[funini.com] -> [kei@sodan] -> Kernel Reading

root/fs/ubifs/commit.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. do_commit
  2. run_bg_commit
  3. ubifs_bg_thread
  4. ubifs_commit_required
  5. ubifs_request_bg_commit
  6. wait_for_commit
  7. ubifs_run_commit
  8. ubifs_gc_should_commit
  9. dbg_old_index_check_init
  10. dbg_check_old_index

/*
 * This file is part of UBIFS.
 *
 * Copyright (C) 2006-2008 Nokia Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 51
 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 *
 * Authors: Adrian Hunter
 *          Artem Bityutskiy (Битюцкий Артём)
 */

/*
 * This file implements functions that manage the running of the commit process.
 * Each affected module has its own functions to accomplish their part in the
 * commit and those functions are called here.
 *
 * The commit is the process whereby all updates to the index and LEB properties
 * are written out together and the journal becomes empty. This keeps the
 * file system consistent - at all times the state can be recreated by reading
 * the index and LEB properties and then replaying the journal.
 *
 * The commit is split into two parts named "commit start" and "commit end".
 * During commit start, the commit process has exclusive access to the journal
 * by holding the commit semaphore down for writing. As few I/O operations as
 * possible are performed during commit start, instead the nodes that are to be
 * written are merely identified. During commit end, the commit semaphore is no
 * longer held and the journal is again in operation, allowing users to continue
 * to use the file system while the bulk of the commit I/O is performed. The
 * purpose of this two-step approach is to prevent the commit from causing any
 * latency blips. Note that in any case, the commit does not prevent lookups
 * (as permitted by the TNC mutex), or access to VFS data structures e.g. page
 * cache.
 */

#include <linux/freezer.h>
#include <linux/kthread.h>
#include "ubifs.h"

/**
 * do_commit - commit the journal.
 * @c: UBIFS file-system description object
 *
 * This function implements UBIFS commit. It has to be called with commit lock
 * locked. Returns zero in case of success and a negative error code in case of
 * failure.
 */
static int do_commit(struct ubifs_info *c)
{
        int err, new_ltail_lnum, old_ltail_lnum, i;
        struct ubifs_zbranch zroot;
        struct ubifs_lp_stats lst;

        dbg_cmt("start");
        if (c->ro_media) {
                err = -EROFS;
                goto out_up;
        }

        /* Sync all write buffers (necessary for recovery) */
        for (i = 0; i < c->jhead_cnt; i++) {
                err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
                if (err)
                        goto out_up;
        }

        c->cmt_no += 1;
        err = ubifs_gc_start_commit(c);
        if (err)
                goto out_up;
        err = dbg_check_lprops(c);
        if (err)
                goto out_up;
        err = ubifs_log_start_commit(c, &new_ltail_lnum);
        if (err)
                goto out_up;
        err = ubifs_tnc_start_commit(c, &zroot);
        if (err)
                goto out_up;
        err = ubifs_lpt_start_commit(c);
        if (err)
                goto out_up;
        err = ubifs_orphan_start_commit(c);
        if (err)
                goto out_up;

        ubifs_get_lp_stats(c, &lst);

        up_write(&c->commit_sem);

        err = ubifs_tnc_end_commit(c);
        if (err)
                goto out;
        err = ubifs_lpt_end_commit(c);
        if (err)
                goto out;
        err = ubifs_orphan_end_commit(c);
        if (err)
                goto out;
        old_ltail_lnum = c->ltail_lnum;
        err = ubifs_log_end_commit(c, new_ltail_lnum);
        if (err)
                goto out;
        err = dbg_check_old_index(c, &zroot);
        if (err)
                goto out;

        mutex_lock(&c->mst_mutex);
        c->mst_node->cmt_no      = cpu_to_le64(c->cmt_no);
        c->mst_node->log_lnum    = cpu_to_le32(new_ltail_lnum);
        c->mst_node->root_lnum   = cpu_to_le32(zroot.lnum);
        c->mst_node->root_offs   = cpu_to_le32(zroot.offs);
        c->mst_node->root_len    = cpu_to_le32(zroot.len);
        c->mst_node->ihead_lnum  = cpu_to_le32(c->ihead_lnum);
        c->mst_node->ihead_offs  = cpu_to_le32(c->ihead_offs);
        c->mst_node->index_size  = cpu_to_le64(c->old_idx_sz);
        c->mst_node->lpt_lnum    = cpu_to_le32(c->lpt_lnum);
        c->mst_node->lpt_offs    = cpu_to_le32(c->lpt_offs);
        c->mst_node->nhead_lnum  = cpu_to_le32(c->nhead_lnum);
        c->mst_node->nhead_offs  = cpu_to_le32(c->nhead_offs);
        c->mst_node->ltab_lnum   = cpu_to_le32(c->ltab_lnum);
        c->mst_node->ltab_offs   = cpu_to_le32(c->ltab_offs);
        c->mst_node->lsave_lnum  = cpu_to_le32(c->lsave_lnum);
        c->mst_node->lsave_offs  = cpu_to_le32(c->lsave_offs);
        c->mst_node->lscan_lnum  = cpu_to_le32(c->lscan_lnum);
        c->mst_node->empty_lebs  = cpu_to_le32(lst.empty_lebs);
        c->mst_node->idx_lebs    = cpu_to_le32(lst.idx_lebs);
        c->mst_node->total_free  = cpu_to_le64(lst.total_free);
        c->mst_node->total_dirty = cpu_to_le64(lst.total_dirty);
        c->mst_node->total_used  = cpu_to_le64(lst.total_used);
        c->mst_node->total_dead  = cpu_to_le64(lst.total_dead);
        c->mst_node->total_dark  = cpu_to_le64(lst.total_dark);
        if (c->no_orphs)
                c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
        else
                c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_NO_ORPHS);
        err = ubifs_write_master(c);
        mutex_unlock(&c->mst_mutex);
        if (err)
                goto out;

        err = ubifs_log_post_commit(c, old_ltail_lnum);
        if (err)
                goto out;
        err = ubifs_gc_end_commit(c);
        if (err)
                goto out;
        err = ubifs_lpt_post_commit(c);
        if (err)
                goto out;

        spin_lock(&c->cs_lock);
        c->cmt_state = COMMIT_RESTING;
        wake_up(&c->cmt_wq);
        dbg_cmt("commit end");
        spin_unlock(&c->cs_lock);

        return 0;

out_up:
        up_write(&c->commit_sem);
out:
        ubifs_err("commit failed, error %d", err);
        spin_lock(&c->cs_lock);
        c->cmt_state = COMMIT_BROKEN;
        wake_up(&c->cmt_wq);
        spin_unlock(&c->cs_lock);
        ubifs_ro_mode(c, err);
        return err;
}

/**
 * run_bg_commit - run background commit if it is needed.
 * @c: UBIFS file-system description object
 *
 * This function runs background commit if it is needed. Returns zero in case
 * of success and a negative error code in case of failure.
 */
static int run_bg_commit(struct ubifs_info *c)
{
        spin_lock(&c->cs_lock);
        /*
         * Run background commit only if background commit was requested or if
         * commit is required.
         */
        if (c->cmt_state != COMMIT_BACKGROUND &&
            c->cmt_state != COMMIT_REQUIRED)
                goto out;
        spin_unlock(&c->cs_lock);

        down_write(&c->commit_sem);
        spin_lock(&c->cs_lock);
        if (c->cmt_state == COMMIT_REQUIRED)
                c->cmt_state = COMMIT_RUNNING_REQUIRED;
        else if (c->cmt_state == COMMIT_BACKGROUND)
                c->cmt_state = COMMIT_RUNNING_BACKGROUND;
        else
                goto out_cmt_unlock;
        spin_unlock(&c->cs_lock);

        return do_commit(c);

out_cmt_unlock:
        up_write(&c->commit_sem);
out:
        spin_unlock(&c->cs_lock);
        return 0;
}

/**
 * ubifs_bg_thread - UBIFS background thread function.
 * @info: points to the file-system description object
 *
 * This function implements various file-system background activities:
 * o when a write-buffer timer expires it synchronizes the appropriate
 *   write-buffer;
 * o when the journal is about to be full, it starts in-advance commit.
 *
 * Note, other stuff like background garbage collection may be added here in
 * future.
 */
int ubifs_bg_thread(void *info)
{
        int err;
        struct ubifs_info *c = info;

        ubifs_msg("background thread \"%s\" started, PID %d",
                  c->bgt_name, current->pid);
        set_freezable();

        while (1) {
                if (kthread_should_stop())
                        break;

                if (try_to_freeze())
                        continue;

                set_current_state(TASK_INTERRUPTIBLE);
                /* Check if there is something to do */
                if (!c->need_bgt) {
                        /*
                         * Nothing prevents us from going sleep now and
                         * be never woken up and block the task which
                         * could wait in 'kthread_stop()' forever.
                         */
                        if (kthread_should_stop())
                                break;
                        schedule();
                        continue;
                } else
                        __set_current_state(TASK_RUNNING);

                c->need_bgt = 0;
                err = ubifs_bg_wbufs_sync(c);
                if (err)
                        ubifs_ro_mode(c, err);

                run_bg_commit(c);
                cond_resched();
        }

        dbg_msg("background thread \"%s\" stops", c->bgt_name);
        return 0;
}

/**
 * ubifs_commit_required - set commit state to "required".
 * @c: UBIFS file-system description object
 *
 * This function is called if a commit is required but cannot be done from the
 * calling function, so it is just flagged instead.
 */
void ubifs_commit_required(struct ubifs_info *c)
{
        spin_lock(&c->cs_lock);
        switch (c->cmt_state) {
        case COMMIT_RESTING:
        case COMMIT_BACKGROUND:
                dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
                        dbg_cstate(COMMIT_REQUIRED));
                c->cmt_state = COMMIT_REQUIRED;
                break;
        case COMMIT_RUNNING_BACKGROUND:
                dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
                        dbg_cstate(COMMIT_RUNNING_REQUIRED));
                c->cmt_state = COMMIT_RUNNING_REQUIRED;
                break;
        case COMMIT_REQUIRED:
        case COMMIT_RUNNING_REQUIRED:
        case COMMIT_BROKEN:
                break;
        }
        spin_unlock(&c->cs_lock);
}

/**
 * ubifs_request_bg_commit - notify the background thread to do a commit.
 * @c: UBIFS file-system description object
 *
 * This function is called if the journal is full enough to make a commit
 * worthwhile, so background thread is kicked to start it.
 */
void ubifs_request_bg_commit(struct ubifs_info *c)
{
        spin_lock(&c->cs_lock);
        if (c->cmt_state == COMMIT_RESTING) {
                dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
                        dbg_cstate(COMMIT_BACKGROUND));
                c->cmt_state = COMMIT_BACKGROUND;
                spin_unlock(&c->cs_lock);
                ubifs_wake_up_bgt(c);
        } else
                spin_unlock(&c->cs_lock);
}

/**
 * wait_for_commit - wait for commit.
 * @c: UBIFS file-system description object
 *
 * This function sleeps until the commit operation is no longer running.
 */
static int wait_for_commit(struct ubifs_info *c)
{
        dbg_cmt("pid %d goes sleep", current->pid);

        /*
         * The following sleeps if the condition is false, and will be woken
         * when the commit ends. It is possible, although very unlikely, that we
         * will wake up and see the subsequent commit running, rather than the
         * one we were waiting for, and go back to sleep.  However, we will be
         * woken again, so there is no danger of sleeping forever.
         */
        wait_event(c->cmt_wq, c->cmt_state != COMMIT_RUNNING_BACKGROUND &&
                              c->cmt_state != COMMIT_RUNNING_REQUIRED);
        dbg_cmt("commit finished, pid %d woke up", current->pid);
        return 0;
}

/**
 * ubifs_run_commit - run or wait for commit.
 * @c: UBIFS file-system description object
 *
 * This function runs commit and returns zero in case of success and a negative
 * error code in case of failure.
 */
int ubifs_run_commit(struct ubifs_info *c)
{
        int err = 0;

        spin_lock(&c->cs_lock);
        if (c->cmt_state == COMMIT_BROKEN) {
                err = -EINVAL;
                goto out;
        }

        if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
                /*
                 * We set the commit state to 'running required' to indicate
                 * that we want it to complete as quickly as possible.
                 */
                c->cmt_state = COMMIT_RUNNING_REQUIRED;

        if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
                spin_unlock(&c->cs_lock);
                return wait_for_commit(c);
        }
        spin_unlock(&c->cs_lock);

        /* Ok, the commit is indeed needed */

        down_write(&c->commit_sem);
        spin_lock(&c->cs_lock);
        /*
         * Since we unlocked 'c->cs_lock', the state may have changed, so
         * re-check it.
         */
        if (c->cmt_state == COMMIT_BROKEN) {
                err = -EINVAL;
                goto out_cmt_unlock;
        }

        if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
                c->cmt_state = COMMIT_RUNNING_REQUIRED;

        if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
                up_write(&c->commit_sem);
                spin_unlock(&c->cs_lock);
                return wait_for_commit(c);
        }
        c->cmt_state = COMMIT_RUNNING_REQUIRED;
        spin_unlock(&c->cs_lock);

        err = do_commit(c);
        return err;

out_cmt_unlock:
        up_write(&c->commit_sem);
out:
        spin_unlock(&c->cs_lock);
        return err;
}

/**
 * ubifs_gc_should_commit - determine if it is time for GC to run commit.
 * @c: UBIFS file-system description object
 *
 * This function is called by garbage collection to determine if commit should
 * be run. If commit state is @COMMIT_BACKGROUND, which means that the journal
 * is full enough to start commit, this function returns true. It is not
 * absolutely necessary to commit yet, but it feels like this should be better
 * then to keep doing GC. This function returns %1 if GC has to initiate commit
 * and %0 if not.
 */
int ubifs_gc_should_commit(struct ubifs_info *c)
{
        int ret = 0;

        spin_lock(&c->cs_lock);
        if (c->cmt_state == COMMIT_BACKGROUND) {
                dbg_cmt("commit required now");
                c->cmt_state = COMMIT_REQUIRED;
        } else
                dbg_cmt("commit not requested");
        if (c->cmt_state == COMMIT_REQUIRED)
                ret = 1;
        spin_unlock(&c->cs_lock);
        return ret;
}

#ifdef CONFIG_UBIFS_FS_DEBUG

/**
 * struct idx_node - hold index nodes during index tree traversal.
 * @list: list
 * @iip: index in parent (slot number of this indexing node in the parent
 *       indexing node)
 * @upper_key: all keys in this indexing node have to be less or equivalent to
 *             this key
 * @idx: index node (8-byte aligned because all node structures must be 8-byte
 *       aligned)
 */
struct idx_node {
        struct list_head list;
        int iip;
        union ubifs_key upper_key;
        struct ubifs_idx_node idx __attribute__((aligned(8)));
};

/**
 * dbg_old_index_check_init - get information for the next old index check.
 * @c: UBIFS file-system description object
 * @zroot: root of the index
 *
 * This function records information about the index that will be needed for the
 * next old index check i.e. 'dbg_check_old_index()'.
 *
 * This function returns %0 on success and a negative error code on failure.
 */
int dbg_old_index_check_init(struct ubifs_info *c, struct ubifs_zbranch *zroot)
{
        struct ubifs_idx_node *idx;
        int lnum, offs, len, err = 0;

        c->old_zroot = *zroot;

        lnum = c->old_zroot.lnum;
        offs = c->old_zroot.offs;
        len = c->old_zroot.len;

        idx = kmalloc(c->max_idx_node_sz, GFP_NOFS);
        if (!idx)
                return -ENOMEM;

        err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
        if (err)
                goto out;

        c->old_zroot_level = le16_to_cpu(idx->level);
        c->old_zroot_sqnum = le64_to_cpu(idx->ch.sqnum);
out:
        kfree(idx);
        return err;
}

/**
 * dbg_check_old_index - check the old copy of the index.
 * @c: UBIFS file-system description object
 * @zroot: root of the new index
 *
 * In order to be able to recover from an unclean unmount, a complete copy of
 * the index must exist on flash. This is the "old" index. The commit process
 * must write the "new" index to flash without overwriting or destroying any
 * part of the old index. This function is run at commit end in order to check
 * that the old index does indeed exist completely intact.
 *
 * This function returns %0 on success and a negative error code on failure.
 */
int dbg_check_old_index(struct ubifs_info *c, struct ubifs_zbranch *zroot)
{
        int lnum, offs, len, err = 0, uninitialized_var(last_level), child_cnt;
        int first = 1, iip;
        union ubifs_key lower_key, upper_key, l_key, u_key;
        unsigned long long uninitialized_var(last_sqnum);
        struct ubifs_idx_node *idx;
        struct list_head list;
        struct idx_node *i;
        size_t sz;

        if (!(ubifs_chk_flags & UBIFS_CHK_OLD_IDX))
                goto out;

        INIT_LIST_HEAD(&list);

        sz = sizeof(struct idx_node) + ubifs_idx_node_sz(c, c->fanout) -
             UBIFS_IDX_NODE_SZ;

        /* Start at the old zroot */
        lnum = c->old_zroot.lnum;
        offs = c->old_zroot.offs;
        len = c->old_zroot.len;
        iip = 0;

        /*
         * Traverse the index tree preorder depth-first i.e. do a node and then
         * its subtrees from left to right.
         */
        while (1) {
                struct ubifs_branch *br;

                /* Get the next index node */
                i = kmalloc(sz, GFP_NOFS);
                if (!i) {
                        err = -ENOMEM;
                        goto out_free;
                }
                i->iip = iip;
                /* Keep the index nodes on our path in a linked list */
                list_add_tail(&i->list, &list);
                /* Read the index node */
                idx = &i->idx;
                err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
                if (err)
                        goto out_free;
                /* Validate index node */
                child_cnt = le16_to_cpu(idx->child_cnt);
                if (child_cnt < 1 || child_cnt > c->fanout) {
                        err = 1;
                        goto out_dump;
                }
                if (first) {
                        first = 0;
                        /* Check root level and sqnum */
                        if (le16_to_cpu(idx->level) != c->old_zroot_level) {
                                err = 2;
                                goto out_dump;
                        }
                        if (le64_to_cpu(idx->ch.sqnum) != c->old_zroot_sqnum) {
                                err = 3;
                                goto out_dump;
                        }
                        /* Set last values as though root had a parent */
                        last_level = le16_to_cpu(idx->level) + 1;
                        last_sqnum = le64_to_cpu(idx->ch.sqnum) + 1;
                        key_read(c, ubifs_idx_key(c, idx), &lower_key);
                        highest_ino_key(c, &upper_key, INUM_WATERMARK);
                }
                key_copy(c, &upper_key, &i->upper_key);
                if (le16_to_cpu(idx->level) != last_level - 1) {
                        err = 3;
                        goto out_dump;
                }
                /*
                 * The index is always written bottom up hence a child's sqnum
                 * is always less than the parents.
                 */
                if (le64_to_cpu(idx->ch.sqnum) >= last_sqnum) {
                        err = 4;
                        goto out_dump;
                }
                /* Check key range */
                key_read(c, ubifs_idx_key(c, idx), &l_key);
                br = ubifs_idx_branch(c, idx, child_cnt - 1);
                key_read(c, &br->key, &u_key);
                if (keys_cmp(c, &lower_key, &l_key) > 0) {
                        err = 5;
                        goto out_dump;
                }
                if (keys_cmp(c, &upper_key, &u_key) < 0) {
                        err = 6;
                        goto out_dump;
                }
                if (keys_cmp(c, &upper_key, &u_key) == 0)
                        if (!is_hash_key(c, &u_key)) {
                                err = 7;
                                goto out_dump;
                        }
                /* Go to next index node */
                if (le16_to_cpu(idx->level) == 0) {
                        /* At the bottom, so go up until can go right */
                        while (1) {
                                /* Drop the bottom of the list */
                                list_del(&i->list);
                                kfree(i);
                                /* No more list means we are done */
                                if (list_empty(&list))
                                        goto out;
                                /* Look at the new bottom */
                                i = list_entry(list.prev, struct idx_node,
                                               list);
                                idx = &i->idx;
                                /* Can we go right */
                                if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
                                        iip = iip + 1;
                                        break;
                                } else
                                        /* Nope, so go up again */
                                        iip = i->iip;
                        }
                } else
                        /* Go down left */
                        iip = 0;
                /*
                 * We have the parent in 'idx' and now we set up for reading the
                 * child pointed to by slot 'iip'.
                 */
                last_level = le16_to_cpu(idx->level);
                last_sqnum = le64_to_cpu(idx->ch.sqnum);
                br = ubifs_idx_branch(c, idx, iip);
                lnum = le32_to_cpu(br->lnum);
                offs = le32_to_cpu(br->offs);
                len = le32_to_cpu(br->len);
                key_read(c, &br->key, &lower_key);
                if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
                        br = ubifs_idx_branch(c, idx, iip + 1);
                        key_read(c, &br->key, &upper_key);
                } else
                        key_copy(c, &i->upper_key, &upper_key);
        }
out:
        err = dbg_old_index_check_init(c, zroot);
        if (err)
                goto out_free;

        return 0;

out_dump:
        dbg_err("dumping index node (iip=%d)", i->iip);
        dbg_dump_node(c, idx);
        list_del(&i->list);
        kfree(i);
        if (!list_empty(&list)) {
                i = list_entry(list.prev, struct idx_node, list);
                dbg_err("dumping parent index node");
                dbg_dump_node(c, &i->idx);
        }
out_free:
        while (!list_empty(&list)) {
                i = list_entry(list.next, struct idx_node, list);
                list_del(&i->list);
                kfree(i);
        }
        ubifs_err("failed, error %d", err);
        if (err > 0)
                err = -EINVAL;
        return err;
}

#endif /* CONFIG_UBIFS_FS_DEBUG */

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading