[funini.com] -> [kei@sodan] -> Kernel Reading

root/fs/ubifs/recovery.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. is_empty
  2. get_master_node
  3. write_rcvrd_mst_node
  4. ubifs_recover_master_node
  5. ubifs_write_rcvrd_mst_node
  6. is_last_write
  7. clean_buf
  8. no_more_nodes
  9. fix_unclean_leb
  10. drop_incomplete_group
  11. ubifs_recover_leb
  12. get_cs_sqnum
  13. ubifs_recover_log_leb
  14. recover_head
  15. ubifs_recover_inl_heads
  16. clean_an_unclean_leb
  17. ubifs_clean_lebs
  18. ubifs_rcvry_gc_commit
  19. add_ino
  20. find_ino
  21. remove_ino
  22. ubifs_destroy_size_tree
  23. ubifs_recover_size_accum
  24. fix_size_in_place
  25. ubifs_recover_size

/*
 * This file is part of UBIFS.
 *
 * Copyright (C) 2006-2008 Nokia Corporation
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 51
 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 *
 * Authors: Adrian Hunter
 *          Artem Bityutskiy (Битюцкий Артём)
 */

/*
 * This file implements functions needed to recover from unclean un-mounts.
 * When UBIFS is mounted, it checks a flag on the master node to determine if
 * an un-mount was completed sucessfully. If not, the process of mounting
 * incorparates additional checking and fixing of on-flash data structures.
 * UBIFS always cleans away all remnants of an unclean un-mount, so that
 * errors do not accumulate. However UBIFS defers recovery if it is mounted
 * read-only, and the flash is not modified in that case.
 */

#include <linux/crc32.h>
#include "ubifs.h"

/**
 * is_empty - determine whether a buffer is empty (contains all 0xff).
 * @buf: buffer to clean
 * @len: length of buffer
 *
 * This function returns %1 if the buffer is empty (contains all 0xff) otherwise
 * %0 is returned.
 */
static int is_empty(void *buf, int len)
{
        uint8_t *p = buf;
        int i;

        for (i = 0; i < len; i++)
                if (*p++ != 0xff)
                        return 0;
        return 1;
}

/**
 * get_master_node - get the last valid master node allowing for corruption.
 * @c: UBIFS file-system description object
 * @lnum: LEB number
 * @pbuf: buffer containing the LEB read, is returned here
 * @mst: master node, if found, is returned here
 * @cor: corruption, if found, is returned here
 *
 * This function allocates a buffer, reads the LEB into it, and finds and
 * returns the last valid master node allowing for one area of corruption.
 * The corrupt area, if there is one, must be consistent with the assumption
 * that it is the result of an unclean unmount while the master node was being
 * written. Under those circumstances, it is valid to use the previously written
 * master node.
 *
 * This function returns %0 on success and a negative error code on failure.
 */
static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf,
                           struct ubifs_mst_node **mst, void **cor)
{
        const int sz = c->mst_node_alsz;
        int err, offs, len;
        void *sbuf, *buf;

        sbuf = vmalloc(c->leb_size);
        if (!sbuf)
                return -ENOMEM;

        err = ubi_read(c->ubi, lnum, sbuf, 0, c->leb_size);
        if (err && err != -EBADMSG)
                goto out_free;

        /* Find the first position that is definitely not a node */
        offs = 0;
        buf = sbuf;
        len = c->leb_size;
        while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) {
                struct ubifs_ch *ch = buf;

                if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
                        break;
                offs += sz;
                buf  += sz;
                len  -= sz;
        }
        /* See if there was a valid master node before that */
        if (offs) {
                int ret;

                offs -= sz;
                buf  -= sz;
                len  += sz;
                ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
                if (ret != SCANNED_A_NODE && offs) {
                        /* Could have been corruption so check one place back */
                        offs -= sz;
                        buf  -= sz;
                        len  += sz;
                        ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
                        if (ret != SCANNED_A_NODE)
                                /*
                                 * We accept only one area of corruption because
                                 * we are assuming that it was caused while
                                 * trying to write a master node.
                                 */
                                goto out_err;
                }
                if (ret == SCANNED_A_NODE) {
                        struct ubifs_ch *ch = buf;

                        if (ch->node_type != UBIFS_MST_NODE)
                                goto out_err;
                        dbg_rcvry("found a master node at %d:%d", lnum, offs);
                        *mst = buf;
                        offs += sz;
                        buf  += sz;
                        len  -= sz;
                }
        }
        /* Check for corruption */
        if (offs < c->leb_size) {
                if (!is_empty(buf, min_t(int, len, sz))) {
                        *cor = buf;
                        dbg_rcvry("found corruption at %d:%d", lnum, offs);
                }
                offs += sz;
                buf  += sz;
                len  -= sz;
        }
        /* Check remaining empty space */
        if (offs < c->leb_size)
                if (!is_empty(buf, len))
                        goto out_err;
        *pbuf = sbuf;
        return 0;

out_err:
        err = -EINVAL;
out_free:
        vfree(sbuf);
        *mst = NULL;
        *cor = NULL;
        return err;
}

/**
 * write_rcvrd_mst_node - write recovered master node.
 * @c: UBIFS file-system description object
 * @mst: master node
 *
 * This function returns %0 on success and a negative error code on failure.
 */
static int write_rcvrd_mst_node(struct ubifs_info *c,
                                struct ubifs_mst_node *mst)
{
        int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz;
        uint32_t save_flags;

        dbg_rcvry("recovery");

        save_flags = mst->flags;
        mst->flags = cpu_to_le32(le32_to_cpu(mst->flags) | UBIFS_MST_RCVRY);

        ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1);
        err = ubi_leb_change(c->ubi, lnum, mst, sz, UBI_SHORTTERM);
        if (err)
                goto out;
        err = ubi_leb_change(c->ubi, lnum + 1, mst, sz, UBI_SHORTTERM);
        if (err)
                goto out;
out:
        mst->flags = save_flags;
        return err;
}

/**
 * ubifs_recover_master_node - recover the master node.
 * @c: UBIFS file-system description object
 *
 * This function recovers the master node from corruption that may occur due to
 * an unclean unmount.
 *
 * This function returns %0 on success and a negative error code on failure.
 */
int ubifs_recover_master_node(struct ubifs_info *c)
{
        void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL;
        struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst;
        const int sz = c->mst_node_alsz;
        int err, offs1, offs2;

        dbg_rcvry("recovery");

        err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1);
        if (err)
                goto out_free;

        err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2);
        if (err)
                goto out_free;

        if (mst1) {
                offs1 = (void *)mst1 - buf1;
                if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) &&
                    (offs1 == 0 && !cor1)) {
                        /*
                         * mst1 was written by recovery at offset 0 with no
                         * corruption.
                         */
                        dbg_rcvry("recovery recovery");
                        mst = mst1;
                } else if (mst2) {
                        offs2 = (void *)mst2 - buf2;
                        if (offs1 == offs2) {
                                /* Same offset, so must be the same */
                                if (memcmp((void *)mst1 + UBIFS_CH_SZ,
                                           (void *)mst2 + UBIFS_CH_SZ,
                                           UBIFS_MST_NODE_SZ - UBIFS_CH_SZ))
                                        goto out_err;
                                mst = mst1;
                        } else if (offs2 + sz == offs1) {
                                /* 1st LEB was written, 2nd was not */
                                if (cor1)
                                        goto out_err;
                                mst = mst1;
                        } else if (offs1 == 0 && offs2 + sz >= c->leb_size) {
                                /* 1st LEB was unmapped and written, 2nd not */
                                if (cor1)
                                        goto out_err;
                                mst = mst1;
                        } else
                                goto out_err;
                } else {
                        /*
                         * 2nd LEB was unmapped and about to be written, so
                         * there must be only one master node in the first LEB
                         * and no corruption.
                         */
                        if (offs1 != 0 || cor1)
                                goto out_err;
                        mst = mst1;
                }
        } else {
                if (!mst2)
                        goto out_err;
                /*
                 * 1st LEB was unmapped and about to be written, so there must
                 * be no room left in 2nd LEB.
                 */
                offs2 = (void *)mst2 - buf2;
                if (offs2 + sz + sz <= c->leb_size)
                        goto out_err;
                mst = mst2;
        }

        dbg_rcvry("recovered master node from LEB %d",
                  (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1));

        memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ);

        if ((c->vfs_sb->s_flags & MS_RDONLY)) {
                /* Read-only mode. Keep a copy for switching to rw mode */
                c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL);
                if (!c->rcvrd_mst_node) {
                        err = -ENOMEM;
                        goto out_free;
                }
                memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ);
        } else {
                /* Write the recovered master node */
                c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1;
                err = write_rcvrd_mst_node(c, c->mst_node);
                if (err)
                        goto out_free;
        }

        vfree(buf2);
        vfree(buf1);

        return 0;

out_err:
        err = -EINVAL;
out_free:
        ubifs_err("failed to recover master node");
        if (mst1) {
                dbg_err("dumping first master node");
                dbg_dump_node(c, mst1);
        }
        if (mst2) {
                dbg_err("dumping second master node");
                dbg_dump_node(c, mst2);
        }
        vfree(buf2);
        vfree(buf1);
        return err;
}

/**
 * ubifs_write_rcvrd_mst_node - write the recovered master node.
 * @c: UBIFS file-system description object
 *
 * This function writes the master node that was recovered during mounting in
 * read-only mode and must now be written because we are remounting rw.
 *
 * This function returns %0 on success and a negative error code on failure.
 */
int ubifs_write_rcvrd_mst_node(struct ubifs_info *c)
{
        int err;

        if (!c->rcvrd_mst_node)
                return 0;
        c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
        c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
        err = write_rcvrd_mst_node(c, c->rcvrd_mst_node);
        if (err)
                return err;
        kfree(c->rcvrd_mst_node);
        c->rcvrd_mst_node = NULL;
        return 0;
}

/**
 * is_last_write - determine if an offset was in the last write to a LEB.
 * @c: UBIFS file-system description object
 * @buf: buffer to check
 * @offs: offset to check
 *
 * This function returns %1 if @offs was in the last write to the LEB whose data
 * is in @buf, otherwise %0 is returned.  The determination is made by checking
 * for subsequent empty space starting from the next min_io_size boundary (or a
 * bit less than the common header size if min_io_size is one).
 */
static int is_last_write(const struct ubifs_info *c, void *buf, int offs)
{
        int empty_offs;
        int check_len;
        uint8_t *p;

        if (c->min_io_size == 1) {
                check_len = c->leb_size - offs;
                p = buf + check_len;
                for (; check_len > 0; check_len--)
                        if (*--p != 0xff)
                                break;
                /*
                 * 'check_len' is the size of the corruption which cannot be
                 * more than the size of 1 node if it was caused by an unclean
                 * unmount.
                 */
                if (check_len > UBIFS_MAX_NODE_SZ)
                        return 0;
                return 1;
        }

        /*
         * Round up to the next c->min_io_size boundary i.e. 'offs' is in the
         * last wbuf written. After that should be empty space.
         */
        empty_offs = ALIGN(offs + 1, c->min_io_size);
        check_len = c->leb_size - empty_offs;
        p = buf + empty_offs - offs;

        for (; check_len > 0; check_len--)
                if (*p++ != 0xff)
                        return 0;
        return 1;
}

/**
 * clean_buf - clean the data from an LEB sitting in a buffer.
 * @c: UBIFS file-system description object
 * @buf: buffer to clean
 * @lnum: LEB number to clean
 * @offs: offset from which to clean
 * @len: length of buffer
 *
 * This function pads up to the next min_io_size boundary (if there is one) and
 * sets empty space to all 0xff. @buf, @offs and @len are updated to the next
 * min_io_size boundary (if there is one).
 */
static void clean_buf(const struct ubifs_info *c, void **buf, int lnum,
                      int *offs, int *len)
{
        int empty_offs, pad_len;

        lnum = lnum;
        dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs);

        if (c->min_io_size == 1) {
                memset(*buf, 0xff, c->leb_size - *offs);
                return;
        }

        ubifs_assert(!(*offs & 7));
        empty_offs = ALIGN(*offs, c->min_io_size);
        pad_len = empty_offs - *offs;
        ubifs_pad(c, *buf, pad_len);
        *offs += pad_len;
        *buf += pad_len;
        *len -= pad_len;
        memset(*buf, 0xff, c->leb_size - empty_offs);
}

/**
 * no_more_nodes - determine if there are no more nodes in a buffer.
 * @c: UBIFS file-system description object
 * @buf: buffer to check
 * @len: length of buffer
 * @lnum: LEB number of the LEB from which @buf was read
 * @offs: offset from which @buf was read
 *
 * This function scans @buf for more nodes and returns %0 is a node is found and
 * %1 if no more nodes are found.
 */
static int no_more_nodes(const struct ubifs_info *c, void *buf, int len,
                        int lnum, int offs)
{
        int skip, next_offs = 0;

        if (len > UBIFS_DATA_NODE_SZ) {
                struct ubifs_ch *ch = buf;
                int dlen = le32_to_cpu(ch->len);

                if (ch->node_type == UBIFS_DATA_NODE && dlen >= UBIFS_CH_SZ &&
                    dlen <= UBIFS_MAX_DATA_NODE_SZ)
                        /* The corrupt node looks like a data node */
                        next_offs = ALIGN(offs + dlen, 8);
        }

        if (c->min_io_size == 1)
                skip = 8;
        else
                skip = ALIGN(offs + 1, c->min_io_size) - offs;

        offs += skip;
        buf += skip;
        len -= skip;
        while (len > 8) {
                struct ubifs_ch *ch = buf;
                uint32_t magic = le32_to_cpu(ch->magic);
                int ret;

                if (magic == UBIFS_NODE_MAGIC) {
                        ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1);
                        if (ret == SCANNED_A_NODE || ret > 0) {
                                /*
                                 * There is a small chance this is just data in
                                 * a data node, so check that possibility. e.g.
                                 * this is part of a file that itself contains
                                 * a UBIFS image.
                                 */
                                if (next_offs && offs + le32_to_cpu(ch->len) <=
                                    next_offs)
                                        continue;
                                dbg_rcvry("unexpected node at %d:%d", lnum,
                                          offs);
                                return 0;
                        }
                }
                offs += 8;
                buf += 8;
                len -= 8;
        }
        return 1;
}

/**
 * fix_unclean_leb - fix an unclean LEB.
 * @c: UBIFS file-system description object
 * @sleb: scanned LEB information
 * @start: offset where scan started
 */
static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
                           int start)
{
        int lnum = sleb->lnum, endpt = start;

        /* Get the end offset of the last node we are keeping */
        if (!list_empty(&sleb->nodes)) {
                struct ubifs_scan_node *snod;

                snod = list_entry(sleb->nodes.prev,
                                  struct ubifs_scan_node, list);
                endpt = snod->offs + snod->len;
        }

        if ((c->vfs_sb->s_flags & MS_RDONLY) && !c->remounting_rw) {
                /* Add to recovery list */
                struct ubifs_unclean_leb *ucleb;

                dbg_rcvry("need to fix LEB %d start %d endpt %d",
                          lnum, start, sleb->endpt);
                ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS);
                if (!ucleb)
                        return -ENOMEM;
                ucleb->lnum = lnum;
                ucleb->endpt = endpt;
                list_add_tail(&ucleb->list, &c->unclean_leb_list);
        } else {
                /* Write the fixed LEB back to flash */
                int err;

                dbg_rcvry("fixing LEB %d start %d endpt %d",
                          lnum, start, sleb->endpt);
                if (endpt == 0) {
                        err = ubifs_leb_unmap(c, lnum);
                        if (err)
                                return err;
                } else {
                        int len = ALIGN(endpt, c->min_io_size);

                        if (start) {
                                err = ubi_read(c->ubi, lnum, sleb->buf, 0,
                                               start);
                                if (err)
                                        return err;
                        }
                        /* Pad to min_io_size */
                        if (len > endpt) {
                                int pad_len = len - ALIGN(endpt, 8);

                                if (pad_len > 0) {
                                        void *buf = sleb->buf + len - pad_len;

                                        ubifs_pad(c, buf, pad_len);
                                }
                        }
                        err = ubi_leb_change(c->ubi, lnum, sleb->buf, len,
                                             UBI_UNKNOWN);
                        if (err)
                                return err;
                }
        }
        return 0;
}

/**
 * drop_incomplete_group - drop nodes from an incomplete group.
 * @sleb: scanned LEB information
 * @offs: offset of dropped nodes is returned here
 *
 * This function returns %1 if nodes are dropped and %0 otherwise.
 */
static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs)
{
        int dropped = 0;

        while (!list_empty(&sleb->nodes)) {
                struct ubifs_scan_node *snod;
                struct ubifs_ch *ch;

                snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node,
                                  list);
                ch = snod->node;
                if (ch->group_type != UBIFS_IN_NODE_GROUP)
                        return dropped;
                dbg_rcvry("dropping node at %d:%d", sleb->lnum, snod->offs);
                *offs = snod->offs;
                list_del(&snod->list);
                kfree(snod);
                sleb->nodes_cnt -= 1;
                dropped = 1;
        }
        return dropped;
}

/**
 * ubifs_recover_leb - scan and recover a LEB.
 * @c: UBIFS file-system description object
 * @lnum: LEB number
 * @offs: offset
 * @sbuf: LEB-sized buffer to use
 * @grouped: nodes may be grouped for recovery
 *
 * This function does a scan of a LEB, but caters for errors that might have
 * been caused by the unclean unmount from which we are attempting to recover.
 *
 * This function returns %0 on success and a negative error code on failure.
 */
struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum,
                                         int offs, void *sbuf, int grouped)
{
        int err, len = c->leb_size - offs, need_clean = 0, quiet = 1;
        int empty_chkd = 0, start = offs;
        struct ubifs_scan_leb *sleb;
        void *buf = sbuf + offs;

        dbg_rcvry("%d:%d", lnum, offs);

        sleb = ubifs_start_scan(c, lnum, offs, sbuf);
        if (IS_ERR(sleb))
                return sleb;

        if (sleb->ecc)
                need_clean = 1;

        while (len >= 8) {
                int ret;

                dbg_scan("look at LEB %d:%d (%d bytes left)",
                         lnum, offs, len);

                cond_resched();

                /*
                 * Scan quietly until there is an error from which we cannot
                 * recover
                 */
                ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);

                if (ret == SCANNED_A_NODE) {
                        /* A valid node, and not a padding node */
                        struct ubifs_ch *ch = buf;
                        int node_len;

                        err = ubifs_add_snod(c, sleb, buf, offs);
                        if (err)
                                goto error;
                        node_len = ALIGN(le32_to_cpu(ch->len), 8);
                        offs += node_len;
                        buf += node_len;
                        len -= node_len;
                        continue;
                }

                if (ret > 0) {
                        /* Padding bytes or a valid padding node */
                        offs += ret;
                        buf += ret;
                        len -= ret;
                        continue;
                }

                if (ret == SCANNED_EMPTY_SPACE) {
                        if (!is_empty(buf, len)) {
                                if (!is_last_write(c, buf, offs))
                                        break;
                                clean_buf(c, &buf, lnum, &offs, &len);
                                need_clean = 1;
                        }
                        empty_chkd = 1;
                        break;
                }

                if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE)
                        if (is_last_write(c, buf, offs)) {
                                clean_buf(c, &buf, lnum, &offs, &len);
                                need_clean = 1;
                                empty_chkd = 1;
                                break;
                        }

                if (ret == SCANNED_A_CORRUPT_NODE)
                        if (no_more_nodes(c, buf, len, lnum, offs)) {
                                clean_buf(c, &buf, lnum, &offs, &len);
                                need_clean = 1;
                                empty_chkd = 1;
                                break;
                        }

                if (quiet) {
                        /* Redo the last scan but noisily */
                        quiet = 0;
                        continue;
                }

                switch (ret) {
                case SCANNED_GARBAGE:
                        dbg_err("garbage");
                        goto corrupted;
                case SCANNED_A_CORRUPT_NODE:
                case SCANNED_A_BAD_PAD_NODE:
                        dbg_err("bad node");
                        goto corrupted;
                default:
                        dbg_err("unknown");
                        goto corrupted;
                }
        }

        if (!empty_chkd && !is_empty(buf, len)) {
                if (is_last_write(c, buf, offs)) {
                        clean_buf(c, &buf, lnum, &offs, &len);
                        need_clean = 1;
                } else {
                        ubifs_err("corrupt empty space at LEB %d:%d",
                                  lnum, offs);
                        goto corrupted;
                }
        }

        /* Drop nodes from incomplete group */
        if (grouped && drop_incomplete_group(sleb, &offs)) {
                buf = sbuf + offs;
                len = c->leb_size - offs;
                clean_buf(c, &buf, lnum, &offs, &len);
                need_clean = 1;
        }

        if (offs % c->min_io_size) {
                clean_buf(c, &buf, lnum, &offs, &len);
                need_clean = 1;
        }

        ubifs_end_scan(c, sleb, lnum, offs);

        if (need_clean) {
                err = fix_unclean_leb(c, sleb, start);
                if (err)
                        goto error;
        }

        return sleb;

corrupted:
        ubifs_scanned_corruption(c, lnum, offs, buf);
        err = -EUCLEAN;
error:
        ubifs_err("LEB %d scanning failed", lnum);
        ubifs_scan_destroy(sleb);
        return ERR_PTR(err);
}

/**
 * get_cs_sqnum - get commit start sequence number.
 * @c: UBIFS file-system description object
 * @lnum: LEB number of commit start node
 * @offs: offset of commit start node
 * @cs_sqnum: commit start sequence number is returned here
 *
 * This function returns %0 on success and a negative error code on failure.
 */
static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs,
                        unsigned long long *cs_sqnum)
{
        struct ubifs_cs_node *cs_node = NULL;
        int err, ret;

        dbg_rcvry("at %d:%d", lnum, offs);
        cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL);
        if (!cs_node)
                return -ENOMEM;
        if (c->leb_size - offs < UBIFS_CS_NODE_SZ)
                goto out_err;
        err = ubi_read(c->ubi, lnum, (void *)cs_node, offs, UBIFS_CS_NODE_SZ);
        if (err && err != -EBADMSG)
                goto out_free;
        ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0);
        if (ret != SCANNED_A_NODE) {
                dbg_err("Not a valid node");
                goto out_err;
        }
        if (cs_node->ch.node_type != UBIFS_CS_NODE) {
                dbg_err("Node a CS node, type is %d", cs_node->ch.node_type);
                goto out_err;
        }
        if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) {
                dbg_err("CS node cmt_no %llu != current cmt_no %llu",
                        (unsigned long long)le64_to_cpu(cs_node->cmt_no),
                        c->cmt_no);
                goto out_err;
        }
        *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum);
        dbg_rcvry("commit start sqnum %llu", *cs_sqnum);
        kfree(cs_node);
        return 0;

out_err:
        err = -EINVAL;
out_free:
        ubifs_err("failed to get CS sqnum");
        kfree(cs_node);
        return err;
}

/**
 * ubifs_recover_log_leb - scan and recover a log LEB.
 * @c: UBIFS file-system description object
 * @lnum: LEB number
 * @offs: offset
 * @sbuf: LEB-sized buffer to use
 *
 * This function does a scan of a LEB, but caters for errors that might have
 * been caused by the unclean unmount from which we are attempting to recover.
 *
 * This function returns %0 on success and a negative error code on failure.
 */
struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum,
                                             int offs, void *sbuf)
{
        struct ubifs_scan_leb *sleb;
        int next_lnum;

        dbg_rcvry("LEB %d", lnum);
        next_lnum = lnum + 1;
        if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs)
                next_lnum = UBIFS_LOG_LNUM;
        if (next_lnum != c->ltail_lnum) {
                /*
                 * We can only recover at the end of the log, so check that the
                 * next log LEB is empty or out of date.
                 */
                sleb = ubifs_scan(c, next_lnum, 0, sbuf);
                if (IS_ERR(sleb))
                        return sleb;
                if (sleb->nodes_cnt) {
                        struct ubifs_scan_node *snod;
                        unsigned long long cs_sqnum = c->cs_sqnum;

                        snod = list_entry(sleb->nodes.next,
                                          struct ubifs_scan_node, list);
                        if (cs_sqnum == 0) {
                                int err;

                                err = get_cs_sqnum(c, lnum, offs, &cs_sqnum);
                                if (err) {
                                        ubifs_scan_destroy(sleb);
                                        return ERR_PTR(err);
                                }
                        }
                        if (snod->sqnum > cs_sqnum) {
                                ubifs_err("unrecoverable log corruption "
                                          "in LEB %d", lnum);
                                ubifs_scan_destroy(sleb);
                                return ERR_PTR(-EUCLEAN);
                        }
                }
                ubifs_scan_destroy(sleb);
        }
        return ubifs_recover_leb(c, lnum, offs, sbuf, 0);
}

/**
 * recover_head - recover a head.
 * @c: UBIFS file-system description object
 * @lnum: LEB number of head to recover
 * @offs: offset of head to recover
 * @sbuf: LEB-sized buffer to use
 *
 * This function ensures that there is no data on the flash at a head location.
 *
 * This function returns %0 on success and a negative error code on failure.
 */
static int recover_head(const struct ubifs_info *c, int lnum, int offs,
                        void *sbuf)
{
        int len, err, need_clean = 0;

        if (c->min_io_size > 1)
                len = c->min_io_size;
        else
                len = 512;
        if (offs + len > c->leb_size)
                len = c->leb_size - offs;

        if (!len)
                return 0;

        /* Read at the head location and check it is empty flash */
        err = ubi_read(c->ubi, lnum, sbuf, offs, len);
        if (err)
                need_clean = 1;
        else {
                uint8_t *p = sbuf;

                while (len--)
                        if (*p++ != 0xff) {
                                need_clean = 1;
                                break;
                        }
        }

        if (need_clean) {
                dbg_rcvry("cleaning head at %d:%d", lnum, offs);
                if (offs == 0)
                        return ubifs_leb_unmap(c, lnum);
                err = ubi_read(c->ubi, lnum, sbuf, 0, offs);
                if (err)
                        return err;
                return ubi_leb_change(c->ubi, lnum, sbuf, offs, UBI_UNKNOWN);
        }

        return 0;
}

/**
 * ubifs_recover_inl_heads - recover index and LPT heads.
 * @c: UBIFS file-system description object
 * @sbuf: LEB-sized buffer to use
 *
 * This function ensures that there is no data on the flash at the index and
 * LPT head locations.
 *
 * This deals with the recovery of a half-completed journal commit. UBIFS is
 * careful never to overwrite the last version of the index or the LPT. Because
 * the index and LPT are wandering trees, data from a half-completed commit will
 * not be referenced anywhere in UBIFS. The data will be either in LEBs that are
 * assumed to be empty and will be unmapped anyway before use, or in the index
 * and LPT heads.
 *
 * This function returns %0 on success and a negative error code on failure.
 */
int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf)
{
        int err;

        ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY) || c->remounting_rw);

        dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs);
        err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf);
        if (err)
                return err;

        dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs);
        err = recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf);
        if (err)
                return err;

        return 0;
}

/**
 *  clean_an_unclean_leb - read and write a LEB to remove corruption.
 * @c: UBIFS file-system description object
 * @ucleb: unclean LEB information
 * @sbuf: LEB-sized buffer to use
 *
 * This function reads a LEB up to a point pre-determined by the mount recovery,
 * checks the nodes, and writes the result back to the flash, thereby cleaning
 * off any following corruption, or non-fatal ECC errors.
 *
 * This function returns %0 on success and a negative error code on failure.
 */
static int clean_an_unclean_leb(const struct ubifs_info *c,
                                struct ubifs_unclean_leb *ucleb, void *sbuf)
{
        int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1;
        void *buf = sbuf;

        dbg_rcvry("LEB %d len %d", lnum, len);

        if (len == 0) {
                /* Nothing to read, just unmap it */
                err = ubifs_leb_unmap(c, lnum);
                if (err)
                        return err;
                return 0;
        }

        err = ubi_read(c->ubi, lnum, buf, offs, len);
        if (err && err != -EBADMSG)
                return err;

        while (len >= 8) {
                int ret;

                cond_resched();

                /* Scan quietly until there is an error */
                ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet);

                if (ret == SCANNED_A_NODE) {
                        /* A valid node, and not a padding node */
                        struct ubifs_ch *ch = buf;
                        int node_len;

                        node_len = ALIGN(le32_to_cpu(ch->len), 8);
                        offs += node_len;
                        buf += node_len;
                        len -= node_len;
                        continue;
                }

                if (ret > 0) {
                        /* Padding bytes or a valid padding node */
                        offs += ret;
                        buf += ret;
                        len -= ret;
                        continue;
                }

                if (ret == SCANNED_EMPTY_SPACE) {
                        ubifs_err("unexpected empty space at %d:%d",
                                  lnum, offs);
                        return -EUCLEAN;
                }

                if (quiet) {
                        /* Redo the last scan but noisily */
                        quiet = 0;
                        continue;
                }

                ubifs_scanned_corruption(c, lnum, offs, buf);
                return -EUCLEAN;
        }

        /* Pad to min_io_size */
        len = ALIGN(ucleb->endpt, c->min_io_size);
        if (len > ucleb->endpt) {
                int pad_len = len - ALIGN(ucleb->endpt, 8);

                if (pad_len > 0) {
                        buf = c->sbuf + len - pad_len;
                        ubifs_pad(c, buf, pad_len);
                }
        }

        /* Write back the LEB atomically */
        err = ubi_leb_change(c->ubi, lnum, sbuf, len, UBI_UNKNOWN);
        if (err)
                return err;

        dbg_rcvry("cleaned LEB %d", lnum);

        return 0;
}

/**
 * ubifs_clean_lebs - clean LEBs recovered during read-only mount.
 * @c: UBIFS file-system description object
 * @sbuf: LEB-sized buffer to use
 *
 * This function cleans a LEB identified during recovery that needs to be
 * written but was not because UBIFS was mounted read-only. This happens when
 * remounting to read-write mode.
 *
 * This function returns %0 on success and a negative error code on failure.
 */
int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf)
{
        dbg_rcvry("recovery");
        while (!list_empty(&c->unclean_leb_list)) {
                struct ubifs_unclean_leb *ucleb;
                int err;

                ucleb = list_entry(c->unclean_leb_list.next,
                                   struct ubifs_unclean_leb, list);
                err = clean_an_unclean_leb(c, ucleb, sbuf);
                if (err)
                        return err;
                list_del(&ucleb->list);
                kfree(ucleb);
        }
        return 0;
}

/**
 * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit.
 * @c: UBIFS file-system description object
 *
 * Out-of-place garbage collection requires always one empty LEB with which to
 * start garbage collection. The LEB number is recorded in c->gc_lnum and is
 * written to the master node on unmounting. In the case of an unclean unmount
 * the value of gc_lnum recorded in the master node is out of date and cannot
 * be used. Instead, recovery must allocate an empty LEB for this purpose.
 * However, there may not be enough empty space, in which case it must be
 * possible to GC the dirtiest LEB into the GC head LEB.
 *
 * This function also runs the commit which causes the TNC updates from
 * size-recovery and orphans to be written to the flash. That is important to
 * ensure correct replay order for subsequent mounts.
 *
 * This function returns %0 on success and a negative error code on failure.
 */
int ubifs_rcvry_gc_commit(struct ubifs_info *c)
{
        struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
        struct ubifs_lprops lp;
        int lnum, err;

        c->gc_lnum = -1;
        if (wbuf->lnum == -1) {
                dbg_rcvry("no GC head LEB");
                goto find_free;
        }
        /*
         * See whether the used space in the dirtiest LEB fits in the GC head
         * LEB.
         */
        if (wbuf->offs == c->leb_size) {
                dbg_rcvry("no room in GC head LEB");
                goto find_free;
        }
        err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2);
        if (err) {
                if (err == -ENOSPC)
                        dbg_err("could not find a dirty LEB");
                return err;
        }
        ubifs_assert(!(lp.flags & LPROPS_INDEX));
        lnum = lp.lnum;
        if (lp.free + lp.dirty == c->leb_size) {
                /* An empty LEB was returned */
                if (lp.free != c->leb_size) {
                        err = ubifs_change_one_lp(c, lnum, c->leb_size,
                                                  0, 0, 0, 0);
                        if (err)
                                return err;
                }
                err = ubifs_leb_unmap(c, lnum);
                if (err)
                        return err;
                c->gc_lnum = lnum;
                dbg_rcvry("allocated LEB %d for GC", lnum);
                /* Run the commit */
                dbg_rcvry("committing");
                return ubifs_run_commit(c);
        }
        /*
         * There was no empty LEB so the used space in the dirtiest LEB must fit
         * in the GC head LEB.
         */
        if (lp.free + lp.dirty < wbuf->offs) {
                dbg_rcvry("LEB %d doesn't fit in GC head LEB %d:%d",
                          lnum, wbuf->lnum, wbuf->offs);
                err = ubifs_return_leb(c, lnum);
                if (err)
                        return err;
                goto find_free;
        }
        /*
         * We run the commit before garbage collection otherwise subsequent
         * mounts will see the GC and orphan deletion in a different order.
         */
        dbg_rcvry("committing");
        err = ubifs_run_commit(c);
        if (err)
                return err;
        /*
         * The data in the dirtiest LEB fits in the GC head LEB, so do the GC
         * - use locking to keep 'ubifs_assert()' happy.
         */
        dbg_rcvry("GC'ing LEB %d", lnum);
        mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
        err = ubifs_garbage_collect_leb(c, &lp);
        if (err >= 0) {
                int err2 = ubifs_wbuf_sync_nolock(wbuf);

                if (err2)
                        err = err2;
        }
        mutex_unlock(&wbuf->io_mutex);
        if (err < 0) {
                dbg_err("GC failed, error %d", err);
                if (err == -EAGAIN)
                        err = -EINVAL;
                return err;
        }
        if (err != LEB_RETAINED) {
                dbg_err("GC returned %d", err);
                return -EINVAL;
        }
        err = ubifs_leb_unmap(c, c->gc_lnum);
        if (err)
                return err;
        dbg_rcvry("allocated LEB %d for GC", lnum);
        return 0;

find_free:
        /*
         * There is no GC head LEB or the free space in the GC head LEB is too
         * small. Allocate gc_lnum by calling 'ubifs_find_free_leb_for_idx()' so
         * GC is not run.
         */
        lnum = ubifs_find_free_leb_for_idx(c);
        if (lnum < 0) {
                dbg_err("could not find an empty LEB");
                return lnum;
        }
        /* And reset the index flag */
        err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0,
                                  LPROPS_INDEX, 0);
        if (err)
                return err;
        c->gc_lnum = lnum;
        dbg_rcvry("allocated LEB %d for GC", lnum);
        /* Run the commit */
        dbg_rcvry("committing");
        return ubifs_run_commit(c);
}

/**
 * struct size_entry - inode size information for recovery.
 * @rb: link in the RB-tree of sizes
 * @inum: inode number
 * @i_size: size on inode
 * @d_size: maximum size based on data nodes
 * @exists: indicates whether the inode exists
 * @inode: inode if pinned in memory awaiting rw mode to fix it
 */
struct size_entry {
        struct rb_node rb;
        ino_t inum;
        loff_t i_size;
        loff_t d_size;
        int exists;
        struct inode *inode;
};

/**
 * add_ino - add an entry to the size tree.
 * @c: UBIFS file-system description object
 * @inum: inode number
 * @i_size: size on inode
 * @d_size: maximum size based on data nodes
 * @exists: indicates whether the inode exists
 */
static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size,
                   loff_t d_size, int exists)
{
        struct rb_node **p = &c->size_tree.rb_node, *parent = NULL;
        struct size_entry *e;

        while (*p) {
                parent = *p;
                e = rb_entry(parent, struct size_entry, rb);
                if (inum < e->inum)
                        p = &(*p)->rb_left;
                else
                        p = &(*p)->rb_right;
        }

        e = kzalloc(sizeof(struct size_entry), GFP_KERNEL);
        if (!e)
                return -ENOMEM;

        e->inum = inum;
        e->i_size = i_size;
        e->d_size = d_size;
        e->exists = exists;

        rb_link_node(&e->rb, parent, p);
        rb_insert_color(&e->rb, &c->size_tree);

        return 0;
}

/**
 * find_ino - find an entry on the size tree.
 * @c: UBIFS file-system description object
 * @inum: inode number
 */
static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum)
{
        struct rb_node *p = c->size_tree.rb_node;
        struct size_entry *e;

        while (p) {
                e = rb_entry(p, struct size_entry, rb);
                if (inum < e->inum)
                        p = p->rb_left;
                else if (inum > e->inum)
                        p = p->rb_right;
                else
                        return e;
        }
        return NULL;
}

/**
 * remove_ino - remove an entry from the size tree.
 * @c: UBIFS file-system description object
 * @inum: inode number
 */
static void remove_ino(struct ubifs_info *c, ino_t inum)
{
        struct size_entry *e = find_ino(c, inum);

        if (!e)
                return;
        rb_erase(&e->rb, &c->size_tree);
        kfree(e);
}

/**
 * ubifs_destroy_size_tree - free resources related to the size tree.
 * @c: UBIFS file-system description object
 */
void ubifs_destroy_size_tree(struct ubifs_info *c)
{
        struct rb_node *this = c->size_tree.rb_node;
        struct size_entry *e;

        while (this) {
                if (this->rb_left) {
                        this = this->rb_left;
                        continue;
                } else if (this->rb_right) {
                        this = this->rb_right;
                        continue;
                }
                e = rb_entry(this, struct size_entry, rb);
                if (e->inode)
                        iput(e->inode);
                this = rb_parent(this);
                if (this) {
                        if (this->rb_left == &e->rb)
                                this->rb_left = NULL;
                        else
                                this->rb_right = NULL;
                }
                kfree(e);
        }
        c->size_tree = RB_ROOT;
}

/**
 * ubifs_recover_size_accum - accumulate inode sizes for recovery.
 * @c: UBIFS file-system description object
 * @key: node key
 * @deletion: node is for a deletion
 * @new_size: inode size
 *
 * This function has two purposes:
 *     1) to ensure there are no data nodes that fall outside the inode size
 *     2) to ensure there are no data nodes for inodes that do not exist
 * To accomplish those purposes, a rb-tree is constructed containing an entry
 * for each inode number in the journal that has not been deleted, and recording
 * the size from the inode node, the maximum size of any data node (also altered
 * by truncations) and a flag indicating a inode number for which no inode node
 * was present in the journal.
 *
 * Note that there is still the possibility that there are data nodes that have
 * been committed that are beyond the inode size, however the only way to find
 * them would be to scan the entire index. Alternatively, some provision could
 * be made to record the size of inodes at the start of commit, which would seem
 * very cumbersome for a scenario that is quite unlikely and the only negative
 * consequence of which is wasted space.
 *
 * This functions returns %0 on success and a negative error code on failure.
 */
int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key,
                             int deletion, loff_t new_size)
{
        ino_t inum = key_inum(c, key);
        struct size_entry *e;
        int err;

        switch (key_type(c, key)) {
        case UBIFS_INO_KEY:
                if (deletion)
                        remove_ino(c, inum);
                else {
                        e = find_ino(c, inum);
                        if (e) {
                                e->i_size = new_size;
                                e->exists = 1;
                        } else {
                                err = add_ino(c, inum, new_size, 0, 1);
                                if (err)
                                        return err;
                        }
                }
                break;
        case UBIFS_DATA_KEY:
                e = find_ino(c, inum);
                if (e) {
                        if (new_size > e->d_size)
                                e->d_size = new_size;
                } else {
                        err = add_ino(c, inum, 0, new_size, 0);
                        if (err)
                                return err;
                }
                break;
        case UBIFS_TRUN_KEY:
                e = find_ino(c, inum);
                if (e)
                        e->d_size = new_size;
                break;
        }
        return 0;
}

/**
 * fix_size_in_place - fix inode size in place on flash.
 * @c: UBIFS file-system description object
 * @e: inode size information for recovery
 */
static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e)
{
        struct ubifs_ino_node *ino = c->sbuf;
        unsigned char *p;
        union ubifs_key key;
        int err, lnum, offs, len;
        loff_t i_size;
        uint32_t crc;

        /* Locate the inode node LEB number and offset */
        ino_key_init(c, &key, e->inum);
        err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs);
        if (err)
                goto out;
        /*
         * If the size recorded on the inode node is greater than the size that
         * was calculated from nodes in the journal then don't change the inode.
         */
        i_size = le64_to_cpu(ino->size);
        if (i_size >= e->d_size)
                return 0;
        /* Read the LEB */
        err = ubi_read(c->ubi, lnum, c->sbuf, 0, c->leb_size);
        if (err)
                goto out;
        /* Change the size field and recalculate the CRC */
        ino = c->sbuf + offs;
        ino->size = cpu_to_le64(e->d_size);
        len = le32_to_cpu(ino->ch.len);
        crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8);
        ino->ch.crc = cpu_to_le32(crc);
        /* Work out where data in the LEB ends and free space begins */
        p = c->sbuf;
        len = c->leb_size - 1;
        while (p[len] == 0xff)
                len -= 1;
        len = ALIGN(len + 1, c->min_io_size);
        /* Atomically write the fixed LEB back again */
        err = ubi_leb_change(c->ubi, lnum, c->sbuf, len, UBI_UNKNOWN);
        if (err)
                goto out;
        dbg_rcvry("inode %lu at %d:%d size %lld -> %lld ", e->inum, lnum, offs,
                  i_size, e->d_size);
        return 0;

out:
        ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d",
                   e->inum, e->i_size, e->d_size, err);
        return err;
}

/**
 * ubifs_recover_size - recover inode size.
 * @c: UBIFS file-system description object
 *
 * This function attempts to fix inode size discrepancies identified by the
 * 'ubifs_recover_size_accum()' function.
 *
 * This functions returns %0 on success and a negative error code on failure.
 */
int ubifs_recover_size(struct ubifs_info *c)
{
        struct rb_node *this = rb_first(&c->size_tree);

        while (this) {
                struct size_entry *e;
                int err;

                e = rb_entry(this, struct size_entry, rb);
                if (!e->exists) {
                        union ubifs_key key;

                        ino_key_init(c, &key, e->inum);
                        err = ubifs_tnc_lookup(c, &key, c->sbuf);
                        if (err && err != -ENOENT)
                                return err;
                        if (err == -ENOENT) {
                                /* Remove data nodes that have no inode */
                                dbg_rcvry("removing ino %lu", e->inum);
                                err = ubifs_tnc_remove_ino(c, e->inum);
                                if (err)
                                        return err;
                        } else {
                                struct ubifs_ino_node *ino = c->sbuf;

                                e->exists = 1;
                                e->i_size = le64_to_cpu(ino->size);
                        }
                }
                if (e->exists && e->i_size < e->d_size) {
                        if (!e->inode && (c->vfs_sb->s_flags & MS_RDONLY)) {
                                /* Fix the inode size and pin it in memory */
                                struct inode *inode;

                                inode = ubifs_iget(c->vfs_sb, e->inum);
                                if (IS_ERR(inode))
                                        return PTR_ERR(inode);
                                if (inode->i_size < e->d_size) {
                                        dbg_rcvry("ino %lu size %lld -> %lld",
                                                  e->inum, e->d_size,
                                                  inode->i_size);
                                        inode->i_size = e->d_size;
                                        ubifs_inode(inode)->ui_size = e->d_size;
                                        e->inode = inode;
                                        this = rb_next(this);
                                        continue;
                                }
                                iput(inode);
                        } else {
                                /* Fix the size in place */
                                err = fix_size_in_place(c, e);
                                if (err)
                                        return err;
                                if (e->inode)
                                        iput(e->inode);
                        }
                }
                this = rb_next(this);
                rb_erase(&e->rb, &c->size_tree);
                kfree(e);
        }
        return 0;
}

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading