[funini.com] -> [kei@sodan] -> Kernel Reading

root/fs/ecryptfs/main.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. __ecryptfs_printk
  2. ecryptfs_init_persistent_file
  3. ecryptfs_interpose
  4. ecryptfs_init_global_auth_toks
  5. ecryptfs_init_mount_crypt_stat
  6. ecryptfs_parse_options
  7. ecryptfs_fill_super
  8. ecryptfs_read_super
  9. ecryptfs_get_sb
  10. ecryptfs_kill_block_super
  11. inode_info_init_once
  12. ecryptfs_free_kmem_caches
  13. ecryptfs_init_kmem_caches
  14. version_show
  15. do_sysfs_registration
  16. do_sysfs_unregistration
  17. ecryptfs_init
  18. ecryptfs_exit

/**
 * eCryptfs: Linux filesystem encryption layer
 *
 * Copyright (C) 1997-2003 Erez Zadok
 * Copyright (C) 2001-2003 Stony Brook University
 * Copyright (C) 2004-2007 International Business Machines Corp.
 *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
 *              Michael C. Thompson <mcthomps@us.ibm.com>
 *              Tyler Hicks <tyhicks@ou.edu>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
 * 02111-1307, USA.
 */

#include <linux/dcache.h>
#include <linux/file.h>
#include <linux/module.h>
#include <linux/namei.h>
#include <linux/skbuff.h>
#include <linux/crypto.h>
#include <linux/netlink.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/key.h>
#include <linux/parser.h>
#include <linux/fs_stack.h>
#include "ecryptfs_kernel.h"

/**
 * Module parameter that defines the ecryptfs_verbosity level.
 */
int ecryptfs_verbosity = 0;

module_param(ecryptfs_verbosity, int, 0);
MODULE_PARM_DESC(ecryptfs_verbosity,
                 "Initial verbosity level (0 or 1; defaults to "
                 "0, which is Quiet)");

/**
 * Module parameter that defines the number of netlink message buffer
 * elements
 */
unsigned int ecryptfs_message_buf_len = ECRYPTFS_DEFAULT_MSG_CTX_ELEMS;

module_param(ecryptfs_message_buf_len, uint, 0);
MODULE_PARM_DESC(ecryptfs_message_buf_len,
                 "Number of message buffer elements");

/**
 * Module parameter that defines the maximum guaranteed amount of time to wait
 * for a response through netlink.  The actual sleep time will be, more than
 * likely, a small amount greater than this specified value, but only less if
 * the netlink message successfully arrives.
 */
signed long ecryptfs_message_wait_timeout = ECRYPTFS_MAX_MSG_CTX_TTL / HZ;

module_param(ecryptfs_message_wait_timeout, long, 0);
MODULE_PARM_DESC(ecryptfs_message_wait_timeout,
                 "Maximum number of seconds that an operation will "
                 "sleep while waiting for a message response from "
                 "userspace");

/**
 * Module parameter that is an estimate of the maximum number of users
 * that will be concurrently using eCryptfs. Set this to the right
 * value to balance performance and memory use.
 */
unsigned int ecryptfs_number_of_users = ECRYPTFS_DEFAULT_NUM_USERS;

module_param(ecryptfs_number_of_users, uint, 0);
MODULE_PARM_DESC(ecryptfs_number_of_users, "An estimate of the number of "
                 "concurrent users of eCryptfs");

unsigned int ecryptfs_transport = ECRYPTFS_DEFAULT_TRANSPORT;

void __ecryptfs_printk(const char *fmt, ...)
{
        va_list args;
        va_start(args, fmt);
        if (fmt[1] == '7') { /* KERN_DEBUG */
                if (ecryptfs_verbosity >= 1)
                        vprintk(fmt, args);
        } else
                vprintk(fmt, args);
        va_end(args);
}

/**
 * ecryptfs_init_persistent_file
 * @ecryptfs_dentry: Fully initialized eCryptfs dentry object, with
 *                   the lower dentry and the lower mount set
 *
 * eCryptfs only ever keeps a single open file for every lower
 * inode. All I/O operations to the lower inode occur through that
 * file. When the first eCryptfs dentry that interposes with the first
 * lower dentry for that inode is created, this function creates the
 * persistent file struct and associates it with the eCryptfs
 * inode. When the eCryptfs inode is destroyed, the file is closed.
 *
 * The persistent file will be opened with read/write permissions, if
 * possible. Otherwise, it is opened read-only.
 *
 * This function does nothing if a lower persistent file is already
 * associated with the eCryptfs inode.
 *
 * Returns zero on success; non-zero otherwise
 */
int ecryptfs_init_persistent_file(struct dentry *ecryptfs_dentry)
{
        struct ecryptfs_inode_info *inode_info =
                ecryptfs_inode_to_private(ecryptfs_dentry->d_inode);
        int rc = 0;

        mutex_lock(&inode_info->lower_file_mutex);
        if (!inode_info->lower_file) {
                struct dentry *lower_dentry;
                struct vfsmount *lower_mnt =
                        ecryptfs_dentry_to_lower_mnt(ecryptfs_dentry);

                lower_dentry = ecryptfs_dentry_to_lower(ecryptfs_dentry);
                rc = ecryptfs_privileged_open(&inode_info->lower_file,
                                                     lower_dentry, lower_mnt);
                if (rc || IS_ERR(inode_info->lower_file)) {
                        printk(KERN_ERR "Error opening lower persistent file "
                               "for lower_dentry [0x%p] and lower_mnt [0x%p]; "
                               "rc = [%d]\n", lower_dentry, lower_mnt, rc);
                        rc = PTR_ERR(inode_info->lower_file);
                        inode_info->lower_file = NULL;
                }
        }
        mutex_unlock(&inode_info->lower_file_mutex);
        return rc;
}

/**
 * ecryptfs_interpose
 * @lower_dentry: Existing dentry in the lower filesystem
 * @dentry: ecryptfs' dentry
 * @sb: ecryptfs's super_block
 * @flags: flags to govern behavior of interpose procedure
 *
 * Interposes upper and lower dentries.
 *
 * Returns zero on success; non-zero otherwise
 */
int ecryptfs_interpose(struct dentry *lower_dentry, struct dentry *dentry,
                       struct super_block *sb, u32 flags)
{
        struct inode *lower_inode;
        struct inode *inode;
        int rc = 0;

        lower_inode = lower_dentry->d_inode;
        if (lower_inode->i_sb != ecryptfs_superblock_to_lower(sb)) {
                rc = -EXDEV;
                goto out;
        }
        if (!igrab(lower_inode)) {
                rc = -ESTALE;
                goto out;
        }
        inode = iget5_locked(sb, (unsigned long)lower_inode,
                             ecryptfs_inode_test, ecryptfs_inode_set,
                             lower_inode);
        if (!inode) {
                rc = -EACCES;
                iput(lower_inode);
                goto out;
        }
        if (inode->i_state & I_NEW)
                unlock_new_inode(inode);
        else
                iput(lower_inode);
        if (S_ISLNK(lower_inode->i_mode))
                inode->i_op = &ecryptfs_symlink_iops;
        else if (S_ISDIR(lower_inode->i_mode))
                inode->i_op = &ecryptfs_dir_iops;
        if (S_ISDIR(lower_inode->i_mode))
                inode->i_fop = &ecryptfs_dir_fops;
        if (special_file(lower_inode->i_mode))
                init_special_inode(inode, lower_inode->i_mode,
                                   lower_inode->i_rdev);
        dentry->d_op = &ecryptfs_dops;
        if (flags & ECRYPTFS_INTERPOSE_FLAG_D_ADD)
                d_add(dentry, inode);
        else
                d_instantiate(dentry, inode);
        fsstack_copy_attr_all(inode, lower_inode, NULL);
        /* This size will be overwritten for real files w/ headers and
         * other metadata */
        fsstack_copy_inode_size(inode, lower_inode);
out:
        return rc;
}

enum { ecryptfs_opt_sig, ecryptfs_opt_ecryptfs_sig,
       ecryptfs_opt_cipher, ecryptfs_opt_ecryptfs_cipher,
       ecryptfs_opt_ecryptfs_key_bytes,
       ecryptfs_opt_passthrough, ecryptfs_opt_xattr_metadata,
       ecryptfs_opt_encrypted_view, ecryptfs_opt_err };

static const match_table_t tokens = {
        {ecryptfs_opt_sig, "sig=%s"},
        {ecryptfs_opt_ecryptfs_sig, "ecryptfs_sig=%s"},
        {ecryptfs_opt_cipher, "cipher=%s"},
        {ecryptfs_opt_ecryptfs_cipher, "ecryptfs_cipher=%s"},
        {ecryptfs_opt_ecryptfs_key_bytes, "ecryptfs_key_bytes=%u"},
        {ecryptfs_opt_passthrough, "ecryptfs_passthrough"},
        {ecryptfs_opt_xattr_metadata, "ecryptfs_xattr_metadata"},
        {ecryptfs_opt_encrypted_view, "ecryptfs_encrypted_view"},
        {ecryptfs_opt_err, NULL}
};

static int ecryptfs_init_global_auth_toks(
        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
        struct ecryptfs_global_auth_tok *global_auth_tok;
        int rc = 0;

        list_for_each_entry(global_auth_tok,
                            &mount_crypt_stat->global_auth_tok_list,
                            mount_crypt_stat_list) {
                rc = ecryptfs_keyring_auth_tok_for_sig(
                        &global_auth_tok->global_auth_tok_key,
                        &global_auth_tok->global_auth_tok,
                        global_auth_tok->sig);
                if (rc) {
                        printk(KERN_ERR "Could not find valid key in user "
                               "session keyring for sig specified in mount "
                               "option: [%s]\n", global_auth_tok->sig);
                        global_auth_tok->flags |= ECRYPTFS_AUTH_TOK_INVALID;
                        goto out;
                } else
                        global_auth_tok->flags &= ~ECRYPTFS_AUTH_TOK_INVALID;
        }
out:
        return rc;
}

static void ecryptfs_init_mount_crypt_stat(
        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
        memset((void *)mount_crypt_stat, 0,
               sizeof(struct ecryptfs_mount_crypt_stat));
        INIT_LIST_HEAD(&mount_crypt_stat->global_auth_tok_list);
        mutex_init(&mount_crypt_stat->global_auth_tok_list_mutex);
        mount_crypt_stat->flags |= ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED;
}

/**
 * ecryptfs_parse_options
 * @sb: The ecryptfs super block
 * @options: The options pased to the kernel
 *
 * Parse mount options:
 * debug=N         - ecryptfs_verbosity level for debug output
 * sig=XXX         - description(signature) of the key to use
 *
 * Returns the dentry object of the lower-level (lower/interposed)
 * directory; We want to mount our stackable file system on top of
 * that lower directory.
 *
 * The signature of the key to use must be the description of a key
 * already in the keyring. Mounting will fail if the key can not be
 * found.
 *
 * Returns zero on success; non-zero on error
 */
static int ecryptfs_parse_options(struct super_block *sb, char *options)
{
        char *p;
        int rc = 0;
        int sig_set = 0;
        int cipher_name_set = 0;
        int cipher_key_bytes;
        int cipher_key_bytes_set = 0;
        struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
                &ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
        substring_t args[MAX_OPT_ARGS];
        int token;
        char *sig_src;
        char *cipher_name_dst;
        char *cipher_name_src;
        char *cipher_key_bytes_src;

        if (!options) {
                rc = -EINVAL;
                goto out;
        }
        ecryptfs_init_mount_crypt_stat(mount_crypt_stat);
        while ((p = strsep(&options, ",")) != NULL) {
                if (!*p)
                        continue;
                token = match_token(p, tokens, args);
                switch (token) {
                case ecryptfs_opt_sig:
                case ecryptfs_opt_ecryptfs_sig:
                        sig_src = args[0].from;
                        rc = ecryptfs_add_global_auth_tok(mount_crypt_stat,
                                                          sig_src);
                        if (rc) {
                                printk(KERN_ERR "Error attempting to register "
                                       "global sig; rc = [%d]\n", rc);
                                goto out;
                        }
                        sig_set = 1;
                        break;
                case ecryptfs_opt_cipher:
                case ecryptfs_opt_ecryptfs_cipher:
                        cipher_name_src = args[0].from;
                        cipher_name_dst =
                                mount_crypt_stat->
                                global_default_cipher_name;
                        strncpy(cipher_name_dst, cipher_name_src,
                                ECRYPTFS_MAX_CIPHER_NAME_SIZE);
                        ecryptfs_printk(KERN_DEBUG,
                                        "The mount_crypt_stat "
                                        "global_default_cipher_name set to: "
                                        "[%s]\n", cipher_name_dst);
                        cipher_name_set = 1;
                        break;
                case ecryptfs_opt_ecryptfs_key_bytes:
                        cipher_key_bytes_src = args[0].from;
                        cipher_key_bytes =
                                (int)simple_strtol(cipher_key_bytes_src,
                                                   &cipher_key_bytes_src, 0);
                        mount_crypt_stat->global_default_cipher_key_size =
                                cipher_key_bytes;
                        ecryptfs_printk(KERN_DEBUG,
                                        "The mount_crypt_stat "
                                        "global_default_cipher_key_size "
                                        "set to: [%d]\n", mount_crypt_stat->
                                        global_default_cipher_key_size);
                        cipher_key_bytes_set = 1;
                        break;
                case ecryptfs_opt_passthrough:
                        mount_crypt_stat->flags |=
                                ECRYPTFS_PLAINTEXT_PASSTHROUGH_ENABLED;
                        break;
                case ecryptfs_opt_xattr_metadata:
                        mount_crypt_stat->flags |=
                                ECRYPTFS_XATTR_METADATA_ENABLED;
                        break;
                case ecryptfs_opt_encrypted_view:
                        mount_crypt_stat->flags |=
                                ECRYPTFS_XATTR_METADATA_ENABLED;
                        mount_crypt_stat->flags |=
                                ECRYPTFS_ENCRYPTED_VIEW_ENABLED;
                        break;
                case ecryptfs_opt_err:
                default:
                        ecryptfs_printk(KERN_WARNING,
                                        "eCryptfs: unrecognized option '%s'\n",
                                        p);
                }
        }
        if (!sig_set) {
                rc = -EINVAL;
                ecryptfs_printk(KERN_ERR, "You must supply at least one valid "
                                "auth tok signature as a mount "
                                "parameter; see the eCryptfs README\n");
                goto out;
        }
        if (!cipher_name_set) {
                int cipher_name_len = strlen(ECRYPTFS_DEFAULT_CIPHER);

                BUG_ON(cipher_name_len >= ECRYPTFS_MAX_CIPHER_NAME_SIZE);

                strcpy(mount_crypt_stat->global_default_cipher_name,
                       ECRYPTFS_DEFAULT_CIPHER);
        }
        if (!cipher_key_bytes_set) {
                mount_crypt_stat->global_default_cipher_key_size = 0;
        }
        mutex_lock(&key_tfm_list_mutex);
        if (!ecryptfs_tfm_exists(mount_crypt_stat->global_default_cipher_name,
                                 NULL))
                rc = ecryptfs_add_new_key_tfm(
                        NULL, mount_crypt_stat->global_default_cipher_name,
                        mount_crypt_stat->global_default_cipher_key_size);
        mutex_unlock(&key_tfm_list_mutex);
        if (rc) {
                printk(KERN_ERR "Error attempting to initialize cipher with "
                       "name = [%s] and key size = [%td]; rc = [%d]\n",
                       mount_crypt_stat->global_default_cipher_name,
                       mount_crypt_stat->global_default_cipher_key_size, rc);
                rc = -EINVAL;
                goto out;
        }
        rc = ecryptfs_init_global_auth_toks(mount_crypt_stat);
        if (rc) {
                printk(KERN_WARNING "One or more global auth toks could not "
                       "properly register; rc = [%d]\n", rc);
        }
out:
        return rc;
}

struct kmem_cache *ecryptfs_sb_info_cache;

/**
 * ecryptfs_fill_super
 * @sb: The ecryptfs super block
 * @raw_data: The options passed to mount
 * @silent: Not used but required by function prototype
 *
 * Sets up what we can of the sb, rest is done in ecryptfs_read_super
 *
 * Returns zero on success; non-zero otherwise
 */
static int
ecryptfs_fill_super(struct super_block *sb, void *raw_data, int silent)
{
        int rc = 0;

        /* Released in ecryptfs_put_super() */
        ecryptfs_set_superblock_private(sb,
                                        kmem_cache_zalloc(ecryptfs_sb_info_cache,
                                                         GFP_KERNEL));
        if (!ecryptfs_superblock_to_private(sb)) {
                ecryptfs_printk(KERN_WARNING, "Out of memory\n");
                rc = -ENOMEM;
                goto out;
        }
        sb->s_op = &ecryptfs_sops;
        /* Released through deactivate_super(sb) from get_sb_nodev */
        sb->s_root = d_alloc(NULL, &(const struct qstr) {
                             .hash = 0,.name = "/",.len = 1});
        if (!sb->s_root) {
                ecryptfs_printk(KERN_ERR, "d_alloc failed\n");
                rc = -ENOMEM;
                goto out;
        }
        sb->s_root->d_op = &ecryptfs_dops;
        sb->s_root->d_sb = sb;
        sb->s_root->d_parent = sb->s_root;
        /* Released in d_release when dput(sb->s_root) is called */
        /* through deactivate_super(sb) from get_sb_nodev() */
        ecryptfs_set_dentry_private(sb->s_root,
                                    kmem_cache_zalloc(ecryptfs_dentry_info_cache,
                                                     GFP_KERNEL));
        if (!ecryptfs_dentry_to_private(sb->s_root)) {
                ecryptfs_printk(KERN_ERR,
                                "dentry_info_cache alloc failed\n");
                rc = -ENOMEM;
                goto out;
        }
        rc = 0;
out:
        /* Should be able to rely on deactivate_super called from
         * get_sb_nodev */
        return rc;
}

/**
 * ecryptfs_read_super
 * @sb: The ecryptfs super block
 * @dev_name: The path to mount over
 *
 * Read the super block of the lower filesystem, and use
 * ecryptfs_interpose to create our initial inode and super block
 * struct.
 */
static int ecryptfs_read_super(struct super_block *sb, const char *dev_name)
{
        int rc;
        struct nameidata nd;
        struct dentry *lower_root;
        struct vfsmount *lower_mnt;

        memset(&nd, 0, sizeof(struct nameidata));
        rc = path_lookup(dev_name, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &nd);
        if (rc) {
                ecryptfs_printk(KERN_WARNING, "path_lookup() failed\n");
                goto out;
        }
        lower_root = nd.path.dentry;
        lower_mnt = nd.path.mnt;
        ecryptfs_set_superblock_lower(sb, lower_root->d_sb);
        sb->s_maxbytes = lower_root->d_sb->s_maxbytes;
        sb->s_blocksize = lower_root->d_sb->s_blocksize;
        ecryptfs_set_dentry_lower(sb->s_root, lower_root);
        ecryptfs_set_dentry_lower_mnt(sb->s_root, lower_mnt);
        rc = ecryptfs_interpose(lower_root, sb->s_root, sb, 0);
        if (rc)
                goto out_free;
        rc = 0;
        goto out;
out_free:
        path_put(&nd.path);
out:
        return rc;
}

/**
 * ecryptfs_get_sb
 * @fs_type
 * @flags
 * @dev_name: The path to mount over
 * @raw_data: The options passed into the kernel
 *
 * The whole ecryptfs_get_sb process is broken into 4 functions:
 * ecryptfs_parse_options(): handle options passed to ecryptfs, if any
 * ecryptfs_fill_super(): used by get_sb_nodev, fills out the super_block
 *                        with as much information as it can before needing
 *                        the lower filesystem.
 * ecryptfs_read_super(): this accesses the lower filesystem and uses
 *                        ecryptfs_interpolate to perform most of the linking
 * ecryptfs_interpolate(): links the lower filesystem into ecryptfs
 */
static int ecryptfs_get_sb(struct file_system_type *fs_type, int flags,
                        const char *dev_name, void *raw_data,
                        struct vfsmount *mnt)
{
        int rc;
        struct super_block *sb;

        rc = get_sb_nodev(fs_type, flags, raw_data, ecryptfs_fill_super, mnt);
        if (rc < 0) {
                printk(KERN_ERR "Getting sb failed; rc = [%d]\n", rc);
                goto out;
        }
        sb = mnt->mnt_sb;
        rc = ecryptfs_parse_options(sb, raw_data);
        if (rc) {
                printk(KERN_ERR "Error parsing options; rc = [%d]\n", rc);
                goto out_abort;
        }
        rc = ecryptfs_read_super(sb, dev_name);
        if (rc) {
                printk(KERN_ERR "Reading sb failed; rc = [%d]\n", rc);
                goto out_abort;
        }
        goto out;
out_abort:
        dput(sb->s_root);
        up_write(&sb->s_umount);
        deactivate_super(sb);
out:
        return rc;
}

/**
 * ecryptfs_kill_block_super
 * @sb: The ecryptfs super block
 *
 * Used to bring the superblock down and free the private data.
 * Private data is free'd in ecryptfs_put_super()
 */
static void ecryptfs_kill_block_super(struct super_block *sb)
{
        generic_shutdown_super(sb);
}

static struct file_system_type ecryptfs_fs_type = {
        .owner = THIS_MODULE,
        .name = "ecryptfs",
        .get_sb = ecryptfs_get_sb,
        .kill_sb = ecryptfs_kill_block_super,
        .fs_flags = 0
};

/**
 * inode_info_init_once
 *
 * Initializes the ecryptfs_inode_info_cache when it is created
 */
static void
inode_info_init_once(void *vptr)
{
        struct ecryptfs_inode_info *ei = (struct ecryptfs_inode_info *)vptr;

        inode_init_once(&ei->vfs_inode);
}

static struct ecryptfs_cache_info {
        struct kmem_cache **cache;
        const char *name;
        size_t size;
        void (*ctor)(void *obj);
} ecryptfs_cache_infos[] = {
        {
                .cache = &ecryptfs_auth_tok_list_item_cache,
                .name = "ecryptfs_auth_tok_list_item",
                .size = sizeof(struct ecryptfs_auth_tok_list_item),
        },
        {
                .cache = &ecryptfs_file_info_cache,
                .name = "ecryptfs_file_cache",
                .size = sizeof(struct ecryptfs_file_info),
        },
        {
                .cache = &ecryptfs_dentry_info_cache,
                .name = "ecryptfs_dentry_info_cache",
                .size = sizeof(struct ecryptfs_dentry_info),
        },
        {
                .cache = &ecryptfs_inode_info_cache,
                .name = "ecryptfs_inode_cache",
                .size = sizeof(struct ecryptfs_inode_info),
                .ctor = inode_info_init_once,
        },
        {
                .cache = &ecryptfs_sb_info_cache,
                .name = "ecryptfs_sb_cache",
                .size = sizeof(struct ecryptfs_sb_info),
        },
        {
                .cache = &ecryptfs_header_cache_1,
                .name = "ecryptfs_headers_1",
                .size = PAGE_CACHE_SIZE,
        },
        {
                .cache = &ecryptfs_header_cache_2,
                .name = "ecryptfs_headers_2",
                .size = PAGE_CACHE_SIZE,
        },
        {
                .cache = &ecryptfs_xattr_cache,
                .name = "ecryptfs_xattr_cache",
                .size = PAGE_CACHE_SIZE,
        },
        {
                .cache = &ecryptfs_key_record_cache,
                .name = "ecryptfs_key_record_cache",
                .size = sizeof(struct ecryptfs_key_record),
        },
        {
                .cache = &ecryptfs_key_sig_cache,
                .name = "ecryptfs_key_sig_cache",
                .size = sizeof(struct ecryptfs_key_sig),
        },
        {
                .cache = &ecryptfs_global_auth_tok_cache,
                .name = "ecryptfs_global_auth_tok_cache",
                .size = sizeof(struct ecryptfs_global_auth_tok),
        },
        {
                .cache = &ecryptfs_key_tfm_cache,
                .name = "ecryptfs_key_tfm_cache",
                .size = sizeof(struct ecryptfs_key_tfm),
        },
        {
                .cache = &ecryptfs_open_req_cache,
                .name = "ecryptfs_open_req_cache",
                .size = sizeof(struct ecryptfs_open_req),
        },
};

static void ecryptfs_free_kmem_caches(void)
{
        int i;

        for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
                struct ecryptfs_cache_info *info;

                info = &ecryptfs_cache_infos[i];
                if (*(info->cache))
                        kmem_cache_destroy(*(info->cache));
        }
}

/**
 * ecryptfs_init_kmem_caches
 *
 * Returns zero on success; non-zero otherwise
 */
static int ecryptfs_init_kmem_caches(void)
{
        int i;

        for (i = 0; i < ARRAY_SIZE(ecryptfs_cache_infos); i++) {
                struct ecryptfs_cache_info *info;

                info = &ecryptfs_cache_infos[i];
                *(info->cache) = kmem_cache_create(info->name, info->size,
                                0, SLAB_HWCACHE_ALIGN, info->ctor);
                if (!*(info->cache)) {
                        ecryptfs_free_kmem_caches();
                        ecryptfs_printk(KERN_WARNING, "%s: "
                                        "kmem_cache_create failed\n",
                                        info->name);
                        return -ENOMEM;
                }
        }
        return 0;
}

static struct kobject *ecryptfs_kobj;

static ssize_t version_show(struct kobject *kobj,
                            struct kobj_attribute *attr, char *buff)
{
        return snprintf(buff, PAGE_SIZE, "%d\n", ECRYPTFS_VERSIONING_MASK);
}

static struct kobj_attribute version_attr = __ATTR_RO(version);

static struct attribute *attributes[] = {
        &version_attr.attr,
        NULL,
};

static struct attribute_group attr_group = {
        .attrs = attributes,
};

static int do_sysfs_registration(void)
{
        int rc;

        ecryptfs_kobj = kobject_create_and_add("ecryptfs", fs_kobj);
        if (!ecryptfs_kobj) {
                printk(KERN_ERR "Unable to create ecryptfs kset\n");
                rc = -ENOMEM;
                goto out;
        }
        rc = sysfs_create_group(ecryptfs_kobj, &attr_group);
        if (rc) {
                printk(KERN_ERR
                       "Unable to create ecryptfs version attributes\n");
                kobject_put(ecryptfs_kobj);
        }
out:
        return rc;
}

static void do_sysfs_unregistration(void)
{
        sysfs_remove_group(ecryptfs_kobj, &attr_group);
        kobject_put(ecryptfs_kobj);
}

static int __init ecryptfs_init(void)
{
        int rc;

        if (ECRYPTFS_DEFAULT_EXTENT_SIZE > PAGE_CACHE_SIZE) {
                rc = -EINVAL;
                ecryptfs_printk(KERN_ERR, "The eCryptfs extent size is "
                                "larger than the host's page size, and so "
                                "eCryptfs cannot run on this system. The "
                                "default eCryptfs extent size is [%d] bytes; "
                                "the page size is [%d] bytes.\n",
                                ECRYPTFS_DEFAULT_EXTENT_SIZE, PAGE_CACHE_SIZE);
                goto out;
        }
        rc = ecryptfs_init_kmem_caches();
        if (rc) {
                printk(KERN_ERR
                       "Failed to allocate one or more kmem_cache objects\n");
                goto out;
        }
        rc = register_filesystem(&ecryptfs_fs_type);
        if (rc) {
                printk(KERN_ERR "Failed to register filesystem\n");
                goto out_free_kmem_caches;
        }
        rc = do_sysfs_registration();
        if (rc) {
                printk(KERN_ERR "sysfs registration failed\n");
                goto out_unregister_filesystem;
        }
        rc = ecryptfs_init_kthread();
        if (rc) {
                printk(KERN_ERR "%s: kthread initialization failed; "
                       "rc = [%d]\n", __func__, rc);
                goto out_do_sysfs_unregistration;
        }
        rc = ecryptfs_init_messaging(ecryptfs_transport);
        if (rc) {
                printk(KERN_ERR "Failure occured while attempting to "
                                "initialize the eCryptfs netlink socket\n");
                goto out_destroy_kthread;
        }
        rc = ecryptfs_init_crypto();
        if (rc) {
                printk(KERN_ERR "Failure whilst attempting to init crypto; "
                       "rc = [%d]\n", rc);
                goto out_release_messaging;
        }
        if (ecryptfs_verbosity > 0)
                printk(KERN_CRIT "eCryptfs verbosity set to %d. Secret values "
                        "will be written to the syslog!\n", ecryptfs_verbosity);

        goto out;
out_release_messaging:
        ecryptfs_release_messaging(ecryptfs_transport);
out_destroy_kthread:
        ecryptfs_destroy_kthread();
out_do_sysfs_unregistration:
        do_sysfs_unregistration();
out_unregister_filesystem:
        unregister_filesystem(&ecryptfs_fs_type);
out_free_kmem_caches:
        ecryptfs_free_kmem_caches();
out:
        return rc;
}

static void __exit ecryptfs_exit(void)
{
        int rc;

        rc = ecryptfs_destroy_crypto();
        if (rc)
                printk(KERN_ERR "Failure whilst attempting to destroy crypto; "
                       "rc = [%d]\n", rc);
        ecryptfs_release_messaging(ecryptfs_transport);
        ecryptfs_destroy_kthread();
        do_sysfs_unregistration();
        unregister_filesystem(&ecryptfs_fs_type);
        ecryptfs_free_kmem_caches();
}

MODULE_AUTHOR("Michael A. Halcrow <mhalcrow@us.ibm.com>");
MODULE_DESCRIPTION("eCryptfs");

MODULE_LICENSE("GPL");

module_init(ecryptfs_init)
module_exit(ecryptfs_exit)

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading