[funini.com] -> [kei@sodan] -> Kernel Reading

root/sound/pci/fm801.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. snd_fm801_update_bits
  2. snd_fm801_codec_write
  3. snd_fm801_codec_read
  4. snd_fm801_rate_bits
  5. snd_fm801_playback_trigger
  6. snd_fm801_capture_trigger
  7. snd_fm801_hw_params
  8. snd_fm801_hw_free
  9. snd_fm801_playback_prepare
  10. snd_fm801_capture_prepare
  11. snd_fm801_playback_pointer
  12. snd_fm801_capture_pointer
  13. snd_fm801_interrupt
  14. snd_fm801_playback_open
  15. snd_fm801_capture_open
  16. snd_fm801_playback_close
  17. snd_fm801_capture_close
  18. snd_fm801_pcm
  19. snd_fm801_tea575x_256pcs_write
  20. snd_fm801_tea575x_256pcs_read
  21. snd_fm801_tea575x_256pcpr_write
  22. snd_fm801_tea575x_256pcpr_read
  23. snd_fm801_tea575x_64pcr_write
  24. snd_fm801_tea575x_64pcr_read
  25. snd_fm801_tea575x_64pcr_mute
  26. snd_fm801_info_single
  27. snd_fm801_get_single
  28. snd_fm801_put_single
  29. snd_fm801_info_double
  30. snd_fm801_get_double
  31. snd_fm801_put_double
  32. snd_fm801_info_mux
  33. snd_fm801_get_mux
  34. snd_fm801_put_mux
  35. snd_fm801_mixer_free_ac97_bus
  36. snd_fm801_mixer_free_ac97
  37. snd_fm801_mixer
  38. wait_for_codec
  39. snd_fm801_chip_init
  40. snd_fm801_free
  41. snd_fm801_dev_free
  42. snd_fm801_create
  43. snd_card_fm801_probe
  44. snd_card_fm801_remove
  45. snd_fm801_suspend
  46. snd_fm801_resume
  47. alsa_card_fm801_init
  48. alsa_card_fm801_exit

/*
 *  The driver for the ForteMedia FM801 based soundcards
 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
 *
 *  Support FM only card by Andy Shevchenko <andy@smile.org.ua>
 *
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 *
 */

#include <linux/delay.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/moduleparam.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/tlv.h>
#include <sound/ac97_codec.h>
#include <sound/mpu401.h>
#include <sound/opl3.h>
#include <sound/initval.h>

#include <asm/io.h>

#ifdef CONFIG_SND_FM801_TEA575X_BOOL
#include <sound/tea575x-tuner.h>
#define TEA575X_RADIO 1
#endif

MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>");
MODULE_DESCRIPTION("ForteMedia FM801");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{ForteMedia,FM801},"
                "{Genius,SoundMaker Live 5.1}}");

static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;      /* Index 0-MAX */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;       /* ID for this card */
static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;      /* Enable this card */
/*
 *  Enable TEA575x tuner
 *    1 = MediaForte 256-PCS
 *    2 = MediaForte 256-PCPR
 *    3 = MediaForte 64-PCR
 *   16 = setup tuner only (this is additional bit), i.e. SF-64-PCR FM card
 *  High 16-bits are video (radio) device number + 1
 */
static int tea575x_tuner[SNDRV_CARDS];

module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for the FM801 soundcard.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for the FM801 soundcard.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable FM801 soundcard.");
module_param_array(tea575x_tuner, int, NULL, 0444);
MODULE_PARM_DESC(tea575x_tuner, "Enable TEA575x tuner.");

/*
 *  Direct registers
 */

#define FM801_REG(chip, reg)    (chip->port + FM801_##reg)

#define FM801_PCM_VOL           0x00    /* PCM Output Volume */
#define FM801_FM_VOL            0x02    /* FM Output Volume */
#define FM801_I2S_VOL           0x04    /* I2S Volume */
#define FM801_REC_SRC           0x06    /* Record Source */
#define FM801_PLY_CTRL          0x08    /* Playback Control */
#define FM801_PLY_COUNT         0x0a    /* Playback Count */
#define FM801_PLY_BUF1          0x0c    /* Playback Bufer I */
#define FM801_PLY_BUF2          0x10    /* Playback Buffer II */
#define FM801_CAP_CTRL          0x14    /* Capture Control */
#define FM801_CAP_COUNT         0x16    /* Capture Count */
#define FM801_CAP_BUF1          0x18    /* Capture Buffer I */
#define FM801_CAP_BUF2          0x1c    /* Capture Buffer II */
#define FM801_CODEC_CTRL        0x22    /* Codec Control */
#define FM801_I2S_MODE          0x24    /* I2S Mode Control */
#define FM801_VOLUME            0x26    /* Volume Up/Down/Mute Status */
#define FM801_I2C_CTRL          0x29    /* I2C Control */
#define FM801_AC97_CMD          0x2a    /* AC'97 Command */
#define FM801_AC97_DATA         0x2c    /* AC'97 Data */
#define FM801_MPU401_DATA       0x30    /* MPU401 Data */
#define FM801_MPU401_CMD        0x31    /* MPU401 Command */
#define FM801_GPIO_CTRL         0x52    /* General Purpose I/O Control */
#define FM801_GEN_CTRL          0x54    /* General Control */
#define FM801_IRQ_MASK          0x56    /* Interrupt Mask */
#define FM801_IRQ_STATUS        0x5a    /* Interrupt Status */
#define FM801_OPL3_BANK0        0x68    /* OPL3 Status Read / Bank 0 Write */
#define FM801_OPL3_DATA0        0x69    /* OPL3 Data 0 Write */
#define FM801_OPL3_BANK1        0x6a    /* OPL3 Bank 1 Write */
#define FM801_OPL3_DATA1        0x6b    /* OPL3 Bank 1 Write */
#define FM801_POWERDOWN         0x70    /* Blocks Power Down Control */

/* codec access */
#define FM801_AC97_READ         (1<<7)  /* read=1, write=0 */
#define FM801_AC97_VALID        (1<<8)  /* port valid=1 */
#define FM801_AC97_BUSY         (1<<9)  /* busy=1 */
#define FM801_AC97_ADDR_SHIFT   10      /* codec id (2bit) */

/* playback and record control register bits */
#define FM801_BUF1_LAST         (1<<1)
#define FM801_BUF2_LAST         (1<<2)
#define FM801_START             (1<<5)
#define FM801_PAUSE             (1<<6)
#define FM801_IMMED_STOP        (1<<7)
#define FM801_RATE_SHIFT        8
#define FM801_RATE_MASK         (15 << FM801_RATE_SHIFT)
#define FM801_CHANNELS_4        (1<<12) /* playback only */
#define FM801_CHANNELS_6        (2<<12) /* playback only */
#define FM801_CHANNELS_6MS      (3<<12) /* playback only */
#define FM801_CHANNELS_MASK     (3<<12)
#define FM801_16BIT             (1<<14)
#define FM801_STEREO            (1<<15)

/* IRQ status bits */
#define FM801_IRQ_PLAYBACK      (1<<8)
#define FM801_IRQ_CAPTURE       (1<<9)
#define FM801_IRQ_VOLUME        (1<<14)
#define FM801_IRQ_MPU           (1<<15)

/* GPIO control register */
#define FM801_GPIO_GP0          (1<<0)  /* read/write */
#define FM801_GPIO_GP1          (1<<1)
#define FM801_GPIO_GP2          (1<<2)
#define FM801_GPIO_GP3          (1<<3)
#define FM801_GPIO_GP(x)        (1<<(0+(x)))
#define FM801_GPIO_GD0          (1<<8)  /* directions: 1 = input, 0 = output*/
#define FM801_GPIO_GD1          (1<<9)
#define FM801_GPIO_GD2          (1<<10)
#define FM801_GPIO_GD3          (1<<11)
#define FM801_GPIO_GD(x)        (1<<(8+(x)))
#define FM801_GPIO_GS0          (1<<12) /* function select: */
#define FM801_GPIO_GS1          (1<<13) /*    1 = GPIO */
#define FM801_GPIO_GS2          (1<<14) /*    0 = other (S/PDIF, VOL) */
#define FM801_GPIO_GS3          (1<<15)
#define FM801_GPIO_GS(x)        (1<<(12+(x)))
        
/*

 */

struct fm801 {
        int irq;

        unsigned long port;     /* I/O port number */
        unsigned int multichannel: 1,   /* multichannel support */
                     secondary: 1;      /* secondary codec */
        unsigned char secondary_addr;   /* address of the secondary codec */
        unsigned int tea575x_tuner;     /* tuner flags */

        unsigned short ply_ctrl; /* playback control */
        unsigned short cap_ctrl; /* capture control */

        unsigned long ply_buffer;
        unsigned int ply_buf;
        unsigned int ply_count;
        unsigned int ply_size;
        unsigned int ply_pos;

        unsigned long cap_buffer;
        unsigned int cap_buf;
        unsigned int cap_count;
        unsigned int cap_size;
        unsigned int cap_pos;

        struct snd_ac97_bus *ac97_bus;
        struct snd_ac97 *ac97;
        struct snd_ac97 *ac97_sec;

        struct pci_dev *pci;
        struct snd_card *card;
        struct snd_pcm *pcm;
        struct snd_rawmidi *rmidi;
        struct snd_pcm_substream *playback_substream;
        struct snd_pcm_substream *capture_substream;
        unsigned int p_dma_size;
        unsigned int c_dma_size;

        spinlock_t reg_lock;
        struct snd_info_entry *proc_entry;

#ifdef TEA575X_RADIO
        struct snd_tea575x tea;
#endif

#ifdef CONFIG_PM
        u16 saved_regs[0x20];
#endif
};

static struct pci_device_id snd_fm801_ids[] = {
        { 0x1319, 0x0801, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, },   /* FM801 */
        { 0x5213, 0x0510, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, 0, },   /* Gallant Odyssey Sound 4 */
        { 0, }
};

MODULE_DEVICE_TABLE(pci, snd_fm801_ids);

/*
 *  common I/O routines
 */

static int snd_fm801_update_bits(struct fm801 *chip, unsigned short reg,
                                 unsigned short mask, unsigned short value)
{
        int change;
        unsigned long flags;
        unsigned short old, new;

        spin_lock_irqsave(&chip->reg_lock, flags);
        old = inw(chip->port + reg);
        new = (old & ~mask) | value;
        change = old != new;
        if (change)
                outw(new, chip->port + reg);
        spin_unlock_irqrestore(&chip->reg_lock, flags);
        return change;
}

static void snd_fm801_codec_write(struct snd_ac97 *ac97,
                                  unsigned short reg,
                                  unsigned short val)
{
        struct fm801 *chip = ac97->private_data;
        int idx;

        /*
         *  Wait until the codec interface is not ready..
         */
        for (idx = 0; idx < 100; idx++) {
                if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
                        goto ok1;
                udelay(10);
        }
        snd_printk(KERN_ERR "AC'97 interface is busy (1)\n");
        return;

 ok1:
        /* write data and address */
        outw(val, FM801_REG(chip, AC97_DATA));
        outw(reg | (ac97->addr << FM801_AC97_ADDR_SHIFT), FM801_REG(chip, AC97_CMD));
        /*
         *  Wait until the write command is not completed..
         */
        for (idx = 0; idx < 1000; idx++) {
                if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
                        return;
                udelay(10);
        }
        snd_printk(KERN_ERR "AC'97 interface #%d is busy (2)\n", ac97->num);
}

static unsigned short snd_fm801_codec_read(struct snd_ac97 *ac97, unsigned short reg)
{
        struct fm801 *chip = ac97->private_data;
        int idx;

        /*
         *  Wait until the codec interface is not ready..
         */
        for (idx = 0; idx < 100; idx++) {
                if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
                        goto ok1;
                udelay(10);
        }
        snd_printk(KERN_ERR "AC'97 interface is busy (1)\n");
        return 0;

 ok1:
        /* read command */
        outw(reg | (ac97->addr << FM801_AC97_ADDR_SHIFT) | FM801_AC97_READ,
             FM801_REG(chip, AC97_CMD));
        for (idx = 0; idx < 100; idx++) {
                if (!(inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_BUSY))
                        goto ok2;
                udelay(10);
        }
        snd_printk(KERN_ERR "AC'97 interface #%d is busy (2)\n", ac97->num);
        return 0;

 ok2:
        for (idx = 0; idx < 1000; idx++) {
                if (inw(FM801_REG(chip, AC97_CMD)) & FM801_AC97_VALID)
                        goto ok3;
                udelay(10);
        }
        snd_printk(KERN_ERR "AC'97 interface #%d is not valid (2)\n", ac97->num);
        return 0;

 ok3:
        return inw(FM801_REG(chip, AC97_DATA));
}

static unsigned int rates[] = {
  5500,  8000,  9600, 11025,
  16000, 19200, 22050, 32000,
  38400, 44100, 48000
};

static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
        .count = ARRAY_SIZE(rates),
        .list = rates,
        .mask = 0,
};

static unsigned int channels[] = {
  2, 4, 6
};

static struct snd_pcm_hw_constraint_list hw_constraints_channels = {
        .count = ARRAY_SIZE(channels),
        .list = channels,
        .mask = 0,
};

/*
 *  Sample rate routines
 */

static unsigned short snd_fm801_rate_bits(unsigned int rate)
{
        unsigned int idx;

        for (idx = 0; idx < ARRAY_SIZE(rates); idx++)
                if (rates[idx] == rate)
                        return idx;
        snd_BUG();
        return ARRAY_SIZE(rates) - 1;
}

/*
 *  PCM part
 */

static int snd_fm801_playback_trigger(struct snd_pcm_substream *substream,
                                      int cmd)
{
        struct fm801 *chip = snd_pcm_substream_chip(substream);

        spin_lock(&chip->reg_lock);
        switch (cmd) {
        case SNDRV_PCM_TRIGGER_START:
                chip->ply_ctrl &= ~(FM801_BUF1_LAST |
                                     FM801_BUF2_LAST |
                                     FM801_PAUSE);
                chip->ply_ctrl |= FM801_START |
                                   FM801_IMMED_STOP;
                break;
        case SNDRV_PCM_TRIGGER_STOP:
                chip->ply_ctrl &= ~(FM801_START | FM801_PAUSE);
                break;
        case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
        case SNDRV_PCM_TRIGGER_SUSPEND:
                chip->ply_ctrl |= FM801_PAUSE;
                break;
        case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
        case SNDRV_PCM_TRIGGER_RESUME:
                chip->ply_ctrl &= ~FM801_PAUSE;
                break;
        default:
                spin_unlock(&chip->reg_lock);
                snd_BUG();
                return -EINVAL;
        }
        outw(chip->ply_ctrl, FM801_REG(chip, PLY_CTRL));
        spin_unlock(&chip->reg_lock);
        return 0;
}

static int snd_fm801_capture_trigger(struct snd_pcm_substream *substream,
                                     int cmd)
{
        struct fm801 *chip = snd_pcm_substream_chip(substream);

        spin_lock(&chip->reg_lock);
        switch (cmd) {
        case SNDRV_PCM_TRIGGER_START:
                chip->cap_ctrl &= ~(FM801_BUF1_LAST |
                                     FM801_BUF2_LAST |
                                     FM801_PAUSE);
                chip->cap_ctrl |= FM801_START |
                                   FM801_IMMED_STOP;
                break;
        case SNDRV_PCM_TRIGGER_STOP:
                chip->cap_ctrl &= ~(FM801_START | FM801_PAUSE);
                break;
        case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
        case SNDRV_PCM_TRIGGER_SUSPEND:
                chip->cap_ctrl |= FM801_PAUSE;
                break;
        case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
        case SNDRV_PCM_TRIGGER_RESUME:
                chip->cap_ctrl &= ~FM801_PAUSE;
                break;
        default:
                spin_unlock(&chip->reg_lock);
                snd_BUG();
                return -EINVAL;
        }
        outw(chip->cap_ctrl, FM801_REG(chip, CAP_CTRL));
        spin_unlock(&chip->reg_lock);
        return 0;
}

static int snd_fm801_hw_params(struct snd_pcm_substream *substream,
                               struct snd_pcm_hw_params *hw_params)
{
        return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
}

static int snd_fm801_hw_free(struct snd_pcm_substream *substream)
{
        return snd_pcm_lib_free_pages(substream);
}

static int snd_fm801_playback_prepare(struct snd_pcm_substream *substream)
{
        struct fm801 *chip = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;

        chip->ply_size = snd_pcm_lib_buffer_bytes(substream);
        chip->ply_count = snd_pcm_lib_period_bytes(substream);
        spin_lock_irq(&chip->reg_lock);
        chip->ply_ctrl &= ~(FM801_START | FM801_16BIT |
                             FM801_STEREO | FM801_RATE_MASK |
                             FM801_CHANNELS_MASK);
        if (snd_pcm_format_width(runtime->format) == 16)
                chip->ply_ctrl |= FM801_16BIT;
        if (runtime->channels > 1) {
                chip->ply_ctrl |= FM801_STEREO;
                if (runtime->channels == 4)
                        chip->ply_ctrl |= FM801_CHANNELS_4;
                else if (runtime->channels == 6)
                        chip->ply_ctrl |= FM801_CHANNELS_6;
        }
        chip->ply_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT;
        chip->ply_buf = 0;
        outw(chip->ply_ctrl, FM801_REG(chip, PLY_CTRL));
        outw(chip->ply_count - 1, FM801_REG(chip, PLY_COUNT));
        chip->ply_buffer = runtime->dma_addr;
        chip->ply_pos = 0;
        outl(chip->ply_buffer, FM801_REG(chip, PLY_BUF1));
        outl(chip->ply_buffer + (chip->ply_count % chip->ply_size), FM801_REG(chip, PLY_BUF2));
        spin_unlock_irq(&chip->reg_lock);
        return 0;
}

static int snd_fm801_capture_prepare(struct snd_pcm_substream *substream)
{
        struct fm801 *chip = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;

        chip->cap_size = snd_pcm_lib_buffer_bytes(substream);
        chip->cap_count = snd_pcm_lib_period_bytes(substream);
        spin_lock_irq(&chip->reg_lock);
        chip->cap_ctrl &= ~(FM801_START | FM801_16BIT |
                             FM801_STEREO | FM801_RATE_MASK);
        if (snd_pcm_format_width(runtime->format) == 16)
                chip->cap_ctrl |= FM801_16BIT;
        if (runtime->channels > 1)
                chip->cap_ctrl |= FM801_STEREO;
        chip->cap_ctrl |= snd_fm801_rate_bits(runtime->rate) << FM801_RATE_SHIFT;
        chip->cap_buf = 0;
        outw(chip->cap_ctrl, FM801_REG(chip, CAP_CTRL));
        outw(chip->cap_count - 1, FM801_REG(chip, CAP_COUNT));
        chip->cap_buffer = runtime->dma_addr;
        chip->cap_pos = 0;
        outl(chip->cap_buffer, FM801_REG(chip, CAP_BUF1));
        outl(chip->cap_buffer + (chip->cap_count % chip->cap_size), FM801_REG(chip, CAP_BUF2));
        spin_unlock_irq(&chip->reg_lock);
        return 0;
}

static snd_pcm_uframes_t snd_fm801_playback_pointer(struct snd_pcm_substream *substream)
{
        struct fm801 *chip = snd_pcm_substream_chip(substream);
        size_t ptr;

        if (!(chip->ply_ctrl & FM801_START))
                return 0;
        spin_lock(&chip->reg_lock);
        ptr = chip->ply_pos + (chip->ply_count - 1) - inw(FM801_REG(chip, PLY_COUNT));
        if (inw(FM801_REG(chip, IRQ_STATUS)) & FM801_IRQ_PLAYBACK) {
                ptr += chip->ply_count;
                ptr %= chip->ply_size;
        }
        spin_unlock(&chip->reg_lock);
        return bytes_to_frames(substream->runtime, ptr);
}

static snd_pcm_uframes_t snd_fm801_capture_pointer(struct snd_pcm_substream *substream)
{
        struct fm801 *chip = snd_pcm_substream_chip(substream);
        size_t ptr;

        if (!(chip->cap_ctrl & FM801_START))
                return 0;
        spin_lock(&chip->reg_lock);
        ptr = chip->cap_pos + (chip->cap_count - 1) - inw(FM801_REG(chip, CAP_COUNT));
        if (inw(FM801_REG(chip, IRQ_STATUS)) & FM801_IRQ_CAPTURE) {
                ptr += chip->cap_count;
                ptr %= chip->cap_size;
        }
        spin_unlock(&chip->reg_lock);
        return bytes_to_frames(substream->runtime, ptr);
}

static irqreturn_t snd_fm801_interrupt(int irq, void *dev_id)
{
        struct fm801 *chip = dev_id;
        unsigned short status;
        unsigned int tmp;

        status = inw(FM801_REG(chip, IRQ_STATUS));
        status &= FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU|FM801_IRQ_VOLUME;
        if (! status)
                return IRQ_NONE;
        /* ack first */
        outw(status, FM801_REG(chip, IRQ_STATUS));
        if (chip->pcm && (status & FM801_IRQ_PLAYBACK) && chip->playback_substream) {
                spin_lock(&chip->reg_lock);
                chip->ply_buf++;
                chip->ply_pos += chip->ply_count;
                chip->ply_pos %= chip->ply_size;
                tmp = chip->ply_pos + chip->ply_count;
                tmp %= chip->ply_size;
                outl(chip->ply_buffer + tmp,
                                (chip->ply_buf & 1) ?
                                        FM801_REG(chip, PLY_BUF1) :
                                        FM801_REG(chip, PLY_BUF2));
                spin_unlock(&chip->reg_lock);
                snd_pcm_period_elapsed(chip->playback_substream);
        }
        if (chip->pcm && (status & FM801_IRQ_CAPTURE) && chip->capture_substream) {
                spin_lock(&chip->reg_lock);
                chip->cap_buf++;
                chip->cap_pos += chip->cap_count;
                chip->cap_pos %= chip->cap_size;
                tmp = chip->cap_pos + chip->cap_count;
                tmp %= chip->cap_size;
                outl(chip->cap_buffer + tmp,
                                (chip->cap_buf & 1) ?
                                        FM801_REG(chip, CAP_BUF1) :
                                        FM801_REG(chip, CAP_BUF2));
                spin_unlock(&chip->reg_lock);
                snd_pcm_period_elapsed(chip->capture_substream);
        }
        if (chip->rmidi && (status & FM801_IRQ_MPU))
                snd_mpu401_uart_interrupt(irq, chip->rmidi->private_data);
        if (status & FM801_IRQ_VOLUME)
                ;/* TODO */

        return IRQ_HANDLED;
}

static struct snd_pcm_hardware snd_fm801_playback =
{
        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
                                 SNDRV_PCM_INFO_BLOCK_TRANSFER |
                                 SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME |
                                 SNDRV_PCM_INFO_MMAP_VALID),
        .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
        .rates =                SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000,
        .rate_min =             5500,
        .rate_max =             48000,
        .channels_min =         1,
        .channels_max =         2,
        .buffer_bytes_max =     (128*1024),
        .period_bytes_min =     64,
        .period_bytes_max =     (128*1024),
        .periods_min =          1,
        .periods_max =          1024,
        .fifo_size =            0,
};

static struct snd_pcm_hardware snd_fm801_capture =
{
        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
                                 SNDRV_PCM_INFO_BLOCK_TRANSFER |
                                 SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_RESUME |
                                 SNDRV_PCM_INFO_MMAP_VALID),
        .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
        .rates =                SNDRV_PCM_RATE_KNOT | SNDRV_PCM_RATE_8000_48000,
        .rate_min =             5500,
        .rate_max =             48000,
        .channels_min =         1,
        .channels_max =         2,
        .buffer_bytes_max =     (128*1024),
        .period_bytes_min =     64,
        .period_bytes_max =     (128*1024),
        .periods_min =          1,
        .periods_max =          1024,
        .fifo_size =            0,
};

static int snd_fm801_playback_open(struct snd_pcm_substream *substream)
{
        struct fm801 *chip = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;
        int err;

        chip->playback_substream = substream;
        runtime->hw = snd_fm801_playback;
        snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
                                   &hw_constraints_rates);
        if (chip->multichannel) {
                runtime->hw.channels_max = 6;
                snd_pcm_hw_constraint_list(runtime, 0,
                                           SNDRV_PCM_HW_PARAM_CHANNELS,
                                           &hw_constraints_channels);
        }
        if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
                return err;
        return 0;
}

static int snd_fm801_capture_open(struct snd_pcm_substream *substream)
{
        struct fm801 *chip = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;
        int err;

        chip->capture_substream = substream;
        runtime->hw = snd_fm801_capture;
        snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
                                   &hw_constraints_rates);
        if ((err = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
                return err;
        return 0;
}

static int snd_fm801_playback_close(struct snd_pcm_substream *substream)
{
        struct fm801 *chip = snd_pcm_substream_chip(substream);

        chip->playback_substream = NULL;
        return 0;
}

static int snd_fm801_capture_close(struct snd_pcm_substream *substream)
{
        struct fm801 *chip = snd_pcm_substream_chip(substream);

        chip->capture_substream = NULL;
        return 0;
}

static struct snd_pcm_ops snd_fm801_playback_ops = {
        .open =         snd_fm801_playback_open,
        .close =        snd_fm801_playback_close,
        .ioctl =        snd_pcm_lib_ioctl,
        .hw_params =    snd_fm801_hw_params,
        .hw_free =      snd_fm801_hw_free,
        .prepare =      snd_fm801_playback_prepare,
        .trigger =      snd_fm801_playback_trigger,
        .pointer =      snd_fm801_playback_pointer,
};

static struct snd_pcm_ops snd_fm801_capture_ops = {
        .open =         snd_fm801_capture_open,
        .close =        snd_fm801_capture_close,
        .ioctl =        snd_pcm_lib_ioctl,
        .hw_params =    snd_fm801_hw_params,
        .hw_free =      snd_fm801_hw_free,
        .prepare =      snd_fm801_capture_prepare,
        .trigger =      snd_fm801_capture_trigger,
        .pointer =      snd_fm801_capture_pointer,
};

static int __devinit snd_fm801_pcm(struct fm801 *chip, int device, struct snd_pcm ** rpcm)
{
        struct snd_pcm *pcm;
        int err;

        if (rpcm)
                *rpcm = NULL;
        if ((err = snd_pcm_new(chip->card, "FM801", device, 1, 1, &pcm)) < 0)
                return err;

        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_fm801_playback_ops);
        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_fm801_capture_ops);

        pcm->private_data = chip;
        pcm->info_flags = 0;
        strcpy(pcm->name, "FM801");
        chip->pcm = pcm;

        snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
                                              snd_dma_pci_data(chip->pci),
                                              chip->multichannel ? 128*1024 : 64*1024, 128*1024);

        if (rpcm)
                *rpcm = pcm;
        return 0;
}

/*
 *  TEA5757 radio
 */

#ifdef TEA575X_RADIO

/* 256PCS GPIO numbers */
#define TEA_256PCS_DATA                 1
#define TEA_256PCS_WRITE_ENABLE         2       /* inverted */
#define TEA_256PCS_BUS_CLOCK            3

static void snd_fm801_tea575x_256pcs_write(struct snd_tea575x *tea, unsigned int val)
{
        struct fm801 *chip = tea->private_data;
        unsigned short reg;
        int i = 25;

        spin_lock_irq(&chip->reg_lock);
        reg = inw(FM801_REG(chip, GPIO_CTRL));
        /* use GPIO lines and set write enable bit */
        reg |= FM801_GPIO_GS(TEA_256PCS_DATA) |
               FM801_GPIO_GS(TEA_256PCS_WRITE_ENABLE) |
               FM801_GPIO_GS(TEA_256PCS_BUS_CLOCK);
        /* all of lines are in the write direction */
        /* clear data and clock lines */
        reg &= ~(FM801_GPIO_GD(TEA_256PCS_DATA) |
                 FM801_GPIO_GD(TEA_256PCS_WRITE_ENABLE) |
                 FM801_GPIO_GD(TEA_256PCS_BUS_CLOCK) |
                 FM801_GPIO_GP(TEA_256PCS_DATA) |
                 FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK) |
                 FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE));
        outw(reg, FM801_REG(chip, GPIO_CTRL));
        udelay(1);

        while (i--) {
                if (val & (1 << i))
                        reg |= FM801_GPIO_GP(TEA_256PCS_DATA);
                else
                        reg &= ~FM801_GPIO_GP(TEA_256PCS_DATA);
                outw(reg, FM801_REG(chip, GPIO_CTRL));
                udelay(1);
                reg |= FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
                outw(reg, FM801_REG(chip, GPIO_CTRL));
                reg &= ~FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
                outw(reg, FM801_REG(chip, GPIO_CTRL));
                udelay(1);
        }

        /* and reset the write enable bit */
        reg |= FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE) |
               FM801_GPIO_GP(TEA_256PCS_DATA);
        outw(reg, FM801_REG(chip, GPIO_CTRL));
        spin_unlock_irq(&chip->reg_lock);
}

static unsigned int snd_fm801_tea575x_256pcs_read(struct snd_tea575x *tea)
{
        struct fm801 *chip = tea->private_data;
        unsigned short reg;
        unsigned int val = 0;
        int i;
        
        spin_lock_irq(&chip->reg_lock);
        reg = inw(FM801_REG(chip, GPIO_CTRL));
        /* use GPIO lines, set data direction to input */
        reg |= FM801_GPIO_GS(TEA_256PCS_DATA) |
               FM801_GPIO_GS(TEA_256PCS_WRITE_ENABLE) |
               FM801_GPIO_GS(TEA_256PCS_BUS_CLOCK) |
               FM801_GPIO_GD(TEA_256PCS_DATA) |
               FM801_GPIO_GP(TEA_256PCS_DATA) |
               FM801_GPIO_GP(TEA_256PCS_WRITE_ENABLE);
        /* all of lines are in the write direction, except data */
        /* clear data, write enable and clock lines */
        reg &= ~(FM801_GPIO_GD(TEA_256PCS_WRITE_ENABLE) |
                 FM801_GPIO_GD(TEA_256PCS_BUS_CLOCK) |
                 FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK));

        for (i = 0; i < 24; i++) {
                reg &= ~FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
                outw(reg, FM801_REG(chip, GPIO_CTRL));
                udelay(1);
                reg |= FM801_GPIO_GP(TEA_256PCS_BUS_CLOCK);
                outw(reg, FM801_REG(chip, GPIO_CTRL));
                udelay(1);
                val <<= 1;
                if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_256PCS_DATA))
                        val |= 1;
        }

        spin_unlock_irq(&chip->reg_lock);

        return val;
}

/* 256PCPR GPIO numbers */
#define TEA_256PCPR_BUS_CLOCK           0
#define TEA_256PCPR_DATA                1
#define TEA_256PCPR_WRITE_ENABLE        2       /* inverted */

static void snd_fm801_tea575x_256pcpr_write(struct snd_tea575x *tea, unsigned int val)
{
        struct fm801 *chip = tea->private_data;
        unsigned short reg;
        int i = 25;

        spin_lock_irq(&chip->reg_lock);
        reg = inw(FM801_REG(chip, GPIO_CTRL));
        /* use GPIO lines and set write enable bit */
        reg |= FM801_GPIO_GS(TEA_256PCPR_DATA) |
               FM801_GPIO_GS(TEA_256PCPR_WRITE_ENABLE) |
               FM801_GPIO_GS(TEA_256PCPR_BUS_CLOCK);
        /* all of lines are in the write direction */
        /* clear data and clock lines */
        reg &= ~(FM801_GPIO_GD(TEA_256PCPR_DATA) |
                 FM801_GPIO_GD(TEA_256PCPR_WRITE_ENABLE) |
                 FM801_GPIO_GD(TEA_256PCPR_BUS_CLOCK) |
                 FM801_GPIO_GP(TEA_256PCPR_DATA) |
                 FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK) |
                 FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE));
        outw(reg, FM801_REG(chip, GPIO_CTRL));
        udelay(1);

        while (i--) {
                if (val & (1 << i))
                        reg |= FM801_GPIO_GP(TEA_256PCPR_DATA);
                else
                        reg &= ~FM801_GPIO_GP(TEA_256PCPR_DATA);
                outw(reg, FM801_REG(chip, GPIO_CTRL));
                udelay(1);
                reg |= FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
                outw(reg, FM801_REG(chip, GPIO_CTRL));
                reg &= ~FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
                outw(reg, FM801_REG(chip, GPIO_CTRL));
                udelay(1);
        }

        /* and reset the write enable bit */
        reg |= FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE) |
               FM801_GPIO_GP(TEA_256PCPR_DATA);
        outw(reg, FM801_REG(chip, GPIO_CTRL));
        spin_unlock_irq(&chip->reg_lock);
}

static unsigned int snd_fm801_tea575x_256pcpr_read(struct snd_tea575x *tea)
{
        struct fm801 *chip = tea->private_data;
        unsigned short reg;
        unsigned int val = 0;
        int i;
        
        spin_lock_irq(&chip->reg_lock);
        reg = inw(FM801_REG(chip, GPIO_CTRL));
        /* use GPIO lines, set data direction to input */
        reg |= FM801_GPIO_GS(TEA_256PCPR_DATA) |
               FM801_GPIO_GS(TEA_256PCPR_WRITE_ENABLE) |
               FM801_GPIO_GS(TEA_256PCPR_BUS_CLOCK) |
               FM801_GPIO_GD(TEA_256PCPR_DATA) |
               FM801_GPIO_GP(TEA_256PCPR_DATA) |
               FM801_GPIO_GP(TEA_256PCPR_WRITE_ENABLE);
        /* all of lines are in the write direction, except data */
        /* clear data, write enable and clock lines */
        reg &= ~(FM801_GPIO_GD(TEA_256PCPR_WRITE_ENABLE) |
                 FM801_GPIO_GD(TEA_256PCPR_BUS_CLOCK) |
                 FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK));

        for (i = 0; i < 24; i++) {
                reg &= ~FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
                outw(reg, FM801_REG(chip, GPIO_CTRL));
                udelay(1);
                reg |= FM801_GPIO_GP(TEA_256PCPR_BUS_CLOCK);
                outw(reg, FM801_REG(chip, GPIO_CTRL));
                udelay(1);
                val <<= 1;
                if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_256PCPR_DATA))
                        val |= 1;
        }

        spin_unlock_irq(&chip->reg_lock);

        return val;
}

/* 64PCR GPIO numbers */
#define TEA_64PCR_BUS_CLOCK             0
#define TEA_64PCR_WRITE_ENABLE          1       /* inverted */
#define TEA_64PCR_DATA                  2

static void snd_fm801_tea575x_64pcr_write(struct snd_tea575x *tea, unsigned int val)
{
        struct fm801 *chip = tea->private_data;
        unsigned short reg;
        int i = 25;

        spin_lock_irq(&chip->reg_lock);
        reg = inw(FM801_REG(chip, GPIO_CTRL));
        /* use GPIO lines and set write enable bit */
        reg |= FM801_GPIO_GS(TEA_64PCR_DATA) |
               FM801_GPIO_GS(TEA_64PCR_WRITE_ENABLE) |
               FM801_GPIO_GS(TEA_64PCR_BUS_CLOCK);
        /* all of lines are in the write direction */
        /* clear data and clock lines */
        reg &= ~(FM801_GPIO_GD(TEA_64PCR_DATA) |
                 FM801_GPIO_GD(TEA_64PCR_WRITE_ENABLE) |
                 FM801_GPIO_GD(TEA_64PCR_BUS_CLOCK) |
                 FM801_GPIO_GP(TEA_64PCR_DATA) |
                 FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK) |
                 FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE));
        outw(reg, FM801_REG(chip, GPIO_CTRL));
        udelay(1);

        while (i--) {
                if (val & (1 << i))
                        reg |= FM801_GPIO_GP(TEA_64PCR_DATA);
                else
                        reg &= ~FM801_GPIO_GP(TEA_64PCR_DATA);
                outw(reg, FM801_REG(chip, GPIO_CTRL));
                udelay(1);
                reg |= FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
                outw(reg, FM801_REG(chip, GPIO_CTRL));
                reg &= ~FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
                outw(reg, FM801_REG(chip, GPIO_CTRL));
                udelay(1);
        }

        /* and reset the write enable bit */
        reg |= FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE) |
               FM801_GPIO_GP(TEA_64PCR_DATA);
        outw(reg, FM801_REG(chip, GPIO_CTRL));
        spin_unlock_irq(&chip->reg_lock);
}

static unsigned int snd_fm801_tea575x_64pcr_read(struct snd_tea575x *tea)
{
        struct fm801 *chip = tea->private_data;
        unsigned short reg;
        unsigned int val = 0;
        int i;
        
        spin_lock_irq(&chip->reg_lock);
        reg = inw(FM801_REG(chip, GPIO_CTRL));
        /* use GPIO lines, set data direction to input */
        reg |= FM801_GPIO_GS(TEA_64PCR_DATA) |
               FM801_GPIO_GS(TEA_64PCR_WRITE_ENABLE) |
               FM801_GPIO_GS(TEA_64PCR_BUS_CLOCK) |
               FM801_GPIO_GD(TEA_64PCR_DATA) |
               FM801_GPIO_GP(TEA_64PCR_DATA) |
               FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE);
        /* all of lines are in the write direction, except data */
        /* clear data, write enable and clock lines */
        reg &= ~(FM801_GPIO_GD(TEA_64PCR_WRITE_ENABLE) |
                 FM801_GPIO_GD(TEA_64PCR_BUS_CLOCK) |
                 FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK));

        for (i = 0; i < 24; i++) {
                reg &= ~FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
                outw(reg, FM801_REG(chip, GPIO_CTRL));
                udelay(1);
                reg |= FM801_GPIO_GP(TEA_64PCR_BUS_CLOCK);
                outw(reg, FM801_REG(chip, GPIO_CTRL));
                udelay(1);
                val <<= 1;
                if (inw(FM801_REG(chip, GPIO_CTRL)) & FM801_GPIO_GP(TEA_64PCR_DATA))
                        val |= 1;
        }

        spin_unlock_irq(&chip->reg_lock);

        return val;
}

static void snd_fm801_tea575x_64pcr_mute(struct snd_tea575x *tea,
                                          unsigned int mute)
{
        struct fm801 *chip = tea->private_data;
        unsigned short reg;

        spin_lock_irq(&chip->reg_lock);

        reg = inw(FM801_REG(chip, GPIO_CTRL));
        if (mute)
                /* 0xf800 (mute) */
                reg &= ~FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE);
        else
                /* 0xf802 (unmute) */
                reg |= FM801_GPIO_GP(TEA_64PCR_WRITE_ENABLE);
        outw(reg, FM801_REG(chip, GPIO_CTRL));
        udelay(1);

        spin_unlock_irq(&chip->reg_lock);
}

static struct snd_tea575x_ops snd_fm801_tea_ops[3] = {
        {
                /* 1 = MediaForte 256-PCS */
                .write = snd_fm801_tea575x_256pcs_write,
                .read = snd_fm801_tea575x_256pcs_read,
        },
        {
                /* 2 = MediaForte 256-PCPR */
                .write = snd_fm801_tea575x_256pcpr_write,
                .read = snd_fm801_tea575x_256pcpr_read,
        },
        {
                /* 3 = MediaForte 64-PCR */
                .write = snd_fm801_tea575x_64pcr_write,
                .read = snd_fm801_tea575x_64pcr_read,
                .mute = snd_fm801_tea575x_64pcr_mute,
        }
};
#endif

/*
 *  Mixer routines
 */

#define FM801_SINGLE(xname, reg, shift, mask, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_single, \
  .get = snd_fm801_get_single, .put = snd_fm801_put_single, \
  .private_value = reg | (shift << 8) | (mask << 16) | (invert << 24) }

static int snd_fm801_info_single(struct snd_kcontrol *kcontrol,
                                 struct snd_ctl_elem_info *uinfo)
{
        int mask = (kcontrol->private_value >> 16) & 0xff;

        uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
        uinfo->count = 1;
        uinfo->value.integer.min = 0;
        uinfo->value.integer.max = mask;
        return 0;
}

static int snd_fm801_get_single(struct snd_kcontrol *kcontrol,
                                struct snd_ctl_elem_value *ucontrol)
{
        struct fm801 *chip = snd_kcontrol_chip(kcontrol);
        int reg = kcontrol->private_value & 0xff;
        int shift = (kcontrol->private_value >> 8) & 0xff;
        int mask = (kcontrol->private_value >> 16) & 0xff;
        int invert = (kcontrol->private_value >> 24) & 0xff;

        ucontrol->value.integer.value[0] = (inw(chip->port + reg) >> shift) & mask;
        if (invert)
                ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
        return 0;
}

static int snd_fm801_put_single(struct snd_kcontrol *kcontrol,
                                struct snd_ctl_elem_value *ucontrol)
{
        struct fm801 *chip = snd_kcontrol_chip(kcontrol);
        int reg = kcontrol->private_value & 0xff;
        int shift = (kcontrol->private_value >> 8) & 0xff;
        int mask = (kcontrol->private_value >> 16) & 0xff;
        int invert = (kcontrol->private_value >> 24) & 0xff;
        unsigned short val;

        val = (ucontrol->value.integer.value[0] & mask);
        if (invert)
                val = mask - val;
        return snd_fm801_update_bits(chip, reg, mask << shift, val << shift);
}

#define FM801_DOUBLE(xname, reg, shift_left, shift_right, mask, invert) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, .info = snd_fm801_info_double, \
  .get = snd_fm801_get_double, .put = snd_fm801_put_double, \
  .private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24) }
#define FM801_DOUBLE_TLV(xname, reg, shift_left, shift_right, mask, invert, xtlv) \
{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
  .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_TLV_READ, \
  .name = xname, .info = snd_fm801_info_double, \
  .get = snd_fm801_get_double, .put = snd_fm801_put_double, \
  .private_value = reg | (shift_left << 8) | (shift_right << 12) | (mask << 16) | (invert << 24), \
  .tlv = { .p = (xtlv) } }

static int snd_fm801_info_double(struct snd_kcontrol *kcontrol,
                                 struct snd_ctl_elem_info *uinfo)
{
        int mask = (kcontrol->private_value >> 16) & 0xff;

        uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
        uinfo->count = 2;
        uinfo->value.integer.min = 0;
        uinfo->value.integer.max = mask;
        return 0;
}

static int snd_fm801_get_double(struct snd_kcontrol *kcontrol,
                                struct snd_ctl_elem_value *ucontrol)
{
        struct fm801 *chip = snd_kcontrol_chip(kcontrol);
        int reg = kcontrol->private_value & 0xff;
        int shift_left = (kcontrol->private_value >> 8) & 0x0f;
        int shift_right = (kcontrol->private_value >> 12) & 0x0f;
        int mask = (kcontrol->private_value >> 16) & 0xff;
        int invert = (kcontrol->private_value >> 24) & 0xff;

        spin_lock_irq(&chip->reg_lock);
        ucontrol->value.integer.value[0] = (inw(chip->port + reg) >> shift_left) & mask;
        ucontrol->value.integer.value[1] = (inw(chip->port + reg) >> shift_right) & mask;
        spin_unlock_irq(&chip->reg_lock);
        if (invert) {
                ucontrol->value.integer.value[0] = mask - ucontrol->value.integer.value[0];
                ucontrol->value.integer.value[1] = mask - ucontrol->value.integer.value[1];
        }
        return 0;
}

static int snd_fm801_put_double(struct snd_kcontrol *kcontrol,
                                struct snd_ctl_elem_value *ucontrol)
{
        struct fm801 *chip = snd_kcontrol_chip(kcontrol);
        int reg = kcontrol->private_value & 0xff;
        int shift_left = (kcontrol->private_value >> 8) & 0x0f;
        int shift_right = (kcontrol->private_value >> 12) & 0x0f;
        int mask = (kcontrol->private_value >> 16) & 0xff;
        int invert = (kcontrol->private_value >> 24) & 0xff;
        unsigned short val1, val2;
 
        val1 = ucontrol->value.integer.value[0] & mask;
        val2 = ucontrol->value.integer.value[1] & mask;
        if (invert) {
                val1 = mask - val1;
                val2 = mask - val2;
        }
        return snd_fm801_update_bits(chip, reg,
                                     (mask << shift_left) | (mask << shift_right),
                                     (val1 << shift_left ) | (val2 << shift_right));
}

static int snd_fm801_info_mux(struct snd_kcontrol *kcontrol,
                              struct snd_ctl_elem_info *uinfo)
{
        static char *texts[5] = {
                "AC97 Primary", "FM", "I2S", "PCM", "AC97 Secondary"
        };
 
        uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
        uinfo->count = 1;
        uinfo->value.enumerated.items = 5;
        if (uinfo->value.enumerated.item > 4)
                uinfo->value.enumerated.item = 4;
        strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
        return 0;
}

static int snd_fm801_get_mux(struct snd_kcontrol *kcontrol,
                             struct snd_ctl_elem_value *ucontrol)
{
        struct fm801 *chip = snd_kcontrol_chip(kcontrol);
        unsigned short val;
 
        val = inw(FM801_REG(chip, REC_SRC)) & 7;
        if (val > 4)
                val = 4;
        ucontrol->value.enumerated.item[0] = val;
        return 0;
}

static int snd_fm801_put_mux(struct snd_kcontrol *kcontrol,
                             struct snd_ctl_elem_value *ucontrol)
{
        struct fm801 *chip = snd_kcontrol_chip(kcontrol);
        unsigned short val;
 
        if ((val = ucontrol->value.enumerated.item[0]) > 4)
                return -EINVAL;
        return snd_fm801_update_bits(chip, FM801_REC_SRC, 7, val);
}

static const DECLARE_TLV_DB_SCALE(db_scale_dsp, -3450, 150, 0);

#define FM801_CONTROLS ARRAY_SIZE(snd_fm801_controls)

static struct snd_kcontrol_new snd_fm801_controls[] __devinitdata = {
FM801_DOUBLE_TLV("Wave Playback Volume", FM801_PCM_VOL, 0, 8, 31, 1,
                 db_scale_dsp),
FM801_SINGLE("Wave Playback Switch", FM801_PCM_VOL, 15, 1, 1),
FM801_DOUBLE_TLV("I2S Playback Volume", FM801_I2S_VOL, 0, 8, 31, 1,
                 db_scale_dsp),
FM801_SINGLE("I2S Playback Switch", FM801_I2S_VOL, 15, 1, 1),
FM801_DOUBLE_TLV("FM Playback Volume", FM801_FM_VOL, 0, 8, 31, 1,
                 db_scale_dsp),
FM801_SINGLE("FM Playback Switch", FM801_FM_VOL, 15, 1, 1),
{
        .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
        .name = "Digital Capture Source",
        .info = snd_fm801_info_mux,
        .get = snd_fm801_get_mux,
        .put = snd_fm801_put_mux,
}
};

#define FM801_CONTROLS_MULTI ARRAY_SIZE(snd_fm801_controls_multi)

static struct snd_kcontrol_new snd_fm801_controls_multi[] __devinitdata = {
FM801_SINGLE("AC97 2ch->4ch Copy Switch", FM801_CODEC_CTRL, 7, 1, 0),
FM801_SINGLE("AC97 18-bit Switch", FM801_CODEC_CTRL, 10, 1, 0),
FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",CAPTURE,SWITCH), FM801_I2S_MODE, 8, 1, 0),
FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",PLAYBACK,SWITCH), FM801_I2S_MODE, 9, 1, 0),
FM801_SINGLE(SNDRV_CTL_NAME_IEC958("Raw Data ",CAPTURE,SWITCH), FM801_I2S_MODE, 10, 1, 0),
FM801_SINGLE(SNDRV_CTL_NAME_IEC958("",PLAYBACK,SWITCH), FM801_GEN_CTRL, 2, 1, 0),
};

static void snd_fm801_mixer_free_ac97_bus(struct snd_ac97_bus *bus)
{
        struct fm801 *chip = bus->private_data;
        chip->ac97_bus = NULL;
}

static void snd_fm801_mixer_free_ac97(struct snd_ac97 *ac97)
{
        struct fm801 *chip = ac97->private_data;
        if (ac97->num == 0) {
                chip->ac97 = NULL;
        } else {
                chip->ac97_sec = NULL;
        }
}

static int __devinit snd_fm801_mixer(struct fm801 *chip)
{
        struct snd_ac97_template ac97;
        unsigned int i;
        int err;
        static struct snd_ac97_bus_ops ops = {
                .write = snd_fm801_codec_write,
                .read = snd_fm801_codec_read,
        };

        if ((err = snd_ac97_bus(chip->card, 0, &ops, chip, &chip->ac97_bus)) < 0)
                return err;
        chip->ac97_bus->private_free = snd_fm801_mixer_free_ac97_bus;

        memset(&ac97, 0, sizeof(ac97));
        ac97.private_data = chip;
        ac97.private_free = snd_fm801_mixer_free_ac97;
        if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97)) < 0)
                return err;
        if (chip->secondary) {
                ac97.num = 1;
                ac97.addr = chip->secondary_addr;
                if ((err = snd_ac97_mixer(chip->ac97_bus, &ac97, &chip->ac97_sec)) < 0)
                        return err;
        }
        for (i = 0; i < FM801_CONTROLS; i++)
                snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls[i], chip));
        if (chip->multichannel) {
                for (i = 0; i < FM801_CONTROLS_MULTI; i++)
                        snd_ctl_add(chip->card, snd_ctl_new1(&snd_fm801_controls_multi[i], chip));
        }
        return 0;
}

/*
 *  initialization routines
 */

static int wait_for_codec(struct fm801 *chip, unsigned int codec_id,
                          unsigned short reg, unsigned long waits)
{
        unsigned long timeout = jiffies + waits;

        outw(FM801_AC97_READ | (codec_id << FM801_AC97_ADDR_SHIFT) | reg,
             FM801_REG(chip, AC97_CMD));
        udelay(5);
        do {
                if ((inw(FM801_REG(chip, AC97_CMD)) & (FM801_AC97_VALID|FM801_AC97_BUSY))
                    == FM801_AC97_VALID)
                        return 0;
                schedule_timeout_uninterruptible(1);
        } while (time_after(timeout, jiffies));
        return -EIO;
}

static int snd_fm801_chip_init(struct fm801 *chip, int resume)
{
        unsigned short cmdw;

        if (chip->tea575x_tuner & 0x0010)
                goto __ac97_ok;

        /* codec cold reset + AC'97 warm reset */
        outw((1<<5) | (1<<6), FM801_REG(chip, CODEC_CTRL));
        inw(FM801_REG(chip, CODEC_CTRL)); /* flush posting data */
        udelay(100);
        outw(0, FM801_REG(chip, CODEC_CTRL));

        if (wait_for_codec(chip, 0, AC97_RESET, msecs_to_jiffies(750)) < 0) {
                snd_printk(KERN_ERR "Primary AC'97 codec not found\n");
                if (! resume)
                        return -EIO;
        }

        if (chip->multichannel) {
                if (chip->secondary_addr) {
                        wait_for_codec(chip, chip->secondary_addr,
                                       AC97_VENDOR_ID1, msecs_to_jiffies(50));
                } else {
                        /* my card has the secondary codec */
                        /* at address #3, so the loop is inverted */
                        int i;
                        for (i = 3; i > 0; i--) {
                                if (!wait_for_codec(chip, i, AC97_VENDOR_ID1,
                                                     msecs_to_jiffies(50))) {
                                        cmdw = inw(FM801_REG(chip, AC97_DATA));
                                        if (cmdw != 0xffff && cmdw != 0) {
                                                chip->secondary = 1;
                                                chip->secondary_addr = i;
                                                break;
                                        }
                                }
                        }
                }

                /* the recovery phase, it seems that probing for non-existing codec might */
                /* cause timeout problems */
                wait_for_codec(chip, 0, AC97_VENDOR_ID1, msecs_to_jiffies(750));
        }

      __ac97_ok:

        /* init volume */
        outw(0x0808, FM801_REG(chip, PCM_VOL));
        outw(0x9f1f, FM801_REG(chip, FM_VOL));
        outw(0x8808, FM801_REG(chip, I2S_VOL));

        /* I2S control - I2S mode */
        outw(0x0003, FM801_REG(chip, I2S_MODE));

        /* interrupt setup */
        cmdw = inw(FM801_REG(chip, IRQ_MASK));
        if (chip->irq < 0)
                cmdw |= 0x00c3;         /* mask everything, no PCM nor MPU */
        else
                cmdw &= ~0x0083;        /* unmask MPU, PLAYBACK & CAPTURE */
        outw(cmdw, FM801_REG(chip, IRQ_MASK));

        /* interrupt clear */
        outw(FM801_IRQ_PLAYBACK|FM801_IRQ_CAPTURE|FM801_IRQ_MPU, FM801_REG(chip, IRQ_STATUS));

        return 0;
}


static int snd_fm801_free(struct fm801 *chip)
{
        unsigned short cmdw;

        if (chip->irq < 0)
                goto __end_hw;

        /* interrupt setup - mask everything */
        cmdw = inw(FM801_REG(chip, IRQ_MASK));
        cmdw |= 0x00c3;
        outw(cmdw, FM801_REG(chip, IRQ_MASK));

      __end_hw:
#ifdef TEA575X_RADIO
        snd_tea575x_exit(&chip->tea);
#endif
        if (chip->irq >= 0)
                free_irq(chip->irq, chip);
        pci_release_regions(chip->pci);
        pci_disable_device(chip->pci);

        kfree(chip);
        return 0;
}

static int snd_fm801_dev_free(struct snd_device *device)
{
        struct fm801 *chip = device->device_data;
        return snd_fm801_free(chip);
}

static int __devinit snd_fm801_create(struct snd_card *card,
                                      struct pci_dev * pci,
                                      int tea575x_tuner,
                                      struct fm801 ** rchip)
{
        struct fm801 *chip;
        int err;
        static struct snd_device_ops ops = {
                .dev_free =     snd_fm801_dev_free,
        };

        *rchip = NULL;
        if ((err = pci_enable_device(pci)) < 0)
                return err;
        chip = kzalloc(sizeof(*chip), GFP_KERNEL);
        if (chip == NULL) {
                pci_disable_device(pci);
                return -ENOMEM;
        }
        spin_lock_init(&chip->reg_lock);
        chip->card = card;
        chip->pci = pci;
        chip->irq = -1;
        chip->tea575x_tuner = tea575x_tuner;
        if ((err = pci_request_regions(pci, "FM801")) < 0) {
                kfree(chip);
                pci_disable_device(pci);
                return err;
        }
        chip->port = pci_resource_start(pci, 0);
        if ((tea575x_tuner & 0x0010) == 0) {
                if (request_irq(pci->irq, snd_fm801_interrupt, IRQF_SHARED,
                                "FM801", chip)) {
                        snd_printk(KERN_ERR "unable to grab IRQ %d\n", chip->irq);
                        snd_fm801_free(chip);
                        return -EBUSY;
                }
                chip->irq = pci->irq;
                pci_set_master(pci);
        }

        if (pci->revision >= 0xb1)      /* FM801-AU */
                chip->multichannel = 1;

        snd_fm801_chip_init(chip, 0);

        if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
                snd_fm801_free(chip);
                return err;
        }

        snd_card_set_dev(card, &pci->dev);

#ifdef TEA575X_RADIO
        if (tea575x_tuner > 0 && (tea575x_tuner & 0x000f) < 4) {
                chip->tea.dev_nr = tea575x_tuner >> 16;
                chip->tea.card = card;
                chip->tea.freq_fixup = 10700;
                chip->tea.private_data = chip;
                chip->tea.ops = &snd_fm801_tea_ops[(tea575x_tuner & 0x000f) - 1];
                snd_tea575x_init(&chip->tea);
        }
#endif

        *rchip = chip;
        return 0;
}

static int __devinit snd_card_fm801_probe(struct pci_dev *pci,
                                          const struct pci_device_id *pci_id)
{
        static int dev;
        struct snd_card *card;
        struct fm801 *chip;
        struct snd_opl3 *opl3;
        int err;

        if (dev >= SNDRV_CARDS)
                return -ENODEV;
        if (!enable[dev]) {
                dev++;
                return -ENOENT;
        }

        card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
        if (card == NULL)
                return -ENOMEM;
        if ((err = snd_fm801_create(card, pci, tea575x_tuner[dev], &chip)) < 0) {
                snd_card_free(card);
                return err;
        }
        card->private_data = chip;

        strcpy(card->driver, "FM801");
        strcpy(card->shortname, "ForteMedia FM801-");
        strcat(card->shortname, chip->multichannel ? "AU" : "AS");
        sprintf(card->longname, "%s at 0x%lx, irq %i",
                card->shortname, chip->port, chip->irq);

        if (tea575x_tuner[dev] & 0x0010)
                goto __fm801_tuner_only;

        if ((err = snd_fm801_pcm(chip, 0, NULL)) < 0) {
                snd_card_free(card);
                return err;
        }
        if ((err = snd_fm801_mixer(chip)) < 0) {
                snd_card_free(card);
                return err;
        }
        if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_FM801,
                                       FM801_REG(chip, MPU401_DATA),
                                       MPU401_INFO_INTEGRATED,
                                       chip->irq, 0, &chip->rmidi)) < 0) {
                snd_card_free(card);
                return err;
        }
        if ((err = snd_opl3_create(card, FM801_REG(chip, OPL3_BANK0),
                                   FM801_REG(chip, OPL3_BANK1),
                                   OPL3_HW_OPL3_FM801, 1, &opl3)) < 0) {
                snd_card_free(card);
                return err;
        }
        if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
                snd_card_free(card);
                return err;
        }

      __fm801_tuner_only:
        if ((err = snd_card_register(card)) < 0) {
                snd_card_free(card);
                return err;
        }
        pci_set_drvdata(pci, card);
        dev++;
        return 0;
}

static void __devexit snd_card_fm801_remove(struct pci_dev *pci)
{
        snd_card_free(pci_get_drvdata(pci));
        pci_set_drvdata(pci, NULL);
}

#ifdef CONFIG_PM
static unsigned char saved_regs[] = {
        FM801_PCM_VOL, FM801_I2S_VOL, FM801_FM_VOL, FM801_REC_SRC,
        FM801_PLY_CTRL, FM801_PLY_COUNT, FM801_PLY_BUF1, FM801_PLY_BUF2,
        FM801_CAP_CTRL, FM801_CAP_COUNT, FM801_CAP_BUF1, FM801_CAP_BUF2,
        FM801_CODEC_CTRL, FM801_I2S_MODE, FM801_VOLUME, FM801_GEN_CTRL,
};

static int snd_fm801_suspend(struct pci_dev *pci, pm_message_t state)
{
        struct snd_card *card = pci_get_drvdata(pci);
        struct fm801 *chip = card->private_data;
        int i;

        snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
        snd_pcm_suspend_all(chip->pcm);
        snd_ac97_suspend(chip->ac97);
        snd_ac97_suspend(chip->ac97_sec);
        for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
                chip->saved_regs[i] = inw(chip->port + saved_regs[i]);
        /* FIXME: tea575x suspend */

        pci_disable_device(pci);
        pci_save_state(pci);
        pci_set_power_state(pci, pci_choose_state(pci, state));
        return 0;
}

static int snd_fm801_resume(struct pci_dev *pci)
{
        struct snd_card *card = pci_get_drvdata(pci);
        struct fm801 *chip = card->private_data;
        int i;

        pci_set_power_state(pci, PCI_D0);
        pci_restore_state(pci);
        if (pci_enable_device(pci) < 0) {
                printk(KERN_ERR "fm801: pci_enable_device failed, "
                       "disabling device\n");
                snd_card_disconnect(card);
                return -EIO;
        }
        pci_set_master(pci);

        snd_fm801_chip_init(chip, 1);
        snd_ac97_resume(chip->ac97);
        snd_ac97_resume(chip->ac97_sec);
        for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
                outw(chip->saved_regs[i], chip->port + saved_regs[i]);

        snd_power_change_state(card, SNDRV_CTL_POWER_D0);
        return 0;
}
#endif

static struct pci_driver driver = {
        .name = "FM801",
        .id_table = snd_fm801_ids,
        .probe = snd_card_fm801_probe,
        .remove = __devexit_p(snd_card_fm801_remove),
#ifdef CONFIG_PM
        .suspend = snd_fm801_suspend,
        .resume = snd_fm801_resume,
#endif
};

static int __init alsa_card_fm801_init(void)
{
        return pci_register_driver(&driver);
}

static void __exit alsa_card_fm801_exit(void)
{
        pci_unregister_driver(&driver);
}

module_init(alsa_card_fm801_init)
module_exit(alsa_card_fm801_exit)

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading