[funini.com] -> [kei@sodan] -> Kernel Reading

root/arch/x86/kvm/mmu.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. kvm_mmu_audit
  2. kvm_mmu_set_nonpresent_ptes
  3. kvm_mmu_set_base_ptes
  4. kvm_mmu_set_mask_ptes
  5. is_write_protection
  6. is_cpuid_PSE36
  7. is_nx
  8. is_present_pte
  9. is_shadow_present_pte
  10. is_large_pte
  11. is_writeble_pte
  12. is_dirty_pte
  13. is_rmap_pte
  14. spte_to_pfn
  15. pse36_gfn_delta
  16. set_shadow_pte
  17. mmu_topup_memory_cache
  18. mmu_free_memory_cache
  19. mmu_topup_memory_cache_page
  20. mmu_free_memory_cache_page
  21. mmu_topup_memory_caches
  22. mmu_free_memory_caches
  23. mmu_memory_cache_alloc
  24. mmu_alloc_pte_chain
  25. mmu_free_pte_chain
  26. mmu_alloc_rmap_desc
  27. mmu_free_rmap_desc
  28. slot_largepage_idx
  29. account_shadowed
  30. unaccount_shadowed
  31. has_wrprotected_page
  32. host_largepage_backed
  33. is_largepage_backed
  34. gfn_to_rmap
  35. rmap_add
  36. rmap_desc_remove_entry
  37. rmap_remove
  38. rmap_next
  39. rmap_write_protect
  40. kvm_unmap_rmapp
  41. kvm_handle_hva
  42. kvm_unmap_hva
  43. kvm_age_rmapp
  44. kvm_age_hva
  45. is_empty_shadow_page
  46. kvm_mmu_free_page
  47. kvm_page_table_hashfn
  48. kvm_mmu_alloc_page
  49. mmu_page_add_parent_pte
  50. mmu_page_remove_parent_pte
  51. nonpaging_prefetch_page
  52. kvm_mmu_lookup_page
  53. kvm_mmu_get_page
  54. kvm_mmu_page_unlink_children
  55. kvm_mmu_put_page
  56. kvm_mmu_reset_last_pte_updated
  57. kvm_mmu_zap_page
  58. kvm_mmu_change_mmu_pages
  59. kvm_mmu_unprotect_page
  60. mmu_unshadow
  61. page_header_update_slot
  62. gva_to_page
  63. mmu_set_spte
  64. nonpaging_new_cr3
  65. __direct_map
  66. nonpaging_map
  67. mmu_free_roots
  68. mmu_alloc_roots
  69. nonpaging_gva_to_gpa
  70. nonpaging_page_fault
  71. tdp_page_fault
  72. nonpaging_free
  73. nonpaging_init_context
  74. kvm_mmu_flush_tlb
  75. paging_new_cr3
  76. inject_page_fault
  77. paging_free
  78. paging64_init_context_common
  79. paging64_init_context
  80. paging32_init_context
  81. paging32E_init_context
  82. init_kvm_tdp_mmu
  83. init_kvm_softmmu
  84. init_kvm_mmu
  85. destroy_kvm_mmu
  86. kvm_mmu_reset_context
  87. kvm_mmu_load
  88. kvm_mmu_unload
  89. mmu_pte_write_zap_pte
  90. mmu_pte_write_new_pte
  91. need_remote_flush
  92. mmu_pte_write_flush_tlb
  93. last_updated_pte_accessed
  94. mmu_guess_page_from_pte_write
  95. kvm_mmu_access_page
  96. kvm_mmu_pte_write
  97. kvm_mmu_unprotect_page_virt
  98. __kvm_mmu_free_some_pages
  99. kvm_mmu_page_fault
  100. kvm_enable_tdp
  101. kvm_disable_tdp
  102. free_mmu_pages
  103. alloc_mmu_pages
  104. kvm_mmu_create
  105. kvm_mmu_setup
  106. kvm_mmu_destroy
  107. kvm_mmu_slot_remove_write_access
  108. kvm_mmu_zap_all
  109. kvm_mmu_remove_one_alloc_mmu_page
  110. mmu_shrink
  111. mmu_destroy_caches
  112. kvm_mmu_module_exit
  113. kvm_mmu_module_init
  114. kvm_mmu_calculate_mmu_pages
  115. pv_mmu_peek_buffer
  116. pv_mmu_read_buffer
  117. kvm_pv_mmu_write
  118. kvm_pv_mmu_flush_tlb
  119. kvm_pv_mmu_release_pt
  120. kvm_pv_mmu_op_one
  121. kvm_pv_mmu_op
  122. canonicalize
  123. audit_mappings_page
  124. audit_mappings
  125. count_rmaps
  126. count_writable_mappings
  127. audit_rmap
  128. audit_write_protection
  129. kvm_mmu_audit

/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */

#include "vmx.h"
#include "mmu.h"

#include <linux/kvm_host.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/module.h>
#include <linux/swap.h>
#include <linux/hugetlb.h>
#include <linux/compiler.h>

#include <asm/page.h>
#include <asm/cmpxchg.h>
#include <asm/io.h>

/*
 * When setting this variable to true it enables Two-Dimensional-Paging
 * where the hardware walks 2 page tables:
 * 1. the guest-virtual to guest-physical
 * 2. while doing 1. it walks guest-physical to host-physical
 * If the hardware supports that we don't need to do shadow paging.
 */
bool tdp_enabled = false;

#undef MMU_DEBUG

#undef AUDIT

#ifdef AUDIT
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
#else
static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
#endif

#ifdef MMU_DEBUG

#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)

#else

#define pgprintk(x...) do { } while (0)
#define rmap_printk(x...) do { } while (0)

#endif

#if defined(MMU_DEBUG) || defined(AUDIT)
static int dbg = 0;
module_param(dbg, bool, 0644);
#endif

#ifndef MMU_DEBUG
#define ASSERT(x) do { } while (0)
#else
#define ASSERT(x)                                                       \
        if (!(x)) {                                                     \
                printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
                       __FILE__, __LINE__, #x);                         \
        }
#endif

#define PT_FIRST_AVAIL_BITS_SHIFT 9
#define PT64_SECOND_AVAIL_BITS_SHIFT 52

#define VALID_PAGE(x) ((x) != INVALID_PAGE)

#define PT64_LEVEL_BITS 9

#define PT64_LEVEL_SHIFT(level) \
                (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)

#define PT64_LEVEL_MASK(level) \
                (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))

#define PT64_INDEX(address, level)\
        (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))


#define PT32_LEVEL_BITS 10

#define PT32_LEVEL_SHIFT(level) \
                (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)

#define PT32_LEVEL_MASK(level) \
                (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))

#define PT32_INDEX(address, level)\
        (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))


#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
#define PT64_DIR_BASE_ADDR_MASK \
        (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))

#define PT32_BASE_ADDR_MASK PAGE_MASK
#define PT32_DIR_BASE_ADDR_MASK \
        (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))

#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
                        | PT64_NX_MASK)

#define PFERR_PRESENT_MASK (1U << 0)
#define PFERR_WRITE_MASK (1U << 1)
#define PFERR_USER_MASK (1U << 2)
#define PFERR_FETCH_MASK (1U << 4)

#define PT_DIRECTORY_LEVEL 2
#define PT_PAGE_TABLE_LEVEL 1

#define RMAP_EXT 4

#define ACC_EXEC_MASK    1
#define ACC_WRITE_MASK   PT_WRITABLE_MASK
#define ACC_USER_MASK    PT_USER_MASK
#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)

struct kvm_pv_mmu_op_buffer {
        void *ptr;
        unsigned len;
        unsigned processed;
        char buf[512] __aligned(sizeof(long));
};

struct kvm_rmap_desc {
        u64 *shadow_ptes[RMAP_EXT];
        struct kvm_rmap_desc *more;
};

static struct kmem_cache *pte_chain_cache;
static struct kmem_cache *rmap_desc_cache;
static struct kmem_cache *mmu_page_header_cache;

static u64 __read_mostly shadow_trap_nonpresent_pte;
static u64 __read_mostly shadow_notrap_nonpresent_pte;
static u64 __read_mostly shadow_base_present_pte;
static u64 __read_mostly shadow_nx_mask;
static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
static u64 __read_mostly shadow_user_mask;
static u64 __read_mostly shadow_accessed_mask;
static u64 __read_mostly shadow_dirty_mask;

void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
{
        shadow_trap_nonpresent_pte = trap_pte;
        shadow_notrap_nonpresent_pte = notrap_pte;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);

void kvm_mmu_set_base_ptes(u64 base_pte)
{
        shadow_base_present_pte = base_pte;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);

void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
                u64 dirty_mask, u64 nx_mask, u64 x_mask)
{
        shadow_user_mask = user_mask;
        shadow_accessed_mask = accessed_mask;
        shadow_dirty_mask = dirty_mask;
        shadow_nx_mask = nx_mask;
        shadow_x_mask = x_mask;
}
EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);

static int is_write_protection(struct kvm_vcpu *vcpu)
{
        return vcpu->arch.cr0 & X86_CR0_WP;
}

static int is_cpuid_PSE36(void)
{
        return 1;
}

static int is_nx(struct kvm_vcpu *vcpu)
{
        return vcpu->arch.shadow_efer & EFER_NX;
}

static int is_present_pte(unsigned long pte)
{
        return pte & PT_PRESENT_MASK;
}

static int is_shadow_present_pte(u64 pte)
{
        return pte != shadow_trap_nonpresent_pte
                && pte != shadow_notrap_nonpresent_pte;
}

static int is_large_pte(u64 pte)
{
        return pte & PT_PAGE_SIZE_MASK;
}

static int is_writeble_pte(unsigned long pte)
{
        return pte & PT_WRITABLE_MASK;
}

static int is_dirty_pte(unsigned long pte)
{
        return pte & shadow_dirty_mask;
}

static int is_rmap_pte(u64 pte)
{
        return is_shadow_present_pte(pte);
}

static pfn_t spte_to_pfn(u64 pte)
{
        return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
}

static gfn_t pse36_gfn_delta(u32 gpte)
{
        int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;

        return (gpte & PT32_DIR_PSE36_MASK) << shift;
}

static void set_shadow_pte(u64 *sptep, u64 spte)
{
#ifdef CONFIG_X86_64
        set_64bit((unsigned long *)sptep, spte);
#else
        set_64bit((unsigned long long *)sptep, spte);
#endif
}

static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
                                  struct kmem_cache *base_cache, int min)
{
        void *obj;

        if (cache->nobjs >= min)
                return 0;
        while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
                obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
                if (!obj)
                        return -ENOMEM;
                cache->objects[cache->nobjs++] = obj;
        }
        return 0;
}

static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
{
        while (mc->nobjs)
                kfree(mc->objects[--mc->nobjs]);
}

static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
                                       int min)
{
        struct page *page;

        if (cache->nobjs >= min)
                return 0;
        while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
                page = alloc_page(GFP_KERNEL);
                if (!page)
                        return -ENOMEM;
                set_page_private(page, 0);
                cache->objects[cache->nobjs++] = page_address(page);
        }
        return 0;
}

static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
{
        while (mc->nobjs)
                free_page((unsigned long)mc->objects[--mc->nobjs]);
}

static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
{
        int r;

        r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
                                   pte_chain_cache, 4);
        if (r)
                goto out;
        r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
                                   rmap_desc_cache, 1);
        if (r)
                goto out;
        r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
        if (r)
                goto out;
        r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
                                   mmu_page_header_cache, 4);
out:
        return r;
}

static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
{
        mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
        mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
        mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
        mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
}

static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
                                    size_t size)
{
        void *p;

        BUG_ON(!mc->nobjs);
        p = mc->objects[--mc->nobjs];
        memset(p, 0, size);
        return p;
}

static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
{
        return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
                                      sizeof(struct kvm_pte_chain));
}

static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
{
        kfree(pc);
}

static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
{
        return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
                                      sizeof(struct kvm_rmap_desc));
}

static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
{
        kfree(rd);
}

/*
 * Return the pointer to the largepage write count for a given
 * gfn, handling slots that are not large page aligned.
 */
static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
{
        unsigned long idx;

        idx = (gfn / KVM_PAGES_PER_HPAGE) -
              (slot->base_gfn / KVM_PAGES_PER_HPAGE);
        return &slot->lpage_info[idx].write_count;
}

static void account_shadowed(struct kvm *kvm, gfn_t gfn)
{
        int *write_count;

        write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
        *write_count += 1;
}

static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
{
        int *write_count;

        write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
        *write_count -= 1;
        WARN_ON(*write_count < 0);
}

static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
{
        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
        int *largepage_idx;

        if (slot) {
                largepage_idx = slot_largepage_idx(gfn, slot);
                return *largepage_idx;
        }

        return 1;
}

static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
{
        struct vm_area_struct *vma;
        unsigned long addr;

        addr = gfn_to_hva(kvm, gfn);
        if (kvm_is_error_hva(addr))
                return 0;

        vma = find_vma(current->mm, addr);
        if (vma && is_vm_hugetlb_page(vma))
                return 1;

        return 0;
}

static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
{
        struct kvm_memory_slot *slot;

        if (has_wrprotected_page(vcpu->kvm, large_gfn))
                return 0;

        if (!host_largepage_backed(vcpu->kvm, large_gfn))
                return 0;

        slot = gfn_to_memslot(vcpu->kvm, large_gfn);
        if (slot && slot->dirty_bitmap)
                return 0;

        return 1;
}

/*
 * Take gfn and return the reverse mapping to it.
 * Note: gfn must be unaliased before this function get called
 */

static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
{
        struct kvm_memory_slot *slot;
        unsigned long idx;

        slot = gfn_to_memslot(kvm, gfn);
        if (!lpage)
                return &slot->rmap[gfn - slot->base_gfn];

        idx = (gfn / KVM_PAGES_PER_HPAGE) -
              (slot->base_gfn / KVM_PAGES_PER_HPAGE);

        return &slot->lpage_info[idx].rmap_pde;
}

/*
 * Reverse mapping data structures:
 *
 * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
 * that points to page_address(page).
 *
 * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
 * containing more mappings.
 */
static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
{
        struct kvm_mmu_page *sp;
        struct kvm_rmap_desc *desc;
        unsigned long *rmapp;
        int i;

        if (!is_rmap_pte(*spte))
                return;
        gfn = unalias_gfn(vcpu->kvm, gfn);
        sp = page_header(__pa(spte));
        sp->gfns[spte - sp->spt] = gfn;
        rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
        if (!*rmapp) {
                rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
                *rmapp = (unsigned long)spte;
        } else if (!(*rmapp & 1)) {
                rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
                desc = mmu_alloc_rmap_desc(vcpu);
                desc->shadow_ptes[0] = (u64 *)*rmapp;
                desc->shadow_ptes[1] = spte;
                *rmapp = (unsigned long)desc | 1;
        } else {
                rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
                desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
                while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
                        desc = desc->more;
                if (desc->shadow_ptes[RMAP_EXT-1]) {
                        desc->more = mmu_alloc_rmap_desc(vcpu);
                        desc = desc->more;
                }
                for (i = 0; desc->shadow_ptes[i]; ++i)
                        ;
                desc->shadow_ptes[i] = spte;
        }
}

static void rmap_desc_remove_entry(unsigned long *rmapp,
                                   struct kvm_rmap_desc *desc,
                                   int i,
                                   struct kvm_rmap_desc *prev_desc)
{
        int j;

        for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
                ;
        desc->shadow_ptes[i] = desc->shadow_ptes[j];
        desc->shadow_ptes[j] = NULL;
        if (j != 0)
                return;
        if (!prev_desc && !desc->more)
                *rmapp = (unsigned long)desc->shadow_ptes[0];
        else
                if (prev_desc)
                        prev_desc->more = desc->more;
                else
                        *rmapp = (unsigned long)desc->more | 1;
        mmu_free_rmap_desc(desc);
}

static void rmap_remove(struct kvm *kvm, u64 *spte)
{
        struct kvm_rmap_desc *desc;
        struct kvm_rmap_desc *prev_desc;
        struct kvm_mmu_page *sp;
        pfn_t pfn;
        unsigned long *rmapp;
        int i;

        if (!is_rmap_pte(*spte))
                return;
        sp = page_header(__pa(spte));
        pfn = spte_to_pfn(*spte);
        if (*spte & shadow_accessed_mask)
                kvm_set_pfn_accessed(pfn);
        if (is_writeble_pte(*spte))
                kvm_release_pfn_dirty(pfn);
        else
                kvm_release_pfn_clean(pfn);
        rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
        if (!*rmapp) {
                printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
                BUG();
        } else if (!(*rmapp & 1)) {
                rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte);
                if ((u64 *)*rmapp != spte) {
                        printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n",
                               spte, *spte);
                        BUG();
                }
                *rmapp = 0;
        } else {
                rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte);
                desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
                prev_desc = NULL;
                while (desc) {
                        for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
                                if (desc->shadow_ptes[i] == spte) {
                                        rmap_desc_remove_entry(rmapp,
                                                               desc, i,
                                                               prev_desc);
                                        return;
                                }
                        prev_desc = desc;
                        desc = desc->more;
                }
                BUG();
        }
}

static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
{
        struct kvm_rmap_desc *desc;
        struct kvm_rmap_desc *prev_desc;
        u64 *prev_spte;
        int i;

        if (!*rmapp)
                return NULL;
        else if (!(*rmapp & 1)) {
                if (!spte)
                        return (u64 *)*rmapp;
                return NULL;
        }
        desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
        prev_desc = NULL;
        prev_spte = NULL;
        while (desc) {
                for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
                        if (prev_spte == spte)
                                return desc->shadow_ptes[i];
                        prev_spte = desc->shadow_ptes[i];
                }
                desc = desc->more;
        }
        return NULL;
}

static void rmap_write_protect(struct kvm *kvm, u64 gfn)
{
        unsigned long *rmapp;
        u64 *spte;
        int write_protected = 0;

        gfn = unalias_gfn(kvm, gfn);
        rmapp = gfn_to_rmap(kvm, gfn, 0);

        spte = rmap_next(kvm, rmapp, NULL);
        while (spte) {
                BUG_ON(!spte);
                BUG_ON(!(*spte & PT_PRESENT_MASK));
                rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
                if (is_writeble_pte(*spte)) {
                        set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
                        write_protected = 1;
                }
                spte = rmap_next(kvm, rmapp, spte);
        }
        if (write_protected) {
                pfn_t pfn;

                spte = rmap_next(kvm, rmapp, NULL);
                pfn = spte_to_pfn(*spte);
                kvm_set_pfn_dirty(pfn);
        }

        /* check for huge page mappings */
        rmapp = gfn_to_rmap(kvm, gfn, 1);
        spte = rmap_next(kvm, rmapp, NULL);
        while (spte) {
                BUG_ON(!spte);
                BUG_ON(!(*spte & PT_PRESENT_MASK));
                BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
                pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
                if (is_writeble_pte(*spte)) {
                        rmap_remove(kvm, spte);
                        --kvm->stat.lpages;
                        set_shadow_pte(spte, shadow_trap_nonpresent_pte);
                        spte = NULL;
                        write_protected = 1;
                }
                spte = rmap_next(kvm, rmapp, spte);
        }

        if (write_protected)
                kvm_flush_remote_tlbs(kvm);

        account_shadowed(kvm, gfn);
}

static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp)
{
        u64 *spte;
        int need_tlb_flush = 0;

        while ((spte = rmap_next(kvm, rmapp, NULL))) {
                BUG_ON(!(*spte & PT_PRESENT_MASK));
                rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
                rmap_remove(kvm, spte);
                set_shadow_pte(spte, shadow_trap_nonpresent_pte);
                need_tlb_flush = 1;
        }
        return need_tlb_flush;
}

static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
                          int (*handler)(struct kvm *kvm, unsigned long *rmapp))
{
        int i;
        int retval = 0;

        /*
         * If mmap_sem isn't taken, we can look the memslots with only
         * the mmu_lock by skipping over the slots with userspace_addr == 0.
         */
        for (i = 0; i < kvm->nmemslots; i++) {
                struct kvm_memory_slot *memslot = &kvm->memslots[i];
                unsigned long start = memslot->userspace_addr;
                unsigned long end;

                /* mmu_lock protects userspace_addr */
                if (!start)
                        continue;

                end = start + (memslot->npages << PAGE_SHIFT);
                if (hva >= start && hva < end) {
                        gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
                        retval |= handler(kvm, &memslot->rmap[gfn_offset]);
                        retval |= handler(kvm,
                                          &memslot->lpage_info[
                                                  gfn_offset /
                                                  KVM_PAGES_PER_HPAGE].rmap_pde);
                }
        }

        return retval;
}

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
{
        return kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
}

static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp)
{
        u64 *spte;
        int young = 0;

        /* always return old for EPT */
        if (!shadow_accessed_mask)
                return 0;

        spte = rmap_next(kvm, rmapp, NULL);
        while (spte) {
                int _young;
                u64 _spte = *spte;
                BUG_ON(!(_spte & PT_PRESENT_MASK));
                _young = _spte & PT_ACCESSED_MASK;
                if (_young) {
                        young = 1;
                        clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
                }
                spte = rmap_next(kvm, rmapp, spte);
        }
        return young;
}

int kvm_age_hva(struct kvm *kvm, unsigned long hva)
{
        return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
}

#ifdef MMU_DEBUG
static int is_empty_shadow_page(u64 *spt)
{
        u64 *pos;
        u64 *end;

        for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
                if (is_shadow_present_pte(*pos)) {
                        printk(KERN_ERR "%s: %p %llx\n", __func__,
                               pos, *pos);
                        return 0;
                }
        return 1;
}
#endif

static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
        ASSERT(is_empty_shadow_page(sp->spt));
        list_del(&sp->link);
        __free_page(virt_to_page(sp->spt));
        __free_page(virt_to_page(sp->gfns));
        kfree(sp);
        ++kvm->arch.n_free_mmu_pages;
}

static unsigned kvm_page_table_hashfn(gfn_t gfn)
{
        return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
}

static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
                                               u64 *parent_pte)
{
        struct kvm_mmu_page *sp;

        sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
        sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
        sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
        set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
        list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
        ASSERT(is_empty_shadow_page(sp->spt));
        sp->slot_bitmap = 0;
        sp->multimapped = 0;
        sp->parent_pte = parent_pte;
        --vcpu->kvm->arch.n_free_mmu_pages;
        return sp;
}

static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
                                    struct kvm_mmu_page *sp, u64 *parent_pte)
{
        struct kvm_pte_chain *pte_chain;
        struct hlist_node *node;
        int i;

        if (!parent_pte)
                return;
        if (!sp->multimapped) {
                u64 *old = sp->parent_pte;

                if (!old) {
                        sp->parent_pte = parent_pte;
                        return;
                }
                sp->multimapped = 1;
                pte_chain = mmu_alloc_pte_chain(vcpu);
                INIT_HLIST_HEAD(&sp->parent_ptes);
                hlist_add_head(&pte_chain->link, &sp->parent_ptes);
                pte_chain->parent_ptes[0] = old;
        }
        hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
                if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
                        continue;
                for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
                        if (!pte_chain->parent_ptes[i]) {
                                pte_chain->parent_ptes[i] = parent_pte;
                                return;
                        }
        }
        pte_chain = mmu_alloc_pte_chain(vcpu);
        BUG_ON(!pte_chain);
        hlist_add_head(&pte_chain->link, &sp->parent_ptes);
        pte_chain->parent_ptes[0] = parent_pte;
}

static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
                                       u64 *parent_pte)
{
        struct kvm_pte_chain *pte_chain;
        struct hlist_node *node;
        int i;

        if (!sp->multimapped) {
                BUG_ON(sp->parent_pte != parent_pte);
                sp->parent_pte = NULL;
                return;
        }
        hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
                for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
                        if (!pte_chain->parent_ptes[i])
                                break;
                        if (pte_chain->parent_ptes[i] != parent_pte)
                                continue;
                        while (i + 1 < NR_PTE_CHAIN_ENTRIES
                                && pte_chain->parent_ptes[i + 1]) {
                                pte_chain->parent_ptes[i]
                                        = pte_chain->parent_ptes[i + 1];
                                ++i;
                        }
                        pte_chain->parent_ptes[i] = NULL;
                        if (i == 0) {
                                hlist_del(&pte_chain->link);
                                mmu_free_pte_chain(pte_chain);
                                if (hlist_empty(&sp->parent_ptes)) {
                                        sp->multimapped = 0;
                                        sp->parent_pte = NULL;
                                }
                        }
                        return;
                }
        BUG();
}

static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
                                    struct kvm_mmu_page *sp)
{
        int i;

        for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
                sp->spt[i] = shadow_trap_nonpresent_pte;
}

static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
{
        unsigned index;
        struct hlist_head *bucket;
        struct kvm_mmu_page *sp;
        struct hlist_node *node;

        pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
        index = kvm_page_table_hashfn(gfn);
        bucket = &kvm->arch.mmu_page_hash[index];
        hlist_for_each_entry(sp, node, bucket, hash_link)
                if (sp->gfn == gfn && !sp->role.metaphysical
                    && !sp->role.invalid) {
                        pgprintk("%s: found role %x\n",
                                 __func__, sp->role.word);
                        return sp;
                }
        return NULL;
}

static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
                                             gfn_t gfn,
                                             gva_t gaddr,
                                             unsigned level,
                                             int metaphysical,
                                             unsigned access,
                                             u64 *parent_pte)
{
        union kvm_mmu_page_role role;
        unsigned index;
        unsigned quadrant;
        struct hlist_head *bucket;
        struct kvm_mmu_page *sp;
        struct hlist_node *node;

        role.word = 0;
        role.glevels = vcpu->arch.mmu.root_level;
        role.level = level;
        role.metaphysical = metaphysical;
        role.access = access;
        if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
                quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
                quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
                role.quadrant = quadrant;
        }
        pgprintk("%s: looking gfn %lx role %x\n", __func__,
                 gfn, role.word);
        index = kvm_page_table_hashfn(gfn);
        bucket = &vcpu->kvm->arch.mmu_page_hash[index];
        hlist_for_each_entry(sp, node, bucket, hash_link)
                if (sp->gfn == gfn && sp->role.word == role.word) {
                        mmu_page_add_parent_pte(vcpu, sp, parent_pte);
                        pgprintk("%s: found\n", __func__);
                        return sp;
                }
        ++vcpu->kvm->stat.mmu_cache_miss;
        sp = kvm_mmu_alloc_page(vcpu, parent_pte);
        if (!sp)
                return sp;
        pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
        sp->gfn = gfn;
        sp->role = role;
        hlist_add_head(&sp->hash_link, bucket);
        if (!metaphysical)
                rmap_write_protect(vcpu->kvm, gfn);
        if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
                vcpu->arch.mmu.prefetch_page(vcpu, sp);
        else
                nonpaging_prefetch_page(vcpu, sp);
        return sp;
}

static void kvm_mmu_page_unlink_children(struct kvm *kvm,
                                         struct kvm_mmu_page *sp)
{
        unsigned i;
        u64 *pt;
        u64 ent;

        pt = sp->spt;

        if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
                for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
                        if (is_shadow_present_pte(pt[i]))
                                rmap_remove(kvm, &pt[i]);
                        pt[i] = shadow_trap_nonpresent_pte;
                }
                kvm_flush_remote_tlbs(kvm);
                return;
        }

        for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
                ent = pt[i];

                if (is_shadow_present_pte(ent)) {
                        if (!is_large_pte(ent)) {
                                ent &= PT64_BASE_ADDR_MASK;
                                mmu_page_remove_parent_pte(page_header(ent),
                                                           &pt[i]);
                        } else {
                                --kvm->stat.lpages;
                                rmap_remove(kvm, &pt[i]);
                        }
                }
                pt[i] = shadow_trap_nonpresent_pte;
        }
        kvm_flush_remote_tlbs(kvm);
}

static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
{
        mmu_page_remove_parent_pte(sp, parent_pte);
}

static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
{
        int i;

        for (i = 0; i < KVM_MAX_VCPUS; ++i)
                if (kvm->vcpus[i])
                        kvm->vcpus[i]->arch.last_pte_updated = NULL;
}

static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
{
        u64 *parent_pte;

        ++kvm->stat.mmu_shadow_zapped;
        while (sp->multimapped || sp->parent_pte) {
                if (!sp->multimapped)
                        parent_pte = sp->parent_pte;
                else {
                        struct kvm_pte_chain *chain;

                        chain = container_of(sp->parent_ptes.first,
                                             struct kvm_pte_chain, link);
                        parent_pte = chain->parent_ptes[0];
                }
                BUG_ON(!parent_pte);
                kvm_mmu_put_page(sp, parent_pte);
                set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
        }
        kvm_mmu_page_unlink_children(kvm, sp);
        if (!sp->root_count) {
                if (!sp->role.metaphysical && !sp->role.invalid)
                        unaccount_shadowed(kvm, sp->gfn);
                hlist_del(&sp->hash_link);
                kvm_mmu_free_page(kvm, sp);
        } else {
                int invalid = sp->role.invalid;
                list_move(&sp->link, &kvm->arch.active_mmu_pages);
                sp->role.invalid = 1;
                kvm_reload_remote_mmus(kvm);
                if (!sp->role.metaphysical && !invalid)
                        unaccount_shadowed(kvm, sp->gfn);
        }
        kvm_mmu_reset_last_pte_updated(kvm);
}

/*
 * Changing the number of mmu pages allocated to the vm
 * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
 */
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
{
        /*
         * If we set the number of mmu pages to be smaller be than the
         * number of actived pages , we must to free some mmu pages before we
         * change the value
         */

        if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
            kvm_nr_mmu_pages) {
                int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
                                       - kvm->arch.n_free_mmu_pages;

                while (n_used_mmu_pages > kvm_nr_mmu_pages) {
                        struct kvm_mmu_page *page;

                        page = container_of(kvm->arch.active_mmu_pages.prev,
                                            struct kvm_mmu_page, link);
                        kvm_mmu_zap_page(kvm, page);
                        n_used_mmu_pages--;
                }
                kvm->arch.n_free_mmu_pages = 0;
        }
        else
                kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
                                         - kvm->arch.n_alloc_mmu_pages;

        kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
}

static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
{
        unsigned index;
        struct hlist_head *bucket;
        struct kvm_mmu_page *sp;
        struct hlist_node *node, *n;
        int r;

        pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
        r = 0;
        index = kvm_page_table_hashfn(gfn);
        bucket = &kvm->arch.mmu_page_hash[index];
        hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
                if (sp->gfn == gfn && !sp->role.metaphysical) {
                        pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
                                 sp->role.word);
                        kvm_mmu_zap_page(kvm, sp);
                        r = 1;
                }
        return r;
}

static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
{
        struct kvm_mmu_page *sp;

        while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
                pgprintk("%s: zap %lx %x\n", __func__, gfn, sp->role.word);
                kvm_mmu_zap_page(kvm, sp);
        }
}

static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
{
        int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
        struct kvm_mmu_page *sp = page_header(__pa(pte));

        __set_bit(slot, &sp->slot_bitmap);
}

struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
{
        struct page *page;

        gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);

        if (gpa == UNMAPPED_GVA)
                return NULL;

        down_read(&current->mm->mmap_sem);
        page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
        up_read(&current->mm->mmap_sem);

        return page;
}

static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
                         unsigned pt_access, unsigned pte_access,
                         int user_fault, int write_fault, int dirty,
                         int *ptwrite, int largepage, gfn_t gfn,
                         pfn_t pfn, bool speculative)
{
        u64 spte;
        int was_rmapped = 0;
        int was_writeble = is_writeble_pte(*shadow_pte);

        pgprintk("%s: spte %llx access %x write_fault %d"
                 " user_fault %d gfn %lx\n",
                 __func__, *shadow_pte, pt_access,
                 write_fault, user_fault, gfn);

        if (is_rmap_pte(*shadow_pte)) {
                /*
                 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
                 * the parent of the now unreachable PTE.
                 */
                if (largepage && !is_large_pte(*shadow_pte)) {
                        struct kvm_mmu_page *child;
                        u64 pte = *shadow_pte;

                        child = page_header(pte & PT64_BASE_ADDR_MASK);
                        mmu_page_remove_parent_pte(child, shadow_pte);
                } else if (pfn != spte_to_pfn(*shadow_pte)) {
                        pgprintk("hfn old %lx new %lx\n",
                                 spte_to_pfn(*shadow_pte), pfn);
                        rmap_remove(vcpu->kvm, shadow_pte);
                } else {
                        if (largepage)
                                was_rmapped = is_large_pte(*shadow_pte);
                        else
                                was_rmapped = 1;
                }
        }

        /*
         * We don't set the accessed bit, since we sometimes want to see
         * whether the guest actually used the pte (in order to detect
         * demand paging).
         */
        spte = shadow_base_present_pte | shadow_dirty_mask;
        if (!speculative)
                pte_access |= PT_ACCESSED_MASK;
        if (!dirty)
                pte_access &= ~ACC_WRITE_MASK;
        if (pte_access & ACC_EXEC_MASK)
                spte |= shadow_x_mask;
        else
                spte |= shadow_nx_mask;
        if (pte_access & ACC_USER_MASK)
                spte |= shadow_user_mask;
        if (largepage)
                spte |= PT_PAGE_SIZE_MASK;

        spte |= (u64)pfn << PAGE_SHIFT;

        if ((pte_access & ACC_WRITE_MASK)
            || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
                struct kvm_mmu_page *shadow;

                spte |= PT_WRITABLE_MASK;

                shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
                if (shadow ||
                   (largepage && has_wrprotected_page(vcpu->kvm, gfn))) {
                        pgprintk("%s: found shadow page for %lx, marking ro\n",
                                 __func__, gfn);
                        pte_access &= ~ACC_WRITE_MASK;
                        if (is_writeble_pte(spte)) {
                                spte &= ~PT_WRITABLE_MASK;
                                kvm_x86_ops->tlb_flush(vcpu);
                        }
                        if (write_fault)
                                *ptwrite = 1;
                }
        }

        if (pte_access & ACC_WRITE_MASK)
                mark_page_dirty(vcpu->kvm, gfn);

        pgprintk("%s: setting spte %llx\n", __func__, spte);
        pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
                 (spte&PT_PAGE_SIZE_MASK)? "2MB" : "4kB",
                 (spte&PT_WRITABLE_MASK)?"RW":"R", gfn, spte, shadow_pte);
        set_shadow_pte(shadow_pte, spte);
        if (!was_rmapped && (spte & PT_PAGE_SIZE_MASK)
            && (spte & PT_PRESENT_MASK))
                ++vcpu->kvm->stat.lpages;

        page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
        if (!was_rmapped) {
                rmap_add(vcpu, shadow_pte, gfn, largepage);
                if (!is_rmap_pte(*shadow_pte))
                        kvm_release_pfn_clean(pfn);
        } else {
                if (was_writeble)
                        kvm_release_pfn_dirty(pfn);
                else
                        kvm_release_pfn_clean(pfn);
        }
        if (speculative) {
                vcpu->arch.last_pte_updated = shadow_pte;
                vcpu->arch.last_pte_gfn = gfn;
        }
}

static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
{
}

static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
                           int largepage, gfn_t gfn, pfn_t pfn,
                           int level)
{
        hpa_t table_addr = vcpu->arch.mmu.root_hpa;
        int pt_write = 0;

        for (; ; level--) {
                u32 index = PT64_INDEX(v, level);
                u64 *table;

                ASSERT(VALID_PAGE(table_addr));
                table = __va(table_addr);

                if (level == 1) {
                        mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
                                     0, write, 1, &pt_write, 0, gfn, pfn, false);
                        return pt_write;
                }

                if (largepage && level == 2) {
                        mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
                                     0, write, 1, &pt_write, 1, gfn, pfn, false);
                        return pt_write;
                }

                if (table[index] == shadow_trap_nonpresent_pte) {
                        struct kvm_mmu_page *new_table;
                        gfn_t pseudo_gfn;

                        pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
                                >> PAGE_SHIFT;
                        new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
                                                     v, level - 1,
                                                     1, ACC_ALL, &table[index]);
                        if (!new_table) {
                                pgprintk("nonpaging_map: ENOMEM\n");
                                kvm_release_pfn_clean(pfn);
                                return -ENOMEM;
                        }

                        set_shadow_pte(&table[index],
                                       __pa(new_table->spt)
                                       | PT_PRESENT_MASK | PT_WRITABLE_MASK
                                       | shadow_user_mask | shadow_x_mask);
                }
                table_addr = table[index] & PT64_BASE_ADDR_MASK;
        }
}

static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
{
        int r;
        int largepage = 0;
        pfn_t pfn;
        unsigned long mmu_seq;

        down_read(&current->mm->mmap_sem);
        if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
                gfn &= ~(KVM_PAGES_PER_HPAGE-1);
                largepage = 1;
        }

        mmu_seq = vcpu->kvm->mmu_notifier_seq;
        /* implicit mb(), we'll read before PT lock is unlocked */
        pfn = gfn_to_pfn(vcpu->kvm, gfn);
        up_read(&current->mm->mmap_sem);

        /* mmio */
        if (is_error_pfn(pfn)) {
                kvm_release_pfn_clean(pfn);
                return 1;
        }

        spin_lock(&vcpu->kvm->mmu_lock);
        if (mmu_notifier_retry(vcpu, mmu_seq))
                goto out_unlock;
        kvm_mmu_free_some_pages(vcpu);
        r = __direct_map(vcpu, v, write, largepage, gfn, pfn,
                         PT32E_ROOT_LEVEL);
        spin_unlock(&vcpu->kvm->mmu_lock);


        return r;

out_unlock:
        spin_unlock(&vcpu->kvm->mmu_lock);
        kvm_release_pfn_clean(pfn);
        return 0;
}


static void mmu_free_roots(struct kvm_vcpu *vcpu)
{
        int i;
        struct kvm_mmu_page *sp;

        if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
                return;
        spin_lock(&vcpu->kvm->mmu_lock);
        if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
                hpa_t root = vcpu->arch.mmu.root_hpa;

                sp = page_header(root);
                --sp->root_count;
                if (!sp->root_count && sp->role.invalid)
                        kvm_mmu_zap_page(vcpu->kvm, sp);
                vcpu->arch.mmu.root_hpa = INVALID_PAGE;
                spin_unlock(&vcpu->kvm->mmu_lock);
                return;
        }
        for (i = 0; i < 4; ++i) {
                hpa_t root = vcpu->arch.mmu.pae_root[i];

                if (root) {
                        root &= PT64_BASE_ADDR_MASK;
                        sp = page_header(root);
                        --sp->root_count;
                        if (!sp->root_count && sp->role.invalid)
                                kvm_mmu_zap_page(vcpu->kvm, sp);
                }
                vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
        }
        spin_unlock(&vcpu->kvm->mmu_lock);
        vcpu->arch.mmu.root_hpa = INVALID_PAGE;
}

static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
{
        int i;
        gfn_t root_gfn;
        struct kvm_mmu_page *sp;
        int metaphysical = 0;

        root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;

        if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
                hpa_t root = vcpu->arch.mmu.root_hpa;

                ASSERT(!VALID_PAGE(root));
                if (tdp_enabled)
                        metaphysical = 1;
                sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
                                      PT64_ROOT_LEVEL, metaphysical,
                                      ACC_ALL, NULL);
                root = __pa(sp->spt);
                ++sp->root_count;
                vcpu->arch.mmu.root_hpa = root;
                return;
        }
        metaphysical = !is_paging(vcpu);
        if (tdp_enabled)
                metaphysical = 1;
        for (i = 0; i < 4; ++i) {
                hpa_t root = vcpu->arch.mmu.pae_root[i];

                ASSERT(!VALID_PAGE(root));
                if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
                        if (!is_present_pte(vcpu->arch.pdptrs[i])) {
                                vcpu->arch.mmu.pae_root[i] = 0;
                                continue;
                        }
                        root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
                } else if (vcpu->arch.mmu.root_level == 0)
                        root_gfn = 0;
                sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
                                      PT32_ROOT_LEVEL, metaphysical,
                                      ACC_ALL, NULL);
                root = __pa(sp->spt);
                ++sp->root_count;
                vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
        }
        vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
}

static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
{
        return vaddr;
}

static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
                                u32 error_code)
{
        gfn_t gfn;
        int r;

        pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
        r = mmu_topup_memory_caches(vcpu);
        if (r)
                return r;

        ASSERT(vcpu);
        ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));

        gfn = gva >> PAGE_SHIFT;

        return nonpaging_map(vcpu, gva & PAGE_MASK,
                             error_code & PFERR_WRITE_MASK, gfn);
}

static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
                                u32 error_code)
{
        pfn_t pfn;
        int r;
        int largepage = 0;
        gfn_t gfn = gpa >> PAGE_SHIFT;
        unsigned long mmu_seq;

        ASSERT(vcpu);
        ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));

        r = mmu_topup_memory_caches(vcpu);
        if (r)
                return r;

        down_read(&current->mm->mmap_sem);
        if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
                gfn &= ~(KVM_PAGES_PER_HPAGE-1);
                largepage = 1;
        }
        mmu_seq = vcpu->kvm->mmu_notifier_seq;
        /* implicit mb(), we'll read before PT lock is unlocked */
        pfn = gfn_to_pfn(vcpu->kvm, gfn);
        up_read(&current->mm->mmap_sem);
        if (is_error_pfn(pfn)) {
                kvm_release_pfn_clean(pfn);
                return 1;
        }
        spin_lock(&vcpu->kvm->mmu_lock);
        if (mmu_notifier_retry(vcpu, mmu_seq))
                goto out_unlock;
        kvm_mmu_free_some_pages(vcpu);
        r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
                         largepage, gfn, pfn, kvm_x86_ops->get_tdp_level());
        spin_unlock(&vcpu->kvm->mmu_lock);

        return r;

out_unlock:
        spin_unlock(&vcpu->kvm->mmu_lock);
        kvm_release_pfn_clean(pfn);
        return 0;
}

static void nonpaging_free(struct kvm_vcpu *vcpu)
{
        mmu_free_roots(vcpu);
}

static int nonpaging_init_context(struct kvm_vcpu *vcpu)
{
        struct kvm_mmu *context = &vcpu->arch.mmu;

        context->new_cr3 = nonpaging_new_cr3;
        context->page_fault = nonpaging_page_fault;
        context->gva_to_gpa = nonpaging_gva_to_gpa;
        context->free = nonpaging_free;
        context->prefetch_page = nonpaging_prefetch_page;
        context->root_level = 0;
        context->shadow_root_level = PT32E_ROOT_LEVEL;
        context->root_hpa = INVALID_PAGE;
        return 0;
}

void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
{
        ++vcpu->stat.tlb_flush;
        kvm_x86_ops->tlb_flush(vcpu);
}

static void paging_new_cr3(struct kvm_vcpu *vcpu)
{
        pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
        mmu_free_roots(vcpu);
}

static void inject_page_fault(struct kvm_vcpu *vcpu,
                              u64 addr,
                              u32 err_code)
{
        kvm_inject_page_fault(vcpu, addr, err_code);
}

static void paging_free(struct kvm_vcpu *vcpu)
{
        nonpaging_free(vcpu);
}

#define PTTYPE 64
#include "paging_tmpl.h"
#undef PTTYPE

#define PTTYPE 32
#include "paging_tmpl.h"
#undef PTTYPE

static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
{
        struct kvm_mmu *context = &vcpu->arch.mmu;

        ASSERT(is_pae(vcpu));
        context->new_cr3 = paging_new_cr3;
        context->page_fault = paging64_page_fault;
        context->gva_to_gpa = paging64_gva_to_gpa;
        context->prefetch_page = paging64_prefetch_page;
        context->free = paging_free;
        context->root_level = level;
        context->shadow_root_level = level;
        context->root_hpa = INVALID_PAGE;
        return 0;
}

static int paging64_init_context(struct kvm_vcpu *vcpu)
{
        return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
}

static int paging32_init_context(struct kvm_vcpu *vcpu)
{
        struct kvm_mmu *context = &vcpu->arch.mmu;

        context->new_cr3 = paging_new_cr3;
        context->page_fault = paging32_page_fault;
        context->gva_to_gpa = paging32_gva_to_gpa;
        context->free = paging_free;
        context->prefetch_page = paging32_prefetch_page;
        context->root_level = PT32_ROOT_LEVEL;
        context->shadow_root_level = PT32E_ROOT_LEVEL;
        context->root_hpa = INVALID_PAGE;
        return 0;
}

static int paging32E_init_context(struct kvm_vcpu *vcpu)
{
        return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
}

static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
{
        struct kvm_mmu *context = &vcpu->arch.mmu;

        context->new_cr3 = nonpaging_new_cr3;
        context->page_fault = tdp_page_fault;
        context->free = nonpaging_free;
        context->prefetch_page = nonpaging_prefetch_page;
        context->shadow_root_level = kvm_x86_ops->get_tdp_level();
        context->root_hpa = INVALID_PAGE;

        if (!is_paging(vcpu)) {
                context->gva_to_gpa = nonpaging_gva_to_gpa;
                context->root_level = 0;
        } else if (is_long_mode(vcpu)) {
                context->gva_to_gpa = paging64_gva_to_gpa;
                context->root_level = PT64_ROOT_LEVEL;
        } else if (is_pae(vcpu)) {
                context->gva_to_gpa = paging64_gva_to_gpa;
                context->root_level = PT32E_ROOT_LEVEL;
        } else {
                context->gva_to_gpa = paging32_gva_to_gpa;
                context->root_level = PT32_ROOT_LEVEL;
        }

        return 0;
}

static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
{
        ASSERT(vcpu);
        ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));

        if (!is_paging(vcpu))
                return nonpaging_init_context(vcpu);
        else if (is_long_mode(vcpu))
                return paging64_init_context(vcpu);
        else if (is_pae(vcpu))
                return paging32E_init_context(vcpu);
        else
                return paging32_init_context(vcpu);
}

static int init_kvm_mmu(struct kvm_vcpu *vcpu)
{
        vcpu->arch.update_pte.pfn = bad_pfn;

        if (tdp_enabled)
                return init_kvm_tdp_mmu(vcpu);
        else
                return init_kvm_softmmu(vcpu);
}

static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
{
        ASSERT(vcpu);
        if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
                vcpu->arch.mmu.free(vcpu);
                vcpu->arch.mmu.root_hpa = INVALID_PAGE;
        }
}

int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
{
        destroy_kvm_mmu(vcpu);
        return init_kvm_mmu(vcpu);
}
EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);

int kvm_mmu_load(struct kvm_vcpu *vcpu)
{
        int r;

        r = mmu_topup_memory_caches(vcpu);
        if (r)
                goto out;
        spin_lock(&vcpu->kvm->mmu_lock);
        kvm_mmu_free_some_pages(vcpu);
        mmu_alloc_roots(vcpu);
        spin_unlock(&vcpu->kvm->mmu_lock);
        kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
        kvm_mmu_flush_tlb(vcpu);
out:
        return r;
}
EXPORT_SYMBOL_GPL(kvm_mmu_load);

void kvm_mmu_unload(struct kvm_vcpu *vcpu)
{
        mmu_free_roots(vcpu);
}

static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
                                  struct kvm_mmu_page *sp,
                                  u64 *spte)
{
        u64 pte;
        struct kvm_mmu_page *child;

        pte = *spte;
        if (is_shadow_present_pte(pte)) {
                if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
                    is_large_pte(pte))
                        rmap_remove(vcpu->kvm, spte);
                else {
                        child = page_header(pte & PT64_BASE_ADDR_MASK);
                        mmu_page_remove_parent_pte(child, spte);
                }
        }
        set_shadow_pte(spte, shadow_trap_nonpresent_pte);
        if (is_large_pte(pte))
                --vcpu->kvm->stat.lpages;
}

static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
                                  struct kvm_mmu_page *sp,
                                  u64 *spte,
                                  const void *new)
{
        if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
                if (!vcpu->arch.update_pte.largepage ||
                    sp->role.glevels == PT32_ROOT_LEVEL) {
                        ++vcpu->kvm->stat.mmu_pde_zapped;
                        return;
                }
        }

        ++vcpu->kvm->stat.mmu_pte_updated;
        if (sp->role.glevels == PT32_ROOT_LEVEL)
                paging32_update_pte(vcpu, sp, spte, new);
        else
                paging64_update_pte(vcpu, sp, spte, new);
}

static bool need_remote_flush(u64 old, u64 new)
{
        if (!is_shadow_present_pte(old))
                return false;
        if (!is_shadow_present_pte(new))
                return true;
        if ((old ^ new) & PT64_BASE_ADDR_MASK)
                return true;
        old ^= PT64_NX_MASK;
        new ^= PT64_NX_MASK;
        return (old & ~new & PT64_PERM_MASK) != 0;
}

static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
{
        if (need_remote_flush(old, new))
                kvm_flush_remote_tlbs(vcpu->kvm);
        else
                kvm_mmu_flush_tlb(vcpu);
}

static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
{
        u64 *spte = vcpu->arch.last_pte_updated;

        return !!(spte && (*spte & shadow_accessed_mask));
}

static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
                                          const u8 *new, int bytes)
{
        gfn_t gfn;
        int r;
        u64 gpte = 0;
        pfn_t pfn;

        vcpu->arch.update_pte.largepage = 0;

        if (bytes != 4 && bytes != 8)
                return;

        /*
         * Assume that the pte write on a page table of the same type
         * as the current vcpu paging mode.  This is nearly always true
         * (might be false while changing modes).  Note it is verified later
         * by update_pte().
         */
        if (is_pae(vcpu)) {
                /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
                if ((bytes == 4) && (gpa % 4 == 0)) {
                        r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
                        if (r)
                                return;
                        memcpy((void *)&gpte + (gpa % 8), new, 4);
                } else if ((bytes == 8) && (gpa % 8 == 0)) {
                        memcpy((void *)&gpte, new, 8);
                }
        } else {
                if ((bytes == 4) && (gpa % 4 == 0))
                        memcpy((void *)&gpte, new, 4);
        }
        if (!is_present_pte(gpte))
                return;
        gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;

        down_read(&current->mm->mmap_sem);
        if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
                gfn &= ~(KVM_PAGES_PER_HPAGE-1);
                vcpu->arch.update_pte.largepage = 1;
        }
        vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
        /* implicit mb(), we'll read before PT lock is unlocked */
        pfn = gfn_to_pfn(vcpu->kvm, gfn);
        up_read(&current->mm->mmap_sem);

        if (is_error_pfn(pfn)) {
                kvm_release_pfn_clean(pfn);
                return;
        }
        vcpu->arch.update_pte.gfn = gfn;
        vcpu->arch.update_pte.pfn = pfn;
}

static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
{
        u64 *spte = vcpu->arch.last_pte_updated;

        if (spte
            && vcpu->arch.last_pte_gfn == gfn
            && shadow_accessed_mask
            && !(*spte & shadow_accessed_mask)
            && is_shadow_present_pte(*spte))
                set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
}

void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
                       const u8 *new, int bytes)
{
        gfn_t gfn = gpa >> PAGE_SHIFT;
        struct kvm_mmu_page *sp;
        struct hlist_node *node, *n;
        struct hlist_head *bucket;
        unsigned index;
        u64 entry, gentry;
        u64 *spte;
        unsigned offset = offset_in_page(gpa);
        unsigned pte_size;
        unsigned page_offset;
        unsigned misaligned;
        unsigned quadrant;
        int level;
        int flooded = 0;
        int npte;
        int r;

        pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
        mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
        spin_lock(&vcpu->kvm->mmu_lock);
        kvm_mmu_access_page(vcpu, gfn);
        kvm_mmu_free_some_pages(vcpu);
        ++vcpu->kvm->stat.mmu_pte_write;
        kvm_mmu_audit(vcpu, "pre pte write");
        if (gfn == vcpu->arch.last_pt_write_gfn
            && !last_updated_pte_accessed(vcpu)) {
                ++vcpu->arch.last_pt_write_count;
                if (vcpu->arch.last_pt_write_count >= 3)
                        flooded = 1;
        } else {
                vcpu->arch.last_pt_write_gfn = gfn;
                vcpu->arch.last_pt_write_count = 1;
                vcpu->arch.last_pte_updated = NULL;
        }
        index = kvm_page_table_hashfn(gfn);
        bucket = &vcpu->kvm->arch.mmu_page_hash[index];
        hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
                if (sp->gfn != gfn || sp->role.metaphysical)
                        continue;
                pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
                misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
                misaligned |= bytes < 4;
                if (misaligned || flooded) {
                        /*
                         * Misaligned accesses are too much trouble to fix
                         * up; also, they usually indicate a page is not used
                         * as a page table.
                         *
                         * If we're seeing too many writes to a page,
                         * it may no longer be a page table, or we may be
                         * forking, in which case it is better to unmap the
                         * page.
                         */
                        pgprintk("misaligned: gpa %llx bytes %d role %x\n",
                                 gpa, bytes, sp->role.word);
                        kvm_mmu_zap_page(vcpu->kvm, sp);
                        ++vcpu->kvm->stat.mmu_flooded;
                        continue;
                }
                page_offset = offset;
                level = sp->role.level;
                npte = 1;
                if (sp->role.glevels == PT32_ROOT_LEVEL) {
                        page_offset <<= 1;      /* 32->64 */
                        /*
                         * A 32-bit pde maps 4MB while the shadow pdes map
                         * only 2MB.  So we need to double the offset again
                         * and zap two pdes instead of one.
                         */
                        if (level == PT32_ROOT_LEVEL) {
                                page_offset &= ~7; /* kill rounding error */
                                page_offset <<= 1;
                                npte = 2;
                        }
                        quadrant = page_offset >> PAGE_SHIFT;
                        page_offset &= ~PAGE_MASK;
                        if (quadrant != sp->role.quadrant)
                                continue;
                }
                spte = &sp->spt[page_offset / sizeof(*spte)];
                if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
                        gentry = 0;
                        r = kvm_read_guest_atomic(vcpu->kvm,
                                                  gpa & ~(u64)(pte_size - 1),
                                                  &gentry, pte_size);
                        new = (const void *)&gentry;
                        if (r < 0)
                                new = NULL;
                }
                while (npte--) {
                        entry = *spte;
                        mmu_pte_write_zap_pte(vcpu, sp, spte);
                        if (new)
                                mmu_pte_write_new_pte(vcpu, sp, spte, new);
                        mmu_pte_write_flush_tlb(vcpu, entry, *spte);
                        ++spte;
                }
        }
        kvm_mmu_audit(vcpu, "post pte write");
        spin_unlock(&vcpu->kvm->mmu_lock);
        if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
                kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
                vcpu->arch.update_pte.pfn = bad_pfn;
        }
}

int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
{
        gpa_t gpa;
        int r;

        gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);

        spin_lock(&vcpu->kvm->mmu_lock);
        r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
        spin_unlock(&vcpu->kvm->mmu_lock);
        return r;
}
EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);

void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
{
        while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
                struct kvm_mmu_page *sp;

                sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
                                  struct kvm_mmu_page, link);
                kvm_mmu_zap_page(vcpu->kvm, sp);
                ++vcpu->kvm->stat.mmu_recycled;
        }
}

int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
{
        int r;
        enum emulation_result er;

        r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
        if (r < 0)
                goto out;

        if (!r) {
                r = 1;
                goto out;
        }

        r = mmu_topup_memory_caches(vcpu);
        if (r)
                goto out;

        er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);

        switch (er) {
        case EMULATE_DONE:
                return 1;
        case EMULATE_DO_MMIO:
                ++vcpu->stat.mmio_exits;
                return 0;
        case EMULATE_FAIL:
                kvm_report_emulation_failure(vcpu, "pagetable");
                return 1;
        default:
                BUG();
        }
out:
        return r;
}
EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);

void kvm_enable_tdp(void)
{
        tdp_enabled = true;
}
EXPORT_SYMBOL_GPL(kvm_enable_tdp);

void kvm_disable_tdp(void)
{
        tdp_enabled = false;
}
EXPORT_SYMBOL_GPL(kvm_disable_tdp);

static void free_mmu_pages(struct kvm_vcpu *vcpu)
{
        struct kvm_mmu_page *sp;

        while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
                sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
                                  struct kvm_mmu_page, link);
                kvm_mmu_zap_page(vcpu->kvm, sp);
                cond_resched();
        }
        free_page((unsigned long)vcpu->arch.mmu.pae_root);
}

static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
{
        struct page *page;
        int i;

        ASSERT(vcpu);

        if (vcpu->kvm->arch.n_requested_mmu_pages)
                vcpu->kvm->arch.n_free_mmu_pages =
                                        vcpu->kvm->arch.n_requested_mmu_pages;
        else
                vcpu->kvm->arch.n_free_mmu_pages =
                                        vcpu->kvm->arch.n_alloc_mmu_pages;
        /*
         * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
         * Therefore we need to allocate shadow page tables in the first
         * 4GB of memory, which happens to fit the DMA32 zone.
         */
        page = alloc_page(GFP_KERNEL | __GFP_DMA32);
        if (!page)
                goto error_1;
        vcpu->arch.mmu.pae_root = page_address(page);
        for (i = 0; i < 4; ++i)
                vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;

        return 0;

error_1:
        free_mmu_pages(vcpu);
        return -ENOMEM;
}

int kvm_mmu_create(struct kvm_vcpu *vcpu)
{
        ASSERT(vcpu);
        ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));

        return alloc_mmu_pages(vcpu);
}

int kvm_mmu_setup(struct kvm_vcpu *vcpu)
{
        ASSERT(vcpu);
        ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));

        return init_kvm_mmu(vcpu);
}

void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
{
        ASSERT(vcpu);

        destroy_kvm_mmu(vcpu);
        free_mmu_pages(vcpu);
        mmu_free_memory_caches(vcpu);
}

void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
{
        struct kvm_mmu_page *sp;

        list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
                int i;
                u64 *pt;

                if (!test_bit(slot, &sp->slot_bitmap))
                        continue;

                pt = sp->spt;
                for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
                        /* avoid RMW */
                        if (pt[i] & PT_WRITABLE_MASK)
                                pt[i] &= ~PT_WRITABLE_MASK;
        }
}

void kvm_mmu_zap_all(struct kvm *kvm)
{
        struct kvm_mmu_page *sp, *node;

        spin_lock(&kvm->mmu_lock);
        list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
                kvm_mmu_zap_page(kvm, sp);
        spin_unlock(&kvm->mmu_lock);

        kvm_flush_remote_tlbs(kvm);
}

static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
{
        struct kvm_mmu_page *page;

        page = container_of(kvm->arch.active_mmu_pages.prev,
                            struct kvm_mmu_page, link);
        kvm_mmu_zap_page(kvm, page);
}

static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
{
        struct kvm *kvm;
        struct kvm *kvm_freed = NULL;
        int cache_count = 0;

        spin_lock(&kvm_lock);

        list_for_each_entry(kvm, &vm_list, vm_list) {
                int npages;

                if (!down_read_trylock(&kvm->slots_lock))
                        continue;
                spin_lock(&kvm->mmu_lock);
                npages = kvm->arch.n_alloc_mmu_pages -
                         kvm->arch.n_free_mmu_pages;
                cache_count += npages;
                if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
                        kvm_mmu_remove_one_alloc_mmu_page(kvm);
                        cache_count--;
                        kvm_freed = kvm;
                }
                nr_to_scan--;

                spin_unlock(&kvm->mmu_lock);
                up_read(&kvm->slots_lock);
        }
        if (kvm_freed)
                list_move_tail(&kvm_freed->vm_list, &vm_list);

        spin_unlock(&kvm_lock);

        return cache_count;
}

static struct shrinker mmu_shrinker = {
        .shrink = mmu_shrink,
        .seeks = DEFAULT_SEEKS * 10,
};

static void mmu_destroy_caches(void)
{
        if (pte_chain_cache)
                kmem_cache_destroy(pte_chain_cache);
        if (rmap_desc_cache)
                kmem_cache_destroy(rmap_desc_cache);
        if (mmu_page_header_cache)
                kmem_cache_destroy(mmu_page_header_cache);
}

void kvm_mmu_module_exit(void)
{
        mmu_destroy_caches();
        unregister_shrinker(&mmu_shrinker);
}

int kvm_mmu_module_init(void)
{
        pte_chain_cache = kmem_cache_create("kvm_pte_chain",
                                            sizeof(struct kvm_pte_chain),
                                            0, 0, NULL);
        if (!pte_chain_cache)
                goto nomem;
        rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
                                            sizeof(struct kvm_rmap_desc),
                                            0, 0, NULL);
        if (!rmap_desc_cache)
                goto nomem;

        mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
                                                  sizeof(struct kvm_mmu_page),
                                                  0, 0, NULL);
        if (!mmu_page_header_cache)
                goto nomem;

        register_shrinker(&mmu_shrinker);

        return 0;

nomem:
        mmu_destroy_caches();
        return -ENOMEM;
}

/*
 * Caculate mmu pages needed for kvm.
 */
unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
{
        int i;
        unsigned int nr_mmu_pages;
        unsigned int  nr_pages = 0;

        for (i = 0; i < kvm->nmemslots; i++)
                nr_pages += kvm->memslots[i].npages;

        nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
        nr_mmu_pages = max(nr_mmu_pages,
                        (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);

        return nr_mmu_pages;
}

static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
                                unsigned len)
{
        if (len > buffer->len)
                return NULL;
        return buffer->ptr;
}

static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
                                unsigned len)
{
        void *ret;

        ret = pv_mmu_peek_buffer(buffer, len);
        if (!ret)
                return ret;
        buffer->ptr += len;
        buffer->len -= len;
        buffer->processed += len;
        return ret;
}

static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
                             gpa_t addr, gpa_t value)
{
        int bytes = 8;
        int r;

        if (!is_long_mode(vcpu) && !is_pae(vcpu))
                bytes = 4;

        r = mmu_topup_memory_caches(vcpu);
        if (r)
                return r;

        if (!emulator_write_phys(vcpu, addr, &value, bytes))
                return -EFAULT;

        return 1;
}

static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
{
        kvm_x86_ops->tlb_flush(vcpu);
        return 1;
}

static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
{
        spin_lock(&vcpu->kvm->mmu_lock);
        mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
        spin_unlock(&vcpu->kvm->mmu_lock);
        return 1;
}

static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
                             struct kvm_pv_mmu_op_buffer *buffer)
{
        struct kvm_mmu_op_header *header;

        header = pv_mmu_peek_buffer(buffer, sizeof *header);
        if (!header)
                return 0;
        switch (header->op) {
        case KVM_MMU_OP_WRITE_PTE: {
                struct kvm_mmu_op_write_pte *wpte;

                wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
                if (!wpte)
                        return 0;
                return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
                                        wpte->pte_val);
        }
        case KVM_MMU_OP_FLUSH_TLB: {
                struct kvm_mmu_op_flush_tlb *ftlb;

                ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
                if (!ftlb)
                        return 0;
                return kvm_pv_mmu_flush_tlb(vcpu);
        }
        case KVM_MMU_OP_RELEASE_PT: {
                struct kvm_mmu_op_release_pt *rpt;

                rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
                if (!rpt)
                        return 0;
                return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
        }
        default: return 0;
        }
}

int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
                  gpa_t addr, unsigned long *ret)
{
        int r;
        struct kvm_pv_mmu_op_buffer buffer;

        buffer.ptr = buffer.buf;
        buffer.len = min_t(unsigned long, bytes, sizeof buffer.buf);
        buffer.processed = 0;

        r = kvm_read_guest(vcpu->kvm, addr, buffer.buf, buffer.len);
        if (r)
                goto out;

        while (buffer.len) {
                r = kvm_pv_mmu_op_one(vcpu, &buffer);
                if (r < 0)
                        goto out;
                if (r == 0)
                        break;
        }

        r = 1;
out:
        *ret = buffer.processed;
        return r;
}

#ifdef AUDIT

static const char *audit_msg;

static gva_t canonicalize(gva_t gva)
{
#ifdef CONFIG_X86_64
        gva = (long long)(gva << 16) >> 16;
#endif
        return gva;
}

static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
                                gva_t va, int level)
{
        u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
        int i;
        gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));

        for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
                u64 ent = pt[i];

                if (ent == shadow_trap_nonpresent_pte)
                        continue;

                va = canonicalize(va);
                if (level > 1) {
                        if (ent == shadow_notrap_nonpresent_pte)
                                printk(KERN_ERR "audit: (%s) nontrapping pte"
                                       " in nonleaf level: levels %d gva %lx"
                                       " level %d pte %llx\n", audit_msg,
                                       vcpu->arch.mmu.root_level, va, level, ent);

                        audit_mappings_page(vcpu, ent, va, level - 1);
                } else {
                        gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
                        hpa_t hpa = (hpa_t)gpa_to_pfn(vcpu, gpa) << PAGE_SHIFT;

                        if (is_shadow_present_pte(ent)
                            && (ent & PT64_BASE_ADDR_MASK) != hpa)
                                printk(KERN_ERR "xx audit error: (%s) levels %d"
                                       " gva %lx gpa %llx hpa %llx ent %llx %d\n",
                                       audit_msg, vcpu->arch.mmu.root_level,
                                       va, gpa, hpa, ent,
                                       is_shadow_present_pte(ent));
                        else if (ent == shadow_notrap_nonpresent_pte
                                 && !is_error_hpa(hpa))
                                printk(KERN_ERR "audit: (%s) notrap shadow,"
                                       " valid guest gva %lx\n", audit_msg, va);
                        kvm_release_pfn_clean(pfn);

                }
        }
}

static void audit_mappings(struct kvm_vcpu *vcpu)
{
        unsigned i;

        if (vcpu->arch.mmu.root_level == 4)
                audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
        else
                for (i = 0; i < 4; ++i)
                        if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
                                audit_mappings_page(vcpu,
                                                    vcpu->arch.mmu.pae_root[i],
                                                    i << 30,
                                                    2);
}

static int count_rmaps(struct kvm_vcpu *vcpu)
{
        int nmaps = 0;
        int i, j, k;

        for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
                struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
                struct kvm_rmap_desc *d;

                for (j = 0; j < m->npages; ++j) {
                        unsigned long *rmapp = &m->rmap[j];

                        if (!*rmapp)
                                continue;
                        if (!(*rmapp & 1)) {
                                ++nmaps;
                                continue;
                        }
                        d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
                        while (d) {
                                for (k = 0; k < RMAP_EXT; ++k)
                                        if (d->shadow_ptes[k])
                                                ++nmaps;
                                        else
                                                break;
                                d = d->more;
                        }
                }
        }
        return nmaps;
}

static int count_writable_mappings(struct kvm_vcpu *vcpu)
{
        int nmaps = 0;
        struct kvm_mmu_page *sp;
        int i;

        list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
                u64 *pt = sp->spt;

                if (sp->role.level != PT_PAGE_TABLE_LEVEL)
                        continue;

                for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
                        u64 ent = pt[i];

                        if (!(ent & PT_PRESENT_MASK))
                                continue;
                        if (!(ent & PT_WRITABLE_MASK))
                                continue;
                        ++nmaps;
                }
        }
        return nmaps;
}

static void audit_rmap(struct kvm_vcpu *vcpu)
{
        int n_rmap = count_rmaps(vcpu);
        int n_actual = count_writable_mappings(vcpu);

        if (n_rmap != n_actual)
                printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
                       __func__, audit_msg, n_rmap, n_actual);
}

static void audit_write_protection(struct kvm_vcpu *vcpu)
{
        struct kvm_mmu_page *sp;
        struct kvm_memory_slot *slot;
        unsigned long *rmapp;
        gfn_t gfn;

        list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
                if (sp->role.metaphysical)
                        continue;

                slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
                gfn = unalias_gfn(vcpu->kvm, sp->gfn);
                rmapp = &slot->rmap[gfn - slot->base_gfn];
                if (*rmapp)
                        printk(KERN_ERR "%s: (%s) shadow page has writable"
                               " mappings: gfn %lx role %x\n",
                               __func__, audit_msg, sp->gfn,
                               sp->role.word);
        }
}

static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
{
        int olddbg = dbg;

        dbg = 0;
        audit_msg = msg;
        audit_rmap(vcpu);
        audit_write_protection(vcpu);
        audit_mappings(vcpu);
        dbg = olddbg;
}

#endif

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading