[funini.com] -> [kei@sodan] -> Kernel Reading

root/crypto/lrw.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. setbit128_bbe
  2. setkey
  3. inc
  4. lrw_round
  5. get_index128
  6. crypt
  7. encrypt
  8. decrypt
  9. init_tfm
  10. exit_tfm
  11. alloc
  12. free
  13. crypto_module_init
  14. crypto_module_exit

/* LRW: as defined by Cyril Guyot in
 *      http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
 *
 * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
 *
 * Based om ecb.c
 * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 */
/* This implementation is checked against the test vectors in the above
 * document and by a test vector provided by Ken Buchanan at
 * http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
 *
 * The test vectors are included in the testing module tcrypt.[ch] */
#include <crypto/algapi.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>

#include <crypto/b128ops.h>
#include <crypto/gf128mul.h>

struct priv {
        struct crypto_cipher *child;
        /* optimizes multiplying a random (non incrementing, as at the
         * start of a new sector) value with key2, we could also have
         * used 4k optimization tables or no optimization at all. In the
         * latter case we would have to store key2 here */
        struct gf128mul_64k *table;
        /* stores:
         *  key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 },
         *  key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 }
         *  key2*{ 0,0,...1,1,1,1,1 }, etc
         * needed for optimized multiplication of incrementing values
         * with key2 */
        be128 mulinc[128];
};

static inline void setbit128_bbe(void *b, int bit)
{
        __set_bit(bit ^ 0x78, b);
}

static int setkey(struct crypto_tfm *parent, const u8 *key,
                  unsigned int keylen)
{
        struct priv *ctx = crypto_tfm_ctx(parent);
        struct crypto_cipher *child = ctx->child;
        int err, i;
        be128 tmp = { 0 };
        int bsize = crypto_cipher_blocksize(child);

        crypto_cipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
        crypto_cipher_set_flags(child, crypto_tfm_get_flags(parent) &
                                       CRYPTO_TFM_REQ_MASK);
        if ((err = crypto_cipher_setkey(child, key, keylen - bsize)))
                return err;
        crypto_tfm_set_flags(parent, crypto_cipher_get_flags(child) &
                                     CRYPTO_TFM_RES_MASK);

        if (ctx->table)
                gf128mul_free_64k(ctx->table);

        /* initialize multiplication table for Key2 */
        ctx->table = gf128mul_init_64k_bbe((be128 *)(key + keylen - bsize));
        if (!ctx->table)
                return -ENOMEM;

        /* initialize optimization table */
        for (i = 0; i < 128; i++) {
                setbit128_bbe(&tmp, i);
                ctx->mulinc[i] = tmp;
                gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
        }

        return 0;
}

struct sinfo {
        be128 t;
        struct crypto_tfm *tfm;
        void (*fn)(struct crypto_tfm *, u8 *, const u8 *);
};

static inline void inc(be128 *iv)
{
        be64_add_cpu(&iv->b, 1);
        if (!iv->b)
                be64_add_cpu(&iv->a, 1);
}

static inline void lrw_round(struct sinfo *s, void *dst, const void *src)
{
        be128_xor(dst, &s->t, src);             /* PP <- T xor P */
        s->fn(s->tfm, dst, dst);                /* CC <- E(Key2,PP) */
        be128_xor(dst, dst, &s->t);             /* C <- T xor CC */
}

/* this returns the number of consequative 1 bits starting
 * from the right, get_index128(00 00 00 00 00 00 ... 00 00 10 FB) = 2 */
static inline int get_index128(be128 *block)
{
        int x;
        __be32 *p = (__be32 *) block;

        for (p += 3, x = 0; x < 128; p--, x += 32) {
                u32 val = be32_to_cpup(p);

                if (!~val)
                        continue;

                return x + ffz(val);
        }

        return x;
}

static int crypt(struct blkcipher_desc *d,
                 struct blkcipher_walk *w, struct priv *ctx,
                 void (*fn)(struct crypto_tfm *, u8 *, const u8 *))
{
        int err;
        unsigned int avail;
        const int bs = crypto_cipher_blocksize(ctx->child);
        struct sinfo s = {
                .tfm = crypto_cipher_tfm(ctx->child),
                .fn = fn
        };
        be128 *iv;
        u8 *wsrc;
        u8 *wdst;

        err = blkcipher_walk_virt(d, w);
        if (!(avail = w->nbytes))
                return err;

        wsrc = w->src.virt.addr;
        wdst = w->dst.virt.addr;

        /* calculate first value of T */
        iv = (be128 *)w->iv;
        s.t = *iv;

        /* T <- I*Key2 */
        gf128mul_64k_bbe(&s.t, ctx->table);

        goto first;

        for (;;) {
                do {
                        /* T <- I*Key2, using the optimization
                         * discussed in the specification */
                        be128_xor(&s.t, &s.t, &ctx->mulinc[get_index128(iv)]);
                        inc(iv);

first:
                        lrw_round(&s, wdst, wsrc);

                        wsrc += bs;
                        wdst += bs;
                } while ((avail -= bs) >= bs);

                err = blkcipher_walk_done(d, w, avail);
                if (!(avail = w->nbytes))
                        break;

                wsrc = w->src.virt.addr;
                wdst = w->dst.virt.addr;
        }

        return err;
}

static int encrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
                   struct scatterlist *src, unsigned int nbytes)
{
        struct priv *ctx = crypto_blkcipher_ctx(desc->tfm);
        struct blkcipher_walk w;

        blkcipher_walk_init(&w, dst, src, nbytes);
        return crypt(desc, &w, ctx,
                     crypto_cipher_alg(ctx->child)->cia_encrypt);
}

static int decrypt(struct blkcipher_desc *desc, struct scatterlist *dst,
                   struct scatterlist *src, unsigned int nbytes)
{
        struct priv *ctx = crypto_blkcipher_ctx(desc->tfm);
        struct blkcipher_walk w;

        blkcipher_walk_init(&w, dst, src, nbytes);
        return crypt(desc, &w, ctx,
                     crypto_cipher_alg(ctx->child)->cia_decrypt);
}

static int init_tfm(struct crypto_tfm *tfm)
{
        struct crypto_cipher *cipher;
        struct crypto_instance *inst = (void *)tfm->__crt_alg;
        struct crypto_spawn *spawn = crypto_instance_ctx(inst);
        struct priv *ctx = crypto_tfm_ctx(tfm);
        u32 *flags = &tfm->crt_flags;

        cipher = crypto_spawn_cipher(spawn);
        if (IS_ERR(cipher))
                return PTR_ERR(cipher);

        if (crypto_cipher_blocksize(cipher) != 16) {
                *flags |= CRYPTO_TFM_RES_BAD_BLOCK_LEN;
                return -EINVAL;
        }

        ctx->child = cipher;
        return 0;
}

static void exit_tfm(struct crypto_tfm *tfm)
{
        struct priv *ctx = crypto_tfm_ctx(tfm);
        if (ctx->table)
                gf128mul_free_64k(ctx->table);
        crypto_free_cipher(ctx->child);
}

static struct crypto_instance *alloc(struct rtattr **tb)
{
        struct crypto_instance *inst;
        struct crypto_alg *alg;
        int err;

        err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_BLKCIPHER);
        if (err)
                return ERR_PTR(err);

        alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER,
                                  CRYPTO_ALG_TYPE_MASK);
        if (IS_ERR(alg))
                return ERR_CAST(alg);

        inst = crypto_alloc_instance("lrw", alg);
        if (IS_ERR(inst))
                goto out_put_alg;

        inst->alg.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER;
        inst->alg.cra_priority = alg->cra_priority;
        inst->alg.cra_blocksize = alg->cra_blocksize;

        if (alg->cra_alignmask < 7) inst->alg.cra_alignmask = 7;
        else inst->alg.cra_alignmask = alg->cra_alignmask;
        inst->alg.cra_type = &crypto_blkcipher_type;

        if (!(alg->cra_blocksize % 4))
                inst->alg.cra_alignmask |= 3;
        inst->alg.cra_blkcipher.ivsize = alg->cra_blocksize;
        inst->alg.cra_blkcipher.min_keysize =
                alg->cra_cipher.cia_min_keysize + alg->cra_blocksize;
        inst->alg.cra_blkcipher.max_keysize =
                alg->cra_cipher.cia_max_keysize + alg->cra_blocksize;

        inst->alg.cra_ctxsize = sizeof(struct priv);

        inst->alg.cra_init = init_tfm;
        inst->alg.cra_exit = exit_tfm;

        inst->alg.cra_blkcipher.setkey = setkey;
        inst->alg.cra_blkcipher.encrypt = encrypt;
        inst->alg.cra_blkcipher.decrypt = decrypt;

out_put_alg:
        crypto_mod_put(alg);
        return inst;
}

static void free(struct crypto_instance *inst)
{
        crypto_drop_spawn(crypto_instance_ctx(inst));
        kfree(inst);
}

static struct crypto_template crypto_tmpl = {
        .name = "lrw",
        .alloc = alloc,
        .free = free,
        .module = THIS_MODULE,
};

static int __init crypto_module_init(void)
{
        return crypto_register_template(&crypto_tmpl);
}

static void __exit crypto_module_exit(void)
{
        crypto_unregister_template(&crypto_tmpl);
}

module_init(crypto_module_init);
module_exit(crypto_module_exit);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("LRW block cipher mode");

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading