[funini.com] -> [kei@sodan] -> Kernel Reading

root/sound/pci/es1968.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. __maestro_write
  2. maestro_write
  3. __maestro_read
  4. maestro_read
  5. snd_es1968_ac97_wait
  6. snd_es1968_ac97_wait_poll
  7. snd_es1968_ac97_write
  8. snd_es1968_ac97_read
  9. apu_index_set
  10. apu_data_set
  11. __apu_set_register
  12. apu_set_register
  13. __apu_get_register
  14. apu_get_register
  15. assp_set_register
  16. assp_get_register
  17. wave_set_register
  18. wave_get_register
  19. snd_es1968_bob_stop
  20. snd_es1968_bob_start
  21. snd_es1968_bob_inc
  22. snd_es1968_bob_dec
  23. snd_es1968_calc_bob_rate
  24. snd_es1968_compute_rate
  25. snd_es1968_get_dma_ptr
  26. snd_es1968_apu_set_freq
  27. snd_es1968_trigger_apu
  28. snd_es1968_pcm_start
  29. snd_es1968_pcm_stop
  30. snd_es1968_program_wavecache
  31. snd_es1968_playback_setup
  32. init_capture_apu
  33. snd_es1968_capture_setup
  34. snd_es1968_pcm_prepare
  35. snd_es1968_pcm_trigger
  36. snd_es1968_pcm_pointer
  37. calc_available_memory_size
  38. snd_es1968_new_memory
  39. snd_es1968_free_memory
  40. snd_es1968_free_dmabuf
  41. snd_es1968_init_dmabuf
  42. snd_es1968_hw_params
  43. snd_es1968_hw_free
  44. snd_es1968_alloc_apu_pair
  45. snd_es1968_free_apu_pair
  46. snd_es1968_playback_open
  47. snd_es1968_capture_open
  48. snd_es1968_playback_close
  49. snd_es1968_capture_close
  50. es1968_measure_clock
  51. snd_es1968_pcm_free
  52. snd_es1968_pcm
  53. snd_es1968_suppress_jitter
  54. snd_es1968_update_pcm
  55. es1968_update_hw_volume
  56. snd_es1968_interrupt
  57. snd_es1968_mixer
  58. snd_es1968_ac97_reset
  59. snd_es1968_reset
  60. snd_es1968_chip_init
  61. snd_es1968_start_irq
  62. es1968_suspend
  63. es1968_resume
  64. snd_es1968_create_gameport
  65. snd_es1968_free_gameport
  66. snd_es1968_create_gameport
  67. snd_es1968_free_gameport
  68. snd_es1968_free
  69. snd_es1968_dev_free
  70. snd_es1968_create
  71. snd_es1968_probe
  72. snd_es1968_remove
  73. alsa_card_es1968_init
  74. alsa_card_es1968_exit

/*
 *  Driver for ESS Maestro 1/2/2E Sound Card (started 21.8.99)
 *  Copyright (c) by Matze Braun <MatzeBraun@gmx.de>.
 *                   Takashi Iwai <tiwai@suse.de>
 *                  
 *  Most of the driver code comes from Zach Brown(zab@redhat.com)
 *      Alan Cox OSS Driver
 *  Rewritted from card-es1938.c source.
 *
 *  TODO:
 *   Perhaps Synth
 *
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 *
 *
 *  Notes from Zach Brown about the driver code
 *
 *  Hardware Description
 *
 *      A working Maestro setup contains the Maestro chip wired to a 
 *      codec or 2.  In the Maestro we have the APUs, the ASSP, and the
 *      Wavecache.  The APUs can be though of as virtual audio routing
 *      channels.  They can take data from a number of sources and perform
 *      basic encodings of the data.  The wavecache is a storehouse for
 *      PCM data.  Typically it deals with PCI and interracts with the
 *      APUs.  The ASSP is a wacky DSP like device that ESS is loth
 *      to release docs on.  Thankfully it isn't required on the Maestro
 *      until you start doing insane things like FM emulation and surround
 *      encoding.  The codecs are almost always AC-97 compliant codecs, 
 *      but it appears that early Maestros may have had PT101 (an ESS
 *      part?) wired to them.  The only real difference in the Maestro
 *      families is external goop like docking capability, memory for
 *      the ASSP, and initialization differences.
 *
 *  Driver Operation
 *
 *      We only drive the APU/Wavecache as typical DACs and drive the
 *      mixers in the codecs.  There are 64 APUs.  We assign 6 to each
 *      /dev/dsp? device.  2 channels for output, and 4 channels for
 *      input.
 *
 *      Each APU can do a number of things, but we only really use
 *      3 basic functions.  For playback we use them to convert PCM
 *      data fetched over PCI by the wavecahche into analog data that
 *      is handed to the codec.  One APU for mono, and a pair for stereo.
 *      When in stereo, the combination of smarts in the APU and Wavecache
 *      decide which wavecache gets the left or right channel.
 *
 *      For record we still use the old overly mono system.  For each in
 *      coming channel the data comes in from the codec, through a 'input'
 *      APU, through another rate converter APU, and then into memory via
 *      the wavecache and PCI.  If its stereo, we mash it back into LRLR in
 *      software.  The pass between the 2 APUs is supposedly what requires us
 *      to have a 512 byte buffer sitting around in wavecache/memory.
 *
 *      The wavecache makes our life even more fun.  First off, it can
 *      only address the first 28 bits of PCI address space, making it
 *      useless on quite a few architectures.  Secondly, its insane.
 *      It claims to fetch from 4 regions of PCI space, each 4 meg in length.
 *      But that doesn't really work.  You can only use 1 region.  So all our
 *      allocations have to be in 4meg of each other.  Booo.  Hiss.
 *      So we have a module parameter, dsps_order, that is the order of
 *      the number of dsps to provide.  All their buffer space is allocated
 *      on open time.  The sonicvibes OSS routines we inherited really want
 *      power of 2 buffers, so we have all those next to each other, then
 *      512 byte regions for the recording wavecaches.  This ends up
 *      wasting quite a bit of memory.  The only fixes I can see would be 
 *      getting a kernel allocator that could work in zones, or figuring out
 *      just how to coerce the WP into doing what we want.
 *
 *      The indirection of the various registers means we have to spinlock
 *      nearly all register accesses.  We have the main register indirection
 *      like the wave cache, maestro registers, etc.  Then we have beasts
 *      like the APU interface that is indirect registers gotten at through
 *      the main maestro indirection.  Ouch.  We spinlock around the actual
 *      ports on a per card basis.  This means spinlock activity at each IO
 *      operation, but the only IO operation clusters are in non critical 
 *      paths and it makes the code far easier to follow.  Interrupts are
 *      blocked while holding the locks because the int handler has to
 *      get at some of them :(.  The mixer interface doesn't, however.
 *      We also have an OSS state lock that is thrown around in a few
 *      places.
 */

#include <asm/io.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/gameport.h>
#include <linux/moduleparam.h>
#include <linux/mutex.h>

#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/mpu401.h>
#include <sound/ac97_codec.h>
#include <sound/initval.h>

#define CARD_NAME "ESS Maestro1/2"
#define DRIVER_NAME "ES1968"

MODULE_DESCRIPTION("ESS Maestro");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{ESS,Maestro 2e},"
                "{ESS,Maestro 2},"
                "{ESS,Maestro 1},"
                "{TerraTec,DMX}}");

#if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
#define SUPPORT_JOYSTICK 1
#endif

static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;      /* Index 1-MAX */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;       /* ID for this card */
static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;      /* Enable this card */
static int total_bufsize[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 1024 };
static int pcm_substreams_p[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 4 };
static int pcm_substreams_c[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 1 };
static int clock[SNDRV_CARDS];
static int use_pm[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 2};
static int enable_mpu[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS - 1)] = 2};
#ifdef SUPPORT_JOYSTICK
static int joystick[SNDRV_CARDS];
#endif

module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for " CARD_NAME " soundcard.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for " CARD_NAME " soundcard.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable " CARD_NAME " soundcard.");
module_param_array(total_bufsize, int, NULL, 0444);
MODULE_PARM_DESC(total_bufsize, "Total buffer size in kB.");
module_param_array(pcm_substreams_p, int, NULL, 0444);
MODULE_PARM_DESC(pcm_substreams_p, "PCM Playback substreams for " CARD_NAME " soundcard.");
module_param_array(pcm_substreams_c, int, NULL, 0444);
MODULE_PARM_DESC(pcm_substreams_c, "PCM Capture substreams for " CARD_NAME " soundcard.");
module_param_array(clock, int, NULL, 0444);
MODULE_PARM_DESC(clock, "Clock on " CARD_NAME " soundcard.  (0 = auto-detect)");
module_param_array(use_pm, int, NULL, 0444);
MODULE_PARM_DESC(use_pm, "Toggle power-management.  (0 = off, 1 = on, 2 = auto)");
module_param_array(enable_mpu, int, NULL, 0444);
MODULE_PARM_DESC(enable_mpu, "Enable MPU401.  (0 = off, 1 = on, 2 = auto)");
#ifdef SUPPORT_JOYSTICK
module_param_array(joystick, bool, NULL, 0444);
MODULE_PARM_DESC(joystick, "Enable joystick.");
#endif


#define NR_APUS                 64
#define NR_APU_REGS             16

/* NEC Versas ? */
#define NEC_VERSA_SUBID1        0x80581033
#define NEC_VERSA_SUBID2        0x803c1033

/* Mode Flags */
#define ESS_FMT_STEREO          0x01
#define ESS_FMT_16BIT           0x02

#define DAC_RUNNING             1
#define ADC_RUNNING             2

/* Values for the ESM_LEGACY_AUDIO_CONTROL */

#define ESS_DISABLE_AUDIO       0x8000
#define ESS_ENABLE_SERIAL_IRQ   0x4000
#define IO_ADRESS_ALIAS         0x0020
#define MPU401_IRQ_ENABLE       0x0010
#define MPU401_IO_ENABLE        0x0008
#define GAME_IO_ENABLE          0x0004
#define FM_IO_ENABLE            0x0002
#define SB_IO_ENABLE            0x0001

/* Values for the ESM_CONFIG_A */

#define PIC_SNOOP1              0x4000
#define PIC_SNOOP2              0x2000
#define SAFEGUARD               0x0800
#define DMA_CLEAR               0x0700
#define DMA_DDMA                0x0000
#define DMA_TDMA                0x0100
#define DMA_PCPCI               0x0200
#define POST_WRITE              0x0080
#define PCI_TIMING              0x0040
#define SWAP_LR                 0x0020
#define SUBTR_DECODE            0x0002

/* Values for the ESM_CONFIG_B */

#define SPDIF_CONFB             0x0100
#define HWV_CONFB               0x0080
#define DEBOUNCE                0x0040
#define GPIO_CONFB              0x0020
#define CHI_CONFB               0x0010
#define IDMA_CONFB              0x0008  /*undoc */
#define MIDI_FIX                0x0004  /*undoc */
#define IRQ_TO_ISA              0x0001  /*undoc */

/* Values for Ring Bus Control B */
#define RINGB_2CODEC_ID_MASK    0x0003
#define RINGB_DIS_VALIDATION    0x0008
#define RINGB_EN_SPDIF          0x0010
#define RINGB_EN_2CODEC         0x0020
#define RINGB_SING_BIT_DUAL     0x0040

/* ****Port Adresses**** */

/*   Write & Read */
#define ESM_INDEX               0x02
#define ESM_DATA                0x00

/*   AC97 + RingBus */
#define ESM_AC97_INDEX          0x30
#define ESM_AC97_DATA           0x32
#define ESM_RING_BUS_DEST       0x34
#define ESM_RING_BUS_CONTR_A    0x36
#define ESM_RING_BUS_CONTR_B    0x38
#define ESM_RING_BUS_SDO        0x3A

/*   WaveCache*/
#define WC_INDEX                0x10
#define WC_DATA                 0x12
#define WC_CONTROL              0x14

/*   ASSP*/
#define ASSP_INDEX              0x80
#define ASSP_MEMORY             0x82
#define ASSP_DATA               0x84
#define ASSP_CONTROL_A          0xA2
#define ASSP_CONTROL_B          0xA4
#define ASSP_CONTROL_C          0xA6
#define ASSP_HOSTW_INDEX        0xA8
#define ASSP_HOSTW_DATA         0xAA
#define ASSP_HOSTW_IRQ          0xAC
/* Midi */
#define ESM_MPU401_PORT         0x98
/* Others */
#define ESM_PORT_HOST_IRQ       0x18

#define IDR0_DATA_PORT          0x00
#define IDR1_CRAM_POINTER       0x01
#define IDR2_CRAM_DATA          0x02
#define IDR3_WAVE_DATA          0x03
#define IDR4_WAVE_PTR_LOW       0x04
#define IDR5_WAVE_PTR_HI        0x05
#define IDR6_TIMER_CTRL         0x06
#define IDR7_WAVE_ROMRAM        0x07

#define WRITEABLE_MAP           0xEFFFFF
#define READABLE_MAP            0x64003F

/* PCI Register */

#define ESM_LEGACY_AUDIO_CONTROL 0x40
#define ESM_ACPI_COMMAND        0x54
#define ESM_CONFIG_A            0x50
#define ESM_CONFIG_B            0x52
#define ESM_DDMA                0x60

/* Bob Bits */
#define ESM_BOB_ENABLE          0x0001
#define ESM_BOB_START           0x0001

/* Host IRQ Control Bits */
#define ESM_RESET_MAESTRO       0x8000
#define ESM_RESET_DIRECTSOUND   0x4000
#define ESM_HIRQ_ClkRun         0x0100
#define ESM_HIRQ_HW_VOLUME      0x0040
#define ESM_HIRQ_HARPO          0x0030  /* What's that? */
#define ESM_HIRQ_ASSP           0x0010
#define ESM_HIRQ_DSIE           0x0004
#define ESM_HIRQ_MPU401         0x0002
#define ESM_HIRQ_SB             0x0001

/* Host IRQ Status Bits */
#define ESM_MPU401_IRQ          0x02
#define ESM_SB_IRQ              0x01
#define ESM_SOUND_IRQ           0x04
#define ESM_ASSP_IRQ            0x10
#define ESM_HWVOL_IRQ           0x40

#define ESS_SYSCLK              50000000
#define ESM_BOB_FREQ            200
#define ESM_BOB_FREQ_MAX        800

#define ESM_FREQ_ESM1           (49152000L / 1024L)     /* default rate 48000 */
#define ESM_FREQ_ESM2           (50000000L / 1024L)

/* APU Modes: reg 0x00, bit 4-7 */
#define ESM_APU_MODE_SHIFT      4
#define ESM_APU_MODE_MASK       (0xf << 4)
#define ESM_APU_OFF             0x00
#define ESM_APU_16BITLINEAR     0x01    /* 16-Bit Linear Sample Player */
#define ESM_APU_16BITSTEREO     0x02    /* 16-Bit Stereo Sample Player */
#define ESM_APU_8BITLINEAR      0x03    /* 8-Bit Linear Sample Player */
#define ESM_APU_8BITSTEREO      0x04    /* 8-Bit Stereo Sample Player */
#define ESM_APU_8BITDIFF        0x05    /* 8-Bit Differential Sample Playrer */
#define ESM_APU_DIGITALDELAY    0x06    /* Digital Delay Line */
#define ESM_APU_DUALTAP         0x07    /* Dual Tap Reader */
#define ESM_APU_CORRELATOR      0x08    /* Correlator */
#define ESM_APU_INPUTMIXER      0x09    /* Input Mixer */
#define ESM_APU_WAVETABLE       0x0A    /* Wave Table Mode */
#define ESM_APU_SRCONVERTOR     0x0B    /* Sample Rate Convertor */
#define ESM_APU_16BITPINGPONG   0x0C    /* 16-Bit Ping-Pong Sample Player */
#define ESM_APU_RESERVED1       0x0D    /* Reserved 1 */
#define ESM_APU_RESERVED2       0x0E    /* Reserved 2 */
#define ESM_APU_RESERVED3       0x0F    /* Reserved 3 */

/* reg 0x00 */
#define ESM_APU_FILTER_Q_SHIFT          0
#define ESM_APU_FILTER_Q_MASK           (3 << 0)
/* APU Filtey Q Control */
#define ESM_APU_FILTER_LESSQ    0x00
#define ESM_APU_FILTER_MOREQ    0x03

#define ESM_APU_FILTER_TYPE_SHIFT       2
#define ESM_APU_FILTER_TYPE_MASK        (3 << 2)
#define ESM_APU_ENV_TYPE_SHIFT          8
#define ESM_APU_ENV_TYPE_MASK           (3 << 8)
#define ESM_APU_ENV_STATE_SHIFT         10
#define ESM_APU_ENV_STATE_MASK          (3 << 10)
#define ESM_APU_END_CURVE               (1 << 12)
#define ESM_APU_INT_ON_LOOP             (1 << 13)
#define ESM_APU_DMA_ENABLE              (1 << 14)

/* reg 0x02 */
#define ESM_APU_SUBMIX_GROUP_SHIRT      0
#define ESM_APU_SUBMIX_GROUP_MASK       (7 << 0)
#define ESM_APU_SUBMIX_MODE             (1 << 3)
#define ESM_APU_6dB                     (1 << 4)
#define ESM_APU_DUAL_EFFECT             (1 << 5)
#define ESM_APU_EFFECT_CHANNELS_SHIFT   6
#define ESM_APU_EFFECT_CHANNELS_MASK    (3 << 6)

/* reg 0x03 */
#define ESM_APU_STEP_SIZE_MASK          0x0fff

/* reg 0x04 */
#define ESM_APU_PHASE_SHIFT             0
#define ESM_APU_PHASE_MASK              (0xff << 0)
#define ESM_APU_WAVE64K_PAGE_SHIFT      8       /* most 8bit of wave start offset */
#define ESM_APU_WAVE64K_PAGE_MASK       (0xff << 8)

/* reg 0x05 - wave start offset */
/* reg 0x06 - wave end offset */
/* reg 0x07 - wave loop length */

/* reg 0x08 */
#define ESM_APU_EFFECT_GAIN_SHIFT       0
#define ESM_APU_EFFECT_GAIN_MASK        (0xff << 0)
#define ESM_APU_TREMOLO_DEPTH_SHIFT     8
#define ESM_APU_TREMOLO_DEPTH_MASK      (0xf << 8)
#define ESM_APU_TREMOLO_RATE_SHIFT      12
#define ESM_APU_TREMOLO_RATE_MASK       (0xf << 12)

/* reg 0x09 */
/* bit 0-7 amplitude dest? */
#define ESM_APU_AMPLITUDE_NOW_SHIFT     8
#define ESM_APU_AMPLITUDE_NOW_MASK      (0xff << 8)

/* reg 0x0a */
#define ESM_APU_POLAR_PAN_SHIFT         0
#define ESM_APU_POLAR_PAN_MASK          (0x3f << 0)
/* Polar Pan Control */
#define ESM_APU_PAN_CENTER_CIRCLE               0x00
#define ESM_APU_PAN_MIDDLE_RADIUS               0x01
#define ESM_APU_PAN_OUTSIDE_RADIUS              0x02

#define ESM_APU_FILTER_TUNING_SHIFT     8
#define ESM_APU_FILTER_TUNING_MASK      (0xff << 8)

/* reg 0x0b */
#define ESM_APU_DATA_SRC_A_SHIFT        0
#define ESM_APU_DATA_SRC_A_MASK         (0x7f << 0)
#define ESM_APU_INV_POL_A               (1 << 7)
#define ESM_APU_DATA_SRC_B_SHIFT        8
#define ESM_APU_DATA_SRC_B_MASK         (0x7f << 8)
#define ESM_APU_INV_POL_B               (1 << 15)

#define ESM_APU_VIBRATO_RATE_SHIFT      0
#define ESM_APU_VIBRATO_RATE_MASK       (0xf << 0)
#define ESM_APU_VIBRATO_DEPTH_SHIFT     4
#define ESM_APU_VIBRATO_DEPTH_MASK      (0xf << 4)
#define ESM_APU_VIBRATO_PHASE_SHIFT     8
#define ESM_APU_VIBRATO_PHASE_MASK      (0xff << 8)

/* reg 0x0c */
#define ESM_APU_RADIUS_SELECT           (1 << 6)

/* APU Filter Control */
#define ESM_APU_FILTER_2POLE_LOPASS     0x00
#define ESM_APU_FILTER_2POLE_BANDPASS   0x01
#define ESM_APU_FILTER_2POLE_HIPASS     0x02
#define ESM_APU_FILTER_1POLE_LOPASS     0x03
#define ESM_APU_FILTER_1POLE_HIPASS     0x04
#define ESM_APU_FILTER_OFF              0x05

/* APU ATFP Type */
#define ESM_APU_ATFP_AMPLITUDE                  0x00
#define ESM_APU_ATFP_TREMELO                    0x01
#define ESM_APU_ATFP_FILTER                     0x02
#define ESM_APU_ATFP_PAN                        0x03

/* APU ATFP Flags */
#define ESM_APU_ATFP_FLG_OFF                    0x00
#define ESM_APU_ATFP_FLG_WAIT                   0x01
#define ESM_APU_ATFP_FLG_DONE                   0x02
#define ESM_APU_ATFP_FLG_INPROCESS              0x03


/* capture mixing buffer size */
#define ESM_MEM_ALIGN           0x1000
#define ESM_MIXBUF_SIZE         0x400

#define ESM_MODE_PLAY           0
#define ESM_MODE_CAPTURE        1


/* APU use in the driver */
enum snd_enum_apu_type {
        ESM_APU_PCM_PLAY,
        ESM_APU_PCM_CAPTURE,
        ESM_APU_PCM_RATECONV,
        ESM_APU_FREE
};

/* chip type */
enum {
        TYPE_MAESTRO, TYPE_MAESTRO2, TYPE_MAESTRO2E
};

/* DMA Hack! */
struct esm_memory {
        struct snd_dma_buffer buf;
        int empty;      /* status */
        struct list_head list;
};

/* Playback Channel */
struct esschan {
        int running;

        u8 apu[4];
        u8 apu_mode[4];

        /* playback/capture pcm buffer */
        struct esm_memory *memory;
        /* capture mixer buffer */
        struct esm_memory *mixbuf;

        unsigned int hwptr;     /* current hw pointer in bytes */
        unsigned int count;     /* sample counter in bytes */
        unsigned int dma_size;  /* total buffer size in bytes */
        unsigned int frag_size; /* period size in bytes */
        unsigned int wav_shift;
        u16 base[4];            /* offset for ptr */

        /* stereo/16bit flag */
        unsigned char fmt;
        int mode;       /* playback / capture */

        int bob_freq;   /* required timer frequency */

        struct snd_pcm_substream *substream;

        /* linked list */
        struct list_head list;

#ifdef CONFIG_PM
        u16 wc_map[4];
#endif
};

struct es1968 {
        /* Module Config */
        int total_bufsize;                      /* in bytes */

        int playback_streams, capture_streams;

        unsigned int clock;             /* clock */
        /* for clock measurement */
        unsigned int in_measurement: 1;
        unsigned int measure_apu;
        unsigned int measure_lastpos;
        unsigned int measure_count;

        /* buffer */
        struct snd_dma_buffer dma;

        /* Resources... */
        int irq;
        unsigned long io_port;
        int type;
        struct pci_dev *pci;
        struct snd_card *card;
        struct snd_pcm *pcm;
        int do_pm;              /* power-management enabled */

        /* DMA memory block */
        struct list_head buf_list;

        /* ALSA Stuff */
        struct snd_ac97 *ac97;
        struct snd_kcontrol *master_switch; /* for h/w volume control */
        struct snd_kcontrol *master_volume;

        struct snd_rawmidi *rmidi;

        spinlock_t reg_lock;
        spinlock_t ac97_lock;
        struct tasklet_struct hwvol_tq;
        unsigned int in_suspend;

        /* Maestro Stuff */
        u16 maestro_map[32];
        int bobclient;          /* active timer instancs */
        int bob_freq;           /* timer frequency */
        struct mutex memory_mutex;      /* memory lock */

        /* APU states */
        unsigned char apu[NR_APUS];

        /* active substreams */
        struct list_head substream_list;
        spinlock_t substream_lock;

#ifdef CONFIG_PM
        u16 apu_map[NR_APUS][NR_APU_REGS];
#endif

#ifdef SUPPORT_JOYSTICK
        struct gameport *gameport;
#endif
};

static irqreturn_t snd_es1968_interrupt(int irq, void *dev_id);

static struct pci_device_id snd_es1968_ids[] = {
        /* Maestro 1 */
        { 0x1285, 0x0100, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, TYPE_MAESTRO },
        /* Maestro 2 */
        { 0x125d, 0x1968, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, TYPE_MAESTRO2 },
        /* Maestro 2E */
        { 0x125d, 0x1978, PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_MULTIMEDIA_AUDIO << 8, 0xffff00, TYPE_MAESTRO2E },
        { 0, }
};

MODULE_DEVICE_TABLE(pci, snd_es1968_ids);

/* *********************
   * Low Level Funcs!  *
   *********************/

/* no spinlock */
static void __maestro_write(struct es1968 *chip, u16 reg, u16 data)
{
        outw(reg, chip->io_port + ESM_INDEX);
        outw(data, chip->io_port + ESM_DATA);
        chip->maestro_map[reg] = data;
}

static inline void maestro_write(struct es1968 *chip, u16 reg, u16 data)
{
        unsigned long flags;
        spin_lock_irqsave(&chip->reg_lock, flags);
        __maestro_write(chip, reg, data);
        spin_unlock_irqrestore(&chip->reg_lock, flags);
}

/* no spinlock */
static u16 __maestro_read(struct es1968 *chip, u16 reg)
{
        if (READABLE_MAP & (1 << reg)) {
                outw(reg, chip->io_port + ESM_INDEX);
                chip->maestro_map[reg] = inw(chip->io_port + ESM_DATA);
        }
        return chip->maestro_map[reg];
}

static inline u16 maestro_read(struct es1968 *chip, u16 reg)
{
        unsigned long flags;
        u16 result;
        spin_lock_irqsave(&chip->reg_lock, flags);
        result = __maestro_read(chip, reg);
        spin_unlock_irqrestore(&chip->reg_lock, flags);
        return result;
}

/* Wait for the codec bus to be free */
static int snd_es1968_ac97_wait(struct es1968 *chip)
{
        int timeout = 100000;

        while (timeout-- > 0) {
                if (!(inb(chip->io_port + ESM_AC97_INDEX) & 1))
                        return 0;
                cond_resched();
        }
        snd_printd("es1968: ac97 timeout\n");
        return 1; /* timeout */
}

static int snd_es1968_ac97_wait_poll(struct es1968 *chip)
{
        int timeout = 100000;

        while (timeout-- > 0) {
                if (!(inb(chip->io_port + ESM_AC97_INDEX) & 1))
                        return 0;
        }
        snd_printd("es1968: ac97 timeout\n");
        return 1; /* timeout */
}

static void snd_es1968_ac97_write(struct snd_ac97 *ac97, unsigned short reg, unsigned short val)
{
        struct es1968 *chip = ac97->private_data;
        unsigned long flags;

        snd_es1968_ac97_wait(chip);

        /* Write the bus */
        spin_lock_irqsave(&chip->ac97_lock, flags);
        outw(val, chip->io_port + ESM_AC97_DATA);
        /*msleep(1);*/
        outb(reg, chip->io_port + ESM_AC97_INDEX);
        /*msleep(1);*/
        spin_unlock_irqrestore(&chip->ac97_lock, flags);
}

static unsigned short snd_es1968_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
{
        u16 data = 0;
        struct es1968 *chip = ac97->private_data;
        unsigned long flags;

        snd_es1968_ac97_wait(chip);

        spin_lock_irqsave(&chip->ac97_lock, flags);
        outb(reg | 0x80, chip->io_port + ESM_AC97_INDEX);
        /*msleep(1);*/

        if (!snd_es1968_ac97_wait_poll(chip)) {
                data = inw(chip->io_port + ESM_AC97_DATA);
                /*msleep(1);*/
        }
        spin_unlock_irqrestore(&chip->ac97_lock, flags);

        return data;
}

/* no spinlock */
static void apu_index_set(struct es1968 *chip, u16 index)
{
        int i;
        __maestro_write(chip, IDR1_CRAM_POINTER, index);
        for (i = 0; i < 1000; i++)
                if (__maestro_read(chip, IDR1_CRAM_POINTER) == index)
                        return;
        snd_printd("es1968: APU register select failed. (Timeout)\n");
}

/* no spinlock */
static void apu_data_set(struct es1968 *chip, u16 data)
{
        int i;
        for (i = 0; i < 1000; i++) {
                if (__maestro_read(chip, IDR0_DATA_PORT) == data)
                        return;
                __maestro_write(chip, IDR0_DATA_PORT, data);
        }
        snd_printd("es1968: APU register set probably failed (Timeout)!\n");
}

/* no spinlock */
static void __apu_set_register(struct es1968 *chip, u16 channel, u8 reg, u16 data)
{
        if (snd_BUG_ON(channel >= NR_APUS))
                return;
#ifdef CONFIG_PM
        chip->apu_map[channel][reg] = data;
#endif
        reg |= (channel << 4);
        apu_index_set(chip, reg);
        apu_data_set(chip, data);
}

static void apu_set_register(struct es1968 *chip, u16 channel, u8 reg, u16 data)
{
        unsigned long flags;
        spin_lock_irqsave(&chip->reg_lock, flags);
        __apu_set_register(chip, channel, reg, data);
        spin_unlock_irqrestore(&chip->reg_lock, flags);
}

static u16 __apu_get_register(struct es1968 *chip, u16 channel, u8 reg)
{
        if (snd_BUG_ON(channel >= NR_APUS))
                return 0;
        reg |= (channel << 4);
        apu_index_set(chip, reg);
        return __maestro_read(chip, IDR0_DATA_PORT);
}

static u16 apu_get_register(struct es1968 *chip, u16 channel, u8 reg)
{
        unsigned long flags;
        u16 v;
        spin_lock_irqsave(&chip->reg_lock, flags);
        v = __apu_get_register(chip, channel, reg);
        spin_unlock_irqrestore(&chip->reg_lock, flags);
        return v;
}

#if 0 /* ASSP is not supported */

static void assp_set_register(struct es1968 *chip, u32 reg, u32 value)
{
        unsigned long flags;

        spin_lock_irqsave(&chip->reg_lock, flags);
        outl(reg, chip->io_port + ASSP_INDEX);
        outl(value, chip->io_port + ASSP_DATA);
        spin_unlock_irqrestore(&chip->reg_lock, flags);
}

static u32 assp_get_register(struct es1968 *chip, u32 reg)
{
        unsigned long flags;
        u32 value;

        spin_lock_irqsave(&chip->reg_lock, flags);
        outl(reg, chip->io_port + ASSP_INDEX);
        value = inl(chip->io_port + ASSP_DATA);
        spin_unlock_irqrestore(&chip->reg_lock, flags);

        return value;
}

#endif

static void wave_set_register(struct es1968 *chip, u16 reg, u16 value)
{
        unsigned long flags;

        spin_lock_irqsave(&chip->reg_lock, flags);
        outw(reg, chip->io_port + WC_INDEX);
        outw(value, chip->io_port + WC_DATA);
        spin_unlock_irqrestore(&chip->reg_lock, flags);
}

static u16 wave_get_register(struct es1968 *chip, u16 reg)
{
        unsigned long flags;
        u16 value;

        spin_lock_irqsave(&chip->reg_lock, flags);
        outw(reg, chip->io_port + WC_INDEX);
        value = inw(chip->io_port + WC_DATA);
        spin_unlock_irqrestore(&chip->reg_lock, flags);

        return value;
}

/* *******************
   * Bob the Timer!  *
   *******************/

static void snd_es1968_bob_stop(struct es1968 *chip)
{
        u16 reg;

        reg = __maestro_read(chip, 0x11);
        reg &= ~ESM_BOB_ENABLE;
        __maestro_write(chip, 0x11, reg);
        reg = __maestro_read(chip, 0x17);
        reg &= ~ESM_BOB_START;
        __maestro_write(chip, 0x17, reg);
}

static void snd_es1968_bob_start(struct es1968 *chip)
{
        int prescale;
        int divide;

        /* compute ideal interrupt frequency for buffer size & play rate */
        /* first, find best prescaler value to match freq */
        for (prescale = 5; prescale < 12; prescale++)
                if (chip->bob_freq > (ESS_SYSCLK >> (prescale + 9)))
                        break;

        /* next, back off prescaler whilst getting divider into optimum range */
        divide = 1;
        while ((prescale > 5) && (divide < 32)) {
                prescale--;
                divide <<= 1;
        }
        divide >>= 1;

        /* now fine-tune the divider for best match */
        for (; divide < 31; divide++)
                if (chip->bob_freq >
                    ((ESS_SYSCLK >> (prescale + 9)) / (divide + 1))) break;

        /* divide = 0 is illegal, but don't let prescale = 4! */
        if (divide == 0) {
                divide++;
                if (prescale > 5)
                        prescale--;
        } else if (divide > 1)
                divide--;

        __maestro_write(chip, 6, 0x9000 | (prescale << 5) | divide);    /* set reg */

        /* Now set IDR 11/17 */
        __maestro_write(chip, 0x11, __maestro_read(chip, 0x11) | 1);
        __maestro_write(chip, 0x17, __maestro_read(chip, 0x17) | 1);
}

/* call with substream spinlock */
static void snd_es1968_bob_inc(struct es1968 *chip, int freq)
{
        chip->bobclient++;
        if (chip->bobclient == 1) {
                chip->bob_freq = freq;
                snd_es1968_bob_start(chip);
        } else if (chip->bob_freq < freq) {
                snd_es1968_bob_stop(chip);
                chip->bob_freq = freq;
                snd_es1968_bob_start(chip);
        }
}

/* call with substream spinlock */
static void snd_es1968_bob_dec(struct es1968 *chip)
{
        chip->bobclient--;
        if (chip->bobclient <= 0)
                snd_es1968_bob_stop(chip);
        else if (chip->bob_freq > ESM_BOB_FREQ) {
                /* check reduction of timer frequency */
                int max_freq = ESM_BOB_FREQ;
                struct esschan *es;
                list_for_each_entry(es, &chip->substream_list, list) {
                        if (max_freq < es->bob_freq)
                                max_freq = es->bob_freq;
                }
                if (max_freq != chip->bob_freq) {
                        snd_es1968_bob_stop(chip);
                        chip->bob_freq = max_freq;
                        snd_es1968_bob_start(chip);
                }
        }
}

static int
snd_es1968_calc_bob_rate(struct es1968 *chip, struct esschan *es,
                         struct snd_pcm_runtime *runtime)
{
        /* we acquire 4 interrupts per period for precise control.. */
        int freq = runtime->rate * 4;
        if (es->fmt & ESS_FMT_STEREO)
                freq <<= 1;
        if (es->fmt & ESS_FMT_16BIT)
                freq <<= 1;
        freq /= es->frag_size;
        if (freq < ESM_BOB_FREQ)
                freq = ESM_BOB_FREQ;
        else if (freq > ESM_BOB_FREQ_MAX)
                freq = ESM_BOB_FREQ_MAX;
        return freq;
}


/*************
 *  PCM Part *
 *************/

static u32 snd_es1968_compute_rate(struct es1968 *chip, u32 freq)
{
        u32 rate = (freq << 16) / chip->clock;
#if 0 /* XXX: do we need this? */ 
        if (rate > 0x10000)
                rate = 0x10000;
#endif
        return rate;
}

/* get current pointer */
static inline unsigned int
snd_es1968_get_dma_ptr(struct es1968 *chip, struct esschan *es)
{
        unsigned int offset;

        offset = apu_get_register(chip, es->apu[0], 5);

        offset -= es->base[0];

        return (offset & 0xFFFE);       /* hardware is in words */
}

static void snd_es1968_apu_set_freq(struct es1968 *chip, int apu, int freq)
{
        apu_set_register(chip, apu, 2,
                           (apu_get_register(chip, apu, 2) & 0x00FF) |
                           ((freq & 0xff) << 8) | 0x10);
        apu_set_register(chip, apu, 3, freq >> 8);
}

/* spin lock held */
static inline void snd_es1968_trigger_apu(struct es1968 *esm, int apu, int mode)
{
        /* set the APU mode */
        __apu_set_register(esm, apu, 0,
                           (__apu_get_register(esm, apu, 0) & 0xff0f) |
                           (mode << 4));
}

static void snd_es1968_pcm_start(struct es1968 *chip, struct esschan *es)
{
        spin_lock(&chip->reg_lock);
        __apu_set_register(chip, es->apu[0], 5, es->base[0]);
        snd_es1968_trigger_apu(chip, es->apu[0], es->apu_mode[0]);
        if (es->mode == ESM_MODE_CAPTURE) {
                __apu_set_register(chip, es->apu[2], 5, es->base[2]);
                snd_es1968_trigger_apu(chip, es->apu[2], es->apu_mode[2]);
        }
        if (es->fmt & ESS_FMT_STEREO) {
                __apu_set_register(chip, es->apu[1], 5, es->base[1]);
                snd_es1968_trigger_apu(chip, es->apu[1], es->apu_mode[1]);
                if (es->mode == ESM_MODE_CAPTURE) {
                        __apu_set_register(chip, es->apu[3], 5, es->base[3]);
                        snd_es1968_trigger_apu(chip, es->apu[3], es->apu_mode[3]);
                }
        }
        spin_unlock(&chip->reg_lock);
}

static void snd_es1968_pcm_stop(struct es1968 *chip, struct esschan *es)
{
        spin_lock(&chip->reg_lock);
        snd_es1968_trigger_apu(chip, es->apu[0], 0);
        snd_es1968_trigger_apu(chip, es->apu[1], 0);
        if (es->mode == ESM_MODE_CAPTURE) {
                snd_es1968_trigger_apu(chip, es->apu[2], 0);
                snd_es1968_trigger_apu(chip, es->apu[3], 0);
        }
        spin_unlock(&chip->reg_lock);
}

/* set the wavecache control reg */
static void snd_es1968_program_wavecache(struct es1968 *chip, struct esschan *es,
                                         int channel, u32 addr, int capture)
{
        u32 tmpval = (addr - 0x10) & 0xFFF8;

        if (! capture) {
                if (!(es->fmt & ESS_FMT_16BIT))
                        tmpval |= 4;    /* 8bit */
                if (es->fmt & ESS_FMT_STEREO)
                        tmpval |= 2;    /* stereo */
        }

        /* set the wavecache control reg */
        wave_set_register(chip, es->apu[channel] << 3, tmpval);

#ifdef CONFIG_PM
        es->wc_map[channel] = tmpval;
#endif
}


static void snd_es1968_playback_setup(struct es1968 *chip, struct esschan *es,
                                      struct snd_pcm_runtime *runtime)
{
        u32 pa;
        int high_apu = 0;
        int channel, apu;
        int i, size;
        unsigned long flags;
        u32 freq;

        size = es->dma_size >> es->wav_shift;

        if (es->fmt & ESS_FMT_STEREO)
                high_apu++;

        for (channel = 0; channel <= high_apu; channel++) {
                apu = es->apu[channel];

                snd_es1968_program_wavecache(chip, es, channel, es->memory->buf.addr, 0);

                /* Offset to PCMBAR */
                pa = es->memory->buf.addr;
                pa -= chip->dma.addr;
                pa >>= 1;       /* words */

                pa |= 0x00400000;       /* System RAM (Bit 22) */

                if (es->fmt & ESS_FMT_STEREO) {
                        /* Enable stereo */
                        if (channel)
                                pa |= 0x00800000;       /* (Bit 23) */
                        if (es->fmt & ESS_FMT_16BIT)
                                pa >>= 1;
                }

                /* base offset of dma calcs when reading the pointer
                   on this left one */
                es->base[channel] = pa & 0xFFFF;

                for (i = 0; i < 16; i++)
                        apu_set_register(chip, apu, i, 0x0000);

                /* Load the buffer into the wave engine */
                apu_set_register(chip, apu, 4, ((pa >> 16) & 0xFF) << 8);
                apu_set_register(chip, apu, 5, pa & 0xFFFF);
                apu_set_register(chip, apu, 6, (pa + size) & 0xFFFF);
                /* setting loop == sample len */
                apu_set_register(chip, apu, 7, size);

                /* clear effects/env.. */
                apu_set_register(chip, apu, 8, 0x0000);
                /* set amp now to 0xd0 (?), low byte is 'amplitude dest'? */
                apu_set_register(chip, apu, 9, 0xD000);

                /* clear routing stuff */
                apu_set_register(chip, apu, 11, 0x0000);
                /* dma on, no envelopes, filter to all 1s) */
                apu_set_register(chip, apu, 0, 0x400F);

                if (es->fmt & ESS_FMT_16BIT)
                        es->apu_mode[channel] = ESM_APU_16BITLINEAR;
                else
                        es->apu_mode[channel] = ESM_APU_8BITLINEAR;

                if (es->fmt & ESS_FMT_STEREO) {
                        /* set panning: left or right */
                        /* Check: different panning. On my Canyon 3D Chipset the
                           Channels are swapped. I don't know, about the output
                           to the SPDif Link. Perhaps you have to change this
                           and not the APU Regs 4-5. */
                        apu_set_register(chip, apu, 10,
                                         0x8F00 | (channel ? 0 : 0x10));
                        es->apu_mode[channel] += 1;     /* stereo */
                } else
                        apu_set_register(chip, apu, 10, 0x8F08);
        }

        spin_lock_irqsave(&chip->reg_lock, flags);
        /* clear WP interrupts */
        outw(1, chip->io_port + 0x04);
        /* enable WP ints */
        outw(inw(chip->io_port + ESM_PORT_HOST_IRQ) | ESM_HIRQ_DSIE, chip->io_port + ESM_PORT_HOST_IRQ);
        spin_unlock_irqrestore(&chip->reg_lock, flags);

        freq = runtime->rate;
        /* set frequency */
        if (freq > 48000)
                freq = 48000;
        if (freq < 4000)
                freq = 4000;

        /* hmmm.. */
        if (!(es->fmt & ESS_FMT_16BIT) && !(es->fmt & ESS_FMT_STEREO))
                freq >>= 1;

        freq = snd_es1968_compute_rate(chip, freq);

        /* Load the frequency, turn on 6dB */
        snd_es1968_apu_set_freq(chip, es->apu[0], freq);
        snd_es1968_apu_set_freq(chip, es->apu[1], freq);
}


static void init_capture_apu(struct es1968 *chip, struct esschan *es, int channel,
                             unsigned int pa, unsigned int bsize,
                             int mode, int route)
{
        int i, apu = es->apu[channel];

        es->apu_mode[channel] = mode;

        /* set the wavecache control reg */
        snd_es1968_program_wavecache(chip, es, channel, pa, 1);

        /* Offset to PCMBAR */
        pa -= chip->dma.addr;
        pa >>= 1;       /* words */

        /* base offset of dma calcs when reading the pointer
           on this left one */
        es->base[channel] = pa & 0xFFFF;
        pa |= 0x00400000;       /* bit 22 -> System RAM */

        /* Begin loading the APU */
        for (i = 0; i < 16; i++)
                apu_set_register(chip, apu, i, 0x0000);

        /* need to enable subgroups.. and we should probably
           have different groups for different /dev/dsps..  */
        apu_set_register(chip, apu, 2, 0x8);

        /* Load the buffer into the wave engine */
        apu_set_register(chip, apu, 4, ((pa >> 16) & 0xFF) << 8);
        apu_set_register(chip, apu, 5, pa & 0xFFFF);
        apu_set_register(chip, apu, 6, (pa + bsize) & 0xFFFF);
        apu_set_register(chip, apu, 7, bsize);
        /* clear effects/env.. */
        apu_set_register(chip, apu, 8, 0x00F0);
        /* amplitude now?  sure.  why not.  */
        apu_set_register(chip, apu, 9, 0x0000);
        /* set filter tune, radius, polar pan */
        apu_set_register(chip, apu, 10, 0x8F08);
        /* route input */
        apu_set_register(chip, apu, 11, route);
        /* dma on, no envelopes, filter to all 1s) */
        apu_set_register(chip, apu, 0, 0x400F);
}

static void snd_es1968_capture_setup(struct es1968 *chip, struct esschan *es,
                                     struct snd_pcm_runtime *runtime)
{
        int size;
        u32 freq;
        unsigned long flags;

        size = es->dma_size >> es->wav_shift;

        /* APU assignments:
           0 = mono/left SRC
           1 = right SRC
           2 = mono/left Input Mixer
           3 = right Input Mixer
        */
        /* data seems to flow from the codec, through an apu into
           the 'mixbuf' bit of page, then through the SRC apu
           and out to the real 'buffer'.  ok.  sure.  */

        /* input mixer (left/mono) */
        /* parallel in crap, see maestro reg 0xC [8-11] */
        init_capture_apu(chip, es, 2,
                         es->mixbuf->buf.addr, ESM_MIXBUF_SIZE/4, /* in words */
                         ESM_APU_INPUTMIXER, 0x14);
        /* SRC (left/mono); get input from inputing apu */
        init_capture_apu(chip, es, 0, es->memory->buf.addr, size,
                         ESM_APU_SRCONVERTOR, es->apu[2]);
        if (es->fmt & ESS_FMT_STEREO) {
                /* input mixer (right) */
                init_capture_apu(chip, es, 3,
                                 es->mixbuf->buf.addr + ESM_MIXBUF_SIZE/2,
                                 ESM_MIXBUF_SIZE/4, /* in words */
                                 ESM_APU_INPUTMIXER, 0x15);
                /* SRC (right) */
                init_capture_apu(chip, es, 1,
                                 es->memory->buf.addr + size*2, size,
                                 ESM_APU_SRCONVERTOR, es->apu[3]);
        }

        freq = runtime->rate;
        /* Sample Rate conversion APUs don't like 0x10000 for their rate */
        if (freq > 47999)
                freq = 47999;
        if (freq < 4000)
                freq = 4000;

        freq = snd_es1968_compute_rate(chip, freq);

        /* Load the frequency, turn on 6dB */
        snd_es1968_apu_set_freq(chip, es->apu[0], freq);
        snd_es1968_apu_set_freq(chip, es->apu[1], freq);

        /* fix mixer rate at 48khz.  and its _must_ be 0x10000. */
        freq = 0x10000;
        snd_es1968_apu_set_freq(chip, es->apu[2], freq);
        snd_es1968_apu_set_freq(chip, es->apu[3], freq);

        spin_lock_irqsave(&chip->reg_lock, flags);
        /* clear WP interrupts */
        outw(1, chip->io_port + 0x04);
        /* enable WP ints */
        outw(inw(chip->io_port + ESM_PORT_HOST_IRQ) | ESM_HIRQ_DSIE, chip->io_port + ESM_PORT_HOST_IRQ);
        spin_unlock_irqrestore(&chip->reg_lock, flags);
}

/*******************
 *  ALSA Interface *
 *******************/

static int snd_es1968_pcm_prepare(struct snd_pcm_substream *substream)
{
        struct es1968 *chip = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;
        struct esschan *es = runtime->private_data;

        es->dma_size = snd_pcm_lib_buffer_bytes(substream);
        es->frag_size = snd_pcm_lib_period_bytes(substream);

        es->wav_shift = 1; /* maestro handles always 16bit */
        es->fmt = 0;
        if (snd_pcm_format_width(runtime->format) == 16)
                es->fmt |= ESS_FMT_16BIT;
        if (runtime->channels > 1) {
                es->fmt |= ESS_FMT_STEREO;
                if (es->fmt & ESS_FMT_16BIT) /* 8bit is already word shifted */
                        es->wav_shift++;
        }
        es->bob_freq = snd_es1968_calc_bob_rate(chip, es, runtime);

        switch (es->mode) {
        case ESM_MODE_PLAY:
                snd_es1968_playback_setup(chip, es, runtime);
                break;
        case ESM_MODE_CAPTURE:
                snd_es1968_capture_setup(chip, es, runtime);
                break;
        }

        return 0;
}

static int snd_es1968_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
        struct es1968 *chip = snd_pcm_substream_chip(substream);
        struct esschan *es = substream->runtime->private_data;

        spin_lock(&chip->substream_lock);
        switch (cmd) {
        case SNDRV_PCM_TRIGGER_START:
        case SNDRV_PCM_TRIGGER_RESUME:
                if (es->running)
                        break;
                snd_es1968_bob_inc(chip, es->bob_freq);
                es->count = 0;
                es->hwptr = 0;
                snd_es1968_pcm_start(chip, es);
                es->running = 1;
                break;
        case SNDRV_PCM_TRIGGER_STOP:
        case SNDRV_PCM_TRIGGER_SUSPEND:
                if (! es->running)
                        break;
                snd_es1968_pcm_stop(chip, es);
                es->running = 0;
                snd_es1968_bob_dec(chip);
                break;
        }
        spin_unlock(&chip->substream_lock);
        return 0;
}

static snd_pcm_uframes_t snd_es1968_pcm_pointer(struct snd_pcm_substream *substream)
{
        struct es1968 *chip = snd_pcm_substream_chip(substream);
        struct esschan *es = substream->runtime->private_data;
        unsigned int ptr;

        ptr = snd_es1968_get_dma_ptr(chip, es) << es->wav_shift;
        
        return bytes_to_frames(substream->runtime, ptr % es->dma_size);
}

static struct snd_pcm_hardware snd_es1968_playback = {
        .info =                 (SNDRV_PCM_INFO_MMAP |
                                 SNDRV_PCM_INFO_MMAP_VALID |
                                 SNDRV_PCM_INFO_INTERLEAVED |
                                 SNDRV_PCM_INFO_BLOCK_TRANSFER |
                                 /*SNDRV_PCM_INFO_PAUSE |*/
                                 SNDRV_PCM_INFO_RESUME),
        .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
        .rates =                SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
        .rate_min =             4000,
        .rate_max =             48000,
        .channels_min =         1,
        .channels_max =         2,
        .buffer_bytes_max =     65536,
        .period_bytes_min =     256,
        .period_bytes_max =     65536,
        .periods_min =          1,
        .periods_max =          1024,
        .fifo_size =            0,
};

static struct snd_pcm_hardware snd_es1968_capture = {
        .info =                 (SNDRV_PCM_INFO_NONINTERLEAVED |
                                 SNDRV_PCM_INFO_MMAP |
                                 SNDRV_PCM_INFO_MMAP_VALID |
                                 SNDRV_PCM_INFO_BLOCK_TRANSFER |
                                 /*SNDRV_PCM_INFO_PAUSE |*/
                                 SNDRV_PCM_INFO_RESUME),
        .formats =              /*SNDRV_PCM_FMTBIT_U8 |*/ SNDRV_PCM_FMTBIT_S16_LE,
        .rates =                SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_48000,
        .rate_min =             4000,
        .rate_max =             48000,
        .channels_min =         1,
        .channels_max =         2,
        .buffer_bytes_max =     65536,
        .period_bytes_min =     256,
        .period_bytes_max =     65536,
        .periods_min =          1,
        .periods_max =          1024,
        .fifo_size =            0,
};

/* *************************
   * DMA memory management *
   *************************/

/* Because the Maestro can only take addresses relative to the PCM base address
   register :( */

static int calc_available_memory_size(struct es1968 *chip)
{
        int max_size = 0;
        struct esm_memory *buf;

        mutex_lock(&chip->memory_mutex);
        list_for_each_entry(buf, &chip->buf_list, list) {
                if (buf->empty && buf->buf.bytes > max_size)
                        max_size = buf->buf.bytes;
        }
        mutex_unlock(&chip->memory_mutex);
        if (max_size >= 128*1024)
                max_size = 127*1024;
        return max_size;
}

/* allocate a new memory chunk with the specified size */
static struct esm_memory *snd_es1968_new_memory(struct es1968 *chip, int size)
{
        struct esm_memory *buf;

        size = ALIGN(size, ESM_MEM_ALIGN);
        mutex_lock(&chip->memory_mutex);
        list_for_each_entry(buf, &chip->buf_list, list) {
                if (buf->empty && buf->buf.bytes >= size)
                        goto __found;
        }
        mutex_unlock(&chip->memory_mutex);
        return NULL;

__found:
        if (buf->buf.bytes > size) {
                struct esm_memory *chunk = kmalloc(sizeof(*chunk), GFP_KERNEL);
                if (chunk == NULL) {
                        mutex_unlock(&chip->memory_mutex);
                        return NULL;
                }
                chunk->buf = buf->buf;
                chunk->buf.bytes -= size;
                chunk->buf.area += size;
                chunk->buf.addr += size;
                chunk->empty = 1;
                buf->buf.bytes = size;
                list_add(&chunk->list, &buf->list);
        }
        buf->empty = 0;
        mutex_unlock(&chip->memory_mutex);
        return buf;
}

/* free a memory chunk */
static void snd_es1968_free_memory(struct es1968 *chip, struct esm_memory *buf)
{
        struct esm_memory *chunk;

        mutex_lock(&chip->memory_mutex);
        buf->empty = 1;
        if (buf->list.prev != &chip->buf_list) {
                chunk = list_entry(buf->list.prev, struct esm_memory, list);
                if (chunk->empty) {
                        chunk->buf.bytes += buf->buf.bytes;
                        list_del(&buf->list);
                        kfree(buf);
                        buf = chunk;
                }
        }
        if (buf->list.next != &chip->buf_list) {
                chunk = list_entry(buf->list.next, struct esm_memory, list);
                if (chunk->empty) {
                        buf->buf.bytes += chunk->buf.bytes;
                        list_del(&chunk->list);
                        kfree(chunk);
                }
        }
        mutex_unlock(&chip->memory_mutex);
}

static void snd_es1968_free_dmabuf(struct es1968 *chip)
{
        struct list_head *p;

        if (! chip->dma.area)
                return;
        snd_dma_reserve_buf(&chip->dma, snd_dma_pci_buf_id(chip->pci));
        while ((p = chip->buf_list.next) != &chip->buf_list) {
                struct esm_memory *chunk = list_entry(p, struct esm_memory, list);
                list_del(p);
                kfree(chunk);
        }
}

static int __devinit
snd_es1968_init_dmabuf(struct es1968 *chip)
{
        int err;
        struct esm_memory *chunk;

        chip->dma.dev.type = SNDRV_DMA_TYPE_DEV;
        chip->dma.dev.dev = snd_dma_pci_data(chip->pci);
        if (! snd_dma_get_reserved_buf(&chip->dma, snd_dma_pci_buf_id(chip->pci))) {
                err = snd_dma_alloc_pages_fallback(SNDRV_DMA_TYPE_DEV,
                                                   snd_dma_pci_data(chip->pci),
                                                   chip->total_bufsize, &chip->dma);
                if (err < 0 || ! chip->dma.area) {
                        snd_printk(KERN_ERR "es1968: can't allocate dma pages for size %d\n",
                                   chip->total_bufsize);
                        return -ENOMEM;
                }
                if ((chip->dma.addr + chip->dma.bytes - 1) & ~((1 << 28) - 1)) {
                        snd_dma_free_pages(&chip->dma);
                        snd_printk(KERN_ERR "es1968: DMA buffer beyond 256MB.\n");
                        return -ENOMEM;
                }
        }

        INIT_LIST_HEAD(&chip->buf_list);
        /* allocate an empty chunk */
        chunk = kmalloc(sizeof(*chunk), GFP_KERNEL);
        if (chunk == NULL) {
                snd_es1968_free_dmabuf(chip);
                return -ENOMEM;
        }
        memset(chip->dma.area, 0, ESM_MEM_ALIGN);
        chunk->buf = chip->dma;
        chunk->buf.area += ESM_MEM_ALIGN;
        chunk->buf.addr += ESM_MEM_ALIGN;
        chunk->buf.bytes -= ESM_MEM_ALIGN;
        chunk->empty = 1;
        list_add(&chunk->list, &chip->buf_list);

        return 0;
}

/* setup the dma_areas */
/* buffer is extracted from the pre-allocated memory chunk */
static int snd_es1968_hw_params(struct snd_pcm_substream *substream,
                                struct snd_pcm_hw_params *hw_params)
{
        struct es1968 *chip = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;
        struct esschan *chan = runtime->private_data;
        int size = params_buffer_bytes(hw_params);

        if (chan->memory) {
                if (chan->memory->buf.bytes >= size) {
                        runtime->dma_bytes = size;
                        return 0;
                }
                snd_es1968_free_memory(chip, chan->memory);
        }
        chan->memory = snd_es1968_new_memory(chip, size);
        if (chan->memory == NULL) {
                // snd_printd("cannot allocate dma buffer: size = %d\n", size);
                return -ENOMEM;
        }
        snd_pcm_set_runtime_buffer(substream, &chan->memory->buf);
        return 1; /* area was changed */
}

/* remove dma areas if allocated */
static int snd_es1968_hw_free(struct snd_pcm_substream *substream)
{
        struct es1968 *chip = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;
        struct esschan *chan;
        
        if (runtime->private_data == NULL)
                return 0;
        chan = runtime->private_data;
        if (chan->memory) {
                snd_es1968_free_memory(chip, chan->memory);
                chan->memory = NULL;
        }
        return 0;
}


/*
 * allocate APU pair
 */
static int snd_es1968_alloc_apu_pair(struct es1968 *chip, int type)
{
        int apu;

        for (apu = 0; apu < NR_APUS; apu += 2) {
                if (chip->apu[apu] == ESM_APU_FREE &&
                    chip->apu[apu + 1] == ESM_APU_FREE) {
                        chip->apu[apu] = chip->apu[apu + 1] = type;
                        return apu;
                }
        }
        return -EBUSY;
}

/*
 * release APU pair
 */
static void snd_es1968_free_apu_pair(struct es1968 *chip, int apu)
{
        chip->apu[apu] = chip->apu[apu + 1] = ESM_APU_FREE;
}


/******************
 * PCM open/close *
 ******************/

static int snd_es1968_playback_open(struct snd_pcm_substream *substream)
{
        struct es1968 *chip = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;
        struct esschan *es;
        int apu1;

        /* search 2 APUs */
        apu1 = snd_es1968_alloc_apu_pair(chip, ESM_APU_PCM_PLAY);
        if (apu1 < 0)
                return apu1;

        es = kzalloc(sizeof(*es), GFP_KERNEL);
        if (!es) {
                snd_es1968_free_apu_pair(chip, apu1);
                return -ENOMEM;
        }

        es->apu[0] = apu1;
        es->apu[1] = apu1 + 1;
        es->apu_mode[0] = 0;
        es->apu_mode[1] = 0;
        es->running = 0;
        es->substream = substream;
        es->mode = ESM_MODE_PLAY;

        runtime->private_data = es;
        runtime->hw = snd_es1968_playback;
        runtime->hw.buffer_bytes_max = runtime->hw.period_bytes_max =
                calc_available_memory_size(chip);

        spin_lock_irq(&chip->substream_lock);
        list_add(&es->list, &chip->substream_list);
        spin_unlock_irq(&chip->substream_lock);

        return 0;
}

static int snd_es1968_capture_open(struct snd_pcm_substream *substream)
{
        struct snd_pcm_runtime *runtime = substream->runtime;
        struct es1968 *chip = snd_pcm_substream_chip(substream);
        struct esschan *es;
        int apu1, apu2;

        apu1 = snd_es1968_alloc_apu_pair(chip, ESM_APU_PCM_CAPTURE);
        if (apu1 < 0)
                return apu1;
        apu2 = snd_es1968_alloc_apu_pair(chip, ESM_APU_PCM_RATECONV);
        if (apu2 < 0) {
                snd_es1968_free_apu_pair(chip, apu1);
                return apu2;
        }
        
        es = kzalloc(sizeof(*es), GFP_KERNEL);
        if (!es) {
                snd_es1968_free_apu_pair(chip, apu1);
                snd_es1968_free_apu_pair(chip, apu2);
                return -ENOMEM;
        }

        es->apu[0] = apu1;
        es->apu[1] = apu1 + 1;
        es->apu[2] = apu2;
        es->apu[3] = apu2 + 1;
        es->apu_mode[0] = 0;
        es->apu_mode[1] = 0;
        es->apu_mode[2] = 0;
        es->apu_mode[3] = 0;
        es->running = 0;
        es->substream = substream;
        es->mode = ESM_MODE_CAPTURE;

        /* get mixbuffer */
        if ((es->mixbuf = snd_es1968_new_memory(chip, ESM_MIXBUF_SIZE)) == NULL) {
                snd_es1968_free_apu_pair(chip, apu1);
                snd_es1968_free_apu_pair(chip, apu2);
                kfree(es);
                return -ENOMEM;
        }
        memset(es->mixbuf->buf.area, 0, ESM_MIXBUF_SIZE);

        runtime->private_data = es;
        runtime->hw = snd_es1968_capture;
        runtime->hw.buffer_bytes_max = runtime->hw.period_bytes_max =
                calc_available_memory_size(chip) - 1024; /* keep MIXBUF size */
        snd_pcm_hw_constraint_pow2(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES);

        spin_lock_irq(&chip->substream_lock);
        list_add(&es->list, &chip->substream_list);
        spin_unlock_irq(&chip->substream_lock);

        return 0;
}

static int snd_es1968_playback_close(struct snd_pcm_substream *substream)
{
        struct es1968 *chip = snd_pcm_substream_chip(substream);
        struct esschan *es;

        if (substream->runtime->private_data == NULL)
                return 0;
        es = substream->runtime->private_data;
        spin_lock_irq(&chip->substream_lock);
        list_del(&es->list);
        spin_unlock_irq(&chip->substream_lock);
        snd_es1968_free_apu_pair(chip, es->apu[0]);
        kfree(es);

        return 0;
}

static int snd_es1968_capture_close(struct snd_pcm_substream *substream)
{
        struct es1968 *chip = snd_pcm_substream_chip(substream);
        struct esschan *es;

        if (substream->runtime->private_data == NULL)
                return 0;
        es = substream->runtime->private_data;
        spin_lock_irq(&chip->substream_lock);
        list_del(&es->list);
        spin_unlock_irq(&chip->substream_lock);
        snd_es1968_free_memory(chip, es->mixbuf);
        snd_es1968_free_apu_pair(chip, es->apu[0]);
        snd_es1968_free_apu_pair(chip, es->apu[2]);
        kfree(es);

        return 0;
}

static struct snd_pcm_ops snd_es1968_playback_ops = {
        .open =         snd_es1968_playback_open,
        .close =        snd_es1968_playback_close,
        .ioctl =        snd_pcm_lib_ioctl,
        .hw_params =    snd_es1968_hw_params,
        .hw_free =      snd_es1968_hw_free,
        .prepare =      snd_es1968_pcm_prepare,
        .trigger =      snd_es1968_pcm_trigger,
        .pointer =      snd_es1968_pcm_pointer,
};

static struct snd_pcm_ops snd_es1968_capture_ops = {
        .open =         snd_es1968_capture_open,
        .close =        snd_es1968_capture_close,
        .ioctl =        snd_pcm_lib_ioctl,
        .hw_params =    snd_es1968_hw_params,
        .hw_free =      snd_es1968_hw_free,
        .prepare =      snd_es1968_pcm_prepare,
        .trigger =      snd_es1968_pcm_trigger,
        .pointer =      snd_es1968_pcm_pointer,
};


/*
 * measure clock
 */
#define CLOCK_MEASURE_BUFSIZE   16768   /* enough large for a single shot */

static void __devinit es1968_measure_clock(struct es1968 *chip)
{
        int i, apu;
        unsigned int pa, offset, t;
        struct esm_memory *memory;
        struct timeval start_time, stop_time;

        if (chip->clock == 0)
                chip->clock = 48000; /* default clock value */

        /* search 2 APUs (although one apu is enough) */
        if ((apu = snd_es1968_alloc_apu_pair(chip, ESM_APU_PCM_PLAY)) < 0) {
                snd_printk(KERN_ERR "Hmm, cannot find empty APU pair!?\n");
                return;
        }
        if ((memory = snd_es1968_new_memory(chip, CLOCK_MEASURE_BUFSIZE)) == NULL) {
                snd_printk(KERN_ERR "cannot allocate dma buffer - using default clock %d\n", chip->clock);
                snd_es1968_free_apu_pair(chip, apu);
                return;
        }

        memset(memory->buf.area, 0, CLOCK_MEASURE_BUFSIZE);

        wave_set_register(chip, apu << 3, (memory->buf.addr - 0x10) & 0xfff8);

        pa = (unsigned int)((memory->buf.addr - chip->dma.addr) >> 1);
        pa |= 0x00400000;       /* System RAM (Bit 22) */

        /* initialize apu */
        for (i = 0; i < 16; i++)
                apu_set_register(chip, apu, i, 0x0000);

        apu_set_register(chip, apu, 0, 0x400f);
        apu_set_register(chip, apu, 4, ((pa >> 16) & 0xff) << 8);
        apu_set_register(chip, apu, 5, pa & 0xffff);
        apu_set_register(chip, apu, 6, (pa + CLOCK_MEASURE_BUFSIZE/2) & 0xffff);
        apu_set_register(chip, apu, 7, CLOCK_MEASURE_BUFSIZE/2);
        apu_set_register(chip, apu, 8, 0x0000);
        apu_set_register(chip, apu, 9, 0xD000);
        apu_set_register(chip, apu, 10, 0x8F08);
        apu_set_register(chip, apu, 11, 0x0000);
        spin_lock_irq(&chip->reg_lock);
        outw(1, chip->io_port + 0x04); /* clear WP interrupts */
        outw(inw(chip->io_port + ESM_PORT_HOST_IRQ) | ESM_HIRQ_DSIE, chip->io_port + ESM_PORT_HOST_IRQ); /* enable WP ints */
        spin_unlock_irq(&chip->reg_lock);

        snd_es1968_apu_set_freq(chip, apu, ((unsigned int)48000 << 16) / chip->clock); /* 48000 Hz */

        chip->in_measurement = 1;
        chip->measure_apu = apu;
        spin_lock_irq(&chip->reg_lock);
        snd_es1968_bob_inc(chip, ESM_BOB_FREQ);
        __apu_set_register(chip, apu, 5, pa & 0xffff);
        snd_es1968_trigger_apu(chip, apu, ESM_APU_16BITLINEAR);
        do_gettimeofday(&start_time);
        spin_unlock_irq(&chip->reg_lock);
        msleep(50);
        spin_lock_irq(&chip->reg_lock);
        offset = __apu_get_register(chip, apu, 5);
        do_gettimeofday(&stop_time);
        snd_es1968_trigger_apu(chip, apu, 0); /* stop */
        snd_es1968_bob_dec(chip);
        chip->in_measurement = 0;
        spin_unlock_irq(&chip->reg_lock);

        /* check the current position */
        offset -= (pa & 0xffff);
        offset &= 0xfffe;
        offset += chip->measure_count * (CLOCK_MEASURE_BUFSIZE/2);

        t = stop_time.tv_sec - start_time.tv_sec;
        t *= 1000000;
        if (stop_time.tv_usec < start_time.tv_usec)
                t -= start_time.tv_usec - stop_time.tv_usec;
        else
                t += stop_time.tv_usec - start_time.tv_usec;
        if (t == 0) {
                snd_printk(KERN_ERR "?? calculation error..\n");
        } else {
                offset *= 1000;
                offset = (offset / t) * 1000 + ((offset % t) * 1000) / t;
                if (offset < 47500 || offset > 48500) {
                        if (offset >= 40000 && offset <= 50000)
                                chip->clock = (chip->clock * offset) / 48000;
                }
                printk(KERN_INFO "es1968: clocking to %d\n", chip->clock);
        }
        snd_es1968_free_memory(chip, memory);
        snd_es1968_free_apu_pair(chip, apu);
}


/*
 */

static void snd_es1968_pcm_free(struct snd_pcm *pcm)
{
        struct es1968 *esm = pcm->private_data;
        snd_es1968_free_dmabuf(esm);
        esm->pcm = NULL;
}

static int __devinit
snd_es1968_pcm(struct es1968 *chip, int device)
{
        struct snd_pcm *pcm;
        int err;

        /* get DMA buffer */
        if ((err = snd_es1968_init_dmabuf(chip)) < 0)
                return err;

        /* set PCMBAR */
        wave_set_register(chip, 0x01FC, chip->dma.addr >> 12);
        wave_set_register(chip, 0x01FD, chip->dma.addr >> 12);
        wave_set_register(chip, 0x01FE, chip->dma.addr >> 12);
        wave_set_register(chip, 0x01FF, chip->dma.addr >> 12);

        if ((err = snd_pcm_new(chip->card, "ESS Maestro", device,
                               chip->playback_streams,
                               chip->capture_streams, &pcm)) < 0)
                return err;

        pcm->private_data = chip;
        pcm->private_free = snd_es1968_pcm_free;

        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_es1968_playback_ops);
        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_es1968_capture_ops);

        pcm->info_flags = 0;

        strcpy(pcm->name, "ESS Maestro");

        chip->pcm = pcm;

        return 0;
}
/*
 * suppress jitter on some maestros when playing stereo
 */
static void snd_es1968_suppress_jitter(struct es1968 *chip, struct esschan *es)
{
        unsigned int cp1;
        unsigned int cp2;
        unsigned int diff;

        cp1 = __apu_get_register(chip, 0, 5);
        cp2 = __apu_get_register(chip, 1, 5);
        diff = (cp1 > cp2 ? cp1 - cp2 : cp2 - cp1);

        if (diff > 1)
                __maestro_write(chip, IDR0_DATA_PORT, cp1);
}

/*
 * update pointer
 */
static void snd_es1968_update_pcm(struct es1968 *chip, struct esschan *es)
{
        unsigned int hwptr;
        unsigned int diff;
        struct snd_pcm_substream *subs = es->substream;
        
        if (subs == NULL || !es->running)
                return;

        hwptr = snd_es1968_get_dma_ptr(chip, es) << es->wav_shift;
        hwptr %= es->dma_size;

        diff = (es->dma_size + hwptr - es->hwptr) % es->dma_size;

        es->hwptr = hwptr;
        es->count += diff;

        if (es->count > es->frag_size) {
                spin_unlock(&chip->substream_lock);
                snd_pcm_period_elapsed(subs);
                spin_lock(&chip->substream_lock);
                es->count %= es->frag_size;
        }
}

/*
 */
static void es1968_update_hw_volume(unsigned long private_data)
{
        struct es1968 *chip = (struct es1968 *) private_data;
        int x, val;
        unsigned long flags;

        /* Figure out which volume control button was pushed,
           based on differences from the default register
           values. */
        x = inb(chip->io_port + 0x1c) & 0xee;
        /* Reset the volume control registers. */
        outb(0x88, chip->io_port + 0x1c);
        outb(0x88, chip->io_port + 0x1d);
        outb(0x88, chip->io_port + 0x1e);
        outb(0x88, chip->io_port + 0x1f);

        if (chip->in_suspend)
                return;

        if (! chip->master_switch || ! chip->master_volume)
                return;

        /* FIXME: we can't call snd_ac97_* functions since here is in tasklet. */
        spin_lock_irqsave(&chip->ac97_lock, flags);
        val = chip->ac97->regs[AC97_MASTER];
        switch (x) {
        case 0x88:
                /* mute */
                val ^= 0x8000;
                chip->ac97->regs[AC97_MASTER] = val;
                outw(val, chip->io_port + ESM_AC97_DATA);
                outb(AC97_MASTER, chip->io_port + ESM_AC97_INDEX);
                snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
                               &chip->master_switch->id);
                break;
        case 0xaa:
                /* volume up */
                if ((val & 0x7f) > 0)
                        val--;
                if ((val & 0x7f00) > 0)
                        val -= 0x0100;
                chip->ac97->regs[AC97_MASTER] = val;
                outw(val, chip->io_port + ESM_AC97_DATA);
                outb(AC97_MASTER, chip->io_port + ESM_AC97_INDEX);
                snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
                               &chip->master_volume->id);
                break;
        case 0x66:
                /* volume down */
                if ((val & 0x7f) < 0x1f)
                        val++;
                if ((val & 0x7f00) < 0x1f00)
                        val += 0x0100;
                chip->ac97->regs[AC97_MASTER] = val;
                outw(val, chip->io_port + ESM_AC97_DATA);
                outb(AC97_MASTER, chip->io_port + ESM_AC97_INDEX);
                snd_ctl_notify(chip->card, SNDRV_CTL_EVENT_MASK_VALUE,
                               &chip->master_volume->id);
                break;
        }
        spin_unlock_irqrestore(&chip->ac97_lock, flags);
}

/*
 * interrupt handler
 */
static irqreturn_t snd_es1968_interrupt(int irq, void *dev_id)
{
        struct es1968 *chip = dev_id;
        u32 event;

        if (!(event = inb(chip->io_port + 0x1A)))
                return IRQ_NONE;

        outw(inw(chip->io_port + 4) & 1, chip->io_port + 4);

        if (event & ESM_HWVOL_IRQ)
                tasklet_hi_schedule(&chip->hwvol_tq); /* we'll do this later */

        /* else ack 'em all, i imagine */
        outb(0xFF, chip->io_port + 0x1A);

        if ((event & ESM_MPU401_IRQ) && chip->rmidi) {
                snd_mpu401_uart_interrupt(irq, chip->rmidi->private_data);
        }

        if (event & ESM_SOUND_IRQ) {
                struct esschan *es;
                spin_lock(&chip->substream_lock);
                list_for_each_entry(es, &chip->substream_list, list) {
                        if (es->running) {
                                snd_es1968_update_pcm(chip, es);
                                if (es->fmt & ESS_FMT_STEREO)
                                        snd_es1968_suppress_jitter(chip, es);
                        }
                }
                spin_unlock(&chip->substream_lock);
                if (chip->in_measurement) {
                        unsigned int curp = __apu_get_register(chip, chip->measure_apu, 5);
                        if (curp < chip->measure_lastpos)
                                chip->measure_count++;
                        chip->measure_lastpos = curp;
                }
        }

        return IRQ_HANDLED;
}

/*
 *  Mixer stuff
 */

static int __devinit
snd_es1968_mixer(struct es1968 *chip)
{
        struct snd_ac97_bus *pbus;
        struct snd_ac97_template ac97;
        struct snd_ctl_elem_id elem_id;
        int err;
        static struct snd_ac97_bus_ops ops = {
                .write = snd_es1968_ac97_write,
                .read = snd_es1968_ac97_read,
        };

        if ((err = snd_ac97_bus(chip->card, 0, &ops, NULL, &pbus)) < 0)
                return err;
        pbus->no_vra = 1; /* ES1968 doesn't need VRA */

        memset(&ac97, 0, sizeof(ac97));
        ac97.private_data = chip;
        if ((err = snd_ac97_mixer(pbus, &ac97, &chip->ac97)) < 0)
                return err;

        /* attach master switch / volumes for h/w volume control */
        memset(&elem_id, 0, sizeof(elem_id));
        elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
        strcpy(elem_id.name, "Master Playback Switch");
        chip->master_switch = snd_ctl_find_id(chip->card, &elem_id);
        memset(&elem_id, 0, sizeof(elem_id));
        elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
        strcpy(elem_id.name, "Master Playback Volume");
        chip->master_volume = snd_ctl_find_id(chip->card, &elem_id);

        return 0;
}

/*
 * reset ac97 codec
 */

static void snd_es1968_ac97_reset(struct es1968 *chip)
{
        unsigned long ioaddr = chip->io_port;

        unsigned short save_ringbus_a;
        unsigned short save_68;
        unsigned short w;
        unsigned int vend;

        /* save configuration */
        save_ringbus_a = inw(ioaddr + 0x36);

        //outw(inw(ioaddr + 0x38) & 0xfffc, ioaddr + 0x38); /* clear second codec id? */
        /* set command/status address i/o to 1st codec */
        outw(inw(ioaddr + 0x3a) & 0xfffc, ioaddr + 0x3a);
        outw(inw(ioaddr + 0x3c) & 0xfffc, ioaddr + 0x3c);

        /* disable ac link */
        outw(0x0000, ioaddr + 0x36);
        save_68 = inw(ioaddr + 0x68);
        pci_read_config_word(chip->pci, 0x58, &w);      /* something magical with gpio and bus arb. */
        pci_read_config_dword(chip->pci, PCI_SUBSYSTEM_VENDOR_ID, &vend);
        if (w & 1)
                save_68 |= 0x10;
        outw(0xfffe, ioaddr + 0x64);    /* unmask gpio 0 */
        outw(0x0001, ioaddr + 0x68);    /* gpio write */
        outw(0x0000, ioaddr + 0x60);    /* write 0 to gpio 0 */
        udelay(20);
        outw(0x0001, ioaddr + 0x60);    /* write 1 to gpio 1 */
        msleep(20);

        outw(save_68 | 0x1, ioaddr + 0x68);     /* now restore .. */
        outw((inw(ioaddr + 0x38) & 0xfffc) | 0x1, ioaddr + 0x38);
        outw((inw(ioaddr + 0x3a) & 0xfffc) | 0x1, ioaddr + 0x3a);
        outw((inw(ioaddr + 0x3c) & 0xfffc) | 0x1, ioaddr + 0x3c);

        /* now the second codec */
        /* disable ac link */
        outw(0x0000, ioaddr + 0x36);
        outw(0xfff7, ioaddr + 0x64);    /* unmask gpio 3 */
        save_68 = inw(ioaddr + 0x68);
        outw(0x0009, ioaddr + 0x68);    /* gpio write 0 & 3 ?? */
        outw(0x0001, ioaddr + 0x60);    /* write 1 to gpio */
        udelay(20);
        outw(0x0009, ioaddr + 0x60);    /* write 9 to gpio */
        msleep(500);
        //outw(inw(ioaddr + 0x38) & 0xfffc, ioaddr + 0x38);
        outw(inw(ioaddr + 0x3a) & 0xfffc, ioaddr + 0x3a);
        outw(inw(ioaddr + 0x3c) & 0xfffc, ioaddr + 0x3c);

#if 0                           /* the loop here needs to be much better if we want it.. */
        snd_printk(KERN_INFO "trying software reset\n");
        /* try and do a software reset */
        outb(0x80 | 0x7c, ioaddr + 0x30);
        for (w = 0;; w++) {
                if ((inw(ioaddr + 0x30) & 1) == 0) {
                        if (inb(ioaddr + 0x32) != 0)
                                break;

                        outb(0x80 | 0x7d, ioaddr + 0x30);
                        if (((inw(ioaddr + 0x30) & 1) == 0)
                            && (inb(ioaddr + 0x32) != 0))
                                break;
                        outb(0x80 | 0x7f, ioaddr + 0x30);
                        if (((inw(ioaddr + 0x30) & 1) == 0)
                            && (inb(ioaddr + 0x32) != 0))
                                break;
                }

                if (w > 10000) {
                        outb(inb(ioaddr + 0x37) | 0x08, ioaddr + 0x37); /* do a software reset */
                        msleep(500);    /* oh my.. */
                        outb(inb(ioaddr + 0x37) & ~0x08,
                                ioaddr + 0x37);
                        udelay(1);
                        outw(0x80, ioaddr + 0x30);
                        for (w = 0; w < 10000; w++) {
                                if ((inw(ioaddr + 0x30) & 1) == 0)
                                        break;
                        }
                }
        }
#endif
        if (vend == NEC_VERSA_SUBID1 || vend == NEC_VERSA_SUBID2) {
                /* turn on external amp? */
                outw(0xf9ff, ioaddr + 0x64);
                outw(inw(ioaddr + 0x68) | 0x600, ioaddr + 0x68);
                outw(0x0209, ioaddr + 0x60);
        }

        /* restore.. */
        outw(save_ringbus_a, ioaddr + 0x36);

        /* Turn on the 978 docking chip.
           First frob the "master output enable" bit,
           then set most of the playback volume control registers to max. */
        outb(inb(ioaddr+0xc0)|(1<<5), ioaddr+0xc0);
        outb(0xff, ioaddr+0xc3);
        outb(0xff, ioaddr+0xc4);
        outb(0xff, ioaddr+0xc6);
        outb(0xff, ioaddr+0xc8);
        outb(0x3f, ioaddr+0xcf);
        outb(0x3f, ioaddr+0xd0);
}

static void snd_es1968_reset(struct es1968 *chip)
{
        /* Reset */
        outw(ESM_RESET_MAESTRO | ESM_RESET_DIRECTSOUND,
             chip->io_port + ESM_PORT_HOST_IRQ);
        udelay(10);
        outw(0x0000, chip->io_port + ESM_PORT_HOST_IRQ);
        udelay(10);
}

/*
 * initialize maestro chip
 */
static void snd_es1968_chip_init(struct es1968 *chip)
{
        struct pci_dev *pci = chip->pci;
        int i;
        unsigned long iobase  = chip->io_port;
        u16 w;
        u32 n;

        /* We used to muck around with pci config space that
         * we had no business messing with.  We don't know enough
         * about the machine to know which DMA mode is appropriate, 
         * etc.  We were guessing wrong on some machines and making
         * them unhappy.  We now trust in the BIOS to do things right,
         * which almost certainly means a new host of problems will
         * arise with broken BIOS implementations.  screw 'em. 
         * We're already intolerant of machines that don't assign
         * IRQs.
         */
        
        /* Config Reg A */
        pci_read_config_word(pci, ESM_CONFIG_A, &w);

        w &= ~DMA_CLEAR;        /* Clear DMA bits */
        w &= ~(PIC_SNOOP1 | PIC_SNOOP2);        /* Clear Pic Snoop Mode Bits */
        w &= ~SAFEGUARD;        /* Safeguard off */
        w |= POST_WRITE;        /* Posted write */
        w |= PCI_TIMING;        /* PCI timing on */
        /* XXX huh?  claims to be reserved.. */
        w &= ~SWAP_LR;          /* swap left/right 
                                   seems to only have effect on SB
                                   Emulation */
        w &= ~SUBTR_DECODE;     /* Subtractive decode off */

        pci_write_config_word(pci, ESM_CONFIG_A, w);

        /* Config Reg B */

        pci_read_config_word(pci, ESM_CONFIG_B, &w);

        w &= ~(1 << 15);        /* Turn off internal clock multiplier */
        /* XXX how do we know which to use? */
        w &= ~(1 << 14);        /* External clock */

        w &= ~SPDIF_CONFB;      /* disable S/PDIF output */
        w |= HWV_CONFB;         /* HWV on */
        w |= DEBOUNCE;          /* Debounce off: easier to push the HW buttons */
        w &= ~GPIO_CONFB;       /* GPIO 4:5 */
        w |= CHI_CONFB;         /* Disconnect from the CHI.  Enabling this made a dell 7500 work. */
        w &= ~IDMA_CONFB;       /* IDMA off (undocumented) */
        w &= ~MIDI_FIX;         /* MIDI fix off (undoc) */
        w &= ~(1 << 1);         /* reserved, always write 0 */
        w &= ~IRQ_TO_ISA;       /* IRQ to ISA off (undoc) */

        pci_write_config_word(pci, ESM_CONFIG_B, w);

        /* DDMA off */

        pci_read_config_word(pci, ESM_DDMA, &w);
        w &= ~(1 << 0);
        pci_write_config_word(pci, ESM_DDMA, w);

        /*
         *      Legacy mode
         */

        pci_read_config_word(pci, ESM_LEGACY_AUDIO_CONTROL, &w);

        w |= ESS_DISABLE_AUDIO; /* Disable Legacy Audio */
        w &= ~ESS_ENABLE_SERIAL_IRQ;    /* Disable SIRQ */
        w &= ~(0x1f);           /* disable mpu irq/io, game port, fm, SB */

        pci_write_config_word(pci, ESM_LEGACY_AUDIO_CONTROL, w);

        /* Set up 978 docking control chip. */
        pci_read_config_word(pci, 0x58, &w);
        w|=1<<2;        /* Enable 978. */
        w|=1<<3;        /* Turn on 978 hardware volume control. */
        w&=~(1<<11);    /* Turn on 978 mixer volume control. */
        pci_write_config_word(pci, 0x58, w);
        
        /* Sound Reset */

        snd_es1968_reset(chip);

        /*
         *      Ring Bus Setup
         */

        /* setup usual 0x34 stuff.. 0x36 may be chip specific */
        outw(0xC090, iobase + ESM_RING_BUS_DEST); /* direct sound, stereo */
        udelay(20);
        outw(0x3000, iobase + ESM_RING_BUS_CONTR_A); /* enable ringbus/serial */
        udelay(20);

        /*
         *      Reset the CODEC
         */
         
        snd_es1968_ac97_reset(chip);

        /* Ring Bus Control B */

        n = inl(iobase + ESM_RING_BUS_CONTR_B);
        n &= ~RINGB_EN_SPDIF;   /* SPDIF off */
        //w |= RINGB_EN_2CODEC; /* enable 2nd codec */
        outl(n, iobase + ESM_RING_BUS_CONTR_B);

        /* Set hardware volume control registers to midpoints.
           We can tell which button was pushed based on how they change. */
        outb(0x88, iobase+0x1c);
        outb(0x88, iobase+0x1d);
        outb(0x88, iobase+0x1e);
        outb(0x88, iobase+0x1f);

        /* it appears some maestros (dell 7500) only work if these are set,
           regardless of wether we use the assp or not. */

        outb(0, iobase + ASSP_CONTROL_B);
        outb(3, iobase + ASSP_CONTROL_A);       /* M: Reserved bits... */
        outb(0, iobase + ASSP_CONTROL_C);       /* M: Disable ASSP, ASSP IRQ's and FM Port */

        /*
         * set up wavecache
         */
        for (i = 0; i < 16; i++) {
                /* Write 0 into the buffer area 0x1E0->1EF */
                outw(0x01E0 + i, iobase + WC_INDEX);
                outw(0x0000, iobase + WC_DATA);

                /* The 1.10 test program seem to write 0 into the buffer area
                 * 0x1D0-0x1DF too.*/
                outw(0x01D0 + i, iobase + WC_INDEX);
                outw(0x0000, iobase + WC_DATA);
        }
        wave_set_register(chip, IDR7_WAVE_ROMRAM,
                          (wave_get_register(chip, IDR7_WAVE_ROMRAM) & 0xFF00));
        wave_set_register(chip, IDR7_WAVE_ROMRAM,
                          wave_get_register(chip, IDR7_WAVE_ROMRAM) | 0x100);
        wave_set_register(chip, IDR7_WAVE_ROMRAM,
                          wave_get_register(chip, IDR7_WAVE_ROMRAM) & ~0x200);
        wave_set_register(chip, IDR7_WAVE_ROMRAM,
                          wave_get_register(chip, IDR7_WAVE_ROMRAM) | ~0x400);


        maestro_write(chip, IDR2_CRAM_DATA, 0x0000);
        /* Now back to the DirectSound stuff */
        /* audio serial configuration.. ? */
        maestro_write(chip, 0x08, 0xB004);
        maestro_write(chip, 0x09, 0x001B);
        maestro_write(chip, 0x0A, 0x8000);
        maestro_write(chip, 0x0B, 0x3F37);
        maestro_write(chip, 0x0C, 0x0098);

        /* parallel in, has something to do with recording :) */
        maestro_write(chip, 0x0C,
                      (maestro_read(chip, 0x0C) & ~0xF000) | 0x8000);
        /* parallel out */
        maestro_write(chip, 0x0C,
                      (maestro_read(chip, 0x0C) & ~0x0F00) | 0x0500);

        maestro_write(chip, 0x0D, 0x7632);

        /* Wave cache control on - test off, sg off, 
           enable, enable extra chans 1Mb */

        w = inw(iobase + WC_CONTROL);

        w &= ~0xFA00;           /* Seems to be reserved? I don't know */
        w |= 0xA000;            /* reserved... I don't know */
        w &= ~0x0200;           /* Channels 56,57,58,59 as Extra Play,Rec Channel enable
                                   Seems to crash the Computer if enabled... */
        w |= 0x0100;            /* Wave Cache Operation Enabled */
        w |= 0x0080;            /* Channels 60/61 as Placback/Record enabled */
        w &= ~0x0060;           /* Clear Wavtable Size */
        w |= 0x0020;            /* Wavetable Size : 1MB */
        /* Bit 4 is reserved */
        w &= ~0x000C;           /* DMA Stuff? I don't understand what the datasheet means */
        /* Bit 1 is reserved */
        w &= ~0x0001;           /* Test Mode off */

        outw(w, iobase + WC_CONTROL);

        /* Now clear the APU control ram */
        for (i = 0; i < NR_APUS; i++) {
                for (w = 0; w < NR_APU_REGS; w++)
                        apu_set_register(chip, i, w, 0);

        }
}

/* Enable IRQ's */
static void snd_es1968_start_irq(struct es1968 *chip)
{
        unsigned short w;
        w = ESM_HIRQ_DSIE | ESM_HIRQ_HW_VOLUME;
        if (chip->rmidi)
                w |= ESM_HIRQ_MPU401;
        outw(w, chip->io_port + ESM_PORT_HOST_IRQ);
}

#ifdef CONFIG_PM
/*
 * PM support
 */
static int es1968_suspend(struct pci_dev *pci, pm_message_t state)
{
        struct snd_card *card = pci_get_drvdata(pci);
        struct es1968 *chip = card->private_data;

        if (! chip->do_pm)
                return 0;

        chip->in_suspend = 1;
        snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
        snd_pcm_suspend_all(chip->pcm);
        snd_ac97_suspend(chip->ac97);
        snd_es1968_bob_stop(chip);

        pci_disable_device(pci);
        pci_save_state(pci);
        pci_set_power_state(pci, pci_choose_state(pci, state));
        return 0;
}

static int es1968_resume(struct pci_dev *pci)
{
        struct snd_card *card = pci_get_drvdata(pci);
        struct es1968 *chip = card->private_data;
        struct esschan *es;

        if (! chip->do_pm)
                return 0;

        /* restore all our config */
        pci_set_power_state(pci, PCI_D0);
        pci_restore_state(pci);
        if (pci_enable_device(pci) < 0) {
                printk(KERN_ERR "es1968: pci_enable_device failed, "
                       "disabling device\n");
                snd_card_disconnect(card);
                return -EIO;
        }
        pci_set_master(pci);

        snd_es1968_chip_init(chip);

        /* need to restore the base pointers.. */ 
        if (chip->dma.addr) {
                /* set PCMBAR */
                wave_set_register(chip, 0x01FC, chip->dma.addr >> 12);
        }

        snd_es1968_start_irq(chip);

        /* restore ac97 state */
        snd_ac97_resume(chip->ac97);

        list_for_each_entry(es, &chip->substream_list, list) {
                switch (es->mode) {
                case ESM_MODE_PLAY:
                        snd_es1968_playback_setup(chip, es, es->substream->runtime);
                        break;
                case ESM_MODE_CAPTURE:
                        snd_es1968_capture_setup(chip, es, es->substream->runtime);
                        break;
                }
        }

        /* start timer again */
        if (chip->bobclient)
                snd_es1968_bob_start(chip);

        snd_power_change_state(card, SNDRV_CTL_POWER_D0);
        chip->in_suspend = 0;
        return 0;
}
#endif /* CONFIG_PM */

#ifdef SUPPORT_JOYSTICK
#define JOYSTICK_ADDR   0x200
static int __devinit snd_es1968_create_gameport(struct es1968 *chip, int dev)
{
        struct gameport *gp;
        struct resource *r;
        u16 val;

        if (!joystick[dev])
                return -ENODEV;

        r = request_region(JOYSTICK_ADDR, 8, "ES1968 gameport");
        if (!r)
                return -EBUSY;

        chip->gameport = gp = gameport_allocate_port();
        if (!gp) {
                printk(KERN_ERR "es1968: cannot allocate memory for gameport\n");
                release_and_free_resource(r);
                return -ENOMEM;
        }

        pci_read_config_word(chip->pci, ESM_LEGACY_AUDIO_CONTROL, &val);
        pci_write_config_word(chip->pci, ESM_LEGACY_AUDIO_CONTROL, val | 0x04);

        gameport_set_name(gp, "ES1968 Gameport");
        gameport_set_phys(gp, "pci%s/gameport0", pci_name(chip->pci));
        gameport_set_dev_parent(gp, &chip->pci->dev);
        gp->io = JOYSTICK_ADDR;
        gameport_set_port_data(gp, r);

        gameport_register_port(gp);

        return 0;
}

static void snd_es1968_free_gameport(struct es1968 *chip)
{
        if (chip->gameport) {
                struct resource *r = gameport_get_port_data(chip->gameport);

                gameport_unregister_port(chip->gameport);
                chip->gameport = NULL;

                release_and_free_resource(r);
        }
}
#else
static inline int snd_es1968_create_gameport(struct es1968 *chip, int dev) { return -ENOSYS; }
static inline void snd_es1968_free_gameport(struct es1968 *chip) { }
#endif

static int snd_es1968_free(struct es1968 *chip)
{
        if (chip->io_port) {
                if (chip->irq >= 0)
                        synchronize_irq(chip->irq);
                outw(1, chip->io_port + 0x04); /* clear WP interrupts */
                outw(0, chip->io_port + ESM_PORT_HOST_IRQ); /* disable IRQ */
        }

        if (chip->irq >= 0)
                free_irq(chip->irq, chip);
        snd_es1968_free_gameport(chip);
        chip->master_switch = NULL;
        chip->master_volume = NULL;
        pci_release_regions(chip->pci);
        pci_disable_device(chip->pci);
        kfree(chip);
        return 0;
}

static int snd_es1968_dev_free(struct snd_device *device)
{
        struct es1968 *chip = device->device_data;
        return snd_es1968_free(chip);
}

struct ess_device_list {
        unsigned short type;    /* chip type */
        unsigned short vendor;  /* subsystem vendor id */
};

static struct ess_device_list pm_whitelist[] __devinitdata = {
        { TYPE_MAESTRO2E, 0x0e11 },     /* Compaq Armada */
        { TYPE_MAESTRO2E, 0x1028 },
        { TYPE_MAESTRO2E, 0x103c },
        { TYPE_MAESTRO2E, 0x1179 },
        { TYPE_MAESTRO2E, 0x14c0 },     /* HP omnibook 4150 */
        { TYPE_MAESTRO2E, 0x1558 },
};

static struct ess_device_list mpu_blacklist[] __devinitdata = {
        { TYPE_MAESTRO2, 0x125d },
};

static int __devinit snd_es1968_create(struct snd_card *card,
                                       struct pci_dev *pci,
                                       int total_bufsize,
                                       int play_streams,
                                       int capt_streams,
                                       int chip_type,
                                       int do_pm,
                                       struct es1968 **chip_ret)
{
        static struct snd_device_ops ops = {
                .dev_free =     snd_es1968_dev_free,
        };
        struct es1968 *chip;
        int i, err;

        *chip_ret = NULL;

        /* enable PCI device */
        if ((err = pci_enable_device(pci)) < 0)
                return err;
        /* check, if we can restrict PCI DMA transfers to 28 bits */
        if (pci_set_dma_mask(pci, DMA_28BIT_MASK) < 0 ||
            pci_set_consistent_dma_mask(pci, DMA_28BIT_MASK) < 0) {
                snd_printk(KERN_ERR "architecture does not support 28bit PCI busmaster DMA\n");
                pci_disable_device(pci);
                return -ENXIO;
        }

        chip = kzalloc(sizeof(*chip), GFP_KERNEL);
        if (! chip) {
                pci_disable_device(pci);
                return -ENOMEM;
        }

        /* Set Vars */
        chip->type = chip_type;
        spin_lock_init(&chip->reg_lock);
        spin_lock_init(&chip->substream_lock);
        INIT_LIST_HEAD(&chip->buf_list);
        INIT_LIST_HEAD(&chip->substream_list);
        spin_lock_init(&chip->ac97_lock);
        mutex_init(&chip->memory_mutex);
        tasklet_init(&chip->hwvol_tq, es1968_update_hw_volume, (unsigned long)chip);
        chip->card = card;
        chip->pci = pci;
        chip->irq = -1;
        chip->total_bufsize = total_bufsize;    /* in bytes */
        chip->playback_streams = play_streams;
        chip->capture_streams = capt_streams;

        if ((err = pci_request_regions(pci, "ESS Maestro")) < 0) {
                kfree(chip);
                pci_disable_device(pci);
                return err;
        }
        chip->io_port = pci_resource_start(pci, 0);
        if (request_irq(pci->irq, snd_es1968_interrupt, IRQF_SHARED,
                        "ESS Maestro", chip)) {
                snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
                snd_es1968_free(chip);
                return -EBUSY;
        }
        chip->irq = pci->irq;
                
        /* Clear Maestro_map */
        for (i = 0; i < 32; i++)
                chip->maestro_map[i] = 0;

        /* Clear Apu Map */
        for (i = 0; i < NR_APUS; i++)
                chip->apu[i] = ESM_APU_FREE;

        /* just to be sure */
        pci_set_master(pci);

        if (do_pm > 1) {
                /* disable power-management if not on the whitelist */
                unsigned short vend;
                pci_read_config_word(chip->pci, PCI_SUBSYSTEM_VENDOR_ID, &vend);
                for (i = 0; i < (int)ARRAY_SIZE(pm_whitelist); i++) {
                        if (chip->type == pm_whitelist[i].type &&
                            vend == pm_whitelist[i].vendor) {
                                do_pm = 1;
                                break;
                        }
                }
                if (do_pm > 1) {
                        /* not matched; disabling pm */
                        printk(KERN_INFO "es1968: not attempting power management.\n");
                        do_pm = 0;
                }
        }
        chip->do_pm = do_pm;

        snd_es1968_chip_init(chip);

        if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
                snd_es1968_free(chip);
                return err;
        }

        snd_card_set_dev(card, &pci->dev);

        *chip_ret = chip;

        return 0;
}


/*
 */
static int __devinit snd_es1968_probe(struct pci_dev *pci,
                                      const struct pci_device_id *pci_id)
{
        static int dev;
        struct snd_card *card;
        struct es1968 *chip;
        unsigned int i;
        int err;

        if (dev >= SNDRV_CARDS)
                return -ENODEV;
        if (!enable[dev]) {
                dev++;
                return -ENOENT;
        }

        card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
        if (!card)
                return -ENOMEM;
                
        if (total_bufsize[dev] < 128)
                total_bufsize[dev] = 128;
        if (total_bufsize[dev] > 4096)
                total_bufsize[dev] = 4096;
        if ((err = snd_es1968_create(card, pci,
                                     total_bufsize[dev] * 1024, /* in bytes */
                                     pcm_substreams_p[dev], 
                                     pcm_substreams_c[dev],
                                     pci_id->driver_data,
                                     use_pm[dev],
                                     &chip)) < 0) {
                snd_card_free(card);
                return err;
        }
        card->private_data = chip;

        switch (chip->type) {
        case TYPE_MAESTRO2E:
                strcpy(card->driver, "ES1978");
                strcpy(card->shortname, "ESS ES1978 (Maestro 2E)");
                break;
        case TYPE_MAESTRO2:
                strcpy(card->driver, "ES1968");
                strcpy(card->shortname, "ESS ES1968 (Maestro 2)");
                break;
        case TYPE_MAESTRO:
                strcpy(card->driver, "ESM1");
                strcpy(card->shortname, "ESS Maestro 1");
                break;
        }

        if ((err = snd_es1968_pcm(chip, 0)) < 0) {
                snd_card_free(card);
                return err;
        }

        if ((err = snd_es1968_mixer(chip)) < 0) {
                snd_card_free(card);
                return err;
        }

        if (enable_mpu[dev] == 2) {
                /* check the black list */
                unsigned short vend;
                pci_read_config_word(chip->pci, PCI_SUBSYSTEM_VENDOR_ID, &vend);
                for (i = 0; i < ARRAY_SIZE(mpu_blacklist); i++) {
                        if (chip->type == mpu_blacklist[i].type &&
                            vend == mpu_blacklist[i].vendor) {
                                enable_mpu[dev] = 0;
                                break;
                        }
                }
        }
        if (enable_mpu[dev]) {
                if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_MPU401,
                                               chip->io_port + ESM_MPU401_PORT,
                                               MPU401_INFO_INTEGRATED,
                                               chip->irq, 0, &chip->rmidi)) < 0) {
                        printk(KERN_WARNING "es1968: skipping MPU-401 MIDI support..\n");
                }
        }

        snd_es1968_create_gameport(chip, dev);

        snd_es1968_start_irq(chip);

        chip->clock = clock[dev];
        if (! chip->clock)
                es1968_measure_clock(chip);

        sprintf(card->longname, "%s at 0x%lx, irq %i",
                card->shortname, chip->io_port, chip->irq);

        if ((err = snd_card_register(card)) < 0) {
                snd_card_free(card);
                return err;
        }
        pci_set_drvdata(pci, card);
        dev++;
        return 0;
}

static void __devexit snd_es1968_remove(struct pci_dev *pci)
{
        snd_card_free(pci_get_drvdata(pci));
        pci_set_drvdata(pci, NULL);
}

static struct pci_driver driver = {
        .name = "ES1968 (ESS Maestro)",
        .id_table = snd_es1968_ids,
        .probe = snd_es1968_probe,
        .remove = __devexit_p(snd_es1968_remove),
#ifdef CONFIG_PM
        .suspend = es1968_suspend,
        .resume = es1968_resume,
#endif
};

static int __init alsa_card_es1968_init(void)
{
        return pci_register_driver(&driver);
}

static void __exit alsa_card_es1968_exit(void)
{
        pci_unregister_driver(&driver);
}

module_init(alsa_card_es1968_init)
module_exit(alsa_card_es1968_exit)

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading