> 25) & 63;        
        int invert = (kcontrol->private_value >> 31) & 1;
        int mask;

        mask = (mask_2 + 1) * (mask_1 + 1) - 1;

        ucontrol->value.integer.value[0] = uda->cfg[where];
        if (invert)
                ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
        return 0;
}

static int snd_uda1341_put_2regs(struct snd_kcontrol *kcontrol,
                                 struct snd_ctl_elem_value *ucontrol)
{
        struct l3_client *clnt = snd_kcontrol_chip(kcontrol);
        struct uda1341 *uda = clnt->driver_data;        
        int where = kcontrol->private_value & 31;        
        int reg_1 = (kcontrol->private_value >> 5) & 15;
        int reg_2 = (kcontrol->private_value >> 9) & 15;        
        int shift_1 = (kcontrol->private_value >> 13) & 7;
        int shift_2 = (kcontrol->private_value >> 16) & 7;
        int mask_1 = (kcontrol->private_value >> 19) & 63;
        int mask_2 = (kcontrol->private_value >> 25) & 63;        
        int invert = (kcontrol->private_value >> 31) & 1;
        int mask;
        unsigned short val1, val2, val;

        val = ucontrol->value.integer.value[0];
         
        mask = (mask_2 + 1) * (mask_1 + 1) - 1;

        val1 = val & mask_1;
        val2 = (val / (mask_1 + 1)) & mask_2;        

        if (invert) {
                val1 = mask_1 - val1;
                val2 = mask_2 - val2;
        }

        uda->cfg[where] = invert ? mask - val : val;
        
        //FIXME - return value
        snd_uda1341_update_bits(clnt, reg_1, mask_1, shift_1, val1, FLUSH);
        return snd_uda1341_update_bits(clnt, reg_2, mask_2, shift_2, val2, FLUSH);
}

/* }}} */
  
static struct snd_kcontrol_new snd_uda1341_controls[] = {
        UDA1341_SINGLE("Master Playback Switch", CMD_MUTE, data0_2, 2, 1, 1),
        UDA1341_SINGLE("Master Playback Volume", CMD_VOLUME, data0_0, 0, 63, 1),

        UDA1341_SINGLE("Bass Playback Volume", CMD_BASS, data0_1, 2, 15, 0),
        UDA1341_SINGLE("Treble Playback Volume", CMD_TREBBLE, data0_1, 0, 3, 0),

        UDA1341_SINGLE("Input Gain Switch", CMD_IGAIN, stat1, 5, 1, 0),
        UDA1341_SINGLE("Output Gain Switch", CMD_OGAIN, stat1, 6, 1, 0),

        UDA1341_SINGLE("Mixer Gain Channel 1 Volume", CMD_CH1, ext0, 0, 31, 1),
        UDA1341_SINGLE("Mixer Gain Channel 2 Volume", CMD_CH2, ext1, 0, 31, 1),

        UDA1341_SINGLE("Mic Sensitivity Volume", CMD_MIC, ext2, 2, 7, 0),

        UDA1341_SINGLE("AGC Output Level", CMD_AGC_LEVEL, ext6, 0, 3, 0),
        UDA1341_SINGLE("AGC Time Constant", CMD_AGC_TIME, ext6, 2, 7, 0),
        UDA1341_SINGLE("AGC Time Constant Switch", CMD_AGC, ext4, 4, 1, 0),

        UDA1341_SINGLE("DAC Power", CMD_DAC, stat1, 0, 1, 0),
        UDA1341_SINGLE("ADC Power", CMD_ADC, stat1, 1, 1, 0),

        UDA1341_ENUM("Peak detection", CMD_PEAK, data0_2, 5, 1, 0),
        UDA1341_ENUM("De-emphasis", CMD_DEEMP, data0_2, 3, 3, 0),
        UDA1341_ENUM("Mixer mode", CMD_MIXER, ext2, 0, 3, 0),
        UDA1341_ENUM("Filter mode", CMD_FILTER, data0_2, 0, 3, 0),

        UDA1341_2REGS("Gain Input Amplifier Gain (channel 2)", CMD_IG, ext4, ext5, 0, 0, 3, 31, 0),
};

static void uda1341_free(struct l3_client *clnt)
{
        l3_detach_client(clnt); // calls kfree for driver_data (struct uda1341)
        kfree(clnt);
}

static int uda1341_dev_free(struct snd_device *device)
{
        struct l3_client *clnt = device->device_data;
        uda1341_free(clnt);
        return 0;
}

int __init snd_chip_uda1341_mixer_new(struct snd_card *card, struct l3_client **clntp)
{
        static struct snd_device_ops ops = {
                .dev_free =     uda1341_dev_free,
        };
        struct l3_client *clnt;
        int idx, err;

        if (snd_BUG_ON(!card))
                return -EINVAL;

        clnt = kzalloc(sizeof(*clnt), GFP_KERNEL);
        if (clnt == NULL)
                return -ENOMEM;
         
        if ((err = l3_attach_client(clnt, "l3-bit-sa1100-gpio", UDA1341_ALSA_NAME))) {
                kfree(clnt);
                return err;
        }

        for (idx = 0; idx < ARRAY_SIZE(snd_uda1341_controls); idx++) {
                if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_uda1341_controls[idx], clnt))) < 0) {
                        uda1341_free(clnt);
                        return err;
                }
        }

        if ((err = snd_device_new(card, SNDRV_DEV_CODEC, clnt, &ops)) < 0) {
                uda1341_free(clnt);
                return err;
        }

        *clntp = clnt;
        strcpy(card->mixername, "UDA1341TS Mixer");
        ((struct uda1341 *)clnt->driver_data)->card = card;
        
        snd_uda1341_proc_init(card, clnt);
        
        return 0;
}

/* }}} */

/* {{{ L3 operations */

static int uda1341_attach(struct l3_client *clnt)
{
        struct uda1341 *uda;

        uda = kzalloc(sizeof(*uda), 0, GFP_KERNEL);
        if (!uda)
                return -ENOMEM;

        /* init fixed parts of my copy of registers */
        uda->regs[stat0]   = STAT0;
        uda->regs[stat1]   = STAT1;

        uda->regs[data0_0] = DATA0_0;
        uda->regs[data0_1] = DATA0_1;
        uda->regs[data0_2] = DATA0_2;

        uda->write = snd_uda1341_codec_write;
        uda->read = snd_uda1341_codec_read;
  
        spin_lock_init(&uda->reg_lock);
        
        clnt->driver_data = uda;
        return 0;
}

static void uda1341_detach(struct l3_client *clnt)
{
        kfree(clnt->driver_data);
}

static int
uda1341_command(struct l3_client *clnt, int cmd, void *arg)
{
        if (cmd != CMD_READ_REG)
                return snd_uda1341_cfg_write(clnt, cmd, (int) arg, FLUSH);

        return snd_uda1341_codec_read(clnt, (int) arg);
}

static int uda1341_open(struct l3_client *clnt)
{
        struct uda1341 *uda = clnt->driver_data;

        uda->active = 1;

        /* init default configuration */
        snd_uda1341_cfg_write(clnt, CMD_RESET, 0, REGS_ONLY);
        snd_uda1341_cfg_write(clnt, CMD_FS, F256, FLUSH);       // unknown state after reset
        snd_uda1341_cfg_write(clnt, CMD_FORMAT, LSB16, FLUSH);  // unknown state after reset
        snd_uda1341_cfg_write(clnt, CMD_OGAIN, ON, FLUSH);      // default off after reset
        snd_uda1341_cfg_write(clnt, CMD_IGAIN, ON, FLUSH);      // default off after reset
        snd_uda1341_cfg_write(clnt, CMD_DAC, ON, FLUSH);        // ??? default value after reset
        snd_uda1341_cfg_write(clnt, CMD_ADC, ON, FLUSH);        // ??? default value after reset
        snd_uda1341_cfg_write(clnt, CMD_VOLUME, 20, FLUSH);     // default 0dB after reset
        snd_uda1341_cfg_write(clnt, CMD_BASS, 0, REGS_ONLY);    // default value after reset
        snd_uda1341_cfg_write(clnt, CMD_TREBBLE, 0, REGS_ONLY); // default value after reset
        snd_uda1341_cfg_write(clnt, CMD_PEAK, AFTER, REGS_ONLY);// default value after reset
        snd_uda1341_cfg_write(clnt, CMD_DEEMP, NONE, REGS_ONLY);// default value after reset
        //at this moment should be QMUTED by h3600_audio_init
        snd_uda1341_cfg_write(clnt, CMD_MUTE, OFF, REGS_ONLY);  // default value after reset
        snd_uda1341_cfg_write(clnt, CMD_FILTER, MAX, FLUSH);    // defaul flat after reset
        snd_uda1341_cfg_write(clnt, CMD_CH1, 31, FLUSH);        // default value after reset
        snd_uda1341_cfg_write(clnt, CMD_CH2, 4, FLUSH);         // default value after reset
        snd_uda1341_cfg_write(clnt, CMD_MIC, 4, FLUSH);         // default 0dB after reset
        snd_uda1341_cfg_write(clnt, CMD_MIXER, MIXER, FLUSH);   // default doub.dif.mode          
        snd_uda1341_cfg_write(clnt, CMD_AGC, OFF, FLUSH);       // default value after reset
        snd_uda1341_cfg_write(clnt, CMD_IG, 0, FLUSH);          // unknown state after reset
        snd_uda1341_cfg_write(clnt, CMD_AGC_TIME, 0, FLUSH);    // default value after reset
        snd_uda1341_cfg_write(clnt, CMD_AGC_LEVEL, 0, FLUSH);   // default value after reset

        return 0;
}

static void uda1341_close(struct l3_client *clnt)
{
        struct uda1341 *uda = clnt->driver_data;

        uda->active = 0;
}

/* }}} */

/* {{{ Module and L3 initialization */

static struct l3_ops uda1341_ops = {
        .open =         uda1341_open,
        .command =      uda1341_command,
        .close =        uda1341_close,
};

static struct l3_driver uda1341_driver = {
        .name =         UDA1341_ALSA_NAME,
        .attach_client = uda1341_attach,
        .detach_client = uda1341_detach,
        .ops =          &uda1341_ops,
        .owner =        THIS_MODULE,
};

static int __init uda1341_init(void)
{
        return l3_add_driver(&uda1341_driver);
}

static void __exit uda1341_exit(void)
{
        l3_del_driver(&uda1341_driver);
}

module_init(uda1341_init);
module_exit(uda1341_exit);

MODULE_AUTHOR("Tomas Kasparek <tomas.kasparek@seznam.cz>");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Philips UDA1341 CODEC driver for ALSA");
MODULE_SUPPORTED_DEVICE("{{UDA1341,UDA1341TS}}");

EXPORT_SYMBOL(snd_chip_uda1341_mixer_new);

/* }}} */

/*
 * Local variables:
 * indent-tabs-mode: t
 * End:
 */

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading