[funini.com] -> [kei@sodan] -> Kernel Reading

root/sound/core/pcm_lib.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. snd_pcm_playback_silence
  2. xrun
  3. snd_pcm_update_hw_ptr_pos
  4. snd_pcm_update_hw_ptr_post
  5. snd_pcm_update_hw_ptr_interrupt
  6. snd_pcm_update_hw_ptr
  7. snd_pcm_set_ops
  8. snd_pcm_set_sync
  9. div32
  10. div_down
  11. div_up
  12. mul
  13. muldiv32
  14. snd_interval_refine
  15. snd_interval_refine_first
  16. snd_interval_refine_last
  17. snd_interval_mul
  18. snd_interval_div
  19. snd_interval_muldivk
  20. snd_interval_mulkdiv
  21. snd_interval_ratnum
  22. snd_interval_ratden
  23. snd_interval_list
  24. snd_interval_step
  25. snd_pcm_hw_rule_add
  26. snd_pcm_hw_constraint_mask
  27. snd_pcm_hw_constraint_mask64
  28. snd_pcm_hw_constraint_integer
  29. snd_pcm_hw_constraint_minmax
  30. snd_pcm_hw_rule_list
  31. snd_pcm_hw_constraint_list
  32. snd_pcm_hw_rule_ratnums
  33. snd_pcm_hw_constraint_ratnums
  34. snd_pcm_hw_rule_ratdens
  35. snd_pcm_hw_constraint_ratdens
  36. snd_pcm_hw_rule_msbits
  37. snd_pcm_hw_constraint_msbits
  38. snd_pcm_hw_rule_step
  39. snd_pcm_hw_constraint_step
  40. snd_pcm_hw_rule_pow2
  41. snd_pcm_hw_constraint_pow2
  42. _snd_pcm_hw_param_any
  43. _snd_pcm_hw_params_any
  44. snd_pcm_hw_param_value
  45. _snd_pcm_hw_param_setempty
  46. _snd_pcm_hw_param_first
  47. snd_pcm_hw_param_first
  48. _snd_pcm_hw_param_last
  49. snd_pcm_hw_param_last
  50. snd_pcm_hw_params_choose
  51. snd_pcm_lib_ioctl_reset
  52. snd_pcm_lib_ioctl_channel_info
  53. snd_pcm_lib_ioctl
  54. snd_pcm_period_elapsed
  55. wait_for_avail_min
  56. snd_pcm_lib_write_transfer
  57. snd_pcm_lib_write1
  58. pcm_sanity_check
  59. snd_pcm_lib_write
  60. snd_pcm_lib_writev_transfer
  61. snd_pcm_lib_writev
  62. snd_pcm_lib_read_transfer
  63. snd_pcm_lib_read1
  64. snd_pcm_lib_read
  65. snd_pcm_lib_readv_transfer
  66. snd_pcm_lib_readv

/*
 *  Digital Audio (PCM) abstract layer
 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
 *                   Abramo Bagnara <abramo@alsa-project.org>
 *
 *
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 *
 */

#include <linux/slab.h>
#include <linux/time.h>
#include <sound/core.h>
#include <sound/control.h>
#include <sound/info.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/timer.h>

/*
 * fill ring buffer with silence
 * runtime->silence_start: starting pointer to silence area
 * runtime->silence_filled: size filled with silence
 * runtime->silence_threshold: threshold from application
 * runtime->silence_size: maximal size from application
 *
 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
 */
void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
{
        struct snd_pcm_runtime *runtime = substream->runtime;
        snd_pcm_uframes_t frames, ofs, transfer;

        if (runtime->silence_size < runtime->boundary) {
                snd_pcm_sframes_t noise_dist, n;
                if (runtime->silence_start != runtime->control->appl_ptr) {
                        n = runtime->control->appl_ptr - runtime->silence_start;
                        if (n < 0)
                                n += runtime->boundary;
                        if ((snd_pcm_uframes_t)n < runtime->silence_filled)
                                runtime->silence_filled -= n;
                        else
                                runtime->silence_filled = 0;
                        runtime->silence_start = runtime->control->appl_ptr;
                }
                if (runtime->silence_filled >= runtime->buffer_size)
                        return;
                noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
                if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
                        return;
                frames = runtime->silence_threshold - noise_dist;
                if (frames > runtime->silence_size)
                        frames = runtime->silence_size;
        } else {
                if (new_hw_ptr == ULONG_MAX) {  /* initialization */
                        snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
                        runtime->silence_filled = avail > 0 ? avail : 0;
                        runtime->silence_start = (runtime->status->hw_ptr +
                                                  runtime->silence_filled) %
                                                 runtime->boundary;
                } else {
                        ofs = runtime->status->hw_ptr;
                        frames = new_hw_ptr - ofs;
                        if ((snd_pcm_sframes_t)frames < 0)
                                frames += runtime->boundary;
                        runtime->silence_filled -= frames;
                        if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
                                runtime->silence_filled = 0;
                                runtime->silence_start = new_hw_ptr;
                        } else {
                                runtime->silence_start = ofs;
                        }
                }
                frames = runtime->buffer_size - runtime->silence_filled;
        }
        if (snd_BUG_ON(frames > runtime->buffer_size))
                return;
        if (frames == 0)
                return;
        ofs = runtime->silence_start % runtime->buffer_size;
        while (frames > 0) {
                transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
                if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
                    runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
                        if (substream->ops->silence) {
                                int err;
                                err = substream->ops->silence(substream, -1, ofs, transfer);
                                snd_BUG_ON(err < 0);
                        } else {
                                char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
                                snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
                        }
                } else {
                        unsigned int c;
                        unsigned int channels = runtime->channels;
                        if (substream->ops->silence) {
                                for (c = 0; c < channels; ++c) {
                                        int err;
                                        err = substream->ops->silence(substream, c, ofs, transfer);
                                        snd_BUG_ON(err < 0);
                                }
                        } else {
                                size_t dma_csize = runtime->dma_bytes / channels;
                                for (c = 0; c < channels; ++c) {
                                        char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
                                        snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
                                }
                        }
                }
                runtime->silence_filled += transfer;
                frames -= transfer;
                ofs = 0;
        }
}

static void xrun(struct snd_pcm_substream *substream)
{
        snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
#ifdef CONFIG_SND_PCM_XRUN_DEBUG
        if (substream->pstr->xrun_debug) {
                snd_printd(KERN_DEBUG "XRUN: pcmC%dD%d%c\n",
                           substream->pcm->card->number,
                           substream->pcm->device,
                           substream->stream ? 'c' : 'p');
                if (substream->pstr->xrun_debug > 1)
                        dump_stack();
        }
#endif
}

static inline snd_pcm_uframes_t snd_pcm_update_hw_ptr_pos(struct snd_pcm_substream *substream,
                                                          struct snd_pcm_runtime *runtime)
{
        snd_pcm_uframes_t pos;

        if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
                snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
        pos = substream->ops->pointer(substream);
        if (pos == SNDRV_PCM_POS_XRUN)
                return pos; /* XRUN */
#ifdef CONFIG_SND_DEBUG
        if (pos >= runtime->buffer_size) {
                snd_printk(KERN_ERR  "BUG: stream = %i, pos = 0x%lx, buffer size = 0x%lx, period size = 0x%lx\n", substream->stream, pos, runtime->buffer_size, runtime->period_size);
        }
#endif
        pos -= pos % runtime->min_align;
        return pos;
}

static inline int snd_pcm_update_hw_ptr_post(struct snd_pcm_substream *substream,
                                             struct snd_pcm_runtime *runtime)
{
        snd_pcm_uframes_t avail;

        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
                avail = snd_pcm_playback_avail(runtime);
        else
                avail = snd_pcm_capture_avail(runtime);
        if (avail > runtime->avail_max)
                runtime->avail_max = avail;
        if (avail >= runtime->stop_threshold) {
                if (substream->runtime->status->state == SNDRV_PCM_STATE_DRAINING)
                        snd_pcm_drain_done(substream);
                else
                        xrun(substream);
                return -EPIPE;
        }
        if (avail >= runtime->control->avail_min)
                wake_up(&runtime->sleep);
        return 0;
}

static inline int snd_pcm_update_hw_ptr_interrupt(struct snd_pcm_substream *substream)
{
        struct snd_pcm_runtime *runtime = substream->runtime;
        snd_pcm_uframes_t pos;
        snd_pcm_uframes_t new_hw_ptr, hw_ptr_interrupt;
        snd_pcm_sframes_t delta;

        pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
        if (pos == SNDRV_PCM_POS_XRUN) {
                xrun(substream);
                return -EPIPE;
        }
        if (runtime->period_size == runtime->buffer_size)
                goto __next_buf;
        new_hw_ptr = runtime->hw_ptr_base + pos;
        hw_ptr_interrupt = runtime->hw_ptr_interrupt + runtime->period_size;

        delta = hw_ptr_interrupt - new_hw_ptr;
        if (delta > 0) {
                if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {
#ifdef CONFIG_SND_PCM_XRUN_DEBUG
                        if (runtime->periods > 1 && substream->pstr->xrun_debug) {
                                snd_printd(KERN_ERR "Unexpected hw_pointer value [1] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2);
                                if (substream->pstr->xrun_debug > 1)
                                        dump_stack();
                        }
#endif
                        return 0;
                }
              __next_buf:
                runtime->hw_ptr_base += runtime->buffer_size;
                if (runtime->hw_ptr_base == runtime->boundary)
                        runtime->hw_ptr_base = 0;
                new_hw_ptr = runtime->hw_ptr_base + pos;
        }

        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
            runtime->silence_size > 0)
                snd_pcm_playback_silence(substream, new_hw_ptr);

        runtime->status->hw_ptr = new_hw_ptr;
        runtime->hw_ptr_interrupt = new_hw_ptr - new_hw_ptr % runtime->period_size;

        return snd_pcm_update_hw_ptr_post(substream, runtime);
}

/* CAUTION: call it with irq disabled */
int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
{
        struct snd_pcm_runtime *runtime = substream->runtime;
        snd_pcm_uframes_t pos;
        snd_pcm_uframes_t old_hw_ptr, new_hw_ptr;
        snd_pcm_sframes_t delta;

        old_hw_ptr = runtime->status->hw_ptr;
        pos = snd_pcm_update_hw_ptr_pos(substream, runtime);
        if (pos == SNDRV_PCM_POS_XRUN) {
                xrun(substream);
                return -EPIPE;
        }
        new_hw_ptr = runtime->hw_ptr_base + pos;

        delta = old_hw_ptr - new_hw_ptr;
        if (delta > 0) {
                if ((snd_pcm_uframes_t)delta < runtime->buffer_size / 2) {
#ifdef CONFIG_SND_PCM_XRUN_DEBUG
                        if (runtime->periods > 2 && substream->pstr->xrun_debug) {
                                snd_printd(KERN_ERR "Unexpected hw_pointer value [2] (stream = %i, delta: -%ld, max jitter = %ld): wrong interrupt acknowledge?\n", substream->stream, (long) delta, runtime->buffer_size / 2);
                                if (substream->pstr->xrun_debug > 1)
                                        dump_stack();
                        }
#endif
                        return 0;
                }
                runtime->hw_ptr_base += runtime->buffer_size;
                if (runtime->hw_ptr_base == runtime->boundary)
                        runtime->hw_ptr_base = 0;
                new_hw_ptr = runtime->hw_ptr_base + pos;
        }
        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
            runtime->silence_size > 0)
                snd_pcm_playback_silence(substream, new_hw_ptr);

        runtime->status->hw_ptr = new_hw_ptr;

        return snd_pcm_update_hw_ptr_post(substream, runtime);
}

/**
 * snd_pcm_set_ops - set the PCM operators
 * @pcm: the pcm instance
 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
 * @ops: the operator table
 *
 * Sets the given PCM operators to the pcm instance.
 */
void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
{
        struct snd_pcm_str *stream = &pcm->streams[direction];
        struct snd_pcm_substream *substream;
        
        for (substream = stream->substream; substream != NULL; substream = substream->next)
                substream->ops = ops;
}

EXPORT_SYMBOL(snd_pcm_set_ops);

/**
 * snd_pcm_sync - set the PCM sync id
 * @substream: the pcm substream
 *
 * Sets the PCM sync identifier for the card.
 */
void snd_pcm_set_sync(struct snd_pcm_substream *substream)
{
        struct snd_pcm_runtime *runtime = substream->runtime;
        
        runtime->sync.id32[0] = substream->pcm->card->number;
        runtime->sync.id32[1] = -1;
        runtime->sync.id32[2] = -1;
        runtime->sync.id32[3] = -1;
}

EXPORT_SYMBOL(snd_pcm_set_sync);

/*
 *  Standard ioctl routine
 */

static inline unsigned int div32(unsigned int a, unsigned int b, 
                                 unsigned int *r)
{
        if (b == 0) {
                *r = 0;
                return UINT_MAX;
        }
        *r = a % b;
        return a / b;
}

static inline unsigned int div_down(unsigned int a, unsigned int b)
{
        if (b == 0)
                return UINT_MAX;
        return a / b;
}

static inline unsigned int div_up(unsigned int a, unsigned int b)
{
        unsigned int r;
        unsigned int q;
        if (b == 0)
                return UINT_MAX;
        q = div32(a, b, &r);
        if (r)
                ++q;
        return q;
}

static inline unsigned int mul(unsigned int a, unsigned int b)
{
        if (a == 0)
                return 0;
        if (div_down(UINT_MAX, a) < b)
                return UINT_MAX;
        return a * b;
}

static inline unsigned int muldiv32(unsigned int a, unsigned int b,
                                    unsigned int c, unsigned int *r)
{
        u_int64_t n = (u_int64_t) a * b;
        if (c == 0) {
                snd_BUG_ON(!n);
                *r = 0;
                return UINT_MAX;
        }
        div64_32(&n, c, r);
        if (n >= UINT_MAX) {
                *r = 0;
                return UINT_MAX;
        }
        return n;
}

/**
 * snd_interval_refine - refine the interval value of configurator
 * @i: the interval value to refine
 * @v: the interval value to refer to
 *
 * Refines the interval value with the reference value.
 * The interval is changed to the range satisfying both intervals.
 * The interval status (min, max, integer, etc.) are evaluated.
 *
 * Returns non-zero if the value is changed, zero if not changed.
 */
int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
{
        int changed = 0;
        if (snd_BUG_ON(snd_interval_empty(i)))
                return -EINVAL;
        if (i->min < v->min) {
                i->min = v->min;
                i->openmin = v->openmin;
                changed = 1;
        } else if (i->min == v->min && !i->openmin && v->openmin) {
                i->openmin = 1;
                changed = 1;
        }
        if (i->max > v->max) {
                i->max = v->max;
                i->openmax = v->openmax;
                changed = 1;
        } else if (i->max == v->max && !i->openmax && v->openmax) {
                i->openmax = 1;
                changed = 1;
        }
        if (!i->integer && v->integer) {
                i->integer = 1;
                changed = 1;
        }
        if (i->integer) {
                if (i->openmin) {
                        i->min++;
                        i->openmin = 0;
                }
                if (i->openmax) {
                        i->max--;
                        i->openmax = 0;
                }
        } else if (!i->openmin && !i->openmax && i->min == i->max)
                i->integer = 1;
        if (snd_interval_checkempty(i)) {
                snd_interval_none(i);
                return -EINVAL;
        }
        return changed;
}

EXPORT_SYMBOL(snd_interval_refine);

static int snd_interval_refine_first(struct snd_interval *i)
{
        if (snd_BUG_ON(snd_interval_empty(i)))
                return -EINVAL;
        if (snd_interval_single(i))
                return 0;
        i->max = i->min;
        i->openmax = i->openmin;
        if (i->openmax)
                i->max++;
        return 1;
}

static int snd_interval_refine_last(struct snd_interval *i)
{
        if (snd_BUG_ON(snd_interval_empty(i)))
                return -EINVAL;
        if (snd_interval_single(i))
                return 0;
        i->min = i->max;
        i->openmin = i->openmax;
        if (i->openmin)
                i->min--;
        return 1;
}

void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
{
        if (a->empty || b->empty) {
                snd_interval_none(c);
                return;
        }
        c->empty = 0;
        c->min = mul(a->min, b->min);
        c->openmin = (a->openmin || b->openmin);
        c->max = mul(a->max,  b->max);
        c->openmax = (a->openmax || b->openmax);
        c->integer = (a->integer && b->integer);
}

/**
 * snd_interval_div - refine the interval value with division
 * @a: dividend
 * @b: divisor
 * @c: quotient
 *
 * c = a / b
 *
 * Returns non-zero if the value is changed, zero if not changed.
 */
void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
{
        unsigned int r;
        if (a->empty || b->empty) {
                snd_interval_none(c);
                return;
        }
        c->empty = 0;
        c->min = div32(a->min, b->max, &r);
        c->openmin = (r || a->openmin || b->openmax);
        if (b->min > 0) {
                c->max = div32(a->max, b->min, &r);
                if (r) {
                        c->max++;
                        c->openmax = 1;
                } else
                        c->openmax = (a->openmax || b->openmin);
        } else {
                c->max = UINT_MAX;
                c->openmax = 0;
        }
        c->integer = 0;
}

/**
 * snd_interval_muldivk - refine the interval value
 * @a: dividend 1
 * @b: dividend 2
 * @k: divisor (as integer)
 * @c: result
  *
 * c = a * b / k
 *
 * Returns non-zero if the value is changed, zero if not changed.
 */
void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
                      unsigned int k, struct snd_interval *c)
{
        unsigned int r;
        if (a->empty || b->empty) {
                snd_interval_none(c);
                return;
        }
        c->empty = 0;
        c->min = muldiv32(a->min, b->min, k, &r);
        c->openmin = (r || a->openmin || b->openmin);
        c->max = muldiv32(a->max, b->max, k, &r);
        if (r) {
                c->max++;
                c->openmax = 1;
        } else
                c->openmax = (a->openmax || b->openmax);
        c->integer = 0;
}

/**
 * snd_interval_mulkdiv - refine the interval value
 * @a: dividend 1
 * @k: dividend 2 (as integer)
 * @b: divisor
 * @c: result
 *
 * c = a * k / b
 *
 * Returns non-zero if the value is changed, zero if not changed.
 */
void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
                      const struct snd_interval *b, struct snd_interval *c)
{
        unsigned int r;
        if (a->empty || b->empty) {
                snd_interval_none(c);
                return;
        }
        c->empty = 0;
        c->min = muldiv32(a->min, k, b->max, &r);
        c->openmin = (r || a->openmin || b->openmax);
        if (b->min > 0) {
                c->max = muldiv32(a->max, k, b->min, &r);
                if (r) {
                        c->max++;
                        c->openmax = 1;
                } else
                        c->openmax = (a->openmax || b->openmin);
        } else {
                c->max = UINT_MAX;
                c->openmax = 0;
        }
        c->integer = 0;
}

/* ---- */


/**
 * snd_interval_ratnum - refine the interval value
 * @i: interval to refine
 * @rats_count: number of ratnum_t 
 * @rats: ratnum_t array
 * @nump: pointer to store the resultant numerator
 * @denp: pointer to store the resultant denominator
 *
 * Returns non-zero if the value is changed, zero if not changed.
 */
int snd_interval_ratnum(struct snd_interval *i,
                        unsigned int rats_count, struct snd_ratnum *rats,
                        unsigned int *nump, unsigned int *denp)
{
        unsigned int best_num, best_diff, best_den;
        unsigned int k;
        struct snd_interval t;
        int err;

        best_num = best_den = best_diff = 0;
        for (k = 0; k < rats_count; ++k) {
                unsigned int num = rats[k].num;
                unsigned int den;
                unsigned int q = i->min;
                int diff;
                if (q == 0)
                        q = 1;
                den = div_down(num, q);
                if (den < rats[k].den_min)
                        continue;
                if (den > rats[k].den_max)
                        den = rats[k].den_max;
                else {
                        unsigned int r;
                        r = (den - rats[k].den_min) % rats[k].den_step;
                        if (r != 0)
                                den -= r;
                }
                diff = num - q * den;
                if (best_num == 0 ||
                    diff * best_den < best_diff * den) {
                        best_diff = diff;
                        best_den = den;
                        best_num = num;
                }
        }
        if (best_den == 0) {
                i->empty = 1;
                return -EINVAL;
        }
        t.min = div_down(best_num, best_den);
        t.openmin = !!(best_num % best_den);
        
        best_num = best_den = best_diff = 0;
        for (k = 0; k < rats_count; ++k) {
                unsigned int num = rats[k].num;
                unsigned int den;
                unsigned int q = i->max;
                int diff;
                if (q == 0) {
                        i->empty = 1;
                        return -EINVAL;
                }
                den = div_up(num, q);
                if (den > rats[k].den_max)
                        continue;
                if (den < rats[k].den_min)
                        den = rats[k].den_min;
                else {
                        unsigned int r;
                        r = (den - rats[k].den_min) % rats[k].den_step;
                        if (r != 0)
                                den += rats[k].den_step - r;
                }
                diff = q * den - num;
                if (best_num == 0 ||
                    diff * best_den < best_diff * den) {
                        best_diff = diff;
                        best_den = den;
                        best_num = num;
                }
        }
        if (best_den == 0) {
                i->empty = 1;
                return -EINVAL;
        }
        t.max = div_up(best_num, best_den);
        t.openmax = !!(best_num % best_den);
        t.integer = 0;
        err = snd_interval_refine(i, &t);
        if (err < 0)
                return err;

        if (snd_interval_single(i)) {
                if (nump)
                        *nump = best_num;
                if (denp)
                        *denp = best_den;
        }
        return err;
}

EXPORT_SYMBOL(snd_interval_ratnum);

/**
 * snd_interval_ratden - refine the interval value
 * @i: interval to refine
 * @rats_count: number of struct ratden
 * @rats: struct ratden array
 * @nump: pointer to store the resultant numerator
 * @denp: pointer to store the resultant denominator
 *
 * Returns non-zero if the value is changed, zero if not changed.
 */
static int snd_interval_ratden(struct snd_interval *i,
                               unsigned int rats_count, struct snd_ratden *rats,
                               unsigned int *nump, unsigned int *denp)
{
        unsigned int best_num, best_diff, best_den;
        unsigned int k;
        struct snd_interval t;
        int err;

        best_num = best_den = best_diff = 0;
        for (k = 0; k < rats_count; ++k) {
                unsigned int num;
                unsigned int den = rats[k].den;
                unsigned int q = i->min;
                int diff;
                num = mul(q, den);
                if (num > rats[k].num_max)
                        continue;
                if (num < rats[k].num_min)
                        num = rats[k].num_max;
                else {
                        unsigned int r;
                        r = (num - rats[k].num_min) % rats[k].num_step;
                        if (r != 0)
                                num += rats[k].num_step - r;
                }
                diff = num - q * den;
                if (best_num == 0 ||
                    diff * best_den < best_diff * den) {
                        best_diff = diff;
                        best_den = den;
                        best_num = num;
                }
        }
        if (best_den == 0) {
                i->empty = 1;
                return -EINVAL;
        }
        t.min = div_down(best_num, best_den);
        t.openmin = !!(best_num % best_den);
        
        best_num = best_den = best_diff = 0;
        for (k = 0; k < rats_count; ++k) {
                unsigned int num;
                unsigned int den = rats[k].den;
                unsigned int q = i->max;
                int diff;
                num = mul(q, den);
                if (num < rats[k].num_min)
                        continue;
                if (num > rats[k].num_max)
                        num = rats[k].num_max;
                else {
                        unsigned int r;
                        r = (num - rats[k].num_min) % rats[k].num_step;
                        if (r != 0)
                                num -= r;
                }
                diff = q * den - num;
                if (best_num == 0 ||
                    diff * best_den < best_diff * den) {
                        best_diff = diff;
                        best_den = den;
                        best_num = num;
                }
        }
        if (best_den == 0) {
                i->empty = 1;
                return -EINVAL;
        }
        t.max = div_up(best_num, best_den);
        t.openmax = !!(best_num % best_den);
        t.integer = 0;
        err = snd_interval_refine(i, &t);
        if (err < 0)
                return err;

        if (snd_interval_single(i)) {
                if (nump)
                        *nump = best_num;
                if (denp)
                        *denp = best_den;
        }
        return err;
}

/**
 * snd_interval_list - refine the interval value from the list
 * @i: the interval value to refine
 * @count: the number of elements in the list
 * @list: the value list
 * @mask: the bit-mask to evaluate
 *
 * Refines the interval value from the list.
 * When mask is non-zero, only the elements corresponding to bit 1 are
 * evaluated.
 *
 * Returns non-zero if the value is changed, zero if not changed.
 */
int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
{
        unsigned int k;
        int changed = 0;

        if (!count) {
                i->empty = 1;
                return -EINVAL;
        }
        for (k = 0; k < count; k++) {
                if (mask && !(mask & (1 << k)))
                        continue;
                if (i->min == list[k] && !i->openmin)
                        goto _l1;
                if (i->min < list[k]) {
                        i->min = list[k];
                        i->openmin = 0;
                        changed = 1;
                        goto _l1;
                }
        }
        i->empty = 1;
        return -EINVAL;
 _l1:
        for (k = count; k-- > 0;) {
                if (mask && !(mask & (1 << k)))
                        continue;
                if (i->max == list[k] && !i->openmax)
                        goto _l2;
                if (i->max > list[k]) {
                        i->max = list[k];
                        i->openmax = 0;
                        changed = 1;
                        goto _l2;
                }
        }
        i->empty = 1;
        return -EINVAL;
 _l2:
        if (snd_interval_checkempty(i)) {
                i->empty = 1;
                return -EINVAL;
        }
        return changed;
}

EXPORT_SYMBOL(snd_interval_list);

static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
{
        unsigned int n;
        int changed = 0;
        n = (i->min - min) % step;
        if (n != 0 || i->openmin) {
                i->min += step - n;
                changed = 1;
        }
        n = (i->max - min) % step;
        if (n != 0 || i->openmax) {
                i->max -= n;
                changed = 1;
        }
        if (snd_interval_checkempty(i)) {
                i->empty = 1;
                return -EINVAL;
        }
        return changed;
}

/* Info constraints helpers */

/**
 * snd_pcm_hw_rule_add - add the hw-constraint rule
 * @runtime: the pcm runtime instance
 * @cond: condition bits
 * @var: the variable to evaluate
 * @func: the evaluation function
 * @private: the private data pointer passed to function
 * @dep: the dependent variables
 *
 * Returns zero if successful, or a negative error code on failure.
 */
int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
                        int var,
                        snd_pcm_hw_rule_func_t func, void *private,
                        int dep, ...)
{
        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
        struct snd_pcm_hw_rule *c;
        unsigned int k;
        va_list args;
        va_start(args, dep);
        if (constrs->rules_num >= constrs->rules_all) {
                struct snd_pcm_hw_rule *new;
                unsigned int new_rules = constrs->rules_all + 16;
                new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
                if (!new)
                        return -ENOMEM;
                if (constrs->rules) {
                        memcpy(new, constrs->rules,
                               constrs->rules_num * sizeof(*c));
                        kfree(constrs->rules);
                }
                constrs->rules = new;
                constrs->rules_all = new_rules;
        }
        c = &constrs->rules[constrs->rules_num];
        c->cond = cond;
        c->func = func;
        c->var = var;
        c->private = private;
        k = 0;
        while (1) {
                if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps)))
                        return -EINVAL;
                c->deps[k++] = dep;
                if (dep < 0)
                        break;
                dep = va_arg(args, int);
        }
        constrs->rules_num++;
        va_end(args);
        return 0;
}                                   

EXPORT_SYMBOL(snd_pcm_hw_rule_add);

/**
 * snd_pcm_hw_constraint_mask
 * @runtime: PCM runtime instance
 * @var: hw_params variable to apply the mask
 * @mask: the bitmap mask
 *
 * Apply the constraint of the given bitmap mask to a mask parameter.
 */
int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
                               u_int32_t mask)
{
        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
        struct snd_mask *maskp = constrs_mask(constrs, var);
        *maskp->bits &= mask;
        memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
        if (*maskp->bits == 0)
                return -EINVAL;
        return 0;
}

/**
 * snd_pcm_hw_constraint_mask64
 * @runtime: PCM runtime instance
 * @var: hw_params variable to apply the mask
 * @mask: the 64bit bitmap mask
 *
 * Apply the constraint of the given bitmap mask to a mask parameter.
 */
int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
                                 u_int64_t mask)
{
        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
        struct snd_mask *maskp = constrs_mask(constrs, var);
        maskp->bits[0] &= (u_int32_t)mask;
        maskp->bits[1] &= (u_int32_t)(mask >> 32);
        memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
        if (! maskp->bits[0] && ! maskp->bits[1])
                return -EINVAL;
        return 0;
}

/**
 * snd_pcm_hw_constraint_integer
 * @runtime: PCM runtime instance
 * @var: hw_params variable to apply the integer constraint
 *
 * Apply the constraint of integer to an interval parameter.
 */
int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
{
        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
        return snd_interval_setinteger(constrs_interval(constrs, var));
}

EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);

/**
 * snd_pcm_hw_constraint_minmax
 * @runtime: PCM runtime instance
 * @var: hw_params variable to apply the range
 * @min: the minimal value
 * @max: the maximal value
 * 
 * Apply the min/max range constraint to an interval parameter.
 */
int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
                                 unsigned int min, unsigned int max)
{
        struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
        struct snd_interval t;
        t.min = min;
        t.max = max;
        t.openmin = t.openmax = 0;
        t.integer = 0;
        return snd_interval_refine(constrs_interval(constrs, var), &t);
}

EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);

static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
                                struct snd_pcm_hw_rule *rule)
{
        struct snd_pcm_hw_constraint_list *list = rule->private;
        return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
}               


/**
 * snd_pcm_hw_constraint_list
 * @runtime: PCM runtime instance
 * @cond: condition bits
 * @var: hw_params variable to apply the list constraint
 * @l: list
 * 
 * Apply the list of constraints to an interval parameter.
 */
int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
                               unsigned int cond,
                               snd_pcm_hw_param_t var,
                               struct snd_pcm_hw_constraint_list *l)
{
        return snd_pcm_hw_rule_add(runtime, cond, var,
                                   snd_pcm_hw_rule_list, l,
                                   var, -1);
}

EXPORT_SYMBOL(snd_pcm_hw_constraint_list);

static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
                                   struct snd_pcm_hw_rule *rule)
{
        struct snd_pcm_hw_constraint_ratnums *r = rule->private;
        unsigned int num = 0, den = 0;
        int err;
        err = snd_interval_ratnum(hw_param_interval(params, rule->var),
                                  r->nrats, r->rats, &num, &den);
        if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
                params->rate_num = num;
                params->rate_den = den;
        }
        return err;
}

/**
 * snd_pcm_hw_constraint_ratnums
 * @runtime: PCM runtime instance
 * @cond: condition bits
 * @var: hw_params variable to apply the ratnums constraint
 * @r: struct snd_ratnums constriants
 */
int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
                                  unsigned int cond,
                                  snd_pcm_hw_param_t var,
                                  struct snd_pcm_hw_constraint_ratnums *r)
{
        return snd_pcm_hw_rule_add(runtime, cond, var,
                                   snd_pcm_hw_rule_ratnums, r,
                                   var, -1);
}

EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);

static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
                                   struct snd_pcm_hw_rule *rule)
{
        struct snd_pcm_hw_constraint_ratdens *r = rule->private;
        unsigned int num = 0, den = 0;
        int err = snd_interval_ratden(hw_param_interval(params, rule->var),
                                  r->nrats, r->rats, &num, &den);
        if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
                params->rate_num = num;
                params->rate_den = den;
        }
        return err;
}

/**
 * snd_pcm_hw_constraint_ratdens
 * @runtime: PCM runtime instance
 * @cond: condition bits
 * @var: hw_params variable to apply the ratdens constraint
 * @r: struct snd_ratdens constriants
 */
int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
                                  unsigned int cond,
                                  snd_pcm_hw_param_t var,
                                  struct snd_pcm_hw_constraint_ratdens *r)
{
        return snd_pcm_hw_rule_add(runtime, cond, var,
                                   snd_pcm_hw_rule_ratdens, r,
                                   var, -1);
}

EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);

static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
                                  struct snd_pcm_hw_rule *rule)
{
        unsigned int l = (unsigned long) rule->private;
        int width = l & 0xffff;
        unsigned int msbits = l >> 16;
        struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
        if (snd_interval_single(i) && snd_interval_value(i) == width)
                params->msbits = msbits;
        return 0;
}

/**
 * snd_pcm_hw_constraint_msbits
 * @runtime: PCM runtime instance
 * @cond: condition bits
 * @width: sample bits width
 * @msbits: msbits width
 */
int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
                                 unsigned int cond,
                                 unsigned int width,
                                 unsigned int msbits)
{
        unsigned long l = (msbits << 16) | width;
        return snd_pcm_hw_rule_add(runtime, cond, -1,
                                    snd_pcm_hw_rule_msbits,
                                    (void*) l,
                                    SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
}

EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);

static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
                                struct snd_pcm_hw_rule *rule)
{
        unsigned long step = (unsigned long) rule->private;
        return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
}

/**
 * snd_pcm_hw_constraint_step
 * @runtime: PCM runtime instance
 * @cond: condition bits
 * @var: hw_params variable to apply the step constraint
 * @step: step size
 */
int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
                               unsigned int cond,
                               snd_pcm_hw_param_t var,
                               unsigned long step)
{
        return snd_pcm_hw_rule_add(runtime, cond, var, 
                                   snd_pcm_hw_rule_step, (void *) step,
                                   var, -1);
}

EXPORT_SYMBOL(snd_pcm_hw_constraint_step);

static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
{
        static unsigned int pow2_sizes[] = {
                1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
                1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
                1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
                1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
        };
        return snd_interval_list(hw_param_interval(params, rule->var),
                                 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
}               

/**
 * snd_pcm_hw_constraint_pow2
 * @runtime: PCM runtime instance
 * @cond: condition bits
 * @var: hw_params variable to apply the power-of-2 constraint
 */
int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
                               unsigned int cond,
                               snd_pcm_hw_param_t var)
{
        return snd_pcm_hw_rule_add(runtime, cond, var, 
                                   snd_pcm_hw_rule_pow2, NULL,
                                   var, -1);
}

EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);

static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
                                  snd_pcm_hw_param_t var)
{
        if (hw_is_mask(var)) {
                snd_mask_any(hw_param_mask(params, var));
                params->cmask |= 1 << var;
                params->rmask |= 1 << var;
                return;
        }
        if (hw_is_interval(var)) {
                snd_interval_any(hw_param_interval(params, var));
                params->cmask |= 1 << var;
                params->rmask |= 1 << var;
                return;
        }
        snd_BUG();
}

void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
{
        unsigned int k;
        memset(params, 0, sizeof(*params));
        for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
                _snd_pcm_hw_param_any(params, k);
        for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
                _snd_pcm_hw_param_any(params, k);
        params->info = ~0U;
}

EXPORT_SYMBOL(_snd_pcm_hw_params_any);

/**
 * snd_pcm_hw_param_value
 * @params: the hw_params instance
 * @var: parameter to retrieve
 * @dir: pointer to the direction (-1,0,1) or NULL
 *
 * Return the value for field PAR if it's fixed in configuration space 
 *  defined by PARAMS. Return -EINVAL otherwise
 */
int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
                           snd_pcm_hw_param_t var, int *dir)
{
        if (hw_is_mask(var)) {
                const struct snd_mask *mask = hw_param_mask_c(params, var);
                if (!snd_mask_single(mask))
                        return -EINVAL;
                if (dir)
                        *dir = 0;
                return snd_mask_value(mask);
        }
        if (hw_is_interval(var)) {
                const struct snd_interval *i = hw_param_interval_c(params, var);
                if (!snd_interval_single(i))
                        return -EINVAL;
                if (dir)
                        *dir = i->openmin;
                return snd_interval_value(i);
        }
        return -EINVAL;
}

EXPORT_SYMBOL(snd_pcm_hw_param_value);

void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
                                snd_pcm_hw_param_t var)
{
        if (hw_is_mask(var)) {
                snd_mask_none(hw_param_mask(params, var));
                params->cmask |= 1 << var;
                params->rmask |= 1 << var;
        } else if (hw_is_interval(var)) {
                snd_interval_none(hw_param_interval(params, var));
                params->cmask |= 1 << var;
                params->rmask |= 1 << var;
        } else {
                snd_BUG();
        }
}

EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);

static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
                                   snd_pcm_hw_param_t var)
{
        int changed;
        if (hw_is_mask(var))
                changed = snd_mask_refine_first(hw_param_mask(params, var));
        else if (hw_is_interval(var))
                changed = snd_interval_refine_first(hw_param_interval(params, var));
        else
                return -EINVAL;
        if (changed) {
                params->cmask |= 1 << var;
                params->rmask |= 1 << var;
        }
        return changed;
}


/**
 * snd_pcm_hw_param_first
 * @pcm: PCM instance
 * @params: the hw_params instance
 * @var: parameter to retrieve
 * @dir: pointer to the direction (-1,0,1) or NULL
 *
 * Inside configuration space defined by PARAMS remove from PAR all 
 * values > minimum. Reduce configuration space accordingly.
 * Return the minimum.
 */
int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
                           struct snd_pcm_hw_params *params, 
                           snd_pcm_hw_param_t var, int *dir)
{
        int changed = _snd_pcm_hw_param_first(params, var);
        if (changed < 0)
                return changed;
        if (params->rmask) {
                int err = snd_pcm_hw_refine(pcm, params);
                if (snd_BUG_ON(err < 0))
                        return err;
        }
        return snd_pcm_hw_param_value(params, var, dir);
}

EXPORT_SYMBOL(snd_pcm_hw_param_first);

static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
                                  snd_pcm_hw_param_t var)
{
        int changed;
        if (hw_is_mask(var))
                changed = snd_mask_refine_last(hw_param_mask(params, var));
        else if (hw_is_interval(var))
                changed = snd_interval_refine_last(hw_param_interval(params, var));
        else
                return -EINVAL;
        if (changed) {
                params->cmask |= 1 << var;
                params->rmask |= 1 << var;
        }
        return changed;
}


/**
 * snd_pcm_hw_param_last
 * @pcm: PCM instance
 * @params: the hw_params instance
 * @var: parameter to retrieve
 * @dir: pointer to the direction (-1,0,1) or NULL
 *
 * Inside configuration space defined by PARAMS remove from PAR all 
 * values < maximum. Reduce configuration space accordingly.
 * Return the maximum.
 */
int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
                          struct snd_pcm_hw_params *params,
                          snd_pcm_hw_param_t var, int *dir)
{
        int changed = _snd_pcm_hw_param_last(params, var);
        if (changed < 0)
                return changed;
        if (params->rmask) {
                int err = snd_pcm_hw_refine(pcm, params);
                if (snd_BUG_ON(err < 0))
                        return err;
        }
        return snd_pcm_hw_param_value(params, var, dir);
}

EXPORT_SYMBOL(snd_pcm_hw_param_last);

/**
 * snd_pcm_hw_param_choose
 * @pcm: PCM instance
 * @params: the hw_params instance
 *
 * Choose one configuration from configuration space defined by PARAMS
 * The configuration chosen is that obtained fixing in this order:
 * first access, first format, first subformat, min channels,
 * min rate, min period time, max buffer size, min tick time
 */
int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
                             struct snd_pcm_hw_params *params)
{
        static int vars[] = {
                SNDRV_PCM_HW_PARAM_ACCESS,
                SNDRV_PCM_HW_PARAM_FORMAT,
                SNDRV_PCM_HW_PARAM_SUBFORMAT,
                SNDRV_PCM_HW_PARAM_CHANNELS,
                SNDRV_PCM_HW_PARAM_RATE,
                SNDRV_PCM_HW_PARAM_PERIOD_TIME,
                SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
                SNDRV_PCM_HW_PARAM_TICK_TIME,
                -1
        };
        int err, *v;

        for (v = vars; *v != -1; v++) {
                if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
                        err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
                else
                        err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
                if (snd_BUG_ON(err < 0))
                        return err;
        }
        return 0;
}

static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
                                   void *arg)
{
        struct snd_pcm_runtime *runtime = substream->runtime;
        unsigned long flags;
        snd_pcm_stream_lock_irqsave(substream, flags);
        if (snd_pcm_running(substream) &&
            snd_pcm_update_hw_ptr(substream) >= 0)
                runtime->status->hw_ptr %= runtime->buffer_size;
        else
                runtime->status->hw_ptr = 0;
        snd_pcm_stream_unlock_irqrestore(substream, flags);
        return 0;
}

static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
                                          void *arg)
{
        struct snd_pcm_channel_info *info = arg;
        struct snd_pcm_runtime *runtime = substream->runtime;
        int width;
        if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
                info->offset = -1;
                return 0;
        }
        width = snd_pcm_format_physical_width(runtime->format);
        if (width < 0)
                return width;
        info->offset = 0;
        switch (runtime->access) {
        case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
        case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
                info->first = info->channel * width;
                info->step = runtime->channels * width;
                break;
        case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
        case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
        {
                size_t size = runtime->dma_bytes / runtime->channels;
                info->first = info->channel * size * 8;
                info->step = width;
                break;
        }
        default:
                snd_BUG();
                break;
        }
        return 0;
}

/**
 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
 * @substream: the pcm substream instance
 * @cmd: ioctl command
 * @arg: ioctl argument
 *
 * Processes the generic ioctl commands for PCM.
 * Can be passed as the ioctl callback for PCM ops.
 *
 * Returns zero if successful, or a negative error code on failure.
 */
int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
                      unsigned int cmd, void *arg)
{
        switch (cmd) {
        case SNDRV_PCM_IOCTL1_INFO:
                return 0;
        case SNDRV_PCM_IOCTL1_RESET:
                return snd_pcm_lib_ioctl_reset(substream, arg);
        case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
                return snd_pcm_lib_ioctl_channel_info(substream, arg);
        }
        return -ENXIO;
}

EXPORT_SYMBOL(snd_pcm_lib_ioctl);

/**
 * snd_pcm_period_elapsed - update the pcm status for the next period
 * @substream: the pcm substream instance
 *
 * This function is called from the interrupt handler when the
 * PCM has processed the period size.  It will update the current
 * pointer, wake up sleepers, etc.
 *
 * Even if more than one periods have elapsed since the last call, you
 * have to call this only once.
 */
void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
{
        struct snd_pcm_runtime *runtime;
        unsigned long flags;

        if (PCM_RUNTIME_CHECK(substream))
                return;
        runtime = substream->runtime;

        if (runtime->transfer_ack_begin)
                runtime->transfer_ack_begin(substream);

        snd_pcm_stream_lock_irqsave(substream, flags);
        if (!snd_pcm_running(substream) ||
            snd_pcm_update_hw_ptr_interrupt(substream) < 0)
                goto _end;

        if (substream->timer_running)
                snd_timer_interrupt(substream->timer, 1);
 _end:
        snd_pcm_stream_unlock_irqrestore(substream, flags);
        if (runtime->transfer_ack_end)
                runtime->transfer_ack_end(substream);
        kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
}

EXPORT_SYMBOL(snd_pcm_period_elapsed);

/*
 * Wait until avail_min data becomes available
 * Returns a negative error code if any error occurs during operation.
 * The available space is stored on availp.  When err = 0 and avail = 0
 * on the capture stream, it indicates the stream is in DRAINING state.
 */
static int wait_for_avail_min(struct snd_pcm_substream *substream,
                              snd_pcm_uframes_t *availp)
{
        struct snd_pcm_runtime *runtime = substream->runtime;
        int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
        wait_queue_t wait;
        int err = 0;
        snd_pcm_uframes_t avail = 0;
        long tout;

        init_waitqueue_entry(&wait, current);
        add_wait_queue(&runtime->sleep, &wait);
        for (;;) {
                if (signal_pending(current)) {
                        err = -ERESTARTSYS;
                        break;
                }
                set_current_state(TASK_INTERRUPTIBLE);
                snd_pcm_stream_unlock_irq(substream);
                tout = schedule_timeout(msecs_to_jiffies(10000));
                snd_pcm_stream_lock_irq(substream);
                switch (runtime->status->state) {
                case SNDRV_PCM_STATE_SUSPENDED:
                        err = -ESTRPIPE;
                        goto _endloop;
                case SNDRV_PCM_STATE_XRUN:
                        err = -EPIPE;
                        goto _endloop;
                case SNDRV_PCM_STATE_DRAINING:
                        if (is_playback)
                                err = -EPIPE;
                        else 
                                avail = 0; /* indicate draining */
                        goto _endloop;
                case SNDRV_PCM_STATE_OPEN:
                case SNDRV_PCM_STATE_SETUP:
                case SNDRV_PCM_STATE_DISCONNECTED:
                        err = -EBADFD;
                        goto _endloop;
                }
                if (!tout) {
                        snd_printd("%s write error (DMA or IRQ trouble?)\n",
                                   is_playback ? "playback" : "capture");
                        err = -EIO;
                        break;
                }
                if (is_playback)
                        avail = snd_pcm_playback_avail(runtime);
                else
                        avail = snd_pcm_capture_avail(runtime);
                if (avail >= runtime->control->avail_min)
                        break;
        }
 _endloop:
        remove_wait_queue(&runtime->sleep, &wait);
        *availp = avail;
        return err;
}
        
static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
                                      unsigned int hwoff,
                                      unsigned long data, unsigned int off,
                                      snd_pcm_uframes_t frames)
{
        struct snd_pcm_runtime *runtime = substream->runtime;
        int err;
        char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
        if (substream->ops->copy) {
                if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
                        return err;
        } else {
                char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
                if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
                        return -EFAULT;
        }
        return 0;
}
 
typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
                          unsigned long data, unsigned int off,
                          snd_pcm_uframes_t size);

static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
                                            unsigned long data,
                                            snd_pcm_uframes_t size,
                                            int nonblock,
                                            transfer_f transfer)
{
        struct snd_pcm_runtime *runtime = substream->runtime;
        snd_pcm_uframes_t xfer = 0;
        snd_pcm_uframes_t offset = 0;
        int err = 0;

        if (size == 0)
                return 0;

        snd_pcm_stream_lock_irq(substream);
        switch (runtime->status->state) {
        case SNDRV_PCM_STATE_PREPARED:
        case SNDRV_PCM_STATE_RUNNING:
        case SNDRV_PCM_STATE_PAUSED:
                break;
        case SNDRV_PCM_STATE_XRUN:
                err = -EPIPE;
                goto _end_unlock;
        case SNDRV_PCM_STATE_SUSPENDED:
                err = -ESTRPIPE;
                goto _end_unlock;
        default:
                err = -EBADFD;
                goto _end_unlock;
        }

        while (size > 0) {
                snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
                snd_pcm_uframes_t avail;
                snd_pcm_uframes_t cont;
                if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
                        snd_pcm_update_hw_ptr(substream);
                avail = snd_pcm_playback_avail(runtime);
                if (!avail) {
                        if (nonblock) {
                                err = -EAGAIN;
                                goto _end_unlock;
                        }
                        err = wait_for_avail_min(substream, &avail);
                        if (err < 0)
                                goto _end_unlock;
                }
                frames = size > avail ? avail : size;
                cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
                if (frames > cont)
                        frames = cont;
                if (snd_BUG_ON(!frames)) {
                        snd_pcm_stream_unlock_irq(substream);
                        return -EINVAL;
                }
                appl_ptr = runtime->control->appl_ptr;
                appl_ofs = appl_ptr % runtime->buffer_size;
                snd_pcm_stream_unlock_irq(substream);
                if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
                        goto _end;
                snd_pcm_stream_lock_irq(substream);
                switch (runtime->status->state) {
                case SNDRV_PCM_STATE_XRUN:
                        err = -EPIPE;
                        goto _end_unlock;
                case SNDRV_PCM_STATE_SUSPENDED:
                        err = -ESTRPIPE;
                        goto _end_unlock;
                default:
                        break;
                }
                appl_ptr += frames;
                if (appl_ptr >= runtime->boundary)
                        appl_ptr -= runtime->boundary;
                runtime->control->appl_ptr = appl_ptr;
                if (substream->ops->ack)
                        substream->ops->ack(substream);

                offset += frames;
                size -= frames;
                xfer += frames;
                if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
                    snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
                        err = snd_pcm_start(substream);
                        if (err < 0)
                                goto _end_unlock;
                }
        }
 _end_unlock:
        snd_pcm_stream_unlock_irq(substream);
 _end:
        return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
}

/* sanity-check for read/write methods */
static int pcm_sanity_check(struct snd_pcm_substream *substream)
{
        struct snd_pcm_runtime *runtime;
        if (PCM_RUNTIME_CHECK(substream))
                return -ENXIO;
        runtime = substream->runtime;
        if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
                return -EINVAL;
        if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
                return -EBADFD;
        return 0;
}

snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
{
        struct snd_pcm_runtime *runtime;
        int nonblock;
        int err;

        err = pcm_sanity_check(substream);
        if (err < 0)
                return err;
        runtime = substream->runtime;
        nonblock = !!(substream->f_flags & O_NONBLOCK);

        if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
            runtime->channels > 1)
                return -EINVAL;
        return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
                                  snd_pcm_lib_write_transfer);
}

EXPORT_SYMBOL(snd_pcm_lib_write);

static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
                                       unsigned int hwoff,
                                       unsigned long data, unsigned int off,
                                       snd_pcm_uframes_t frames)
{
        struct snd_pcm_runtime *runtime = substream->runtime;
        int err;
        void __user **bufs = (void __user **)data;
        int channels = runtime->channels;
        int c;
        if (substream->ops->copy) {
                if (snd_BUG_ON(!substream->ops->silence))
                        return -EINVAL;
                for (c = 0; c < channels; ++c, ++bufs) {
                        if (*bufs == NULL) {
                                if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
                                        return err;
                        } else {
                                char __user *buf = *bufs + samples_to_bytes(runtime, off);
                                if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
                                        return err;
                        }
                }
        } else {
                /* default transfer behaviour */
                size_t dma_csize = runtime->dma_bytes / channels;
                for (c = 0; c < channels; ++c, ++bufs) {
                        char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
                        if (*bufs == NULL) {
                                snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
                        } else {
                                char __user *buf = *bufs + samples_to_bytes(runtime, off);
                                if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
                                        return -EFAULT;
                        }
                }
        }
        return 0;
}
 
snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
                                     void __user **bufs,
                                     snd_pcm_uframes_t frames)
{
        struct snd_pcm_runtime *runtime;
        int nonblock;
        int err;

        err = pcm_sanity_check(substream);
        if (err < 0)
                return err;
        runtime = substream->runtime;
        nonblock = !!(substream->f_flags & O_NONBLOCK);

        if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
                return -EINVAL;
        return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
                                  nonblock, snd_pcm_lib_writev_transfer);
}

EXPORT_SYMBOL(snd_pcm_lib_writev);

static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
                                     unsigned int hwoff,
                                     unsigned long data, unsigned int off,
                                     snd_pcm_uframes_t frames)
{
        struct snd_pcm_runtime *runtime = substream->runtime;
        int err;
        char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
        if (substream->ops->copy) {
                if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
                        return err;
        } else {
                char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
                if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
                        return -EFAULT;
        }
        return 0;
}

static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
                                           unsigned long data,
                                           snd_pcm_uframes_t size,
                                           int nonblock,
                                           transfer_f transfer)
{
        struct snd_pcm_runtime *runtime = substream->runtime;
        snd_pcm_uframes_t xfer = 0;
        snd_pcm_uframes_t offset = 0;
        int err = 0;

        if (size == 0)
                return 0;

        snd_pcm_stream_lock_irq(substream);
        switch (runtime->status->state) {
        case SNDRV_PCM_STATE_PREPARED:
                if (size >= runtime->start_threshold) {
                        err = snd_pcm_start(substream);
                        if (err < 0)
                                goto _end_unlock;
                }
                break;
        case SNDRV_PCM_STATE_DRAINING:
        case SNDRV_PCM_STATE_RUNNING:
        case SNDRV_PCM_STATE_PAUSED:
                break;
        case SNDRV_PCM_STATE_XRUN:
                err = -EPIPE;
                goto _end_unlock;
        case SNDRV_PCM_STATE_SUSPENDED:
                err = -ESTRPIPE;
                goto _end_unlock;
        default:
                err = -EBADFD;
                goto _end_unlock;
        }

        while (size > 0) {
                snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
                snd_pcm_uframes_t avail;
                snd_pcm_uframes_t cont;
                if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
                        snd_pcm_update_hw_ptr(substream);
                avail = snd_pcm_capture_avail(runtime);
                if (!avail) {
                        if (runtime->status->state ==
                            SNDRV_PCM_STATE_DRAINING) {
                                snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
                                goto _end_unlock;
                        }
                        if (nonblock) {
                                err = -EAGAIN;
                                goto _end_unlock;
                        }
                        err = wait_for_avail_min(substream, &avail);
                        if (err < 0)
                                goto _end_unlock;
                        if (!avail)
                                continue; /* draining */
                }
                frames = size > avail ? avail : size;
                cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
                if (frames > cont)
                        frames = cont;
                if (snd_BUG_ON(!frames)) {
                        snd_pcm_stream_unlock_irq(substream);
                        return -EINVAL;
                }
                appl_ptr = runtime->control->appl_ptr;
                appl_ofs = appl_ptr % runtime->buffer_size;
                snd_pcm_stream_unlock_irq(substream);
                if ((err = transfer(substream, appl_ofs, data, offset, frames)) < 0)
                        goto _end;
                snd_pcm_stream_lock_irq(substream);
                switch (runtime->status->state) {
                case SNDRV_PCM_STATE_XRUN:
                        err = -EPIPE;
                        goto _end_unlock;
                case SNDRV_PCM_STATE_SUSPENDED:
                        err = -ESTRPIPE;
                        goto _end_unlock;
                default:
                        break;
                }
                appl_ptr += frames;
                if (appl_ptr >= runtime->boundary)
                        appl_ptr -= runtime->boundary;
                runtime->control->appl_ptr = appl_ptr;
                if (substream->ops->ack)
                        substream->ops->ack(substream);

                offset += frames;
                size -= frames;
                xfer += frames;
        }
 _end_unlock:
        snd_pcm_stream_unlock_irq(substream);
 _end:
        return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
}

snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
{
        struct snd_pcm_runtime *runtime;
        int nonblock;
        int err;
        
        err = pcm_sanity_check(substream);
        if (err < 0)
                return err;
        runtime = substream->runtime;
        nonblock = !!(substream->f_flags & O_NONBLOCK);
        if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
                return -EINVAL;
        return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
}

EXPORT_SYMBOL(snd_pcm_lib_read);

static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
                                      unsigned int hwoff,
                                      unsigned long data, unsigned int off,
                                      snd_pcm_uframes_t frames)
{
        struct snd_pcm_runtime *runtime = substream->runtime;
        int err;
        void __user **bufs = (void __user **)data;
        int channels = runtime->channels;
        int c;
        if (substream->ops->copy) {
                for (c = 0; c < channels; ++c, ++bufs) {
                        char __user *buf;
                        if (*bufs == NULL)
                                continue;
                        buf = *bufs + samples_to_bytes(runtime, off);
                        if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
                                return err;
                }
        } else {
                snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
                for (c = 0; c < channels; ++c, ++bufs) {
                        char *hwbuf;
                        char __user *buf;
                        if (*bufs == NULL)
                                continue;

                        hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
                        buf = *bufs + samples_to_bytes(runtime, off);
                        if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
                                return -EFAULT;
                }
        }
        return 0;
}
 
snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
                                    void __user **bufs,
                                    snd_pcm_uframes_t frames)
{
        struct snd_pcm_runtime *runtime;
        int nonblock;
        int err;

        err = pcm_sanity_check(substream);
        if (err < 0)
                return err;
        runtime = substream->runtime;
        if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
                return -EBADFD;

        nonblock = !!(substream->f_flags & O_NONBLOCK);
        if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
                return -EINVAL;
        return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
}

EXPORT_SYMBOL(snd_pcm_lib_readv);

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading