[funini.com] -> [kei@sodan] -> Kernel Reading

root/arch/x86/kvm/paging_tmpl.h

/* [<][>][^][v][top][bottom][index][help] */

INCLUDED FROM


DEFINITIONS

This source file includes following definitions.
  1. gpte_to_gfn
  2. gpte_to_gfn_pde

/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */

/*
 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
 * so the code in this file is compiled twice, once per pte size.
 */

#if PTTYPE == 64
        #define pt_element_t u64
        #define guest_walker guest_walker64
        #define FNAME(name) paging##64_##name
        #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
        #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
        #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
        #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
        #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
        #define PT_LEVEL_BITS PT64_LEVEL_BITS
        #ifdef CONFIG_X86_64
        #define PT_MAX_FULL_LEVELS 4
        #define CMPXCHG cmpxchg
        #else
        #define CMPXCHG cmpxchg64
        #define PT_MAX_FULL_LEVELS 2
        #endif
#elif PTTYPE == 32
        #define pt_element_t u32
        #define guest_walker guest_walker32
        #define FNAME(name) paging##32_##name
        #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
        #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
        #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
        #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
        #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
        #define PT_LEVEL_BITS PT32_LEVEL_BITS
        #define PT_MAX_FULL_LEVELS 2
        #define CMPXCHG cmpxchg
#else
        #error Invalid PTTYPE value
#endif

#define gpte_to_gfn FNAME(gpte_to_gfn)
#define gpte_to_gfn_pde FNAME(gpte_to_gfn_pde)

/*
 * The guest_walker structure emulates the behavior of the hardware page
 * table walker.
 */
struct guest_walker {
        int level;
        gfn_t table_gfn[PT_MAX_FULL_LEVELS];
        pt_element_t ptes[PT_MAX_FULL_LEVELS];
        gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
        unsigned pt_access;
        unsigned pte_access;
        gfn_t gfn;
        u32 error_code;
};

static gfn_t gpte_to_gfn(pt_element_t gpte)
{
        return (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
}

static gfn_t gpte_to_gfn_pde(pt_element_t gpte)
{
        return (gpte & PT_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
}

static bool FNAME(cmpxchg_gpte)(struct kvm *kvm,
                         gfn_t table_gfn, unsigned index,
                         pt_element_t orig_pte, pt_element_t new_pte)
{
        pt_element_t ret;
        pt_element_t *table;
        struct page *page;

        down_read(&current->mm->mmap_sem);
        page = gfn_to_page(kvm, table_gfn);
        up_read(&current->mm->mmap_sem);

        table = kmap_atomic(page, KM_USER0);

        ret = CMPXCHG(&table[index], orig_pte, new_pte);

        kunmap_atomic(table, KM_USER0);

        kvm_release_page_dirty(page);

        return (ret != orig_pte);
}

static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte)
{
        unsigned access;

        access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
#if PTTYPE == 64
        if (is_nx(vcpu))
                access &= ~(gpte >> PT64_NX_SHIFT);
#endif
        return access;
}

/*
 * Fetch a guest pte for a guest virtual address
 */
static int FNAME(walk_addr)(struct guest_walker *walker,
                            struct kvm_vcpu *vcpu, gva_t addr,
                            int write_fault, int user_fault, int fetch_fault)
{
        pt_element_t pte;
        gfn_t table_gfn;
        unsigned index, pt_access, pte_access;
        gpa_t pte_gpa;

        pgprintk("%s: addr %lx\n", __func__, addr);
walk:
        walker->level = vcpu->arch.mmu.root_level;
        pte = vcpu->arch.cr3;
#if PTTYPE == 64
        if (!is_long_mode(vcpu)) {
                pte = vcpu->arch.pdptrs[(addr >> 30) & 3];
                if (!is_present_pte(pte))
                        goto not_present;
                --walker->level;
        }
#endif
        ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
               (vcpu->arch.cr3 & CR3_NONPAE_RESERVED_BITS) == 0);

        pt_access = ACC_ALL;

        for (;;) {
                index = PT_INDEX(addr, walker->level);

                table_gfn = gpte_to_gfn(pte);
                pte_gpa = gfn_to_gpa(table_gfn);
                pte_gpa += index * sizeof(pt_element_t);
                walker->table_gfn[walker->level - 1] = table_gfn;
                walker->pte_gpa[walker->level - 1] = pte_gpa;
                pgprintk("%s: table_gfn[%d] %lx\n", __func__,
                         walker->level - 1, table_gfn);

                kvm_read_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte));

                if (!is_present_pte(pte))
                        goto not_present;

                if (write_fault && !is_writeble_pte(pte))
                        if (user_fault || is_write_protection(vcpu))
                                goto access_error;

                if (user_fault && !(pte & PT_USER_MASK))
                        goto access_error;

#if PTTYPE == 64
                if (fetch_fault && is_nx(vcpu) && (pte & PT64_NX_MASK))
                        goto access_error;
#endif

                if (!(pte & PT_ACCESSED_MASK)) {
                        mark_page_dirty(vcpu->kvm, table_gfn);
                        if (FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn,
                            index, pte, pte|PT_ACCESSED_MASK))
                                goto walk;
                        pte |= PT_ACCESSED_MASK;
                }

                pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);

                walker->ptes[walker->level - 1] = pte;

                if (walker->level == PT_PAGE_TABLE_LEVEL) {
                        walker->gfn = gpte_to_gfn(pte);
                        break;
                }

                if (walker->level == PT_DIRECTORY_LEVEL
                    && (pte & PT_PAGE_SIZE_MASK)
                    && (PTTYPE == 64 || is_pse(vcpu))) {
                        walker->gfn = gpte_to_gfn_pde(pte);
                        walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
                        if (PTTYPE == 32 && is_cpuid_PSE36())
                                walker->gfn += pse36_gfn_delta(pte);
                        break;
                }

                pt_access = pte_access;
                --walker->level;
        }

        if (write_fault && !is_dirty_pte(pte)) {
                bool ret;

                mark_page_dirty(vcpu->kvm, table_gfn);
                ret = FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn, index, pte,
                            pte|PT_DIRTY_MASK);
                if (ret)
                        goto walk;
                pte |= PT_DIRTY_MASK;
                kvm_mmu_pte_write(vcpu, pte_gpa, (u8 *)&pte, sizeof(pte));
                walker->ptes[walker->level - 1] = pte;
        }

        walker->pt_access = pt_access;
        walker->pte_access = pte_access;
        pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
                 __func__, (u64)pte, pt_access, pte_access);
        return 1;

not_present:
        walker->error_code = 0;
        goto err;

access_error:
        walker->error_code = PFERR_PRESENT_MASK;

err:
        if (write_fault)
                walker->error_code |= PFERR_WRITE_MASK;
        if (user_fault)
                walker->error_code |= PFERR_USER_MASK;
        if (fetch_fault)
                walker->error_code |= PFERR_FETCH_MASK;
        return 0;
}

static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
                              u64 *spte, const void *pte)
{
        pt_element_t gpte;
        unsigned pte_access;
        pfn_t pfn;
        int largepage = vcpu->arch.update_pte.largepage;

        gpte = *(const pt_element_t *)pte;
        if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
                if (!is_present_pte(gpte))
                        set_shadow_pte(spte, shadow_notrap_nonpresent_pte);
                return;
        }
        pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
        pte_access = page->role.access & FNAME(gpte_access)(vcpu, gpte);
        if (gpte_to_gfn(gpte) != vcpu->arch.update_pte.gfn)
                return;
        pfn = vcpu->arch.update_pte.pfn;
        if (is_error_pfn(pfn))
                return;
        if (mmu_notifier_retry(vcpu, vcpu->arch.update_pte.mmu_seq))
                return;
        kvm_get_pfn(pfn);
        mmu_set_spte(vcpu, spte, page->role.access, pte_access, 0, 0,
                     gpte & PT_DIRTY_MASK, NULL, largepage, gpte_to_gfn(gpte),
                     pfn, true);
}

/*
 * Fetch a shadow pte for a specific level in the paging hierarchy.
 */
static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
                         struct guest_walker *walker,
                         int user_fault, int write_fault, int largepage,
                         int *ptwrite, pfn_t pfn)
{
        hpa_t shadow_addr;
        int level;
        u64 *shadow_ent;
        unsigned access = walker->pt_access;

        if (!is_present_pte(walker->ptes[walker->level - 1]))
                return NULL;

        shadow_addr = vcpu->arch.mmu.root_hpa;
        level = vcpu->arch.mmu.shadow_root_level;
        if (level == PT32E_ROOT_LEVEL) {
                shadow_addr = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
                shadow_addr &= PT64_BASE_ADDR_MASK;
                --level;
        }

        for (; ; level--) {
                u32 index = SHADOW_PT_INDEX(addr, level);
                struct kvm_mmu_page *shadow_page;
                u64 shadow_pte;
                int metaphysical;
                gfn_t table_gfn;

                shadow_ent = ((u64 *)__va(shadow_addr)) + index;
                if (level == PT_PAGE_TABLE_LEVEL)
                        break;

                if (largepage && level == PT_DIRECTORY_LEVEL)
                        break;

                if (is_shadow_present_pte(*shadow_ent)
                    && !is_large_pte(*shadow_ent)) {
                        shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
                        continue;
                }

                if (is_large_pte(*shadow_ent))
                        rmap_remove(vcpu->kvm, shadow_ent);

                if (level - 1 == PT_PAGE_TABLE_LEVEL
                    && walker->level == PT_DIRECTORY_LEVEL) {
                        metaphysical = 1;
                        if (!is_dirty_pte(walker->ptes[level - 1]))
                                access &= ~ACC_WRITE_MASK;
                        table_gfn = gpte_to_gfn(walker->ptes[level - 1]);
                } else {
                        metaphysical = 0;
                        table_gfn = walker->table_gfn[level - 2];
                }
                shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
                                               metaphysical, access,
                                               shadow_ent);
                if (!metaphysical) {
                        int r;
                        pt_element_t curr_pte;
                        r = kvm_read_guest_atomic(vcpu->kvm,
                                                  walker->pte_gpa[level - 2],
                                                  &curr_pte, sizeof(curr_pte));
                        if (r || curr_pte != walker->ptes[level - 2]) {
                                kvm_release_pfn_clean(pfn);
                                return NULL;
                        }
                }
                shadow_addr = __pa(shadow_page->spt);
                shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
                        | PT_WRITABLE_MASK | PT_USER_MASK;
                set_shadow_pte(shadow_ent, shadow_pte);
        }

        mmu_set_spte(vcpu, shadow_ent, access, walker->pte_access & access,
                     user_fault, write_fault,
                     walker->ptes[walker->level-1] & PT_DIRTY_MASK,
                     ptwrite, largepage, walker->gfn, pfn, false);

        return shadow_ent;
}

/*
 * Page fault handler.  There are several causes for a page fault:
 *   - there is no shadow pte for the guest pte
 *   - write access through a shadow pte marked read only so that we can set
 *     the dirty bit
 *   - write access to a shadow pte marked read only so we can update the page
 *     dirty bitmap, when userspace requests it
 *   - mmio access; in this case we will never install a present shadow pte
 *   - normal guest page fault due to the guest pte marked not present, not
 *     writable, or not executable
 *
 *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
 *           a negative value on error.
 */
static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
                               u32 error_code)
{
        int write_fault = error_code & PFERR_WRITE_MASK;
        int user_fault = error_code & PFERR_USER_MASK;
        int fetch_fault = error_code & PFERR_FETCH_MASK;
        struct guest_walker walker;
        u64 *shadow_pte;
        int write_pt = 0;
        int r;
        pfn_t pfn;
        int largepage = 0;
        unsigned long mmu_seq;

        pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
        kvm_mmu_audit(vcpu, "pre page fault");

        r = mmu_topup_memory_caches(vcpu);
        if (r)
                return r;

        /*
         * Look up the shadow pte for the faulting address.
         */
        r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
                             fetch_fault);

        /*
         * The page is not mapped by the guest.  Let the guest handle it.
         */
        if (!r) {
                pgprintk("%s: guest page fault\n", __func__);
                inject_page_fault(vcpu, addr, walker.error_code);
                vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
                return 0;
        }

        down_read(&current->mm->mmap_sem);
        if (walker.level == PT_DIRECTORY_LEVEL) {
                gfn_t large_gfn;
                large_gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE-1);
                if (is_largepage_backed(vcpu, large_gfn)) {
                        walker.gfn = large_gfn;
                        largepage = 1;
                }
        }
        mmu_seq = vcpu->kvm->mmu_notifier_seq;
        /* implicit mb(), we'll read before PT lock is unlocked */
        pfn = gfn_to_pfn(vcpu->kvm, walker.gfn);
        up_read(&current->mm->mmap_sem);

        /* mmio */
        if (is_error_pfn(pfn)) {
                pgprintk("gfn %lx is mmio\n", walker.gfn);
                kvm_release_pfn_clean(pfn);
                return 1;
        }

        spin_lock(&vcpu->kvm->mmu_lock);
        if (mmu_notifier_retry(vcpu, mmu_seq))
                goto out_unlock;
        kvm_mmu_free_some_pages(vcpu);
        shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
                                  largepage, &write_pt, pfn);

        pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __func__,
                 shadow_pte, *shadow_pte, write_pt);

        if (!write_pt)
                vcpu->arch.last_pt_write_count = 0; /* reset fork detector */

        ++vcpu->stat.pf_fixed;
        kvm_mmu_audit(vcpu, "post page fault (fixed)");
        spin_unlock(&vcpu->kvm->mmu_lock);

        return write_pt;

out_unlock:
        spin_unlock(&vcpu->kvm->mmu_lock);
        kvm_release_pfn_clean(pfn);
        return 0;
}

static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
{
        struct guest_walker walker;
        gpa_t gpa = UNMAPPED_GVA;
        int r;

        r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);

        if (r) {
                gpa = gfn_to_gpa(walker.gfn);
                gpa |= vaddr & ~PAGE_MASK;
        }

        return gpa;
}

static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
                                 struct kvm_mmu_page *sp)
{
        int i, j, offset, r;
        pt_element_t pt[256 / sizeof(pt_element_t)];
        gpa_t pte_gpa;

        if (sp->role.metaphysical
            || (PTTYPE == 32 && sp->role.level > PT_PAGE_TABLE_LEVEL)) {
                nonpaging_prefetch_page(vcpu, sp);
                return;
        }

        pte_gpa = gfn_to_gpa(sp->gfn);
        if (PTTYPE == 32) {
                offset = sp->role.quadrant << PT64_LEVEL_BITS;
                pte_gpa += offset * sizeof(pt_element_t);
        }

        for (i = 0; i < PT64_ENT_PER_PAGE; i += ARRAY_SIZE(pt)) {
                r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa, pt, sizeof pt);
                pte_gpa += ARRAY_SIZE(pt) * sizeof(pt_element_t);
                for (j = 0; j < ARRAY_SIZE(pt); ++j)
                        if (r || is_present_pte(pt[j]))
                                sp->spt[i+j] = shadow_trap_nonpresent_pte;
                        else
                                sp->spt[i+j] = shadow_notrap_nonpresent_pte;
        }
}

#undef pt_element_t
#undef guest_walker
#undef FNAME
#undef PT_BASE_ADDR_MASK
#undef PT_INDEX
#undef SHADOW_PT_INDEX
#undef PT_LEVEL_MASK
#undef PT_DIR_BASE_ADDR_MASK
#undef PT_LEVEL_BITS
#undef PT_MAX_FULL_LEVELS
#undef gpte_to_gfn
#undef gpte_to_gfn_pde
#undef CMPXCHG

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading