[funini.com] -> [kei@sodan] -> Kernel Reading

root/fs/udf/inode.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. udf_delete_inode
  2. udf_clear_inode
  3. udf_writepage
  4. udf_readpage
  5. udf_write_begin
  6. udf_bmap
  7. udf_expand_file_adinicb
  8. udf_expand_dir_adinicb
  9. udf_get_block
  10. udf_getblk
  11. udf_extend_file
  12. inode_getblk
  13. udf_split_extents
  14. udf_prealloc_extents
  15. udf_merge_extents
  16. udf_update_extents
  17. udf_bread
  18. udf_truncate
  19. __udf_read_inode
  20. udf_fill_inode
  21. udf_alloc_i_data
  22. udf_convert_permissions
  23. udf_write_inode
  24. udf_sync_inode
  25. udf_update_inode
  26. udf_iget
  27. udf_add_aext
  28. udf_write_aext
  29. udf_next_aext
  30. udf_current_aext
  31. udf_insert_aext
  32. udf_delete_aext
  33. inode_bmap
  34. udf_block_map

/*
 * inode.c
 *
 * PURPOSE
 *  Inode handling routines for the OSTA-UDF(tm) filesystem.
 *
 * COPYRIGHT
 *  This file is distributed under the terms of the GNU General Public
 *  License (GPL). Copies of the GPL can be obtained from:
 *    ftp://prep.ai.mit.edu/pub/gnu/GPL
 *  Each contributing author retains all rights to their own work.
 *
 *  (C) 1998 Dave Boynton
 *  (C) 1998-2004 Ben Fennema
 *  (C) 1999-2000 Stelias Computing Inc
 *
 * HISTORY
 *
 *  10/04/98 dgb  Added rudimentary directory functions
 *  10/07/98      Fully working udf_block_map! It works!
 *  11/25/98      bmap altered to better support extents
 *  12/06/98 blf  partition support in udf_iget, udf_block_map
 *                and udf_read_inode
 *  12/12/98      rewrote udf_block_map to handle next extents and descs across
 *                block boundaries (which is not actually allowed)
 *  12/20/98      added support for strategy 4096
 *  03/07/99      rewrote udf_block_map (again)
 *                New funcs, inode_bmap, udf_next_aext
 *  04/19/99      Support for writing device EA's for major/minor #
 */

#include "udfdecl.h"
#include <linux/mm.h>
#include <linux/smp_lock.h>
#include <linux/module.h>
#include <linux/pagemap.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
#include <linux/slab.h>
#include <linux/crc-itu-t.h>

#include "udf_i.h"
#include "udf_sb.h"

MODULE_AUTHOR("Ben Fennema");
MODULE_DESCRIPTION("Universal Disk Format Filesystem");
MODULE_LICENSE("GPL");

#define EXTENT_MERGE_SIZE 5

static mode_t udf_convert_permissions(struct fileEntry *);
static int udf_update_inode(struct inode *, int);
static void udf_fill_inode(struct inode *, struct buffer_head *);
static int udf_alloc_i_data(struct inode *inode, size_t size);
static struct buffer_head *inode_getblk(struct inode *, sector_t, int *,
                                        sector_t *, int *);
static int8_t udf_insert_aext(struct inode *, struct extent_position,
                              kernel_lb_addr, uint32_t);
static void udf_split_extents(struct inode *, int *, int, int,
                              kernel_long_ad[EXTENT_MERGE_SIZE], int *);
static void udf_prealloc_extents(struct inode *, int, int,
                                 kernel_long_ad[EXTENT_MERGE_SIZE], int *);
static void udf_merge_extents(struct inode *,
                              kernel_long_ad[EXTENT_MERGE_SIZE], int *);
static void udf_update_extents(struct inode *,
                               kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
                               struct extent_position *);
static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);


void udf_delete_inode(struct inode *inode)
{
        truncate_inode_pages(&inode->i_data, 0);

        if (is_bad_inode(inode))
                goto no_delete;

        inode->i_size = 0;
        udf_truncate(inode);
        lock_kernel();

        udf_update_inode(inode, IS_SYNC(inode));
        udf_free_inode(inode);

        unlock_kernel();
        return;

no_delete:
        clear_inode(inode);
}

/*
 * If we are going to release inode from memory, we discard preallocation and
 * truncate last inode extent to proper length. We could use drop_inode() but
 * it's called under inode_lock and thus we cannot mark inode dirty there.  We
 * use clear_inode() but we have to make sure to write inode as it's not written
 * automatically.
 */
void udf_clear_inode(struct inode *inode)
{
        struct udf_inode_info *iinfo;
        if (!(inode->i_sb->s_flags & MS_RDONLY)) {
                lock_kernel();
                /* Discard preallocation for directories, symlinks, etc. */
                udf_discard_prealloc(inode);
                udf_truncate_tail_extent(inode);
                unlock_kernel();
                write_inode_now(inode, 0);
        }
        iinfo = UDF_I(inode);
        kfree(iinfo->i_ext.i_data);
        iinfo->i_ext.i_data = NULL;
}

static int udf_writepage(struct page *page, struct writeback_control *wbc)
{
        return block_write_full_page(page, udf_get_block, wbc);
}

static int udf_readpage(struct file *file, struct page *page)
{
        return block_read_full_page(page, udf_get_block);
}

static int udf_write_begin(struct file *file, struct address_space *mapping,
                        loff_t pos, unsigned len, unsigned flags,
                        struct page **pagep, void **fsdata)
{
        *pagep = NULL;
        return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
                                udf_get_block);
}

static sector_t udf_bmap(struct address_space *mapping, sector_t block)
{
        return generic_block_bmap(mapping, block, udf_get_block);
}

const struct address_space_operations udf_aops = {
        .readpage       = udf_readpage,
        .writepage      = udf_writepage,
        .sync_page      = block_sync_page,
        .write_begin            = udf_write_begin,
        .write_end              = generic_write_end,
        .bmap           = udf_bmap,
};

void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err)
{
        struct page *page;
        char *kaddr;
        struct udf_inode_info *iinfo = UDF_I(inode);
        struct writeback_control udf_wbc = {
                .sync_mode = WB_SYNC_NONE,
                .nr_to_write = 1,
        };

        /* from now on we have normal address_space methods */
        inode->i_data.a_ops = &udf_aops;

        if (!iinfo->i_lenAlloc) {
                if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
                        iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
                else
                        iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
                mark_inode_dirty(inode);
                return;
        }

        page = grab_cache_page(inode->i_mapping, 0);
        BUG_ON(!PageLocked(page));

        if (!PageUptodate(page)) {
                kaddr = kmap(page);
                memset(kaddr + iinfo->i_lenAlloc, 0x00,
                       PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
                memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
                        iinfo->i_lenAlloc);
                flush_dcache_page(page);
                SetPageUptodate(page);
                kunmap(page);
        }
        memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
               iinfo->i_lenAlloc);
        iinfo->i_lenAlloc = 0;
        if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
                iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
        else
                iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;

        inode->i_data.a_ops->writepage(page, &udf_wbc);
        page_cache_release(page);

        mark_inode_dirty(inode);
}

struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
                                           int *err)
{
        int newblock;
        struct buffer_head *dbh = NULL;
        kernel_lb_addr eloc;
        uint32_t elen;
        uint8_t alloctype;
        struct extent_position epos;

        struct udf_fileident_bh sfibh, dfibh;
        loff_t f_pos = udf_ext0_offset(inode);
        int size = udf_ext0_offset(inode) + inode->i_size;
        struct fileIdentDesc cfi, *sfi, *dfi;
        struct udf_inode_info *iinfo = UDF_I(inode);

        if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
                alloctype = ICBTAG_FLAG_AD_SHORT;
        else
                alloctype = ICBTAG_FLAG_AD_LONG;

        if (!inode->i_size) {
                iinfo->i_alloc_type = alloctype;
                mark_inode_dirty(inode);
                return NULL;
        }

        /* alloc block, and copy data to it */
        *block = udf_new_block(inode->i_sb, inode,
                               iinfo->i_location.partitionReferenceNum,
                               iinfo->i_location.logicalBlockNum, err);
        if (!(*block))
                return NULL;
        newblock = udf_get_pblock(inode->i_sb, *block,
                                  iinfo->i_location.partitionReferenceNum,
                                0);
        if (!newblock)
                return NULL;
        dbh = udf_tgetblk(inode->i_sb, newblock);
        if (!dbh)
                return NULL;
        lock_buffer(dbh);
        memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
        set_buffer_uptodate(dbh);
        unlock_buffer(dbh);
        mark_buffer_dirty_inode(dbh, inode);

        sfibh.soffset = sfibh.eoffset =
                        f_pos & (inode->i_sb->s_blocksize - 1);
        sfibh.sbh = sfibh.ebh = NULL;
        dfibh.soffset = dfibh.eoffset = 0;
        dfibh.sbh = dfibh.ebh = dbh;
        while (f_pos < size) {
                iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
                sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
                                         NULL, NULL, NULL);
                if (!sfi) {
                        brelse(dbh);
                        return NULL;
                }
                iinfo->i_alloc_type = alloctype;
                sfi->descTag.tagLocation = cpu_to_le32(*block);
                dfibh.soffset = dfibh.eoffset;
                dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
                dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
                if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
                                 sfi->fileIdent +
                                        le16_to_cpu(sfi->lengthOfImpUse))) {
                        iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
                        brelse(dbh);
                        return NULL;
                }
        }
        mark_buffer_dirty_inode(dbh, inode);

        memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
                iinfo->i_lenAlloc);
        iinfo->i_lenAlloc = 0;
        eloc.logicalBlockNum = *block;
        eloc.partitionReferenceNum =
                                iinfo->i_location.partitionReferenceNum;
        elen = inode->i_sb->s_blocksize;
        iinfo->i_lenExtents = elen;
        epos.bh = NULL;
        epos.block = iinfo->i_location;
        epos.offset = udf_file_entry_alloc_offset(inode);
        udf_add_aext(inode, &epos, eloc, elen, 0);
        /* UniqueID stuff */

        brelse(epos.bh);
        mark_inode_dirty(inode);
        return dbh;
}

static int udf_get_block(struct inode *inode, sector_t block,
                         struct buffer_head *bh_result, int create)
{
        int err, new;
        struct buffer_head *bh;
        sector_t phys = 0;
        struct udf_inode_info *iinfo;

        if (!create) {
                phys = udf_block_map(inode, block);
                if (phys)
                        map_bh(bh_result, inode->i_sb, phys);
                return 0;
        }

        err = -EIO;
        new = 0;
        bh = NULL;

        lock_kernel();

        iinfo = UDF_I(inode);
        if (block == iinfo->i_next_alloc_block + 1) {
                iinfo->i_next_alloc_block++;
                iinfo->i_next_alloc_goal++;
        }

        err = 0;

        bh = inode_getblk(inode, block, &err, &phys, &new);
        BUG_ON(bh);
        if (err)
                goto abort;
        BUG_ON(!phys);

        if (new)
                set_buffer_new(bh_result);
        map_bh(bh_result, inode->i_sb, phys);

abort:
        unlock_kernel();
        return err;
}

static struct buffer_head *udf_getblk(struct inode *inode, long block,
                                      int create, int *err)
{
        struct buffer_head *bh;
        struct buffer_head dummy;

        dummy.b_state = 0;
        dummy.b_blocknr = -1000;
        *err = udf_get_block(inode, block, &dummy, create);
        if (!*err && buffer_mapped(&dummy)) {
                bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
                if (buffer_new(&dummy)) {
                        lock_buffer(bh);
                        memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
                        set_buffer_uptodate(bh);
                        unlock_buffer(bh);
                        mark_buffer_dirty_inode(bh, inode);
                }
                return bh;
        }

        return NULL;
}

/* Extend the file by 'blocks' blocks, return the number of extents added */
int udf_extend_file(struct inode *inode, struct extent_position *last_pos,
                    kernel_long_ad *last_ext, sector_t blocks)
{
        sector_t add;
        int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
        struct super_block *sb = inode->i_sb;
        kernel_lb_addr prealloc_loc = {};
        int prealloc_len = 0;
        struct udf_inode_info *iinfo;

        /* The previous extent is fake and we should not extend by anything
         * - there's nothing to do... */
        if (!blocks && fake)
                return 0;

        iinfo = UDF_I(inode);
        /* Round the last extent up to a multiple of block size */
        if (last_ext->extLength & (sb->s_blocksize - 1)) {
                last_ext->extLength =
                        (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
                        (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
                          sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
                iinfo->i_lenExtents =
                        (iinfo->i_lenExtents + sb->s_blocksize - 1) &
                        ~(sb->s_blocksize - 1);
        }

        /* Last extent are just preallocated blocks? */
        if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
                                                EXT_NOT_RECORDED_ALLOCATED) {
                /* Save the extent so that we can reattach it to the end */
                prealloc_loc = last_ext->extLocation;
                prealloc_len = last_ext->extLength;
                /* Mark the extent as a hole */
                last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
                        (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
                last_ext->extLocation.logicalBlockNum = 0;
                last_ext->extLocation.partitionReferenceNum = 0;
        }

        /* Can we merge with the previous extent? */
        if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
                                        EXT_NOT_RECORDED_NOT_ALLOCATED) {
                add = ((1 << 30) - sb->s_blocksize -
                        (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
                        sb->s_blocksize_bits;
                if (add > blocks)
                        add = blocks;
                blocks -= add;
                last_ext->extLength += add << sb->s_blocksize_bits;
        }

        if (fake) {
                udf_add_aext(inode, last_pos, last_ext->extLocation,
                             last_ext->extLength, 1);
                count++;
        } else
                udf_write_aext(inode, last_pos, last_ext->extLocation,
                                last_ext->extLength, 1);

        /* Managed to do everything necessary? */
        if (!blocks)
                goto out;

        /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
        last_ext->extLocation.logicalBlockNum = 0;
        last_ext->extLocation.partitionReferenceNum = 0;
        add = (1 << (30-sb->s_blocksize_bits)) - 1;
        last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
                                (add << sb->s_blocksize_bits);

        /* Create enough extents to cover the whole hole */
        while (blocks > add) {
                blocks -= add;
                if (udf_add_aext(inode, last_pos, last_ext->extLocation,
                                 last_ext->extLength, 1) == -1)
                        return -1;
                count++;
        }
        if (blocks) {
                last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
                        (blocks << sb->s_blocksize_bits);
                if (udf_add_aext(inode, last_pos, last_ext->extLocation,
                                 last_ext->extLength, 1) == -1)
                        return -1;
                count++;
        }

out:
        /* Do we have some preallocated blocks saved? */
        if (prealloc_len) {
                if (udf_add_aext(inode, last_pos, prealloc_loc,
                                 prealloc_len, 1) == -1)
                        return -1;
                last_ext->extLocation = prealloc_loc;
                last_ext->extLength = prealloc_len;
                count++;
        }

        /* last_pos should point to the last written extent... */
        if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
                last_pos->offset -= sizeof(short_ad);
        else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
                last_pos->offset -= sizeof(long_ad);
        else
                return -1;

        return count;
}

static struct buffer_head *inode_getblk(struct inode *inode, sector_t block,
                                        int *err, sector_t *phys, int *new)
{
        static sector_t last_block;
        struct buffer_head *result = NULL;
        kernel_long_ad laarr[EXTENT_MERGE_SIZE];
        struct extent_position prev_epos, cur_epos, next_epos;
        int count = 0, startnum = 0, endnum = 0;
        uint32_t elen = 0, tmpelen;
        kernel_lb_addr eloc, tmpeloc;
        int c = 1;
        loff_t lbcount = 0, b_off = 0;
        uint32_t newblocknum, newblock;
        sector_t offset = 0;
        int8_t etype;
        struct udf_inode_info *iinfo = UDF_I(inode);
        int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
        int lastblock = 0;

        prev_epos.offset = udf_file_entry_alloc_offset(inode);
        prev_epos.block = iinfo->i_location;
        prev_epos.bh = NULL;
        cur_epos = next_epos = prev_epos;
        b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;

        /* find the extent which contains the block we are looking for.
           alternate between laarr[0] and laarr[1] for locations of the
           current extent, and the previous extent */
        do {
                if (prev_epos.bh != cur_epos.bh) {
                        brelse(prev_epos.bh);
                        get_bh(cur_epos.bh);
                        prev_epos.bh = cur_epos.bh;
                }
                if (cur_epos.bh != next_epos.bh) {
                        brelse(cur_epos.bh);
                        get_bh(next_epos.bh);
                        cur_epos.bh = next_epos.bh;
                }

                lbcount += elen;

                prev_epos.block = cur_epos.block;
                cur_epos.block = next_epos.block;

                prev_epos.offset = cur_epos.offset;
                cur_epos.offset = next_epos.offset;

                etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
                if (etype == -1)
                        break;

                c = !c;

                laarr[c].extLength = (etype << 30) | elen;
                laarr[c].extLocation = eloc;

                if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
                        pgoal = eloc.logicalBlockNum +
                                ((elen + inode->i_sb->s_blocksize - 1) >>
                                 inode->i_sb->s_blocksize_bits);

                count++;
        } while (lbcount + elen <= b_off);

        b_off -= lbcount;
        offset = b_off >> inode->i_sb->s_blocksize_bits;
        /*
         * Move prev_epos and cur_epos into indirect extent if we are at
         * the pointer to it
         */
        udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
        udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);

        /* if the extent is allocated and recorded, return the block
           if the extent is not a multiple of the blocksize, round up */

        if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
                if (elen & (inode->i_sb->s_blocksize - 1)) {
                        elen = EXT_RECORDED_ALLOCATED |
                                ((elen + inode->i_sb->s_blocksize - 1) &
                                 ~(inode->i_sb->s_blocksize - 1));
                        etype = udf_write_aext(inode, &cur_epos, eloc, elen, 1);
                }
                brelse(prev_epos.bh);
                brelse(cur_epos.bh);
                brelse(next_epos.bh);
                newblock = udf_get_lb_pblock(inode->i_sb, eloc, offset);
                *phys = newblock;
                return NULL;
        }

        last_block = block;
        /* Are we beyond EOF? */
        if (etype == -1) {
                int ret;

                if (count) {
                        if (c)
                                laarr[0] = laarr[1];
                        startnum = 1;
                } else {
                        /* Create a fake extent when there's not one */
                        memset(&laarr[0].extLocation, 0x00,
                                sizeof(kernel_lb_addr));
                        laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
                        /* Will udf_extend_file() create real extent from
                           a fake one? */
                        startnum = (offset > 0);
                }
                /* Create extents for the hole between EOF and offset */
                ret = udf_extend_file(inode, &prev_epos, laarr, offset);
                if (ret == -1) {
                        brelse(prev_epos.bh);
                        brelse(cur_epos.bh);
                        brelse(next_epos.bh);
                        /* We don't really know the error here so we just make
                         * something up */
                        *err = -ENOSPC;
                        return NULL;
                }
                c = 0;
                offset = 0;
                count += ret;
                /* We are not covered by a preallocated extent? */
                if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
                                                EXT_NOT_RECORDED_ALLOCATED) {
                        /* Is there any real extent? - otherwise we overwrite
                         * the fake one... */
                        if (count)
                                c = !c;
                        laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
                                inode->i_sb->s_blocksize;
                        memset(&laarr[c].extLocation, 0x00,
                                sizeof(kernel_lb_addr));
                        count++;
                        endnum++;
                }
                endnum = c + 1;
                lastblock = 1;
        } else {
                endnum = startnum = ((count > 2) ? 2 : count);

                /* if the current extent is in position 0,
                   swap it with the previous */
                if (!c && count != 1) {
                        laarr[2] = laarr[0];
                        laarr[0] = laarr[1];
                        laarr[1] = laarr[2];
                        c = 1;
                }

                /* if the current block is located in an extent,
                   read the next extent */
                etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
                if (etype != -1) {
                        laarr[c + 1].extLength = (etype << 30) | elen;
                        laarr[c + 1].extLocation = eloc;
                        count++;
                        startnum++;
                        endnum++;
                } else
                        lastblock = 1;
        }

        /* if the current extent is not recorded but allocated, get the
         * block in the extent corresponding to the requested block */
        if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
                newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
        else { /* otherwise, allocate a new block */
                if (iinfo->i_next_alloc_block == block)
                        goal = iinfo->i_next_alloc_goal;

                if (!goal) {
                        if (!(goal = pgoal)) /* XXX: what was intended here? */
                                goal = iinfo->i_location.logicalBlockNum + 1;
                }

                newblocknum = udf_new_block(inode->i_sb, inode,
                                iinfo->i_location.partitionReferenceNum,
                                goal, err);
                if (!newblocknum) {
                        brelse(prev_epos.bh);
                        *err = -ENOSPC;
                        return NULL;
                }
                iinfo->i_lenExtents += inode->i_sb->s_blocksize;
        }

        /* if the extent the requsted block is located in contains multiple
         * blocks, split the extent into at most three extents. blocks prior
         * to requested block, requested block, and blocks after requested
         * block */
        udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);

#ifdef UDF_PREALLOCATE
        /* preallocate blocks */
        udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
#endif

        /* merge any continuous blocks in laarr */
        udf_merge_extents(inode, laarr, &endnum);

        /* write back the new extents, inserting new extents if the new number
         * of extents is greater than the old number, and deleting extents if
         * the new number of extents is less than the old number */
        udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);

        brelse(prev_epos.bh);

        newblock = udf_get_pblock(inode->i_sb, newblocknum,
                                iinfo->i_location.partitionReferenceNum, 0);
        if (!newblock)
                return NULL;
        *phys = newblock;
        *err = 0;
        *new = 1;
        iinfo->i_next_alloc_block = block;
        iinfo->i_next_alloc_goal = newblocknum;
        inode->i_ctime = current_fs_time(inode->i_sb);

        if (IS_SYNC(inode))
                udf_sync_inode(inode);
        else
                mark_inode_dirty(inode);

        return result;
}

static void udf_split_extents(struct inode *inode, int *c, int offset,
                              int newblocknum,
                              kernel_long_ad laarr[EXTENT_MERGE_SIZE],
                              int *endnum)
{
        unsigned long blocksize = inode->i_sb->s_blocksize;
        unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;

        if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
            (laarr[*c].extLength >> 30) ==
                                (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
                int curr = *c;
                int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
                            blocksize - 1) >> blocksize_bits;
                int8_t etype = (laarr[curr].extLength >> 30);

                if (blen == 1)
                        ;
                else if (!offset || blen == offset + 1) {
                        laarr[curr + 2] = laarr[curr + 1];
                        laarr[curr + 1] = laarr[curr];
                } else {
                        laarr[curr + 3] = laarr[curr + 1];
                        laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
                }

                if (offset) {
                        if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
                                udf_free_blocks(inode->i_sb, inode,
                                                laarr[curr].extLocation,
                                                0, offset);
                                laarr[curr].extLength =
                                        EXT_NOT_RECORDED_NOT_ALLOCATED |
                                        (offset << blocksize_bits);
                                laarr[curr].extLocation.logicalBlockNum = 0;
                                laarr[curr].extLocation.
                                                partitionReferenceNum = 0;
                        } else
                                laarr[curr].extLength = (etype << 30) |
                                        (offset << blocksize_bits);
                        curr++;
                        (*c)++;
                        (*endnum)++;
                }

                laarr[curr].extLocation.logicalBlockNum = newblocknum;
                if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
                        laarr[curr].extLocation.partitionReferenceNum =
                                UDF_I(inode)->i_location.partitionReferenceNum;
                laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
                        blocksize;
                curr++;

                if (blen != offset + 1) {
                        if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
                                laarr[curr].extLocation.logicalBlockNum +=
                                                                offset + 1;
                        laarr[curr].extLength = (etype << 30) |
                                ((blen - (offset + 1)) << blocksize_bits);
                        curr++;
                        (*endnum)++;
                }
        }
}

static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
                                 kernel_long_ad laarr[EXTENT_MERGE_SIZE],
                                 int *endnum)
{
        int start, length = 0, currlength = 0, i;

        if (*endnum >= (c + 1)) {
                if (!lastblock)
                        return;
                else
                        start = c;
        } else {
                if ((laarr[c + 1].extLength >> 30) ==
                                        (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
                        start = c + 1;
                        length = currlength =
                                (((laarr[c + 1].extLength &
                                        UDF_EXTENT_LENGTH_MASK) +
                                inode->i_sb->s_blocksize - 1) >>
                                inode->i_sb->s_blocksize_bits);
                } else
                        start = c;
        }

        for (i = start + 1; i <= *endnum; i++) {
                if (i == *endnum) {
                        if (lastblock)
                                length += UDF_DEFAULT_PREALLOC_BLOCKS;
                } else if ((laarr[i].extLength >> 30) ==
                                (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
                        length += (((laarr[i].extLength &
                                                UDF_EXTENT_LENGTH_MASK) +
                                    inode->i_sb->s_blocksize - 1) >>
                                    inode->i_sb->s_blocksize_bits);
                } else
                        break;
        }

        if (length) {
                int next = laarr[start].extLocation.logicalBlockNum +
                        (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
                          inode->i_sb->s_blocksize - 1) >>
                          inode->i_sb->s_blocksize_bits);
                int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
                                laarr[start].extLocation.partitionReferenceNum,
                                next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
                                length : UDF_DEFAULT_PREALLOC_BLOCKS) -
                                currlength);
                if (numalloc)   {
                        if (start == (c + 1))
                                laarr[start].extLength +=
                                        (numalloc <<
                                         inode->i_sb->s_blocksize_bits);
                        else {
                                memmove(&laarr[c + 2], &laarr[c + 1],
                                        sizeof(long_ad) * (*endnum - (c + 1)));
                                (*endnum)++;
                                laarr[c + 1].extLocation.logicalBlockNum = next;
                                laarr[c + 1].extLocation.partitionReferenceNum =
                                        laarr[c].extLocation.
                                                        partitionReferenceNum;
                                laarr[c + 1].extLength =
                                        EXT_NOT_RECORDED_ALLOCATED |
                                        (numalloc <<
                                         inode->i_sb->s_blocksize_bits);
                                start = c + 1;
                        }

                        for (i = start + 1; numalloc && i < *endnum; i++) {
                                int elen = ((laarr[i].extLength &
                                                UDF_EXTENT_LENGTH_MASK) +
                                            inode->i_sb->s_blocksize - 1) >>
                                            inode->i_sb->s_blocksize_bits;

                                if (elen > numalloc) {
                                        laarr[i].extLength -=
                                                (numalloc <<
                                                 inode->i_sb->s_blocksize_bits);
                                        numalloc = 0;
                                } else {
                                        numalloc -= elen;
                                        if (*endnum > (i + 1))
                                                memmove(&laarr[i],
                                                        &laarr[i + 1],
                                                        sizeof(long_ad) *
                                                        (*endnum - (i + 1)));
                                        i--;
                                        (*endnum)--;
                                }
                        }
                        UDF_I(inode)->i_lenExtents +=
                                numalloc << inode->i_sb->s_blocksize_bits;
                }
        }
}

static void udf_merge_extents(struct inode *inode,
                              kernel_long_ad laarr[EXTENT_MERGE_SIZE],
                              int *endnum)
{
        int i;
        unsigned long blocksize = inode->i_sb->s_blocksize;
        unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;

        for (i = 0; i < (*endnum - 1); i++) {
                kernel_long_ad *li /*l[i]*/ = &laarr[i];
                kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];

                if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
                        (((li->extLength >> 30) ==
                                (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
                        ((lip1->extLocation.logicalBlockNum -
                          li->extLocation.logicalBlockNum) ==
                        (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
                        blocksize - 1) >> blocksize_bits)))) {

                        if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
                                (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
                                blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
                                lip1->extLength = (lip1->extLength -
                                                  (li->extLength &
                                                   UDF_EXTENT_LENGTH_MASK) +
                                                   UDF_EXTENT_LENGTH_MASK) &
                                                        ~(blocksize - 1);
                                li->extLength = (li->extLength &
                                                 UDF_EXTENT_FLAG_MASK) +
                                                (UDF_EXTENT_LENGTH_MASK + 1) -
                                                blocksize;
                                lip1->extLocation.logicalBlockNum =
                                        li->extLocation.logicalBlockNum +
                                        ((li->extLength &
                                                UDF_EXTENT_LENGTH_MASK) >>
                                                blocksize_bits);
                        } else {
                                li->extLength = lip1->extLength +
                                        (((li->extLength &
                                                UDF_EXTENT_LENGTH_MASK) +
                                         blocksize - 1) & ~(blocksize - 1));
                                if (*endnum > (i + 2))
                                        memmove(&laarr[i + 1], &laarr[i + 2],
                                                sizeof(long_ad) *
                                                (*endnum - (i + 2)));
                                i--;
                                (*endnum)--;
                        }
                } else if (((li->extLength >> 30) ==
                                (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
                           ((lip1->extLength >> 30) ==
                                (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
                        udf_free_blocks(inode->i_sb, inode, li->extLocation, 0,
                                        ((li->extLength &
                                          UDF_EXTENT_LENGTH_MASK) +
                                         blocksize - 1) >> blocksize_bits);
                        li->extLocation.logicalBlockNum = 0;
                        li->extLocation.partitionReferenceNum = 0;

                        if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
                             (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
                             blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
                                lip1->extLength = (lip1->extLength -
                                                   (li->extLength &
                                                   UDF_EXTENT_LENGTH_MASK) +
                                                   UDF_EXTENT_LENGTH_MASK) &
                                                   ~(blocksize - 1);
                                li->extLength = (li->extLength &
                                                 UDF_EXTENT_FLAG_MASK) +
                                                (UDF_EXTENT_LENGTH_MASK + 1) -
                                                blocksize;
                        } else {
                                li->extLength = lip1->extLength +
                                        (((li->extLength &
                                                UDF_EXTENT_LENGTH_MASK) +
                                          blocksize - 1) & ~(blocksize - 1));
                                if (*endnum > (i + 2))
                                        memmove(&laarr[i + 1], &laarr[i + 2],
                                                sizeof(long_ad) *
                                                (*endnum - (i + 2)));
                                i--;
                                (*endnum)--;
                        }
                } else if ((li->extLength >> 30) ==
                                        (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
                        udf_free_blocks(inode->i_sb, inode,
                                        li->extLocation, 0,
                                        ((li->extLength &
                                                UDF_EXTENT_LENGTH_MASK) +
                                         blocksize - 1) >> blocksize_bits);
                        li->extLocation.logicalBlockNum = 0;
                        li->extLocation.partitionReferenceNum = 0;
                        li->extLength = (li->extLength &
                                                UDF_EXTENT_LENGTH_MASK) |
                                                EXT_NOT_RECORDED_NOT_ALLOCATED;
                }
        }
}

static void udf_update_extents(struct inode *inode,
                               kernel_long_ad laarr[EXTENT_MERGE_SIZE],
                               int startnum, int endnum,
                               struct extent_position *epos)
{
        int start = 0, i;
        kernel_lb_addr tmploc;
        uint32_t tmplen;

        if (startnum > endnum) {
                for (i = 0; i < (startnum - endnum); i++)
                        udf_delete_aext(inode, *epos, laarr[i].extLocation,
                                        laarr[i].extLength);
        } else if (startnum < endnum) {
                for (i = 0; i < (endnum - startnum); i++) {
                        udf_insert_aext(inode, *epos, laarr[i].extLocation,
                                        laarr[i].extLength);
                        udf_next_aext(inode, epos, &laarr[i].extLocation,
                                      &laarr[i].extLength, 1);
                        start++;
                }
        }

        for (i = start; i < endnum; i++) {
                udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
                udf_write_aext(inode, epos, laarr[i].extLocation,
                               laarr[i].extLength, 1);
        }
}

struct buffer_head *udf_bread(struct inode *inode, int block,
                              int create, int *err)
{
        struct buffer_head *bh = NULL;

        bh = udf_getblk(inode, block, create, err);
        if (!bh)
                return NULL;

        if (buffer_uptodate(bh))
                return bh;

        ll_rw_block(READ, 1, &bh);

        wait_on_buffer(bh);
        if (buffer_uptodate(bh))
                return bh;

        brelse(bh);
        *err = -EIO;
        return NULL;
}

void udf_truncate(struct inode *inode)
{
        int offset;
        int err;
        struct udf_inode_info *iinfo;

        if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
              S_ISLNK(inode->i_mode)))
                return;
        if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
                return;

        lock_kernel();
        iinfo = UDF_I(inode);
        if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
                if (inode->i_sb->s_blocksize <
                                (udf_file_entry_alloc_offset(inode) +
                                 inode->i_size)) {
                        udf_expand_file_adinicb(inode, inode->i_size, &err);
                        if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
                                inode->i_size = iinfo->i_lenAlloc;
                                unlock_kernel();
                                return;
                        } else
                                udf_truncate_extents(inode);
                } else {
                        offset = inode->i_size & (inode->i_sb->s_blocksize - 1);
                        memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + offset,
                                0x00, inode->i_sb->s_blocksize -
                                offset - udf_file_entry_alloc_offset(inode));
                        iinfo->i_lenAlloc = inode->i_size;
                }
        } else {
                block_truncate_page(inode->i_mapping, inode->i_size,
                                    udf_get_block);
                udf_truncate_extents(inode);
        }

        inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
        if (IS_SYNC(inode))
                udf_sync_inode(inode);
        else
                mark_inode_dirty(inode);
        unlock_kernel();
}

static void __udf_read_inode(struct inode *inode)
{
        struct buffer_head *bh = NULL;
        struct fileEntry *fe;
        uint16_t ident;
        struct udf_inode_info *iinfo = UDF_I(inode);

        /*
         * Set defaults, but the inode is still incomplete!
         * Note: get_new_inode() sets the following on a new inode:
         *      i_sb = sb
         *      i_no = ino
         *      i_flags = sb->s_flags
         *      i_state = 0
         * clean_inode(): zero fills and sets
         *      i_count = 1
         *      i_nlink = 1
         *      i_op = NULL;
         */
        bh = udf_read_ptagged(inode->i_sb, iinfo->i_location, 0, &ident);
        if (!bh) {
                printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n",
                       inode->i_ino);
                make_bad_inode(inode);
                return;
        }

        if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
            ident != TAG_IDENT_USE) {
                printk(KERN_ERR "udf: udf_read_inode(ino %ld) "
                                "failed ident=%d\n", inode->i_ino, ident);
                brelse(bh);
                make_bad_inode(inode);
                return;
        }

        fe = (struct fileEntry *)bh->b_data;

        if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
                struct buffer_head *ibh;

                ibh = udf_read_ptagged(inode->i_sb, iinfo->i_location, 1,
                                        &ident);
                if (ident == TAG_IDENT_IE && ibh) {
                        struct buffer_head *nbh = NULL;
                        kernel_lb_addr loc;
                        struct indirectEntry *ie;

                        ie = (struct indirectEntry *)ibh->b_data;
                        loc = lelb_to_cpu(ie->indirectICB.extLocation);

                        if (ie->indirectICB.extLength &&
                                (nbh = udf_read_ptagged(inode->i_sb, loc, 0,
                                                        &ident))) {
                                if (ident == TAG_IDENT_FE ||
                                        ident == TAG_IDENT_EFE) {
                                        memcpy(&iinfo->i_location,
                                                &loc,
                                                sizeof(kernel_lb_addr));
                                        brelse(bh);
                                        brelse(ibh);
                                        brelse(nbh);
                                        __udf_read_inode(inode);
                                        return;
                                }
                                brelse(nbh);
                        }
                }
                brelse(ibh);
        } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
                printk(KERN_ERR "udf: unsupported strategy type: %d\n",
                       le16_to_cpu(fe->icbTag.strategyType));
                brelse(bh);
                make_bad_inode(inode);
                return;
        }
        udf_fill_inode(inode, bh);

        brelse(bh);
}

static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
{
        struct fileEntry *fe;
        struct extendedFileEntry *efe;
        int offset;
        struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
        struct udf_inode_info *iinfo = UDF_I(inode);

        fe = (struct fileEntry *)bh->b_data;
        efe = (struct extendedFileEntry *)bh->b_data;

        if (fe->icbTag.strategyType == cpu_to_le16(4))
                iinfo->i_strat4096 = 0;
        else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
                iinfo->i_strat4096 = 1;

        iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
                                                        ICBTAG_FLAG_AD_MASK;
        iinfo->i_unique = 0;
        iinfo->i_lenEAttr = 0;
        iinfo->i_lenExtents = 0;
        iinfo->i_lenAlloc = 0;
        iinfo->i_next_alloc_block = 0;
        iinfo->i_next_alloc_goal = 0;
        if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
                iinfo->i_efe = 1;
                iinfo->i_use = 0;
                if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
                                        sizeof(struct extendedFileEntry))) {
                        make_bad_inode(inode);
                        return;
                }
                memcpy(iinfo->i_ext.i_data,
                       bh->b_data + sizeof(struct extendedFileEntry),
                       inode->i_sb->s_blocksize -
                                        sizeof(struct extendedFileEntry));
        } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
                iinfo->i_efe = 0;
                iinfo->i_use = 0;
                if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
                                                sizeof(struct fileEntry))) {
                        make_bad_inode(inode);
                        return;
                }
                memcpy(iinfo->i_ext.i_data,
                       bh->b_data + sizeof(struct fileEntry),
                       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
        } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
                iinfo->i_efe = 0;
                iinfo->i_use = 1;
                iinfo->i_lenAlloc = le32_to_cpu(
                                ((struct unallocSpaceEntry *)bh->b_data)->
                                 lengthAllocDescs);
                if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
                                        sizeof(struct unallocSpaceEntry))) {
                        make_bad_inode(inode);
                        return;
                }
                memcpy(iinfo->i_ext.i_data,
                       bh->b_data + sizeof(struct unallocSpaceEntry),
                       inode->i_sb->s_blocksize -
                                        sizeof(struct unallocSpaceEntry));
                return;
        }

        inode->i_uid = le32_to_cpu(fe->uid);
        if (inode->i_uid == -1 ||
            UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
            UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
                inode->i_uid = UDF_SB(inode->i_sb)->s_uid;

        inode->i_gid = le32_to_cpu(fe->gid);
        if (inode->i_gid == -1 ||
            UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
            UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
                inode->i_gid = UDF_SB(inode->i_sb)->s_gid;

        inode->i_nlink = le16_to_cpu(fe->fileLinkCount);
        if (!inode->i_nlink)
                inode->i_nlink = 1;

        inode->i_size = le64_to_cpu(fe->informationLength);
        iinfo->i_lenExtents = inode->i_size;

        inode->i_mode = udf_convert_permissions(fe);
        inode->i_mode &= ~UDF_SB(inode->i_sb)->s_umask;

        if (iinfo->i_efe == 0) {
                inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
                        (inode->i_sb->s_blocksize_bits - 9);

                if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
                        inode->i_atime = sbi->s_record_time;

                if (!udf_disk_stamp_to_time(&inode->i_mtime,
                                            fe->modificationTime))
                        inode->i_mtime = sbi->s_record_time;

                if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
                        inode->i_ctime = sbi->s_record_time;

                iinfo->i_unique = le64_to_cpu(fe->uniqueID);
                iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
                iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
                offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr;
        } else {
                inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
                    (inode->i_sb->s_blocksize_bits - 9);

                if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
                        inode->i_atime = sbi->s_record_time;

                if (!udf_disk_stamp_to_time(&inode->i_mtime,
                                            efe->modificationTime))
                        inode->i_mtime = sbi->s_record_time;

                if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
                        iinfo->i_crtime = sbi->s_record_time;

                if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
                        inode->i_ctime = sbi->s_record_time;

                iinfo->i_unique = le64_to_cpu(efe->uniqueID);
                iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
                iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
                offset = sizeof(struct extendedFileEntry) +
                                                        iinfo->i_lenEAttr;
        }

        switch (fe->icbTag.fileType) {
        case ICBTAG_FILE_TYPE_DIRECTORY:
                inode->i_op = &udf_dir_inode_operations;
                inode->i_fop = &udf_dir_operations;
                inode->i_mode |= S_IFDIR;
                inc_nlink(inode);
                break;
        case ICBTAG_FILE_TYPE_REALTIME:
        case ICBTAG_FILE_TYPE_REGULAR:
        case ICBTAG_FILE_TYPE_UNDEF:
        case ICBTAG_FILE_TYPE_VAT20:
                if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
                        inode->i_data.a_ops = &udf_adinicb_aops;
                else
                        inode->i_data.a_ops = &udf_aops;
                inode->i_op = &udf_file_inode_operations;
                inode->i_fop = &udf_file_operations;
                inode->i_mode |= S_IFREG;
                break;
        case ICBTAG_FILE_TYPE_BLOCK:
                inode->i_mode |= S_IFBLK;
                break;
        case ICBTAG_FILE_TYPE_CHAR:
                inode->i_mode |= S_IFCHR;
                break;
        case ICBTAG_FILE_TYPE_FIFO:
                init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
                break;
        case ICBTAG_FILE_TYPE_SOCKET:
                init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
                break;
        case ICBTAG_FILE_TYPE_SYMLINK:
                inode->i_data.a_ops = &udf_symlink_aops;
                inode->i_op = &page_symlink_inode_operations;
                inode->i_mode = S_IFLNK | S_IRWXUGO;
                break;
        case ICBTAG_FILE_TYPE_MAIN:
                udf_debug("METADATA FILE-----\n");
                break;
        case ICBTAG_FILE_TYPE_MIRROR:
                udf_debug("METADATA MIRROR FILE-----\n");
                break;
        case ICBTAG_FILE_TYPE_BITMAP:
                udf_debug("METADATA BITMAP FILE-----\n");
                break;
        default:
                printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown "
                                "file type=%d\n", inode->i_ino,
                                fe->icbTag.fileType);
                make_bad_inode(inode);
                return;
        }
        if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
                struct deviceSpec *dsea =
                        (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
                if (dsea) {
                        init_special_inode(inode, inode->i_mode,
                                MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
                                      le32_to_cpu(dsea->minorDeviceIdent)));
                        /* Developer ID ??? */
                } else
                        make_bad_inode(inode);
        }
}

static int udf_alloc_i_data(struct inode *inode, size_t size)
{
        struct udf_inode_info *iinfo = UDF_I(inode);
        iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);

        if (!iinfo->i_ext.i_data) {
                printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) "
                                "no free memory\n", inode->i_ino);
                return -ENOMEM;
        }

        return 0;
}

static mode_t udf_convert_permissions(struct fileEntry *fe)
{
        mode_t mode;
        uint32_t permissions;
        uint32_t flags;

        permissions = le32_to_cpu(fe->permissions);
        flags = le16_to_cpu(fe->icbTag.flags);

        mode =  ((permissions) & S_IRWXO) |
                ((permissions >> 2) & S_IRWXG) |
                ((permissions >> 4) & S_IRWXU) |
                ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
                ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
                ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);

        return mode;
}

int udf_write_inode(struct inode *inode, int sync)
{
        int ret;

        lock_kernel();
        ret = udf_update_inode(inode, sync);
        unlock_kernel();

        return ret;
}

int udf_sync_inode(struct inode *inode)
{
        return udf_update_inode(inode, 1);
}

static int udf_update_inode(struct inode *inode, int do_sync)
{
        struct buffer_head *bh = NULL;
        struct fileEntry *fe;
        struct extendedFileEntry *efe;
        uint32_t udfperms;
        uint16_t icbflags;
        uint16_t crclen;
        int err = 0;
        struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
        unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
        struct udf_inode_info *iinfo = UDF_I(inode);

        bh = udf_tread(inode->i_sb,
                        udf_get_lb_pblock(inode->i_sb,
                                          iinfo->i_location, 0));
        if (!bh) {
                udf_debug("bread failure\n");
                return -EIO;
        }

        memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);

        fe = (struct fileEntry *)bh->b_data;
        efe = (struct extendedFileEntry *)bh->b_data;

        if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
                struct unallocSpaceEntry *use =
                        (struct unallocSpaceEntry *)bh->b_data;

                use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
                memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
                       iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
                                        sizeof(struct unallocSpaceEntry));
                crclen = sizeof(struct unallocSpaceEntry) +
                                iinfo->i_lenAlloc - sizeof(tag);
                use->descTag.tagLocation = cpu_to_le32(
                                                iinfo->i_location.
                                                        logicalBlockNum);
                use->descTag.descCRCLength = cpu_to_le16(crclen);
                use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use +
                                                           sizeof(tag),
                                                           crclen));
                use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);

                mark_buffer_dirty(bh);
                brelse(bh);
                return err;
        }

        if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
                fe->uid = cpu_to_le32(-1);
        else
                fe->uid = cpu_to_le32(inode->i_uid);

        if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
                fe->gid = cpu_to_le32(-1);
        else
                fe->gid = cpu_to_le32(inode->i_gid);

        udfperms = ((inode->i_mode & S_IRWXO)) |
                   ((inode->i_mode & S_IRWXG) << 2) |
                   ((inode->i_mode & S_IRWXU) << 4);

        udfperms |= (le32_to_cpu(fe->permissions) &
                    (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
                     FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
                     FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
        fe->permissions = cpu_to_le32(udfperms);

        if (S_ISDIR(inode->i_mode))
                fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
        else
                fe->fileLinkCount = cpu_to_le16(inode->i_nlink);

        fe->informationLength = cpu_to_le64(inode->i_size);

        if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
                regid *eid;
                struct deviceSpec *dsea =
                        (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
                if (!dsea) {
                        dsea = (struct deviceSpec *)
                                udf_add_extendedattr(inode,
                                                     sizeof(struct deviceSpec) +
                                                     sizeof(regid), 12, 0x3);
                        dsea->attrType = cpu_to_le32(12);
                        dsea->attrSubtype = 1;
                        dsea->attrLength = cpu_to_le32(
                                                sizeof(struct deviceSpec) +
                                                sizeof(regid));
                        dsea->impUseLength = cpu_to_le32(sizeof(regid));
                }
                eid = (regid *)dsea->impUse;
                memset(eid, 0, sizeof(regid));
                strcpy(eid->ident, UDF_ID_DEVELOPER);
                eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
                eid->identSuffix[1] = UDF_OS_ID_LINUX;
                dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
                dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
        }

        if (iinfo->i_efe == 0) {
                memcpy(bh->b_data + sizeof(struct fileEntry),
                       iinfo->i_ext.i_data,
                       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
                fe->logicalBlocksRecorded = cpu_to_le64(
                        (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
                        (blocksize_bits - 9));

                udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
                udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
                udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
                memset(&(fe->impIdent), 0, sizeof(regid));
                strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
                fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
                fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
                fe->uniqueID = cpu_to_le64(iinfo->i_unique);
                fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
                fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
                fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
                crclen = sizeof(struct fileEntry);
        } else {
                memcpy(bh->b_data + sizeof(struct extendedFileEntry),
                       iinfo->i_ext.i_data,
                       inode->i_sb->s_blocksize -
                                        sizeof(struct extendedFileEntry));
                efe->objectSize = cpu_to_le64(inode->i_size);
                efe->logicalBlocksRecorded = cpu_to_le64(
                        (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
                        (blocksize_bits - 9));

                if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
                    (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
                     iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
                        iinfo->i_crtime = inode->i_atime;

                if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
                    (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
                     iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
                        iinfo->i_crtime = inode->i_mtime;

                if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
                    (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
                     iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
                        iinfo->i_crtime = inode->i_ctime;

                udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
                udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
                udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
                udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);

                memset(&(efe->impIdent), 0, sizeof(regid));
                strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
                efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
                efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
                efe->uniqueID = cpu_to_le64(iinfo->i_unique);
                efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
                efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
                efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
                crclen = sizeof(struct extendedFileEntry);
        }
        if (iinfo->i_strat4096) {
                fe->icbTag.strategyType = cpu_to_le16(4096);
                fe->icbTag.strategyParameter = cpu_to_le16(1);
                fe->icbTag.numEntries = cpu_to_le16(2);
        } else {
                fe->icbTag.strategyType = cpu_to_le16(4);
                fe->icbTag.numEntries = cpu_to_le16(1);
        }

        if (S_ISDIR(inode->i_mode))
                fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
        else if (S_ISREG(inode->i_mode))
                fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
        else if (S_ISLNK(inode->i_mode))
                fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
        else if (S_ISBLK(inode->i_mode))
                fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
        else if (S_ISCHR(inode->i_mode))
                fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
        else if (S_ISFIFO(inode->i_mode))
                fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
        else if (S_ISSOCK(inode->i_mode))
                fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;

        icbflags =      iinfo->i_alloc_type |
                        ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
                        ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
                        ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
                        (le16_to_cpu(fe->icbTag.flags) &
                                ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
                                ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));

        fe->icbTag.flags = cpu_to_le16(icbflags);
        if (sbi->s_udfrev >= 0x0200)
                fe->descTag.descVersion = cpu_to_le16(3);
        else
                fe->descTag.descVersion = cpu_to_le16(2);
        fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
        fe->descTag.tagLocation = cpu_to_le32(
                                        iinfo->i_location.logicalBlockNum);
        crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc -
                                                                sizeof(tag);
        fe->descTag.descCRCLength = cpu_to_le16(crclen);
        fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(tag),
                                                  crclen));
        fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);

        /* write the data blocks */
        mark_buffer_dirty(bh);
        if (do_sync) {
                sync_dirty_buffer(bh);
                if (buffer_req(bh) && !buffer_uptodate(bh)) {
                        printk(KERN_WARNING "IO error syncing udf inode "
                                "[%s:%08lx]\n", inode->i_sb->s_id,
                                inode->i_ino);
                        err = -EIO;
                }
        }
        brelse(bh);

        return err;
}

struct inode *udf_iget(struct super_block *sb, kernel_lb_addr ino)
{
        unsigned long block = udf_get_lb_pblock(sb, ino, 0);
        struct inode *inode = iget_locked(sb, block);

        if (!inode)
                return NULL;

        if (inode->i_state & I_NEW) {
                memcpy(&UDF_I(inode)->i_location, &ino, sizeof(kernel_lb_addr));
                __udf_read_inode(inode);
                unlock_new_inode(inode);
        }

        if (is_bad_inode(inode))
                goto out_iput;

        if (ino.logicalBlockNum >= UDF_SB(sb)->
                        s_partmaps[ino.partitionReferenceNum].s_partition_len) {
                udf_debug("block=%d, partition=%d out of range\n",
                          ino.logicalBlockNum, ino.partitionReferenceNum);
                make_bad_inode(inode);
                goto out_iput;
        }

        return inode;

 out_iput:
        iput(inode);
        return NULL;
}

int8_t udf_add_aext(struct inode *inode, struct extent_position *epos,
                    kernel_lb_addr eloc, uint32_t elen, int inc)
{
        int adsize;
        short_ad *sad = NULL;
        long_ad *lad = NULL;
        struct allocExtDesc *aed;
        int8_t etype;
        uint8_t *ptr;
        struct udf_inode_info *iinfo = UDF_I(inode);

        if (!epos->bh)
                ptr = iinfo->i_ext.i_data + epos->offset -
                        udf_file_entry_alloc_offset(inode) +
                        iinfo->i_lenEAttr;
        else
                ptr = epos->bh->b_data + epos->offset;

        if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
                adsize = sizeof(short_ad);
        else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
                adsize = sizeof(long_ad);
        else
                return -1;

        if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
                char *sptr, *dptr;
                struct buffer_head *nbh;
                int err, loffset;
                kernel_lb_addr obloc = epos->block;

                epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
                                                obloc.partitionReferenceNum,
                                                obloc.logicalBlockNum, &err);
                if (!epos->block.logicalBlockNum)
                        return -1;
                nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
                                                                 epos->block,
                                                                 0));
                if (!nbh)
                        return -1;
                lock_buffer(nbh);
                memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
                set_buffer_uptodate(nbh);
                unlock_buffer(nbh);
                mark_buffer_dirty_inode(nbh, inode);

                aed = (struct allocExtDesc *)(nbh->b_data);
                if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
                        aed->previousAllocExtLocation =
                                        cpu_to_le32(obloc.logicalBlockNum);
                if (epos->offset + adsize > inode->i_sb->s_blocksize) {
                        loffset = epos->offset;
                        aed->lengthAllocDescs = cpu_to_le32(adsize);
                        sptr = ptr - adsize;
                        dptr = nbh->b_data + sizeof(struct allocExtDesc);
                        memcpy(dptr, sptr, adsize);
                        epos->offset = sizeof(struct allocExtDesc) + adsize;
                } else {
                        loffset = epos->offset + adsize;
                        aed->lengthAllocDescs = cpu_to_le32(0);
                        sptr = ptr;
                        epos->offset = sizeof(struct allocExtDesc);

                        if (epos->bh) {
                                aed = (struct allocExtDesc *)epos->bh->b_data;
                                le32_add_cpu(&aed->lengthAllocDescs, adsize);
                        } else {
                                iinfo->i_lenAlloc += adsize;
                                mark_inode_dirty(inode);
                        }
                }
                if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
                        udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
                                    epos->block.logicalBlockNum, sizeof(tag));
                else
                        udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
                                    epos->block.logicalBlockNum, sizeof(tag));
                switch (iinfo->i_alloc_type) {
                case ICBTAG_FLAG_AD_SHORT:
                        sad = (short_ad *)sptr;
                        sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
                                                     inode->i_sb->s_blocksize);
                        sad->extPosition =
                                cpu_to_le32(epos->block.logicalBlockNum);
                        break;
                case ICBTAG_FLAG_AD_LONG:
                        lad = (long_ad *)sptr;
                        lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
                                                     inode->i_sb->s_blocksize);
                        lad->extLocation = cpu_to_lelb(epos->block);
                        memset(lad->impUse, 0x00, sizeof(lad->impUse));
                        break;
                }
                if (epos->bh) {
                        if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
                            UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
                                udf_update_tag(epos->bh->b_data, loffset);
                        else
                                udf_update_tag(epos->bh->b_data,
                                                sizeof(struct allocExtDesc));
                        mark_buffer_dirty_inode(epos->bh, inode);
                        brelse(epos->bh);
                } else {
                        mark_inode_dirty(inode);
                }
                epos->bh = nbh;
        }

        etype = udf_write_aext(inode, epos, eloc, elen, inc);

        if (!epos->bh) {
                iinfo->i_lenAlloc += adsize;
                mark_inode_dirty(inode);
        } else {
                aed = (struct allocExtDesc *)epos->bh->b_data;
                le32_add_cpu(&aed->lengthAllocDescs, adsize);
                if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
                                UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
                        udf_update_tag(epos->bh->b_data,
                                        epos->offset + (inc ? 0 : adsize));
                else
                        udf_update_tag(epos->bh->b_data,
                                        sizeof(struct allocExtDesc));
                mark_buffer_dirty_inode(epos->bh, inode);
        }

        return etype;
}

int8_t udf_write_aext(struct inode *inode, struct extent_position *epos,
                      kernel_lb_addr eloc, uint32_t elen, int inc)
{
        int adsize;
        uint8_t *ptr;
        short_ad *sad;
        long_ad *lad;
        struct udf_inode_info *iinfo = UDF_I(inode);

        if (!epos->bh)
                ptr = iinfo->i_ext.i_data + epos->offset -
                        udf_file_entry_alloc_offset(inode) +
                        iinfo->i_lenEAttr;
        else
                ptr = epos->bh->b_data + epos->offset;

        switch (iinfo->i_alloc_type) {
        case ICBTAG_FLAG_AD_SHORT:
                sad = (short_ad *)ptr;
                sad->extLength = cpu_to_le32(elen);
                sad->extPosition = cpu_to_le32(eloc.logicalBlockNum);
                adsize = sizeof(short_ad);
                break;
        case ICBTAG_FLAG_AD_LONG:
                lad = (long_ad *)ptr;
                lad->extLength = cpu_to_le32(elen);
                lad->extLocation = cpu_to_lelb(eloc);
                memset(lad->impUse, 0x00, sizeof(lad->impUse));
                adsize = sizeof(long_ad);
                break;
        default:
                return -1;
        }

        if (epos->bh) {
                if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
                    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
                        struct allocExtDesc *aed =
                                (struct allocExtDesc *)epos->bh->b_data;
                        udf_update_tag(epos->bh->b_data,
                                       le32_to_cpu(aed->lengthAllocDescs) +
                                       sizeof(struct allocExtDesc));
                }
                mark_buffer_dirty_inode(epos->bh, inode);
        } else {
                mark_inode_dirty(inode);
        }

        if (inc)
                epos->offset += adsize;

        return (elen >> 30);
}

int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
                     kernel_lb_addr *eloc, uint32_t *elen, int inc)
{
        int8_t etype;

        while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
               (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
                int block;
                epos->block = *eloc;
                epos->offset = sizeof(struct allocExtDesc);
                brelse(epos->bh);
                block = udf_get_lb_pblock(inode->i_sb, epos->block, 0);
                epos->bh = udf_tread(inode->i_sb, block);
                if (!epos->bh) {
                        udf_debug("reading block %d failed!\n", block);
                        return -1;
                }
        }

        return etype;
}

int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
                        kernel_lb_addr *eloc, uint32_t *elen, int inc)
{
        int alen;
        int8_t etype;
        uint8_t *ptr;
        short_ad *sad;
        long_ad *lad;
        struct udf_inode_info *iinfo = UDF_I(inode);

        if (!epos->bh) {
                if (!epos->offset)
                        epos->offset = udf_file_entry_alloc_offset(inode);
                ptr = iinfo->i_ext.i_data + epos->offset -
                        udf_file_entry_alloc_offset(inode) +
                        iinfo->i_lenEAttr;
                alen = udf_file_entry_alloc_offset(inode) +
                                                        iinfo->i_lenAlloc;
        } else {
                if (!epos->offset)
                        epos->offset = sizeof(struct allocExtDesc);
                ptr = epos->bh->b_data + epos->offset;
                alen = sizeof(struct allocExtDesc) +
                        le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
                                                        lengthAllocDescs);
        }

        switch (iinfo->i_alloc_type) {
        case ICBTAG_FLAG_AD_SHORT:
                sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
                if (!sad)
                        return -1;
                etype = le32_to_cpu(sad->extLength) >> 30;
                eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
                eloc->partitionReferenceNum =
                                iinfo->i_location.partitionReferenceNum;
                *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
                break;
        case ICBTAG_FLAG_AD_LONG:
                lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
                if (!lad)
                        return -1;
                etype = le32_to_cpu(lad->extLength) >> 30;
                *eloc = lelb_to_cpu(lad->extLocation);
                *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
                break;
        default:
                udf_debug("alloc_type = %d unsupported\n",
                                iinfo->i_alloc_type);
                return -1;
        }

        return etype;
}

static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
                              kernel_lb_addr neloc, uint32_t nelen)
{
        kernel_lb_addr oeloc;
        uint32_t oelen;
        int8_t etype;

        if (epos.bh)
                get_bh(epos.bh);

        while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
                udf_write_aext(inode, &epos, neloc, nelen, 1);
                neloc = oeloc;
                nelen = (etype << 30) | oelen;
        }
        udf_add_aext(inode, &epos, neloc, nelen, 1);
        brelse(epos.bh);

        return (nelen >> 30);
}

int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
                       kernel_lb_addr eloc, uint32_t elen)
{
        struct extent_position oepos;
        int adsize;
        int8_t etype;
        struct allocExtDesc *aed;
        struct udf_inode_info *iinfo;

        if (epos.bh) {
                get_bh(epos.bh);
                get_bh(epos.bh);
        }

        iinfo = UDF_I(inode);
        if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
                adsize = sizeof(short_ad);
        else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
                adsize = sizeof(long_ad);
        else
                adsize = 0;

        oepos = epos;
        if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
                return -1;

        while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
                udf_write_aext(inode, &oepos, eloc, (etype << 30) | elen, 1);
                if (oepos.bh != epos.bh) {
                        oepos.block = epos.block;
                        brelse(oepos.bh);
                        get_bh(epos.bh);
                        oepos.bh = epos.bh;
                        oepos.offset = epos.offset - adsize;
                }
        }
        memset(&eloc, 0x00, sizeof(kernel_lb_addr));
        elen = 0;

        if (epos.bh != oepos.bh) {
                udf_free_blocks(inode->i_sb, inode, epos.block, 0, 1);
                udf_write_aext(inode, &oepos, eloc, elen, 1);
                udf_write_aext(inode, &oepos, eloc, elen, 1);
                if (!oepos.bh) {
                        iinfo->i_lenAlloc -= (adsize * 2);
                        mark_inode_dirty(inode);
                } else {
                        aed = (struct allocExtDesc *)oepos.bh->b_data;
                        le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
                        if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
                            UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
                                udf_update_tag(oepos.bh->b_data,
                                                oepos.offset - (2 * adsize));
                        else
                                udf_update_tag(oepos.bh->b_data,
                                                sizeof(struct allocExtDesc));
                        mark_buffer_dirty_inode(oepos.bh, inode);
                }
        } else {
                udf_write_aext(inode, &oepos, eloc, elen, 1);
                if (!oepos.bh) {
                        iinfo->i_lenAlloc -= adsize;
                        mark_inode_dirty(inode);
                } else {
                        aed = (struct allocExtDesc *)oepos.bh->b_data;
                        le32_add_cpu(&aed->lengthAllocDescs, -adsize);
                        if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
                            UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
                                udf_update_tag(oepos.bh->b_data,
                                                epos.offset - adsize);
                        else
                                udf_update_tag(oepos.bh->b_data,
                                                sizeof(struct allocExtDesc));
                        mark_buffer_dirty_inode(oepos.bh, inode);
                }
        }

        brelse(epos.bh);
        brelse(oepos.bh);

        return (elen >> 30);
}

int8_t inode_bmap(struct inode *inode, sector_t block,
                  struct extent_position *pos, kernel_lb_addr *eloc,
                  uint32_t *elen, sector_t *offset)
{
        unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
        loff_t lbcount = 0, bcount =
            (loff_t) block << blocksize_bits;
        int8_t etype;
        struct udf_inode_info *iinfo;

        iinfo = UDF_I(inode);
        pos->offset = 0;
        pos->block = iinfo->i_location;
        pos->bh = NULL;
        *elen = 0;

        do {
                etype = udf_next_aext(inode, pos, eloc, elen, 1);
                if (etype == -1) {
                        *offset = (bcount - lbcount) >> blocksize_bits;
                        iinfo->i_lenExtents = lbcount;
                        return -1;
                }
                lbcount += *elen;
        } while (lbcount <= bcount);

        *offset = (bcount + *elen - lbcount) >> blocksize_bits;

        return etype;
}

long udf_block_map(struct inode *inode, sector_t block)
{
        kernel_lb_addr eloc;
        uint32_t elen;
        sector_t offset;
        struct extent_position epos = {};
        int ret;

        lock_kernel();

        if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
                                                (EXT_RECORDED_ALLOCATED >> 30))
                ret = udf_get_lb_pblock(inode->i_sb, eloc, offset);
        else
                ret = 0;

        unlock_kernel();
        brelse(epos.bh);

        if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
                return udf_fixed_to_variable(ret);
        else
                return ret;
}

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading