[funini.com] -> [kei@sodan] -> Kernel Reading

root/sound/pci/cmipci.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. snd_cmipci_write
  2. snd_cmipci_read
  3. snd_cmipci_write_w
  4. snd_cmipci_read_w
  5. snd_cmipci_write_b
  6. snd_cmipci_read_b
  7. snd_cmipci_set_bit
  8. snd_cmipci_clear_bit
  9. snd_cmipci_set_bit_b
  10. snd_cmipci_clear_bit_b
  11. snd_cmipci_rate_freq
  12. snd_cmipci_pll_rmn
  13. snd_cmipci_set_pll
  14. snd_cmipci_hw_params
  15. snd_cmipci_playback2_hw_params
  16. snd_cmipci_ch_reset
  17. snd_cmipci_hw_free
  18. set_dac_channels
  19. snd_cmipci_pcm_prepare
  20. snd_cmipci_pcm_trigger
  21. snd_cmipci_pcm_pointer
  22. snd_cmipci_playback_trigger
  23. snd_cmipci_playback_pointer
  24. snd_cmipci_capture_trigger
  25. snd_cmipci_capture_pointer
  26. snd_cmipci_spdif_default_info
  27. snd_cmipci_spdif_default_get
  28. snd_cmipci_spdif_default_put
  29. snd_cmipci_spdif_mask_info
  30. snd_cmipci_spdif_mask_get
  31. snd_cmipci_spdif_stream_info
  32. snd_cmipci_spdif_stream_get
  33. snd_cmipci_spdif_stream_put
  34. save_mixer_state
  35. restore_mixer_state
  36. setup_ac3
  37. setup_spdif_playback
  38. snd_cmipci_playback_prepare
  39. snd_cmipci_playback_spdif_prepare
  40. snd_cmipci_silence_hack
  41. snd_cmipci_playback_hw_free
  42. snd_cmipci_playback2_hw_free
  43. snd_cmipci_capture_prepare
  44. snd_cmipci_capture_spdif_prepare
  45. snd_cmipci_capture_spdif_hw_free
  46. snd_cmipci_interrupt
  47. open_device_check
  48. close_device_check
  49. snd_cmipci_playback_open
  50. snd_cmipci_capture_open
  51. snd_cmipci_playback2_open
  52. snd_cmipci_playback_spdif_open
  53. snd_cmipci_capture_spdif_open
  54. snd_cmipci_playback_close
  55. snd_cmipci_capture_close
  56. snd_cmipci_playback2_close
  57. snd_cmipci_playback_spdif_close
  58. snd_cmipci_capture_spdif_close
  59. snd_cmipci_pcm_new
  60. snd_cmipci_pcm2_new
  61. snd_cmipci_pcm_spdif_new
  62. snd_cmipci_mixer_write
  63. snd_cmipci_mixer_read
  64. cmipci_sb_reg_decode
  65. snd_cmipci_info_volume
  66. snd_cmipci_get_volume
  67. snd_cmipci_put_volume
  68. snd_cmipci_info_input_sw
  69. snd_cmipci_get_input_sw
  70. snd_cmipci_put_input_sw
  71. snd_cmipci_info_native_mixer
  72. snd_cmipci_get_native_mixer
  73. snd_cmipci_put_native_mixer
  74. snd_cmipci_get_native_mixer_sensitive
  75. snd_cmipci_put_native_mixer_sensitive
  76. _snd_cmipci_uswitch_get
  77. snd_cmipci_uswitch_get
  78. _snd_cmipci_uswitch_put
  79. snd_cmipci_uswitch_put
  80. snd_cmipci_spdout_enable_get
  81. snd_cmipci_spdout_enable_put
  82. snd_cmipci_line_in_mode_info
  83. get_line_in_mode
  84. snd_cmipci_line_in_mode_get
  85. snd_cmipci_line_in_mode_put
  86. snd_cmipci_mic_in_mode_info
  87. snd_cmipci_mic_in_mode_get
  88. snd_cmipci_mic_in_mode_put
  89. snd_cmipci_mixer_new
  90. snd_cmipci_proc_read
  91. snd_cmipci_proc_init
  92. snd_cmipci_proc_init
  93. query_chip
  94. snd_cmipci_create_gameport
  95. snd_cmipci_free_gameport
  96. snd_cmipci_create_gameport
  97. snd_cmipci_free_gameport
  98. snd_cmipci_free
  99. snd_cmipci_dev_free
  100. snd_cmipci_create_fm
  101. snd_cmipci_create
  102. snd_cmipci_probe
  103. snd_cmipci_remove
  104. snd_cmipci_suspend
  105. snd_cmipci_resume
  106. alsa_card_cmipci_init
  107. alsa_card_cmipci_exit

/*
 * Driver for C-Media CMI8338 and 8738 PCI soundcards.
 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
 *
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */
 
/* Does not work. Warning may block system in capture mode */
/* #define USE_VAR48KRATE */

#include <asm/io.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/gameport.h>
#include <linux/moduleparam.h>
#include <linux/mutex.h>
#include <sound/core.h>
#include <sound/info.h>
#include <sound/control.h>
#include <sound/pcm.h>
#include <sound/rawmidi.h>
#include <sound/mpu401.h>
#include <sound/opl3.h>
#include <sound/sb.h>
#include <sound/asoundef.h>
#include <sound/initval.h>

MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
                "{C-Media,CMI8738B},"
                "{C-Media,CMI8338A},"
                "{C-Media,CMI8338B}}");

#if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
#define SUPPORT_JOYSTICK 1
#endif

static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;      /* Index 0-MAX */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;       /* ID for this card */
static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;      /* Enable switches */
static long mpu_port[SNDRV_CARDS];
static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
static int soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
#ifdef SUPPORT_JOYSTICK
static int joystick_port[SNDRV_CARDS];
#endif

module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
module_param_array(mpu_port, long, NULL, 0444);
MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
module_param_array(fm_port, long, NULL, 0444);
MODULE_PARM_DESC(fm_port, "FM port.");
module_param_array(soft_ac3, bool, NULL, 0444);
MODULE_PARM_DESC(soft_ac3, "Sofware-conversion of raw SPDIF packets (model 033 only).");
#ifdef SUPPORT_JOYSTICK
module_param_array(joystick_port, int, NULL, 0444);
MODULE_PARM_DESC(joystick_port, "Joystick port address.");
#endif

/*
 * CM8x38 registers definition
 */

#define CM_REG_FUNCTRL0         0x00
#define CM_RST_CH1              0x00080000
#define CM_RST_CH0              0x00040000
#define CM_CHEN1                0x00020000      /* ch1: enable */
#define CM_CHEN0                0x00010000      /* ch0: enable */
#define CM_PAUSE1               0x00000008      /* ch1: pause */
#define CM_PAUSE0               0x00000004      /* ch0: pause */
#define CM_CHADC1               0x00000002      /* ch1, 0:playback, 1:record */
#define CM_CHADC0               0x00000001      /* ch0, 0:playback, 1:record */

#define CM_REG_FUNCTRL1         0x04
#define CM_DSFC_MASK            0x0000E000      /* channel 1 (DAC?) sampling frequency */
#define CM_DSFC_SHIFT           13
#define CM_ASFC_MASK            0x00001C00      /* channel 0 (ADC?) sampling frequency */
#define CM_ASFC_SHIFT           10
#define CM_SPDF_1               0x00000200      /* SPDIF IN/OUT at channel B */
#define CM_SPDF_0               0x00000100      /* SPDIF OUT only channel A */
#define CM_SPDFLOOP             0x00000080      /* ext. SPDIIF/IN -> OUT loopback */
#define CM_SPDO2DAC             0x00000040      /* SPDIF/OUT can be heard from internal DAC */
#define CM_INTRM                0x00000020      /* master control block (MCB) interrupt enabled */
#define CM_BREQ                 0x00000010      /* bus master enabled */
#define CM_VOICE_EN             0x00000008      /* legacy voice (SB16,FM) */
#define CM_UART_EN              0x00000004      /* legacy UART */
#define CM_JYSTK_EN             0x00000002      /* legacy joystick */
#define CM_ZVPORT               0x00000001      /* ZVPORT */

#define CM_REG_CHFORMAT         0x08

#define CM_CHB3D5C              0x80000000      /* 5,6 channels */
#define CM_FMOFFSET2            0x40000000      /* initial FM PCM offset 2 when Fmute=1 */
#define CM_CHB3D                0x20000000      /* 4 channels */

#define CM_CHIP_MASK1           0x1f000000
#define CM_CHIP_037             0x01000000
#define CM_SETLAT48             0x00800000      /* set latency timer 48h */
#define CM_EDGEIRQ              0x00400000      /* emulated edge trigger legacy IRQ */
#define CM_SPD24SEL39           0x00200000      /* 24-bit spdif: model 039 */
#define CM_AC3EN1               0x00100000      /* enable AC3: model 037 */
#define CM_SPDIF_SELECT1        0x00080000      /* for model <= 037 ? */
#define CM_SPD24SEL             0x00020000      /* 24bit spdif: model 037 */
/* #define CM_SPDIF_INVERSE     0x00010000 */ /* ??? */

#define CM_ADCBITLEN_MASK       0x0000C000      
#define CM_ADCBITLEN_16         0x00000000
#define CM_ADCBITLEN_15         0x00004000
#define CM_ADCBITLEN_14         0x00008000
#define CM_ADCBITLEN_13         0x0000C000

#define CM_ADCDACLEN_MASK       0x00003000      /* model 037 */
#define CM_ADCDACLEN_060        0x00000000
#define CM_ADCDACLEN_066        0x00001000
#define CM_ADCDACLEN_130        0x00002000
#define CM_ADCDACLEN_280        0x00003000

#define CM_ADCDLEN_MASK         0x00003000      /* model 039 */
#define CM_ADCDLEN_ORIGINAL     0x00000000
#define CM_ADCDLEN_EXTRA        0x00001000
#define CM_ADCDLEN_24K          0x00002000
#define CM_ADCDLEN_WEIGHT       0x00003000

#define CM_CH1_SRATE_176K       0x00000800
#define CM_CH1_SRATE_96K        0x00000800      /* model 055? */
#define CM_CH1_SRATE_88K        0x00000400
#define CM_CH0_SRATE_176K       0x00000200
#define CM_CH0_SRATE_96K        0x00000200      /* model 055? */
#define CM_CH0_SRATE_88K        0x00000100
#define CM_CH0_SRATE_128K       0x00000300
#define CM_CH0_SRATE_MASK       0x00000300

#define CM_SPDIF_INVERSE2       0x00000080      /* model 055? */
#define CM_DBLSPDS              0x00000040      /* double SPDIF sample rate 88.2/96 */
#define CM_POLVALID             0x00000020      /* inverse SPDIF/IN valid bit */
#define CM_SPDLOCKED            0x00000010

#define CM_CH1FMT_MASK          0x0000000C      /* bit 3: 16 bits, bit 2: stereo */
#define CM_CH1FMT_SHIFT         2
#define CM_CH0FMT_MASK          0x00000003      /* bit 1: 16 bits, bit 0: stereo */
#define CM_CH0FMT_SHIFT         0

#define CM_REG_INT_HLDCLR       0x0C
#define CM_CHIP_MASK2           0xff000000
#define CM_CHIP_8768            0x20000000
#define CM_CHIP_055             0x08000000
#define CM_CHIP_039             0x04000000
#define CM_CHIP_039_6CH         0x01000000
#define CM_UNKNOWN_INT_EN       0x00080000      /* ? */
#define CM_TDMA_INT_EN          0x00040000
#define CM_CH1_INT_EN           0x00020000
#define CM_CH0_INT_EN           0x00010000

#define CM_REG_INT_STATUS       0x10
#define CM_INTR                 0x80000000
#define CM_VCO                  0x08000000      /* Voice Control? CMI8738 */
#define CM_MCBINT               0x04000000      /* Master Control Block abort cond.? */
#define CM_UARTINT              0x00010000
#define CM_LTDMAINT             0x00008000
#define CM_HTDMAINT             0x00004000
#define CM_XDO46                0x00000080      /* Modell 033? Direct programming EEPROM (read data register) */
#define CM_LHBTOG               0x00000040      /* High/Low status from DMA ctrl register */
#define CM_LEG_HDMA             0x00000020      /* Legacy is in High DMA channel */
#define CM_LEG_STEREO           0x00000010      /* Legacy is in Stereo mode */
#define CM_CH1BUSY              0x00000008
#define CM_CH0BUSY              0x00000004
#define CM_CHINT1               0x00000002
#define CM_CHINT0               0x00000001

#define CM_REG_LEGACY_CTRL      0x14
#define CM_NXCHG                0x80000000      /* don't map base reg dword->sample */
#define CM_VMPU_MASK            0x60000000      /* MPU401 i/o port address */
#define CM_VMPU_330             0x00000000
#define CM_VMPU_320             0x20000000
#define CM_VMPU_310             0x40000000
#define CM_VMPU_300             0x60000000
#define CM_ENWR8237             0x10000000      /* enable bus master to write 8237 base reg */
#define CM_VSBSEL_MASK          0x0C000000      /* SB16 base address */
#define CM_VSBSEL_220           0x00000000
#define CM_VSBSEL_240           0x04000000
#define CM_VSBSEL_260           0x08000000
#define CM_VSBSEL_280           0x0C000000
#define CM_FMSEL_MASK           0x03000000      /* FM OPL3 base address */
#define CM_FMSEL_388            0x00000000
#define CM_FMSEL_3C8            0x01000000
#define CM_FMSEL_3E0            0x02000000
#define CM_FMSEL_3E8            0x03000000
#define CM_ENSPDOUT             0x00800000      /* enable XSPDIF/OUT to I/O interface */
#define CM_SPDCOPYRHT           0x00400000      /* spdif in/out copyright bit */
#define CM_DAC2SPDO             0x00200000      /* enable wave+fm_midi -> SPDIF/OUT */
#define CM_INVIDWEN             0x00100000      /* internal vendor ID write enable, model 039? */
#define CM_SETRETRY             0x00100000      /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
#define CM_C_EEACCESS           0x00080000      /* direct programming eeprom regs */
#define CM_C_EECS               0x00040000
#define CM_C_EEDI46             0x00020000
#define CM_C_EECK46             0x00010000
#define CM_CHB3D6C              0x00008000      /* 5.1 channels support */
#define CM_CENTR2LIN            0x00004000      /* line-in as center out */
#define CM_BASE2LIN             0x00002000      /* line-in as bass out */
#define CM_EXBASEN              0x00001000      /* external bass input enable */

#define CM_REG_MISC_CTRL        0x18
#define CM_PWD                  0x80000000      /* power down */
#define CM_RESET                0x40000000
#define CM_SFIL_MASK            0x30000000      /* filter control at front end DAC, model 037? */
#define CM_VMGAIN               0x10000000      /* analog master amp +6dB, model 039? */
#define CM_TXVX                 0x08000000      /* model 037? */
#define CM_N4SPK3D              0x04000000      /* copy front to rear */
#define CM_SPDO5V               0x02000000      /* 5V spdif output (1 = 0.5v (coax)) */
#define CM_SPDIF48K             0x01000000      /* write */
#define CM_SPATUS48K            0x01000000      /* read */
#define CM_ENDBDAC              0x00800000      /* enable double dac */
#define CM_XCHGDAC              0x00400000      /* 0: front=ch0, 1: front=ch1 */
#define CM_SPD32SEL             0x00200000      /* 0: 16bit SPDIF, 1: 32bit */
#define CM_SPDFLOOPI            0x00100000      /* int. SPDIF-OUT -> int. IN */
#define CM_FM_EN                0x00080000      /* enable legacy FM */
#define CM_AC3EN2               0x00040000      /* enable AC3: model 039 */
#define CM_ENWRASID             0x00010000      /* choose writable internal SUBID (audio) */
#define CM_VIDWPDSB             0x00010000      /* model 037? */
#define CM_SPDF_AC97            0x00008000      /* 0: SPDIF/OUT 44.1K, 1: 48K */
#define CM_MASK_EN              0x00004000      /* activate channel mask on legacy DMA */
#define CM_ENWRMSID             0x00002000      /* choose writable internal SUBID (modem) */
#define CM_VIDWPPRT             0x00002000      /* model 037? */
#define CM_SFILENB              0x00001000      /* filter stepping at front end DAC, model 037? */
#define CM_MMODE_MASK           0x00000E00      /* model DAA interface mode */
#define CM_SPDIF_SELECT2        0x00000100      /* for model > 039 ? */
#define CM_ENCENTER             0x00000080
#define CM_FLINKON              0x00000040      /* force modem link detection on, model 037 */
#define CM_MUTECH1              0x00000040      /* mute PCI ch1 to DAC */
#define CM_FLINKOFF             0x00000020      /* force modem link detection off, model 037 */
#define CM_MIDSMP               0x00000010      /* 1/2 interpolation at front end DAC */
#define CM_UPDDMA_MASK          0x0000000C      /* TDMA position update notification */
#define CM_UPDDMA_2048          0x00000000
#define CM_UPDDMA_1024          0x00000004
#define CM_UPDDMA_512           0x00000008
#define CM_UPDDMA_256           0x0000000C              
#define CM_TWAIT_MASK           0x00000003      /* model 037 */
#define CM_TWAIT1               0x00000002      /* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
#define CM_TWAIT0               0x00000001      /* i/o cycle, 0: 4, 1: 6 PCICLKs */

#define CM_REG_TDMA_POSITION    0x1C
#define CM_TDMA_CNT_MASK        0xFFFF0000      /* current byte/word count */
#define CM_TDMA_ADR_MASK        0x0000FFFF      /* current address */

        /* byte */
#define CM_REG_MIXER0           0x20
#define CM_REG_SBVR             0x20            /* write: sb16 version */
#define CM_REG_DEV              0x20            /* read: hardware device version */

#define CM_REG_MIXER21          0x21
#define CM_UNKNOWN_21_MASK      0x78            /* ? */
#define CM_X_ADPCM              0x04            /* SB16 ADPCM enable */
#define CM_PROINV               0x02            /* SBPro left/right channel switching */
#define CM_X_SB16               0x01            /* SB16 compatible */

#define CM_REG_SB16_DATA        0x22
#define CM_REG_SB16_ADDR        0x23

#define CM_REFFREQ_XIN          (315*1000*1000)/22      /* 14.31818 Mhz reference clock frequency pin XIN */
#define CM_ADCMULT_XIN          512                     /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
#define CM_TOLERANCE_RATE       0.001                   /* Tolerance sample rate pitch (1000ppm) */
#define CM_MAXIMUM_RATE         80000000                /* Note more than 80MHz */

#define CM_REG_MIXER1           0x24
#define CM_FMMUTE               0x80    /* mute FM */
#define CM_FMMUTE_SHIFT         7
#define CM_WSMUTE               0x40    /* mute PCM */
#define CM_WSMUTE_SHIFT         6
#define CM_REAR2LIN             0x20    /* lin-in -> rear line out */
#define CM_REAR2LIN_SHIFT       5
#define CM_REAR2FRONT           0x10    /* exchange rear/front */
#define CM_REAR2FRONT_SHIFT     4
#define CM_WAVEINL              0x08    /* digital wave rec. left chan */
#define CM_WAVEINL_SHIFT        3
#define CM_WAVEINR              0x04    /* digical wave rec. right */
#define CM_WAVEINR_SHIFT        2
#define CM_X3DEN                0x02    /* 3D surround enable */
#define CM_X3DEN_SHIFT          1
#define CM_CDPLAY               0x01    /* enable SPDIF/IN PCM -> DAC */
#define CM_CDPLAY_SHIFT         0

#define CM_REG_MIXER2           0x25
#define CM_RAUXREN              0x80    /* AUX right capture */
#define CM_RAUXREN_SHIFT        7
#define CM_RAUXLEN              0x40    /* AUX left capture */
#define CM_RAUXLEN_SHIFT        6
#define CM_VAUXRM               0x20    /* AUX right mute */
#define CM_VAUXRM_SHIFT         5
#define CM_VAUXLM               0x10    /* AUX left mute */
#define CM_VAUXLM_SHIFT         4
#define CM_VADMIC_MASK          0x0e    /* mic gain level (0-3) << 1 */
#define CM_VADMIC_SHIFT         1
#define CM_MICGAINZ             0x01    /* mic boost */
#define CM_MICGAINZ_SHIFT       0

#define CM_REG_MIXER3           0x24
#define CM_REG_AUX_VOL          0x26
#define CM_VAUXL_MASK           0xf0
#define CM_VAUXR_MASK           0x0f

#define CM_REG_MISC             0x27
#define CM_UNKNOWN_27_MASK      0xd8    /* ? */
#define CM_XGPO1                0x20
// #define CM_XGPBIO            0x04
#define CM_MIC_CENTER_LFE       0x04    /* mic as center/lfe out? (model 039 or later?) */
#define CM_SPDIF_INVERSE        0x04    /* spdif input phase inverse (model 037) */
#define CM_SPDVALID             0x02    /* spdif input valid check */
#define CM_DMAUTO               0x01    /* SB16 DMA auto detect */

#define CM_REG_AC97             0x28    /* hmmm.. do we have ac97 link? */
/*
 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
 * or identical with AC97 codec?
 */
#define CM_REG_EXTERN_CODEC     CM_REG_AC97

/*
 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
 */
#define CM_REG_MPU_PCI          0x40

/*
 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
 */
#define CM_REG_FM_PCI           0x50

/*
 * access from SB-mixer port
 */
#define CM_REG_EXTENT_IND       0xf0
#define CM_VPHONE_MASK          0xe0    /* Phone volume control (0-3) << 5 */
#define CM_VPHONE_SHIFT         5
#define CM_VPHOM                0x10    /* Phone mute control */
#define CM_VSPKM                0x08    /* Speaker mute control, default high */
#define CM_RLOOPREN             0x04    /* Rec. R-channel enable */
#define CM_RLOOPLEN             0x02    /* Rec. L-channel enable */
#define CM_VADMIC3              0x01    /* Mic record boost */

/*
 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
 * unit (readonly?).
 */
#define CM_REG_PLL              0xf8

/*
 * extended registers
 */
#define CM_REG_CH0_FRAME1       0x80    /* write: base address */
#define CM_REG_CH0_FRAME2       0x84    /* read: current address */
#define CM_REG_CH1_FRAME1       0x88    /* 0-15: count of samples at bus master; buffer size */
#define CM_REG_CH1_FRAME2       0x8C    /* 16-31: count of samples at codec; fragment size */

#define CM_REG_EXT_MISC         0x90
#define CM_ADC48K44K            0x10000000      /* ADC parameters group, 0: 44k, 1: 48k */
#define CM_CHB3D8C              0x00200000      /* 7.1 channels support */
#define CM_SPD32FMT             0x00100000      /* SPDIF/IN 32k sample rate */
#define CM_ADC2SPDIF            0x00080000      /* ADC output to SPDIF/OUT */
#define CM_SHAREADC             0x00040000      /* DAC in ADC as Center/LFE */
#define CM_REALTCMP             0x00020000      /* monitor the CMPL/CMPR of ADC */
#define CM_INVLRCK              0x00010000      /* invert ZVPORT's LRCK */
#define CM_UNKNOWN_90_MASK      0x0000FFFF      /* ? */

/*
 * size of i/o region
 */
#define CM_EXTENT_CODEC   0x100
#define CM_EXTENT_MIDI    0x2
#define CM_EXTENT_SYNTH   0x4


/*
 * channels for playback / capture
 */
#define CM_CH_PLAY      0
#define CM_CH_CAPT      1

/*
 * flags to check device open/close
 */
#define CM_OPEN_NONE    0
#define CM_OPEN_CH_MASK 0x01
#define CM_OPEN_DAC     0x10
#define CM_OPEN_ADC     0x20
#define CM_OPEN_SPDIF   0x40
#define CM_OPEN_MCHAN   0x80
#define CM_OPEN_PLAYBACK        (CM_CH_PLAY | CM_OPEN_DAC)
#define CM_OPEN_PLAYBACK2       (CM_CH_CAPT | CM_OPEN_DAC)
#define CM_OPEN_PLAYBACK_MULTI  (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
#define CM_OPEN_CAPTURE         (CM_CH_CAPT | CM_OPEN_ADC)
#define CM_OPEN_SPDIF_PLAYBACK  (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
#define CM_OPEN_SPDIF_CAPTURE   (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)


#if CM_CH_PLAY == 1
#define CM_PLAYBACK_SRATE_176K  CM_CH1_SRATE_176K
#define CM_PLAYBACK_SPDF        CM_SPDF_1
#define CM_CAPTURE_SPDF         CM_SPDF_0
#else
#define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
#define CM_PLAYBACK_SPDF        CM_SPDF_0
#define CM_CAPTURE_SPDF         CM_SPDF_1
#endif


/*
 * driver data
 */

struct cmipci_pcm {
        struct snd_pcm_substream *substream;
        u8 running;             /* dac/adc running? */
        u8 fmt;                 /* format bits */
        u8 is_dac;
        u8 needs_silencing;
        unsigned int dma_size;  /* in frames */
        unsigned int shift;
        unsigned int ch;        /* channel (0/1) */
        unsigned int offset;    /* physical address of the buffer */
};

/* mixer elements toggled/resumed during ac3 playback */
struct cmipci_mixer_auto_switches {
        const char *name;       /* switch to toggle */
        int toggle_on;          /* value to change when ac3 mode */
};
static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
        {"PCM Playback Switch", 0},
        {"IEC958 Output Switch", 1},
        {"IEC958 Mix Analog", 0},
        // {"IEC958 Out To DAC", 1}, // no longer used
        {"IEC958 Loop", 0},
};
#define CM_SAVED_MIXERS         ARRAY_SIZE(cm_saved_mixer)

struct cmipci {
        struct snd_card *card;

        struct pci_dev *pci;
        unsigned int device;    /* device ID */
        int irq;

        unsigned long iobase;
        unsigned int ctrl;      /* FUNCTRL0 current value */

        struct snd_pcm *pcm;            /* DAC/ADC PCM */
        struct snd_pcm *pcm2;   /* 2nd DAC */
        struct snd_pcm *pcm_spdif;      /* SPDIF */

        int chip_version;
        int max_channels;
        unsigned int can_ac3_sw: 1;
        unsigned int can_ac3_hw: 1;
        unsigned int can_multi_ch: 1;
        unsigned int can_96k: 1;        /* samplerate above 48k */
        unsigned int do_soft_ac3: 1;

        unsigned int spdif_playback_avail: 1;   /* spdif ready? */
        unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */
        int spdif_counter;      /* for software AC3 */

        unsigned int dig_status;
        unsigned int dig_pcm_status;

        struct snd_pcm_hardware *hw_info[3]; /* for playbacks */

        int opened[2];  /* open mode */
        struct mutex open_mutex;

        unsigned int mixer_insensitive: 1;
        struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
        int mixer_res_status[CM_SAVED_MIXERS];

        struct cmipci_pcm channel[2];   /* ch0 - DAC, ch1 - ADC or 2nd DAC */

        /* external MIDI */
        struct snd_rawmidi *rmidi;

#ifdef SUPPORT_JOYSTICK
        struct gameport *gameport;
#endif

        spinlock_t reg_lock;

#ifdef CONFIG_PM
        unsigned int saved_regs[0x20];
        unsigned char saved_mixers[0x20];
#endif
};


/* read/write operations for dword register */
static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
{
        outl(data, cm->iobase + cmd);
}

static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
{
        return inl(cm->iobase + cmd);
}

/* read/write operations for word register */
static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
{
        outw(data, cm->iobase + cmd);
}

static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
{
        return inw(cm->iobase + cmd);
}

/* read/write operations for byte register */
static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
{
        outb(data, cm->iobase + cmd);
}

static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
{
        return inb(cm->iobase + cmd);
}

/* bit operations for dword register */
static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
{
        unsigned int val, oval;
        val = oval = inl(cm->iobase + cmd);
        val |= flag;
        if (val == oval)
                return 0;
        outl(val, cm->iobase + cmd);
        return 1;
}

static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
{
        unsigned int val, oval;
        val = oval = inl(cm->iobase + cmd);
        val &= ~flag;
        if (val == oval)
                return 0;
        outl(val, cm->iobase + cmd);
        return 1;
}

/* bit operations for byte register */
static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
{
        unsigned char val, oval;
        val = oval = inb(cm->iobase + cmd);
        val |= flag;
        if (val == oval)
                return 0;
        outb(val, cm->iobase + cmd);
        return 1;
}

static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
{
        unsigned char val, oval;
        val = oval = inb(cm->iobase + cmd);
        val &= ~flag;
        if (val == oval)
                return 0;
        outb(val, cm->iobase + cmd);
        return 1;
}


/*
 * PCM interface
 */

/*
 * calculate frequency
 */

static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };

static unsigned int snd_cmipci_rate_freq(unsigned int rate)
{
        unsigned int i;

        for (i = 0; i < ARRAY_SIZE(rates); i++) {
                if (rates[i] == rate)
                        return i;
        }
        snd_BUG();
        return 0;
}

#ifdef USE_VAR48KRATE
/*
 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
 * does it this way .. maybe not.  Never get any information from C-Media about
 * that <werner@suse.de>.
 */
static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
{
        unsigned int delta, tolerance;
        int xm, xn, xr;

        for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
                rate <<= 1;
        *n = -1;
        if (*r > 0xff)
                goto out;
        tolerance = rate*CM_TOLERANCE_RATE;

        for (xn = (1+2); xn < (0x1f+2); xn++) {
                for (xm = (1+2); xm < (0xff+2); xm++) {
                        xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;

                        if (xr < rate)
                                delta = rate - xr;
                        else
                                delta = xr - rate;

                        /*
                         * If we found one, remember this,
                         * and try to find a closer one
                         */
                        if (delta < tolerance) {
                                tolerance = delta;
                                *m = xm - 2;
                                *n = xn - 2;
                        }
                }
        }
out:
        return (*n > -1);
}

/*
 * Program pll register bits, I assume that the 8 registers 0xf8 upto 0xff
 * are mapped onto the 8 ADC/DAC sampling frequency which can be choosen
 * at the register CM_REG_FUNCTRL1 (0x04).
 * Problem: other ways are also possible (any information about that?)
 */
static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
{
        unsigned int reg = CM_REG_PLL + slot;
        /*
         * Guess that this programs at reg. 0x04 the pos 15:13/12:10
         * for DSFC/ASFC (000 upto 111).
         */

        /* FIXME: Init (Do we've to set an other register first before programming?) */

        /* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
        snd_cmipci_write_b(cm, reg, rate>>8);
        snd_cmipci_write_b(cm, reg, rate&0xff);

        /* FIXME: Setup (Do we've to set an other register first to enable this?) */
}
#endif /* USE_VAR48KRATE */

static int snd_cmipci_hw_params(struct snd_pcm_substream *substream,
                                struct snd_pcm_hw_params *hw_params)
{
        return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
}

static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
                                          struct snd_pcm_hw_params *hw_params)
{
        struct cmipci *cm = snd_pcm_substream_chip(substream);
        if (params_channels(hw_params) > 2) {
                mutex_lock(&cm->open_mutex);
                if (cm->opened[CM_CH_PLAY]) {
                        mutex_unlock(&cm->open_mutex);
                        return -EBUSY;
                }
                /* reserve the channel A */
                cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
                mutex_unlock(&cm->open_mutex);
        }
        return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
}

static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
{
        int reset = CM_RST_CH0 << (cm->channel[ch].ch);
        snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
        snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
        udelay(10);
}

static int snd_cmipci_hw_free(struct snd_pcm_substream *substream)
{
        return snd_pcm_lib_free_pages(substream);
}


/*
 */

static unsigned int hw_channels[] = {1, 2, 4, 6, 8};
static struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
        .count = 3,
        .list = hw_channels,
        .mask = 0,
};
static struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
        .count = 4,
        .list = hw_channels,
        .mask = 0,
};
static struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
        .count = 5,
        .list = hw_channels,
        .mask = 0,
};

static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
{
        if (channels > 2) {
                if (!cm->can_multi_ch || !rec->ch)
                        return -EINVAL;
                if (rec->fmt != 0x03) /* stereo 16bit only */
                        return -EINVAL;
        }

        if (cm->can_multi_ch) {
                spin_lock_irq(&cm->reg_lock);
                if (channels > 2) {
                        snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
                        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
                } else {
                        snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
                        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
                }
                if (channels == 8)
                        snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
                else
                        snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
                if (channels == 6) {
                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
                        snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
                } else {
                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
                        snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
                }
                if (channels == 4)
                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
                else
                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
                spin_unlock_irq(&cm->reg_lock);
        }
        return 0;
}


/*
 * prepare playback/capture channel
 * channel to be used must have been set in rec->ch.
 */
static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
                                 struct snd_pcm_substream *substream)
{
        unsigned int reg, freq, freq_ext, val;
        unsigned int period_size;
        struct snd_pcm_runtime *runtime = substream->runtime;

        rec->fmt = 0;
        rec->shift = 0;
        if (snd_pcm_format_width(runtime->format) >= 16) {
                rec->fmt |= 0x02;
                if (snd_pcm_format_width(runtime->format) > 16)
                        rec->shift++; /* 24/32bit */
        }
        if (runtime->channels > 1)
                rec->fmt |= 0x01;
        if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
                snd_printd("cannot set dac channels\n");
                return -EINVAL;
        }

        rec->offset = runtime->dma_addr;
        /* buffer and period sizes in frame */
        rec->dma_size = runtime->buffer_size << rec->shift;
        period_size = runtime->period_size << rec->shift;
        if (runtime->channels > 2) {
                /* multi-channels */
                rec->dma_size = (rec->dma_size * runtime->channels) / 2;
                period_size = (period_size * runtime->channels) / 2;
        }

        spin_lock_irq(&cm->reg_lock);

        /* set buffer address */
        reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
        snd_cmipci_write(cm, reg, rec->offset);
        /* program sample counts */
        reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
        snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
        snd_cmipci_write_w(cm, reg + 2, period_size - 1);

        /* set adc/dac flag */
        val = rec->ch ? CM_CHADC1 : CM_CHADC0;
        if (rec->is_dac)
                cm->ctrl &= ~val;
        else
                cm->ctrl |= val;
        snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
        //snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);

        /* set sample rate */
        freq = 0;
        freq_ext = 0;
        if (runtime->rate > 48000)
                switch (runtime->rate) {
                case 88200:  freq_ext = CM_CH0_SRATE_88K; break;
                case 96000:  freq_ext = CM_CH0_SRATE_96K; break;
                case 128000: freq_ext = CM_CH0_SRATE_128K; break;
                default:     snd_BUG(); break;
                }
        else
                freq = snd_cmipci_rate_freq(runtime->rate);
        val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
        if (rec->ch) {
                val &= ~CM_DSFC_MASK;
                val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
        } else {
                val &= ~CM_ASFC_MASK;
                val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
        }
        snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
        //snd_printd("cmipci: functrl1 = %08x\n", val);

        /* set format */
        val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
        if (rec->ch) {
                val &= ~CM_CH1FMT_MASK;
                val |= rec->fmt << CM_CH1FMT_SHIFT;
        } else {
                val &= ~CM_CH0FMT_MASK;
                val |= rec->fmt << CM_CH0FMT_SHIFT;
        }
        if (cm->can_96k) {
                val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
                val |= freq_ext << (rec->ch * 2);
        }
        snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
        //snd_printd("cmipci: chformat = %08x\n", val);

        if (!rec->is_dac && cm->chip_version) {
                if (runtime->rate > 44100)
                        snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
                else
                        snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
        }

        rec->running = 0;
        spin_unlock_irq(&cm->reg_lock);

        return 0;
}

/*
 * PCM trigger/stop
 */
static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
                                  int cmd)
{
        unsigned int inthld, chen, reset, pause;
        int result = 0;

        inthld = CM_CH0_INT_EN << rec->ch;
        chen = CM_CHEN0 << rec->ch;
        reset = CM_RST_CH0 << rec->ch;
        pause = CM_PAUSE0 << rec->ch;

        spin_lock(&cm->reg_lock);
        switch (cmd) {
        case SNDRV_PCM_TRIGGER_START:
                rec->running = 1;
                /* set interrupt */
                snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
                cm->ctrl |= chen;
                /* enable channel */
                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
                //snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
                break;
        case SNDRV_PCM_TRIGGER_STOP:
                rec->running = 0;
                /* disable interrupt */
                snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
                /* reset */
                cm->ctrl &= ~chen;
                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
                rec->needs_silencing = rec->is_dac;
                break;
        case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
        case SNDRV_PCM_TRIGGER_SUSPEND:
                cm->ctrl |= pause;
                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
                break;
        case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
        case SNDRV_PCM_TRIGGER_RESUME:
                cm->ctrl &= ~pause;
                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
                break;
        default:
                result = -EINVAL;
                break;
        }
        spin_unlock(&cm->reg_lock);
        return result;
}

/*
 * return the current pointer
 */
static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
                                                struct snd_pcm_substream *substream)
{
        size_t ptr;
        unsigned int reg;
        if (!rec->running)
                return 0;
#if 1 // this seems better..
        reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
        ptr = rec->dma_size - (snd_cmipci_read_w(cm, reg) + 1);
        ptr >>= rec->shift;
#else
        reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
        ptr = snd_cmipci_read(cm, reg) - rec->offset;
        ptr = bytes_to_frames(substream->runtime, ptr);
#endif
        if (substream->runtime->channels > 2)
                ptr = (ptr * 2) / substream->runtime->channels;
        return ptr;
}

/*
 * playback
 */

static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
                                       int cmd)
{
        struct cmipci *cm = snd_pcm_substream_chip(substream);
        return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
}

static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
{
        struct cmipci *cm = snd_pcm_substream_chip(substream);
        return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
}



/*
 * capture
 */

static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
                                     int cmd)
{
        struct cmipci *cm = snd_pcm_substream_chip(substream);
        return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
}

static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
{
        struct cmipci *cm = snd_pcm_substream_chip(substream);
        return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
}


/*
 * hw preparation for spdif
 */

static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
                                         struct snd_ctl_elem_info *uinfo)
{
        uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
        uinfo->count = 1;
        return 0;
}

static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
                                        struct snd_ctl_elem_value *ucontrol)
{
        struct cmipci *chip = snd_kcontrol_chip(kcontrol);
        int i;

        spin_lock_irq(&chip->reg_lock);
        for (i = 0; i < 4; i++)
                ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
        spin_unlock_irq(&chip->reg_lock);
        return 0;
}

static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
                                         struct snd_ctl_elem_value *ucontrol)
{
        struct cmipci *chip = snd_kcontrol_chip(kcontrol);
        int i, change;
        unsigned int val;

        val = 0;
        spin_lock_irq(&chip->reg_lock);
        for (i = 0; i < 4; i++)
                val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
        change = val != chip->dig_status;
        chip->dig_status = val;
        spin_unlock_irq(&chip->reg_lock);
        return change;
}

static struct snd_kcontrol_new snd_cmipci_spdif_default __devinitdata =
{
        .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
        .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
        .info =         snd_cmipci_spdif_default_info,
        .get =          snd_cmipci_spdif_default_get,
        .put =          snd_cmipci_spdif_default_put
};

static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
                                      struct snd_ctl_elem_info *uinfo)
{
        uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
        uinfo->count = 1;
        return 0;
}

static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
                                     struct snd_ctl_elem_value *ucontrol)
{
        ucontrol->value.iec958.status[0] = 0xff;
        ucontrol->value.iec958.status[1] = 0xff;
        ucontrol->value.iec958.status[2] = 0xff;
        ucontrol->value.iec958.status[3] = 0xff;
        return 0;
}

static struct snd_kcontrol_new snd_cmipci_spdif_mask __devinitdata =
{
        .access =       SNDRV_CTL_ELEM_ACCESS_READ,
        .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
        .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
        .info =         snd_cmipci_spdif_mask_info,
        .get =          snd_cmipci_spdif_mask_get,
};

static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
                                        struct snd_ctl_elem_info *uinfo)
{
        uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
        uinfo->count = 1;
        return 0;
}

static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
                                       struct snd_ctl_elem_value *ucontrol)
{
        struct cmipci *chip = snd_kcontrol_chip(kcontrol);
        int i;

        spin_lock_irq(&chip->reg_lock);
        for (i = 0; i < 4; i++)
                ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
        spin_unlock_irq(&chip->reg_lock);
        return 0;
}

static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
                                       struct snd_ctl_elem_value *ucontrol)
{
        struct cmipci *chip = snd_kcontrol_chip(kcontrol);
        int i, change;
        unsigned int val;

        val = 0;
        spin_lock_irq(&chip->reg_lock);
        for (i = 0; i < 4; i++)
                val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
        change = val != chip->dig_pcm_status;
        chip->dig_pcm_status = val;
        spin_unlock_irq(&chip->reg_lock);
        return change;
}

static struct snd_kcontrol_new snd_cmipci_spdif_stream __devinitdata =
{
        .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
        .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
        .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
        .info =         snd_cmipci_spdif_stream_info,
        .get =          snd_cmipci_spdif_stream_get,
        .put =          snd_cmipci_spdif_stream_put
};

/*
 */

/* save mixer setting and mute for AC3 playback */
static int save_mixer_state(struct cmipci *cm)
{
        if (! cm->mixer_insensitive) {
                struct snd_ctl_elem_value *val;
                unsigned int i;

                val = kmalloc(sizeof(*val), GFP_ATOMIC);
                if (!val)
                        return -ENOMEM;
                for (i = 0; i < CM_SAVED_MIXERS; i++) {
                        struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
                        if (ctl) {
                                int event;
                                memset(val, 0, sizeof(*val));
                                ctl->get(ctl, val);
                                cm->mixer_res_status[i] = val->value.integer.value[0];
                                val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
                                event = SNDRV_CTL_EVENT_MASK_INFO;
                                if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
                                        ctl->put(ctl, val); /* toggle */
                                        event |= SNDRV_CTL_EVENT_MASK_VALUE;
                                }
                                ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
                                snd_ctl_notify(cm->card, event, &ctl->id);
                        }
                }
                kfree(val);
                cm->mixer_insensitive = 1;
        }
        return 0;
}


/* restore the previously saved mixer status */
static void restore_mixer_state(struct cmipci *cm)
{
        if (cm->mixer_insensitive) {
                struct snd_ctl_elem_value *val;
                unsigned int i;

                val = kmalloc(sizeof(*val), GFP_KERNEL);
                if (!val)
                        return;
                cm->mixer_insensitive = 0; /* at first clear this;
                                              otherwise the changes will be ignored */
                for (i = 0; i < CM_SAVED_MIXERS; i++) {
                        struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
                        if (ctl) {
                                int event;

                                memset(val, 0, sizeof(*val));
                                ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
                                ctl->get(ctl, val);
                                event = SNDRV_CTL_EVENT_MASK_INFO;
                                if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
                                        val->value.integer.value[0] = cm->mixer_res_status[i];
                                        ctl->put(ctl, val);
                                        event |= SNDRV_CTL_EVENT_MASK_VALUE;
                                }
                                snd_ctl_notify(cm->card, event, &ctl->id);
                        }
                }
                kfree(val);
        }
}

/* spinlock held! */
static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
{
        if (do_ac3) {
                /* AC3EN for 037 */
                snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
                /* AC3EN for 039 */
                snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
        
                if (cm->can_ac3_hw) {
                        /* SPD24SEL for 037, 0x02 */
                        /* SPD24SEL for 039, 0x20, but cannot be set */
                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
                        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
                } else { /* can_ac3_sw */
                        /* SPD32SEL for 037 & 039, 0x20 */
                        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
                        /* set 176K sample rate to fix 033 HW bug */
                        if (cm->chip_version == 33) {
                                if (rate >= 48000) {
                                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
                                } else {
                                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
                                }
                        }
                }

        } else {
                snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
                snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);

                if (cm->can_ac3_hw) {
                        /* chip model >= 37 */
                        if (snd_pcm_format_width(subs->runtime->format) > 16) {
                                snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
                                snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
                        } else {
                                snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
                                snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
                        }
                } else {
                        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
                }
        }
}

static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
{
        int rate, err;

        rate = subs->runtime->rate;

        if (up && do_ac3)
                if ((err = save_mixer_state(cm)) < 0)
                        return err;

        spin_lock_irq(&cm->reg_lock);
        cm->spdif_playback_avail = up;
        if (up) {
                /* they are controlled via "IEC958 Output Switch" */
                /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
                /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
                if (cm->spdif_playback_enabled)
                        snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
                setup_ac3(cm, subs, do_ac3, rate);

                if (rate == 48000 || rate == 96000)
                        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
                else
                        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
                if (rate > 48000)
                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
                else
                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
        } else {
                /* they are controlled via "IEC958 Output Switch" */
                /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
                /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
                snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
                snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
                setup_ac3(cm, subs, 0, 0);
        }
        spin_unlock_irq(&cm->reg_lock);
        return 0;
}


/*
 * preparation
 */

/* playback - enable spdif only on the certain condition */
static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
{
        struct cmipci *cm = snd_pcm_substream_chip(substream);
        int rate = substream->runtime->rate;
        int err, do_spdif, do_ac3 = 0;

        do_spdif = (rate >= 44100 && rate <= 96000 &&
                    substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
                    substream->runtime->channels == 2);
        if (do_spdif && cm->can_ac3_hw) 
                do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
        if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
                return err;
        return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
}

/* playback  (via device #2) - enable spdif always */
static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
{
        struct cmipci *cm = snd_pcm_substream_chip(substream);
        int err, do_ac3;

        if (cm->can_ac3_hw) 
                do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
        else
                do_ac3 = 1; /* doesn't matter */
        if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
                return err;
        return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
}

/*
 * Apparently, the samples last played on channel A stay in some buffer, even
 * after the channel is reset, and get added to the data for the rear DACs when
 * playing a multichannel stream on channel B.  This is likely to generate
 * wraparounds and thus distortions.
 * To avoid this, we play at least one zero sample after the actual stream has
 * stopped.
 */
static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
{
        struct snd_pcm_runtime *runtime = rec->substream->runtime;
        unsigned int reg, val;

        if (rec->needs_silencing && runtime && runtime->dma_area) {
                /* set up a small silence buffer */
                memset(runtime->dma_area, 0, PAGE_SIZE);
                reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
                val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
                snd_cmipci_write(cm, reg, val);
        
                /* configure for 16 bits, 2 channels, 8 kHz */
                if (runtime->channels > 2)
                        set_dac_channels(cm, rec, 2);
                spin_lock_irq(&cm->reg_lock);
                val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
                val &= ~(CM_ASFC_MASK << (rec->ch * 3));
                val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
                snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
                val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
                val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
                val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
                if (cm->can_96k)
                        val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
                snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
        
                /* start stream (we don't need interrupts) */
                cm->ctrl |= CM_CHEN0 << rec->ch;
                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
                spin_unlock_irq(&cm->reg_lock);

                msleep(1);

                /* stop and reset stream */
                spin_lock_irq(&cm->reg_lock);
                cm->ctrl &= ~(CM_CHEN0 << rec->ch);
                val = CM_RST_CH0 << rec->ch;
                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
                spin_unlock_irq(&cm->reg_lock);

                rec->needs_silencing = 0;
        }
}

static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
{
        struct cmipci *cm = snd_pcm_substream_chip(substream);
        setup_spdif_playback(cm, substream, 0, 0);
        restore_mixer_state(cm);
        snd_cmipci_silence_hack(cm, &cm->channel[0]);
        return snd_cmipci_hw_free(substream);
}

static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
{
        struct cmipci *cm = snd_pcm_substream_chip(substream);
        snd_cmipci_silence_hack(cm, &cm->channel[1]);
        return snd_cmipci_hw_free(substream);
}

/* capture */
static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
{
        struct cmipci *cm = snd_pcm_substream_chip(substream);
        return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
}

/* capture with spdif (via device #2) */
static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
{
        struct cmipci *cm = snd_pcm_substream_chip(substream);

        spin_lock_irq(&cm->reg_lock);
        snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
        if (cm->can_96k) {
                if (substream->runtime->rate > 48000)
                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
                else
                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
        }
        if (snd_pcm_format_width(substream->runtime->format) > 16)
                snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
        else
                snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);

        spin_unlock_irq(&cm->reg_lock);

        return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
}

static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
{
        struct cmipci *cm = snd_pcm_substream_chip(subs);

        spin_lock_irq(&cm->reg_lock);
        snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
        spin_unlock_irq(&cm->reg_lock);

        return snd_cmipci_hw_free(subs);
}


/*
 * interrupt handler
 */
static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
{
        struct cmipci *cm = dev_id;
        unsigned int status, mask = 0;
        
        /* fastpath out, to ease interrupt sharing */
        status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
        if (!(status & CM_INTR))
                return IRQ_NONE;

        /* acknowledge interrupt */
        spin_lock(&cm->reg_lock);
        if (status & CM_CHINT0)
                mask |= CM_CH0_INT_EN;
        if (status & CM_CHINT1)
                mask |= CM_CH1_INT_EN;
        snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
        snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
        spin_unlock(&cm->reg_lock);

        if (cm->rmidi && (status & CM_UARTINT))
                snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);

        if (cm->pcm) {
                if ((status & CM_CHINT0) && cm->channel[0].running)
                        snd_pcm_period_elapsed(cm->channel[0].substream);
                if ((status & CM_CHINT1) && cm->channel[1].running)
                        snd_pcm_period_elapsed(cm->channel[1].substream);
        }
        return IRQ_HANDLED;
}

/*
 * h/w infos
 */

/* playback on channel A */
static struct snd_pcm_hardware snd_cmipci_playback =
{
        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
        .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
        .rates =                SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
        .rate_min =             5512,
        .rate_max =             48000,
        .channels_min =         1,
        .channels_max =         2,
        .buffer_bytes_max =     (128*1024),
        .period_bytes_min =     64,
        .period_bytes_max =     (128*1024),
        .periods_min =          2,
        .periods_max =          1024,
        .fifo_size =            0,
};

/* capture on channel B */
static struct snd_pcm_hardware snd_cmipci_capture =
{
        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
        .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
        .rates =                SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
        .rate_min =             5512,
        .rate_max =             48000,
        .channels_min =         1,
        .channels_max =         2,
        .buffer_bytes_max =     (128*1024),
        .period_bytes_min =     64,
        .period_bytes_max =     (128*1024),
        .periods_min =          2,
        .periods_max =          1024,
        .fifo_size =            0,
};

/* playback on channel B - stereo 16bit only? */
static struct snd_pcm_hardware snd_cmipci_playback2 =
{
        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
        .formats =              SNDRV_PCM_FMTBIT_S16_LE,
        .rates =                SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
        .rate_min =             5512,
        .rate_max =             48000,
        .channels_min =         2,
        .channels_max =         2,
        .buffer_bytes_max =     (128*1024),
        .period_bytes_min =     64,
        .period_bytes_max =     (128*1024),
        .periods_min =          2,
        .periods_max =          1024,
        .fifo_size =            0,
};

/* spdif playback on channel A */
static struct snd_pcm_hardware snd_cmipci_playback_spdif =
{
        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
        .formats =              SNDRV_PCM_FMTBIT_S16_LE,
        .rates =                SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
        .rate_min =             44100,
        .rate_max =             48000,
        .channels_min =         2,
        .channels_max =         2,
        .buffer_bytes_max =     (128*1024),
        .period_bytes_min =     64,
        .period_bytes_max =     (128*1024),
        .periods_min =          2,
        .periods_max =          1024,
        .fifo_size =            0,
};

/* spdif playback on channel A (32bit, IEC958 subframes) */
static struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
{
        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
        .formats =              SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
        .rates =                SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
        .rate_min =             44100,
        .rate_max =             48000,
        .channels_min =         2,
        .channels_max =         2,
        .buffer_bytes_max =     (128*1024),
        .period_bytes_min =     64,
        .period_bytes_max =     (128*1024),
        .periods_min =          2,
        .periods_max =          1024,
        .fifo_size =            0,
};

/* spdif capture on channel B */
static struct snd_pcm_hardware snd_cmipci_capture_spdif =
{
        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
        .formats =              SNDRV_PCM_FMTBIT_S16_LE |
                                SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
        .rates =                SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
        .rate_min =             44100,
        .rate_max =             48000,
        .channels_min =         2,
        .channels_max =         2,
        .buffer_bytes_max =     (128*1024),
        .period_bytes_min =     64,
        .period_bytes_max =     (128*1024),
        .periods_min =          2,
        .periods_max =          1024,
        .fifo_size =            0,
};

static unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
                        32000, 44100, 48000, 88200, 96000, 128000 };
static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
                .count = ARRAY_SIZE(rate_constraints),
                .list = rate_constraints,
                .mask = 0,
};

/*
 * check device open/close
 */
static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
{
        int ch = mode & CM_OPEN_CH_MASK;

        /* FIXME: a file should wait until the device becomes free
         * when it's opened on blocking mode.  however, since the current
         * pcm framework doesn't pass file pointer before actually opened,
         * we can't know whether blocking mode or not in open callback..
         */
        mutex_lock(&cm->open_mutex);
        if (cm->opened[ch]) {
                mutex_unlock(&cm->open_mutex);
                return -EBUSY;
        }
        cm->opened[ch] = mode;
        cm->channel[ch].substream = subs;
        if (! (mode & CM_OPEN_DAC)) {
                /* disable dual DAC mode */
                cm->channel[ch].is_dac = 0;
                spin_lock_irq(&cm->reg_lock);
                snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
                spin_unlock_irq(&cm->reg_lock);
        }
        mutex_unlock(&cm->open_mutex);
        return 0;
}

static void close_device_check(struct cmipci *cm, int mode)
{
        int ch = mode & CM_OPEN_CH_MASK;

        mutex_lock(&cm->open_mutex);
        if (cm->opened[ch] == mode) {
                if (cm->channel[ch].substream) {
                        snd_cmipci_ch_reset(cm, ch);
                        cm->channel[ch].running = 0;
                        cm->channel[ch].substream = NULL;
                }
                cm->opened[ch] = 0;
                if (! cm->channel[ch].is_dac) {
                        /* enable dual DAC mode again */
                        cm->channel[ch].is_dac = 1;
                        spin_lock_irq(&cm->reg_lock);
                        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
                        spin_unlock_irq(&cm->reg_lock);
                }
        }
        mutex_unlock(&cm->open_mutex);
}

/*
 */

static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
{
        struct cmipci *cm = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;
        int err;

        if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
                return err;
        runtime->hw = snd_cmipci_playback;
        if (cm->chip_version == 68) {
                runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
                                     SNDRV_PCM_RATE_96000;
                runtime->hw.rate_max = 96000;
        } else if (cm->chip_version == 55) {
                err = snd_pcm_hw_constraint_list(runtime, 0,
                        SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
                if (err < 0)
                        return err;
                runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
                runtime->hw.rate_max = 128000;
        }
        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
        cm->dig_pcm_status = cm->dig_status;
        return 0;
}

static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
{
        struct cmipci *cm = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;
        int err;

        if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
                return err;
        runtime->hw = snd_cmipci_capture;
        if (cm->chip_version == 68) {   // 8768 only supports 44k/48k recording
                runtime->hw.rate_min = 41000;
                runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
        } else if (cm->chip_version == 55) {
                err = snd_pcm_hw_constraint_list(runtime, 0,
                        SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
                if (err < 0)
                        return err;
                runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
                runtime->hw.rate_max = 128000;
        }
        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
        return 0;
}

static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
{
        struct cmipci *cm = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;
        int err;

        if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
                return err;
        runtime->hw = snd_cmipci_playback2;
        mutex_lock(&cm->open_mutex);
        if (! cm->opened[CM_CH_PLAY]) {
                if (cm->can_multi_ch) {
                        runtime->hw.channels_max = cm->max_channels;
                        if (cm->max_channels == 4)
                                snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
                        else if (cm->max_channels == 6)
                                snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
                        else if (cm->max_channels == 8)
                                snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
                }
        }
        mutex_unlock(&cm->open_mutex);
        if (cm->chip_version == 68) {
                runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
                                     SNDRV_PCM_RATE_96000;
                runtime->hw.rate_max = 96000;
        } else if (cm->chip_version == 55) {
                err = snd_pcm_hw_constraint_list(runtime, 0,
                        SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
                if (err < 0)
                        return err;
                runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
                runtime->hw.rate_max = 128000;
        }
        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
        return 0;
}

static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
{
        struct cmipci *cm = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;
        int err;

        if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
                return err;
        if (cm->can_ac3_hw) {
                runtime->hw = snd_cmipci_playback_spdif;
                if (cm->chip_version >= 37) {
                        runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
                        snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
                }
                if (cm->can_96k) {
                        runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
                                             SNDRV_PCM_RATE_96000;
                        runtime->hw.rate_max = 96000;
                }
        } else {
                runtime->hw = snd_cmipci_playback_iec958_subframe;
        }
        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
        cm->dig_pcm_status = cm->dig_status;
        return 0;
}

static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
{
        struct cmipci *cm = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;
        int err;

        if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
                return err;
        runtime->hw = snd_cmipci_capture_spdif;
        if (cm->can_96k && !(cm->chip_version == 68)) {
                runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
                                     SNDRV_PCM_RATE_96000;
                runtime->hw.rate_max = 96000;
        }
        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
        return 0;
}


/*
 */

static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
{
        struct cmipci *cm = snd_pcm_substream_chip(substream);
        close_device_check(cm, CM_OPEN_PLAYBACK);
        return 0;
}

static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
{
        struct cmipci *cm = snd_pcm_substream_chip(substream);
        close_device_check(cm, CM_OPEN_CAPTURE);
        return 0;
}

static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
{
        struct cmipci *cm = snd_pcm_substream_chip(substream);
        close_device_check(cm, CM_OPEN_PLAYBACK2);
        close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
        return 0;
}

static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
{
        struct cmipci *cm = snd_pcm_substream_chip(substream);
        close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
        return 0;
}

static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
{
        struct cmipci *cm = snd_pcm_substream_chip(substream);
        close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
        return 0;
}


/*
 */

static struct snd_pcm_ops snd_cmipci_playback_ops = {
        .open =         snd_cmipci_playback_open,
        .close =        snd_cmipci_playback_close,
        .ioctl =        snd_pcm_lib_ioctl,
        .hw_params =    snd_cmipci_hw_params,
        .hw_free =      snd_cmipci_playback_hw_free,
        .prepare =      snd_cmipci_playback_prepare,
        .trigger =      snd_cmipci_playback_trigger,
        .pointer =      snd_cmipci_playback_pointer,
};

static struct snd_pcm_ops snd_cmipci_capture_ops = {
        .open =         snd_cmipci_capture_open,
        .close =        snd_cmipci_capture_close,
        .ioctl =        snd_pcm_lib_ioctl,
        .hw_params =    snd_cmipci_hw_params,
        .hw_free =      snd_cmipci_hw_free,
        .prepare =      snd_cmipci_capture_prepare,
        .trigger =      snd_cmipci_capture_trigger,
        .pointer =      snd_cmipci_capture_pointer,
};

static struct snd_pcm_ops snd_cmipci_playback2_ops = {
        .open =         snd_cmipci_playback2_open,
        .close =        snd_cmipci_playback2_close,
        .ioctl =        snd_pcm_lib_ioctl,
        .hw_params =    snd_cmipci_playback2_hw_params,
        .hw_free =      snd_cmipci_playback2_hw_free,
        .prepare =      snd_cmipci_capture_prepare,     /* channel B */
        .trigger =      snd_cmipci_capture_trigger,     /* channel B */
        .pointer =      snd_cmipci_capture_pointer,     /* channel B */
};

static struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
        .open =         snd_cmipci_playback_spdif_open,
        .close =        snd_cmipci_playback_spdif_close,
        .ioctl =        snd_pcm_lib_ioctl,
        .hw_params =    snd_cmipci_hw_params,
        .hw_free =      snd_cmipci_playback_hw_free,
        .prepare =      snd_cmipci_playback_spdif_prepare,      /* set up rate */
        .trigger =      snd_cmipci_playback_trigger,
        .pointer =      snd_cmipci_playback_pointer,
};

static struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
        .open =         snd_cmipci_capture_spdif_open,
        .close =        snd_cmipci_capture_spdif_close,
        .ioctl =        snd_pcm_lib_ioctl,
        .hw_params =    snd_cmipci_hw_params,
        .hw_free =      snd_cmipci_capture_spdif_hw_free,
        .prepare =      snd_cmipci_capture_spdif_prepare,
        .trigger =      snd_cmipci_capture_trigger,
        .pointer =      snd_cmipci_capture_pointer,
};


/*
 */

static int __devinit snd_cmipci_pcm_new(struct cmipci *cm, int device)
{
        struct snd_pcm *pcm;
        int err;

        err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
        if (err < 0)
                return err;

        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);

        pcm->private_data = cm;
        pcm->info_flags = 0;
        strcpy(pcm->name, "C-Media PCI DAC/ADC");
        cm->pcm = pcm;

        snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
                                              snd_dma_pci_data(cm->pci), 64*1024, 128*1024);

        return 0;
}

static int __devinit snd_cmipci_pcm2_new(struct cmipci *cm, int device)
{
        struct snd_pcm *pcm;
        int err;

        err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
        if (err < 0)
                return err;

        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);

        pcm->private_data = cm;
        pcm->info_flags = 0;
        strcpy(pcm->name, "C-Media PCI 2nd DAC");
        cm->pcm2 = pcm;

        snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
                                              snd_dma_pci_data(cm->pci), 64*1024, 128*1024);

        return 0;
}

static int __devinit snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
{
        struct snd_pcm *pcm;
        int err;

        err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
        if (err < 0)
                return err;

        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);

        pcm->private_data = cm;
        pcm->info_flags = 0;
        strcpy(pcm->name, "C-Media PCI IEC958");
        cm->pcm_spdif = pcm;

        snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
                                              snd_dma_pci_data(cm->pci), 64*1024, 128*1024);

        return 0;
}

/*
 * mixer interface:
 * - CM8338/8738 has a compatible mixer interface with SB16, but
 *   lack of some elements like tone control, i/o gain and AGC.
 * - Access to native registers:
 *   - A 3D switch
 *   - Output mute switches
 */

static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
{
        outb(idx, s->iobase + CM_REG_SB16_ADDR);
        outb(data, s->iobase + CM_REG_SB16_DATA);
}

static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
{
        unsigned char v;

        outb(idx, s->iobase + CM_REG_SB16_ADDR);
        v = inb(s->iobase + CM_REG_SB16_DATA);
        return v;
}

/*
 * general mixer element
 */
struct cmipci_sb_reg {
        unsigned int left_reg, right_reg;
        unsigned int left_shift, right_shift;
        unsigned int mask;
        unsigned int invert: 1;
        unsigned int stereo: 1;
};

#define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))

#define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  .info = snd_cmipci_info_volume, \
  .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
  .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
}

#define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
#define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
#define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
#define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)

static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
{
        r->left_reg = val & 0xff;
        r->right_reg = (val >> 8) & 0xff;
        r->left_shift = (val >> 16) & 0x07;
        r->right_shift = (val >> 19) & 0x07;
        r->invert = (val >> 22) & 1;
        r->stereo = (val >> 23) & 1;
        r->mask = (val >> 24) & 0xff;
}

static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
                                  struct snd_ctl_elem_info *uinfo)
{
        struct cmipci_sb_reg reg;

        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
        uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
        uinfo->count = reg.stereo + 1;
        uinfo->value.integer.min = 0;
        uinfo->value.integer.max = reg.mask;
        return 0;
}
 
static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
                                 struct snd_ctl_elem_value *ucontrol)
{
        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
        struct cmipci_sb_reg reg;
        int val;

        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
        spin_lock_irq(&cm->reg_lock);
        val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
        if (reg.invert)
                val = reg.mask - val;
        ucontrol->value.integer.value[0] = val;
        if (reg.stereo) {
                val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
                if (reg.invert)
                        val = reg.mask - val;
                 ucontrol->value.integer.value[1] = val;
        }
        spin_unlock_irq(&cm->reg_lock);
        return 0;
}

static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
                                 struct snd_ctl_elem_value *ucontrol)
{
        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
        struct cmipci_sb_reg reg;
        int change;
        int left, right, oleft, oright;

        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
        left = ucontrol->value.integer.value[0] & reg.mask;
        if (reg.invert)
                left = reg.mask - left;
        left <<= reg.left_shift;
        if (reg.stereo) {
                right = ucontrol->value.integer.value[1] & reg.mask;
                if (reg.invert)
                        right = reg.mask - right;
                right <<= reg.right_shift;
        } else
                right = 0;
        spin_lock_irq(&cm->reg_lock);
        oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
        left |= oleft & ~(reg.mask << reg.left_shift);
        change = left != oleft;
        if (reg.stereo) {
                if (reg.left_reg != reg.right_reg) {
                        snd_cmipci_mixer_write(cm, reg.left_reg, left);
                        oright = snd_cmipci_mixer_read(cm, reg.right_reg);
                } else
                        oright = left;
                right |= oright & ~(reg.mask << reg.right_shift);
                change |= right != oright;
                snd_cmipci_mixer_write(cm, reg.right_reg, right);
        } else
                snd_cmipci_mixer_write(cm, reg.left_reg, left);
        spin_unlock_irq(&cm->reg_lock);
        return change;
}

/*
 * input route (left,right) -> (left,right)
 */
#define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  .info = snd_cmipci_info_input_sw, \
  .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
  .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
}

static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
                                    struct snd_ctl_elem_info *uinfo)
{
        uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
        uinfo->count = 4;
        uinfo->value.integer.min = 0;
        uinfo->value.integer.max = 1;
        return 0;
}
 
static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
                                   struct snd_ctl_elem_value *ucontrol)
{
        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
        struct cmipci_sb_reg reg;
        int val1, val2;

        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
        spin_lock_irq(&cm->reg_lock);
        val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
        val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
        spin_unlock_irq(&cm->reg_lock);
        ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
        ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
        ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
        ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
        return 0;
}

static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
                                   struct snd_ctl_elem_value *ucontrol)
{
        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
        struct cmipci_sb_reg reg;
        int change;
        int val1, val2, oval1, oval2;

        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
        spin_lock_irq(&cm->reg_lock);
        oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
        oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
        val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
        val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
        val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
        val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
        val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
        val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
        change = val1 != oval1 || val2 != oval2;
        snd_cmipci_mixer_write(cm, reg.left_reg, val1);
        snd_cmipci_mixer_write(cm, reg.right_reg, val2);
        spin_unlock_irq(&cm->reg_lock);
        return change;
}

/*
 * native mixer switches/volumes
 */

#define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  .info = snd_cmipci_info_native_mixer, \
  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
}

#define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  .info = snd_cmipci_info_native_mixer, \
  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
}

#define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  .info = snd_cmipci_info_native_mixer, \
  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
}

#define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
  .info = snd_cmipci_info_native_mixer, \
  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
}

static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
                                        struct snd_ctl_elem_info *uinfo)
{
        struct cmipci_sb_reg reg;

        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
        uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
        uinfo->count = reg.stereo + 1;
        uinfo->value.integer.min = 0;
        uinfo->value.integer.max = reg.mask;
        return 0;

}

static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
                                       struct snd_ctl_elem_value *ucontrol)
{
        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
        struct cmipci_sb_reg reg;
        unsigned char oreg, val;

        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
        spin_lock_irq(&cm->reg_lock);
        oreg = inb(cm->iobase + reg.left_reg);
        val = (oreg >> reg.left_shift) & reg.mask;
        if (reg.invert)
                val = reg.mask - val;
        ucontrol->value.integer.value[0] = val;
        if (reg.stereo) {
                val = (oreg >> reg.right_shift) & reg.mask;
                if (reg.invert)
                        val = reg.mask - val;
                ucontrol->value.integer.value[1] = val;
        }
        spin_unlock_irq(&cm->reg_lock);
        return 0;
}

static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
                                       struct snd_ctl_elem_value *ucontrol)
{
        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
        struct cmipci_sb_reg reg;
        unsigned char oreg, nreg, val;

        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
        spin_lock_irq(&cm->reg_lock);
        oreg = inb(cm->iobase + reg.left_reg);
        val = ucontrol->value.integer.value[0] & reg.mask;
        if (reg.invert)
                val = reg.mask - val;
        nreg = oreg & ~(reg.mask << reg.left_shift);
        nreg |= (val << reg.left_shift);
        if (reg.stereo) {
                val = ucontrol->value.integer.value[1] & reg.mask;
                if (reg.invert)
                        val = reg.mask - val;
                nreg &= ~(reg.mask << reg.right_shift);
                nreg |= (val << reg.right_shift);
        }
        outb(nreg, cm->iobase + reg.left_reg);
        spin_unlock_irq(&cm->reg_lock);
        return (nreg != oreg);
}

/*
 * special case - check mixer sensitivity
 */
static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
                                                 struct snd_ctl_elem_value *ucontrol)
{
        //struct cmipci *cm = snd_kcontrol_chip(kcontrol);
        return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
}

static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
                                                 struct snd_ctl_elem_value *ucontrol)
{
        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
        if (cm->mixer_insensitive) {
                /* ignored */
                return 0;
        }
        return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
}


static struct snd_kcontrol_new snd_cmipci_mixers[] __devinitdata = {
        CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
        CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
        CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
        //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
        { /* switch with sensitivity */
                .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
                .name = "PCM Playback Switch",
                .info = snd_cmipci_info_native_mixer,
                .get = snd_cmipci_get_native_mixer_sensitive,
                .put = snd_cmipci_put_native_mixer_sensitive,
                .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
        },
        CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
        CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
        CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
        CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
        CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
        CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
        CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
        CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
        CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
        CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
        CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
        CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
        CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
        CMIPCI_SB_VOL_MONO("PC Speaker Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
        CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
        CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
        CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
        CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
        CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
        CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
        CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
        CMIPCI_DOUBLE("PC Speaker Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
        CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
};

/*
 * other switches
 */

struct cmipci_switch_args {
        int reg;                /* register index */
        unsigned int mask;      /* mask bits */
        unsigned int mask_on;   /* mask bits to turn on */
        unsigned int is_byte: 1;                /* byte access? */
        unsigned int ac3_sensitive: 1;  /* access forbidden during
                                         * non-audio operation?
                                         */
};

#define snd_cmipci_uswitch_info         snd_ctl_boolean_mono_info

static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
                                   struct snd_ctl_elem_value *ucontrol,
                                   struct cmipci_switch_args *args)
{
        unsigned int val;
        struct cmipci *cm = snd_kcontrol_chip(kcontrol);

        spin_lock_irq(&cm->reg_lock);
        if (args->ac3_sensitive && cm->mixer_insensitive) {
                ucontrol->value.integer.value[0] = 0;
                spin_unlock_irq(&cm->reg_lock);
                return 0;
        }
        if (args->is_byte)
                val = inb(cm->iobase + args->reg);
        else
                val = snd_cmipci_read(cm, args->reg);
        ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
        spin_unlock_irq(&cm->reg_lock);
        return 0;
}

static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
                                  struct snd_ctl_elem_value *ucontrol)
{
        struct cmipci_switch_args *args;
        args = (struct cmipci_switch_args *)kcontrol->private_value;
        if (snd_BUG_ON(!args))
                return -EINVAL;
        return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
}

static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
                                   struct snd_ctl_elem_value *ucontrol,
                                   struct cmipci_switch_args *args)
{
        unsigned int val;
        int change;
        struct cmipci *cm = snd_kcontrol_chip(kcontrol);

        spin_lock_irq(&cm->reg_lock);
        if (args->ac3_sensitive && cm->mixer_insensitive) {
                /* ignored */
                spin_unlock_irq(&cm->reg_lock);
                return 0;
        }
        if (args->is_byte)
                val = inb(cm->iobase + args->reg);
        else
                val = snd_cmipci_read(cm, args->reg);
        change = (val & args->mask) != (ucontrol->value.integer.value[0] ? 
                        args->mask_on : (args->mask & ~args->mask_on));
        if (change) {
                val &= ~args->mask;
                if (ucontrol->value.integer.value[0])
                        val |= args->mask_on;
                else
                        val |= (args->mask & ~args->mask_on);
                if (args->is_byte)
                        outb((unsigned char)val, cm->iobase + args->reg);
                else
                        snd_cmipci_write(cm, args->reg, val);
        }
        spin_unlock_irq(&cm->reg_lock);
        return change;
}

static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
                                  struct snd_ctl_elem_value *ucontrol)
{
        struct cmipci_switch_args *args;
        args = (struct cmipci_switch_args *)kcontrol->private_value;
        if (snd_BUG_ON(!args))
                return -EINVAL;
        return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
}

#define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
  .reg = xreg, \
  .mask = xmask, \
  .mask_on = xmask_on, \
  .is_byte = xis_byte, \
  .ac3_sensitive = xac3, \
}
        
#define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
        DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)

#if 0 /* these will be controlled in pcm device */
DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
#endif
DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
// DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
/* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
#if CM_CH_PLAY == 1
DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
#else
DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
#endif
DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
// DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
// DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
// DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);

#define DEFINE_SWITCH(sname, stype, sarg) \
{ .name = sname, \
  .iface = stype, \
  .info = snd_cmipci_uswitch_info, \
  .get = snd_cmipci_uswitch_get, \
  .put = snd_cmipci_uswitch_put, \
  .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
}

#define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
#define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)


/*
 * callbacks for spdif output switch
 * needs toggle two registers..
 */
static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
                                        struct snd_ctl_elem_value *ucontrol)
{
        int changed;
        changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
        changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
        return changed;
}

static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
                                        struct snd_ctl_elem_value *ucontrol)
{
        struct cmipci *chip = snd_kcontrol_chip(kcontrol);
        int changed;
        changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
        changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
        if (changed) {
                if (ucontrol->value.integer.value[0]) {
                        if (chip->spdif_playback_avail)
                                snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
                } else {
                        if (chip->spdif_playback_avail)
                                snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
                }
        }
        chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
        return changed;
}


static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
                                        struct snd_ctl_elem_info *uinfo)
{
        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
        static char *texts[3] = { "Line-In", "Rear Output", "Bass Output" };
        uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
        uinfo->count = 1;
        uinfo->value.enumerated.items = cm->chip_version >= 39 ? 3 : 2;
        if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
                uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
        strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
        return 0;
}

static inline unsigned int get_line_in_mode(struct cmipci *cm)
{
        unsigned int val;
        if (cm->chip_version >= 39) {
                val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
                if (val & (CM_CENTR2LIN | CM_BASE2LIN))
                        return 2;
        }
        val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
        if (val & CM_REAR2LIN)
                return 1;
        return 0;
}

static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
                                       struct snd_ctl_elem_value *ucontrol)
{
        struct cmipci *cm = snd_kcontrol_chip(kcontrol);

        spin_lock_irq(&cm->reg_lock);
        ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
        spin_unlock_irq(&cm->reg_lock);
        return 0;
}

static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
                                       struct snd_ctl_elem_value *ucontrol)
{
        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
        int change;

        spin_lock_irq(&cm->reg_lock);
        if (ucontrol->value.enumerated.item[0] == 2)
                change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
        else
                change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
        if (ucontrol->value.enumerated.item[0] == 1)
                change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
        else
                change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
        spin_unlock_irq(&cm->reg_lock);
        return change;
}

static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
                                       struct snd_ctl_elem_info *uinfo)
{
        static char *texts[2] = { "Mic-In", "Center/LFE Output" };
        uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
        uinfo->count = 1;
        uinfo->value.enumerated.items = 2;
        if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
                uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
        strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
        return 0;
}

static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
                                      struct snd_ctl_elem_value *ucontrol)
{
        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
        /* same bit as spdi_phase */
        spin_lock_irq(&cm->reg_lock);
        ucontrol->value.enumerated.item[0] = 
                (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
        spin_unlock_irq(&cm->reg_lock);
        return 0;
}

static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
                                      struct snd_ctl_elem_value *ucontrol)
{
        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
        int change;

        spin_lock_irq(&cm->reg_lock);
        if (ucontrol->value.enumerated.item[0])
                change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
        else
                change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
        spin_unlock_irq(&cm->reg_lock);
        return change;
}

/* both for CM8338/8738 */
static struct snd_kcontrol_new snd_cmipci_mixer_switches[] __devinitdata = {
        DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
        {
                .name = "Line-In Mode",
                .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
                .info = snd_cmipci_line_in_mode_info,
                .get = snd_cmipci_line_in_mode_get,
                .put = snd_cmipci_line_in_mode_put,
        },
};

/* for non-multichannel chips */
static struct snd_kcontrol_new snd_cmipci_nomulti_switch __devinitdata =
DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);

/* only for CM8738 */
static struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] __devinitdata = {
#if 0 /* controlled in pcm device */
        DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
        DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
        DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
#endif
        // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
        { .name = "IEC958 Output Switch",
          .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
          .info = snd_cmipci_uswitch_info,
          .get = snd_cmipci_spdout_enable_get,
          .put = snd_cmipci_spdout_enable_put,
        },
        DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
        DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
        DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
//      DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
        DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
        DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
};

/* only for model 033/037 */
static struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] __devinitdata = {
        DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
        DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
        DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
};

/* only for model 039 or later */
static struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] __devinitdata = {
        DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
        DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
        {
                .name = "Mic-In Mode",
                .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
                .info = snd_cmipci_mic_in_mode_info,
                .get = snd_cmipci_mic_in_mode_get,
                .put = snd_cmipci_mic_in_mode_put,
        }
};

/* card control switches */
static struct snd_kcontrol_new snd_cmipci_modem_switch __devinitdata =
DEFINE_CARD_SWITCH("Modem", modem);


static int __devinit snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
{
        struct snd_card *card;
        struct snd_kcontrol_new *sw;
        struct snd_kcontrol *kctl;
        unsigned int idx;
        int err;

        if (snd_BUG_ON(!cm || !cm->card))
                return -EINVAL;

        card = cm->card;

        strcpy(card->mixername, "CMedia PCI");

        spin_lock_irq(&cm->reg_lock);
        snd_cmipci_mixer_write(cm, 0x00, 0x00);         /* mixer reset */
        spin_unlock_irq(&cm->reg_lock);

        for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
                if (cm->chip_version == 68) {   // 8768 has no PCM volume
                        if (!strcmp(snd_cmipci_mixers[idx].name,
                                "PCM Playback Volume"))
                                continue;
                }
                if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
                        return err;
        }

        /* mixer switches */
        sw = snd_cmipci_mixer_switches;
        for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
                err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
                if (err < 0)
                        return err;
        }
        if (! cm->can_multi_ch) {
                err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
                if (err < 0)
                        return err;
        }
        if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
            cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
                sw = snd_cmipci_8738_mixer_switches;
                for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
                        err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
                        if (err < 0)
                                return err;
                }
                if (cm->can_ac3_hw) {
                        if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
                                return err;
                        kctl->id.device = pcm_spdif_device;
                        if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
                                return err;
                        kctl->id.device = pcm_spdif_device;
                        if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
                                return err;
                        kctl->id.device = pcm_spdif_device;
                }
                if (cm->chip_version <= 37) {
                        sw = snd_cmipci_old_mixer_switches;
                        for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
                                err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
                                if (err < 0)
                                        return err;
                        }
                }
        }
        if (cm->chip_version >= 39) {
                sw = snd_cmipci_extra_mixer_switches;
                for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
                        err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
                        if (err < 0)
                                return err;
                }
        }

        /* card switches */
        /*
         * newer chips don't have the register bits to force modem link
         * detection; the bit that was FLINKON now mutes CH1
         */
        if (cm->chip_version < 39) {
                err = snd_ctl_add(cm->card,
                                  snd_ctl_new1(&snd_cmipci_modem_switch, cm));
                if (err < 0)
                        return err;
        }

        for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
                struct snd_ctl_elem_id elem_id;
                struct snd_kcontrol *ctl;
                memset(&elem_id, 0, sizeof(elem_id));
                elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
                strcpy(elem_id.name, cm_saved_mixer[idx].name);
                ctl = snd_ctl_find_id(cm->card, &elem_id);
                if (ctl)
                        cm->mixer_res_ctl[idx] = ctl;
        }

        return 0;
}


/*
 * proc interface
 */

#ifdef CONFIG_PROC_FS
static void snd_cmipci_proc_read(struct snd_info_entry *entry, 
                                 struct snd_info_buffer *buffer)
{
        struct cmipci *cm = entry->private_data;
        int i, v;
        
        snd_iprintf(buffer, "%s\n", cm->card->longname);
        for (i = 0; i < 0x94; i++) {
                if (i == 0x28)
                        i = 0x90;
                v = inb(cm->iobase + i);
                if (i % 4 == 0)
                        snd_iprintf(buffer, "\n%02x:", i);
                snd_iprintf(buffer, " %02x", v);
        }
        snd_iprintf(buffer, "\n");
}

static void __devinit snd_cmipci_proc_init(struct cmipci *cm)
{
        struct snd_info_entry *entry;

        if (! snd_card_proc_new(cm->card, "cmipci", &entry))
                snd_info_set_text_ops(entry, cm, snd_cmipci_proc_read);
}
#else /* !CONFIG_PROC_FS */
static inline void snd_cmipci_proc_init(struct cmipci *cm) {}
#endif


static struct pci_device_id snd_cmipci_ids[] = {
        {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
        {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
        {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
        {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
        {PCI_VENDOR_ID_AL, PCI_DEVICE_ID_CMEDIA_CM8738, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
        {0,},
};


/*
 * check chip version and capabilities
 * driver name is modified according to the chip model
 */
static void __devinit query_chip(struct cmipci *cm)
{
        unsigned int detect;

        /* check reg 0Ch, bit 24-31 */
        detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
        if (! detect) {
                /* check reg 08h, bit 24-28 */
                detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
                switch (detect) {
                case 0:
                        cm->chip_version = 33;
                        if (cm->do_soft_ac3)
                                cm->can_ac3_sw = 1;
                        else
                                cm->can_ac3_hw = 1;
                        break;
                case CM_CHIP_037:
                        cm->chip_version = 37;
                        cm->can_ac3_hw = 1;
                        break;
                default:
                        cm->chip_version = 39;
                        cm->can_ac3_hw = 1;
                        break;
                }
                cm->max_channels = 2;
        } else {
                if (detect & CM_CHIP_039) {
                        cm->chip_version = 39;
                        if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
                                cm->max_channels = 6;
                        else
                                cm->max_channels = 4;
                } else if (detect & CM_CHIP_8768) {
                        cm->chip_version = 68;
                        cm->max_channels = 8;
                        cm->can_96k = 1;
                } else {
                        cm->chip_version = 55;
                        cm->max_channels = 6;
                        cm->can_96k = 1;
                }
                cm->can_ac3_hw = 1;
                cm->can_multi_ch = 1;
        }
}

#ifdef SUPPORT_JOYSTICK
static int __devinit snd_cmipci_create_gameport(struct cmipci *cm, int dev)
{
        static int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
        struct gameport *gp;
        struct resource *r = NULL;
        int i, io_port = 0;

        if (joystick_port[dev] == 0)
                return -ENODEV;

        if (joystick_port[dev] == 1) { /* auto-detect */
                for (i = 0; ports[i]; i++) {
                        io_port = ports[i];
                        r = request_region(io_port, 1, "CMIPCI gameport");
                        if (r)
                                break;
                }
        } else {
                io_port = joystick_port[dev];
                r = request_region(io_port, 1, "CMIPCI gameport");
        }

        if (!r) {
                printk(KERN_WARNING "cmipci: cannot reserve joystick ports\n");
                return -EBUSY;
        }

        cm->gameport = gp = gameport_allocate_port();
        if (!gp) {
                printk(KERN_ERR "cmipci: cannot allocate memory for gameport\n");
                release_and_free_resource(r);
                return -ENOMEM;
        }
        gameport_set_name(gp, "C-Media Gameport");
        gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
        gameport_set_dev_parent(gp, &cm->pci->dev);
        gp->io = io_port;
        gameport_set_port_data(gp, r);

        snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);

        gameport_register_port(cm->gameport);

        return 0;
}

static void snd_cmipci_free_gameport(struct cmipci *cm)
{
        if (cm->gameport) {
                struct resource *r = gameport_get_port_data(cm->gameport);

                gameport_unregister_port(cm->gameport);
                cm->gameport = NULL;

                snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
                release_and_free_resource(r);
        }
}
#else
static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
#endif

static int snd_cmipci_free(struct cmipci *cm)
{
        if (cm->irq >= 0) {
                snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
                snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
                snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
                snd_cmipci_ch_reset(cm, CM_CH_PLAY);
                snd_cmipci_ch_reset(cm, CM_CH_CAPT);
                snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
                snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);

                /* reset mixer */
                snd_cmipci_mixer_write(cm, 0, 0);

                free_irq(cm->irq, cm);
        }

        snd_cmipci_free_gameport(cm);
        pci_release_regions(cm->pci);
        pci_disable_device(cm->pci);
        kfree(cm);
        return 0;
}

static int snd_cmipci_dev_free(struct snd_device *device)
{
        struct cmipci *cm = device->device_data;
        return snd_cmipci_free(cm);
}

static int __devinit snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
{
        long iosynth;
        unsigned int val;
        struct snd_opl3 *opl3;
        int err;

        if (!fm_port)
                goto disable_fm;

        if (cm->chip_version >= 39) {
                /* first try FM regs in PCI port range */
                iosynth = cm->iobase + CM_REG_FM_PCI;
                err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
                                      OPL3_HW_OPL3, 1, &opl3);
        } else {
                err = -EIO;
        }
        if (err < 0) {
                /* then try legacy ports */
                val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
                iosynth = fm_port;
                switch (iosynth) {
                case 0x3E8: val |= CM_FMSEL_3E8; break;
                case 0x3E0: val |= CM_FMSEL_3E0; break;
                case 0x3C8: val |= CM_FMSEL_3C8; break;
                case 0x388: val |= CM_FMSEL_388; break;
                default:
                        goto disable_fm;
                }
                snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
                /* enable FM */
                snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);

                if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
                                    OPL3_HW_OPL3, 0, &opl3) < 0) {
                        printk(KERN_ERR "cmipci: no OPL device at %#lx, "
                               "skipping...\n", iosynth);
                        goto disable_fm;
                }
        }
        if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
                printk(KERN_ERR "cmipci: cannot create OPL3 hwdep\n");
                return err;
        }
        return 0;

 disable_fm:
        snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
        return 0;
}

static int __devinit snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
                                       int dev, struct cmipci **rcmipci)
{
        struct cmipci *cm;
        int err;
        static struct snd_device_ops ops = {
                .dev_free =     snd_cmipci_dev_free,
        };
        unsigned int val;
        long iomidi;
        int integrated_midi = 0;
        char modelstr[16];
        int pcm_index, pcm_spdif_index;
        static struct pci_device_id intel_82437vx[] = {
                { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
                { },
        };

        *rcmipci = NULL;

        if ((err = pci_enable_device(pci)) < 0)
                return err;

        cm = kzalloc(sizeof(*cm), GFP_KERNEL);
        if (cm == NULL) {
                pci_disable_device(pci);
                return -ENOMEM;
        }

        spin_lock_init(&cm->reg_lock);
        mutex_init(&cm->open_mutex);
        cm->device = pci->device;
        cm->card = card;
        cm->pci = pci;
        cm->irq = -1;
        cm->channel[0].ch = 0;
        cm->channel[1].ch = 1;
        cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */

        if ((err = pci_request_regions(pci, card->driver)) < 0) {
                kfree(cm);
                pci_disable_device(pci);
                return err;
        }
        cm->iobase = pci_resource_start(pci, 0);

        if (request_irq(pci->irq, snd_cmipci_interrupt,
                        IRQF_SHARED, card->driver, cm)) {
                snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
                snd_cmipci_free(cm);
                return -EBUSY;
        }
        cm->irq = pci->irq;

        pci_set_master(cm->pci);

        /*
         * check chip version, max channels and capabilities
         */

        cm->chip_version = 0;
        cm->max_channels = 2;
        cm->do_soft_ac3 = soft_ac3[dev];

        if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
            pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
                query_chip(cm);
        /* added -MCx suffix for chip supporting multi-channels */
        if (cm->can_multi_ch)
                sprintf(cm->card->driver + strlen(cm->card->driver),
                        "-MC%d", cm->max_channels);
        else if (cm->can_ac3_sw)
                strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");

        cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
        cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;

#if CM_CH_PLAY == 1
        cm->ctrl = CM_CHADC0;   /* default FUNCNTRL0 */
#else
        cm->ctrl = CM_CHADC1;   /* default FUNCNTRL0 */
#endif

        /* initialize codec registers */
        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
        snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);     /* disable ints */
        snd_cmipci_ch_reset(cm, CM_CH_PLAY);
        snd_cmipci_ch_reset(cm, CM_CH_CAPT);
        snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);       /* disable channels */
        snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);

        snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
#if CM_CH_PLAY == 1
        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
#else
        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
#endif
        if (cm->chip_version) {
                snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
                snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
        }
        /* Set Bus Master Request */
        snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);

        /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
        switch (pci->device) {
        case PCI_DEVICE_ID_CMEDIA_CM8738:
        case PCI_DEVICE_ID_CMEDIA_CM8738B:
                if (!pci_dev_present(intel_82437vx)) 
                        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
                break;
        default:
                break;
        }

        if (cm->chip_version < 68) {
                val = pci->device < 0x110 ? 8338 : 8738;
        } else {
                switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
                case 0:
                        val = 8769;
                        break;
                case 2:
                        val = 8762;
                        break;
                default:
                        switch ((pci->subsystem_vendor << 16) |
                                pci->subsystem_device) {
                        case 0x13f69761:
                        case 0x584d3741:
                        case 0x584d3751:
                        case 0x584d3761:
                        case 0x584d3771:
                        case 0x72848384:
                                val = 8770;
                                break;
                        default:
                                val = 8768;
                                break;
                        }
                }
        }
        sprintf(card->shortname, "C-Media CMI%d", val);
        if (cm->chip_version < 68)
                sprintf(modelstr, " (model %d)", cm->chip_version);
        else
                modelstr[0] = '\0';
        sprintf(card->longname, "%s%s at %#lx, irq %i",
                card->shortname, modelstr, cm->iobase, cm->irq);

        if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
                snd_cmipci_free(cm);
                return err;
        }

        if (cm->chip_version >= 39) {
                val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
                if (val != 0x00 && val != 0xff) {
                        iomidi = cm->iobase + CM_REG_MPU_PCI;
                        integrated_midi = 1;
                }
        }
        if (!integrated_midi) {
                val = 0;
                iomidi = mpu_port[dev];
                switch (iomidi) {
                case 0x320: val = CM_VMPU_320; break;
                case 0x310: val = CM_VMPU_310; break;
                case 0x300: val = CM_VMPU_300; break;
                case 0x330: val = CM_VMPU_330; break;
                default:
                            iomidi = 0; break;
                }
                if (iomidi > 0) {
                        snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
                        /* enable UART */
                        snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
                        if (inb(iomidi + 1) == 0xff) {
                                snd_printk(KERN_ERR "cannot enable MPU-401 port"
                                           " at %#lx\n", iomidi);
                                snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
                                                     CM_UART_EN);
                                iomidi = 0;
                        }
                }
        }

        if (cm->chip_version < 68) {
                err = snd_cmipci_create_fm(cm, fm_port[dev]);
                if (err < 0)
                        return err;
        }

        /* reset mixer */
        snd_cmipci_mixer_write(cm, 0, 0);

        snd_cmipci_proc_init(cm);

        /* create pcm devices */
        pcm_index = pcm_spdif_index = 0;
        if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
                return err;
        pcm_index++;
        if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
                return err;
        pcm_index++;
        if (cm->can_ac3_hw || cm->can_ac3_sw) {
                pcm_spdif_index = pcm_index;
                if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
                        return err;
        }

        /* create mixer interface & switches */
        if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
                return err;

        if (iomidi > 0) {
                if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
                                               iomidi,
                                               (integrated_midi ?
                                                MPU401_INFO_INTEGRATED : 0),
                                               cm->irq, 0, &cm->rmidi)) < 0) {
                        printk(KERN_ERR "cmipci: no UART401 device at 0x%lx\n", iomidi);
                }
        }

#ifdef USE_VAR48KRATE
        for (val = 0; val < ARRAY_SIZE(rates); val++)
                snd_cmipci_set_pll(cm, rates[val], val);

        /*
         * (Re-)Enable external switch spdo_48k
         */
        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
#endif /* USE_VAR48KRATE */

        if (snd_cmipci_create_gameport(cm, dev) < 0)
                snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);

        snd_card_set_dev(card, &pci->dev);

        *rcmipci = cm;
        return 0;
}

/*
 */

MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);

static int __devinit snd_cmipci_probe(struct pci_dev *pci,
                                      const struct pci_device_id *pci_id)
{
        static int dev;
        struct snd_card *card;
        struct cmipci *cm;
        int err;

        if (dev >= SNDRV_CARDS)
                return -ENODEV;
        if (! enable[dev]) {
                dev++;
                return -ENOENT;
        }

        card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
        if (card == NULL)
                return -ENOMEM;
        
        switch (pci->device) {
        case PCI_DEVICE_ID_CMEDIA_CM8738:
        case PCI_DEVICE_ID_CMEDIA_CM8738B:
                strcpy(card->driver, "CMI8738");
                break;
        case PCI_DEVICE_ID_CMEDIA_CM8338A:
        case PCI_DEVICE_ID_CMEDIA_CM8338B:
                strcpy(card->driver, "CMI8338");
                break;
        default:
                strcpy(card->driver, "CMIPCI");
                break;
        }

        if ((err = snd_cmipci_create(card, pci, dev, &cm)) < 0) {
                snd_card_free(card);
                return err;
        }
        card->private_data = cm;

        if ((err = snd_card_register(card)) < 0) {
                snd_card_free(card);
                return err;
        }
        pci_set_drvdata(pci, card);
        dev++;
        return 0;

}

static void __devexit snd_cmipci_remove(struct pci_dev *pci)
{
        snd_card_free(pci_get_drvdata(pci));
        pci_set_drvdata(pci, NULL);
}


#ifdef CONFIG_PM
/*
 * power management
 */
static unsigned char saved_regs[] = {
        CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
        CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
        CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
        CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
        CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
};

static unsigned char saved_mixers[] = {
        SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
        SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
        SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
        SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
        SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
        SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
        CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
        SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
};

static int snd_cmipci_suspend(struct pci_dev *pci, pm_message_t state)
{
        struct snd_card *card = pci_get_drvdata(pci);
        struct cmipci *cm = card->private_data;
        int i;

        snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
        
        snd_pcm_suspend_all(cm->pcm);
        snd_pcm_suspend_all(cm->pcm2);
        snd_pcm_suspend_all(cm->pcm_spdif);

        /* save registers */
        for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
                cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
        for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
                cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);

        /* disable ints */
        snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);

        pci_disable_device(pci);
        pci_save_state(pci);
        pci_set_power_state(pci, pci_choose_state(pci, state));
        return 0;
}

static int snd_cmipci_resume(struct pci_dev *pci)
{
        struct snd_card *card = pci_get_drvdata(pci);
        struct cmipci *cm = card->private_data;
        int i;

        pci_set_power_state(pci, PCI_D0);
        pci_restore_state(pci);
        if (pci_enable_device(pci) < 0) {
                printk(KERN_ERR "cmipci: pci_enable_device failed, "
                       "disabling device\n");
                snd_card_disconnect(card);
                return -EIO;
        }
        pci_set_master(pci);

        /* reset / initialize to a sane state */
        snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
        snd_cmipci_ch_reset(cm, CM_CH_PLAY);
        snd_cmipci_ch_reset(cm, CM_CH_CAPT);
        snd_cmipci_mixer_write(cm, 0, 0);

        /* restore registers */
        for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
                snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
        for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
                snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);

        snd_power_change_state(card, SNDRV_CTL_POWER_D0);
        return 0;
}
#endif /* CONFIG_PM */

static struct pci_driver driver = {
        .name = "C-Media PCI",
        .id_table = snd_cmipci_ids,
        .probe = snd_cmipci_probe,
        .remove = __devexit_p(snd_cmipci_remove),
#ifdef CONFIG_PM
        .suspend = snd_cmipci_suspend,
        .resume = snd_cmipci_resume,
#endif
};
        
static int __init alsa_card_cmipci_init(void)
{
        return pci_register_driver(&driver);
}

static void __exit alsa_card_cmipci_exit(void)
{
        pci_unregister_driver(&driver);
}

module_init(alsa_card_cmipci_init)
module_exit(alsa_card_cmipci_exit)

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading