[funini.com] -> [kei@sodan] -> Kernel Reading

root/fs/ecryptfs/crypto.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ecryptfs_to_hex
  2. ecryptfs_from_hex
  3. ecryptfs_calculate_md5
  4. ecryptfs_crypto_api_algify_cipher_name
  5. ecryptfs_derive_iv
  6. ecryptfs_init_crypt_stat
  7. ecryptfs_destroy_crypt_stat
  8. ecryptfs_destroy_mount_crypt_stat
  9. virt_to_scatterlist
  10. encrypt_scatterlist
  11. ecryptfs_lower_offset_for_extent
  12. ecryptfs_encrypt_extent
  13. ecryptfs_encrypt_page
  14. ecryptfs_decrypt_extent
  15. ecryptfs_decrypt_page
  16. decrypt_scatterlist
  17. ecryptfs_encrypt_page_offset
  18. ecryptfs_decrypt_page_offset
  19. ecryptfs_init_crypt_ctx
  20. set_extent_mask_and_shift
  21. ecryptfs_set_default_sizes
  22. ecryptfs_compute_root_iv
  23. ecryptfs_generate_new_key
  24. ecryptfs_copy_mount_wide_flags_to_inode_flags
  25. ecryptfs_copy_mount_wide_sigs_to_inode_sigs
  26. ecryptfs_set_default_crypt_stat_vals
  27. ecryptfs_new_file_context
  28. contains_ecryptfs_marker
  29. ecryptfs_process_flags
  30. write_ecryptfs_marker
  31. write_ecryptfs_flags
  32. ecryptfs_code_for_cipher_string
  33. ecryptfs_cipher_code_to_string
  34. ecryptfs_read_and_validate_header_region
  35. ecryptfs_write_header_metadata
  36. ecryptfs_write_headers_virt
  37. ecryptfs_write_metadata_to_contents
  38. ecryptfs_write_metadata_to_xattr
  39. ecryptfs_write_metadata
  40. parse_header_metadata
  41. set_default_header_data
  42. ecryptfs_read_headers_virt
  43. ecryptfs_read_xattr_region
  44. ecryptfs_read_and_validate_xattr_region
  45. ecryptfs_read_metadata
  46. ecryptfs_encode_filename
  47. ecryptfs_decode_filename
  48. ecryptfs_process_key_cipher
  49. ecryptfs_init_crypto
  50. ecryptfs_destroy_crypto
  51. ecryptfs_add_new_key_tfm
  52. ecryptfs_tfm_exists
  53. ecryptfs_get_tfm_and_mutex_for_cipher_name

/**
 * eCryptfs: Linux filesystem encryption layer
 *
 * Copyright (C) 1997-2004 Erez Zadok
 * Copyright (C) 2001-2004 Stony Brook University
 * Copyright (C) 2004-2007 International Business Machines Corp.
 *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
 *              Michael C. Thompson <mcthomps@us.ibm.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
 * 02111-1307, USA.
 */

#include <linux/fs.h>
#include <linux/mount.h>
#include <linux/pagemap.h>
#include <linux/random.h>
#include <linux/compiler.h>
#include <linux/key.h>
#include <linux/namei.h>
#include <linux/crypto.h>
#include <linux/file.h>
#include <linux/scatterlist.h>
#include <asm/unaligned.h>
#include "ecryptfs_kernel.h"

static int
ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
                             struct page *dst_page, int dst_offset,
                             struct page *src_page, int src_offset, int size,
                             unsigned char *iv);
static int
ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
                             struct page *dst_page, int dst_offset,
                             struct page *src_page, int src_offset, int size,
                             unsigned char *iv);

/**
 * ecryptfs_to_hex
 * @dst: Buffer to take hex character representation of contents of
 *       src; must be at least of size (src_size * 2)
 * @src: Buffer to be converted to a hex string respresentation
 * @src_size: number of bytes to convert
 */
void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
{
        int x;

        for (x = 0; x < src_size; x++)
                sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
}

/**
 * ecryptfs_from_hex
 * @dst: Buffer to take the bytes from src hex; must be at least of
 *       size (src_size / 2)
 * @src: Buffer to be converted from a hex string respresentation to raw value
 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
 */
void ecryptfs_from_hex(char *dst, char *src, int dst_size)
{
        int x;
        char tmp[3] = { 0, };

        for (x = 0; x < dst_size; x++) {
                tmp[0] = src[x * 2];
                tmp[1] = src[x * 2 + 1];
                dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
        }
}

/**
 * ecryptfs_calculate_md5 - calculates the md5 of @src
 * @dst: Pointer to 16 bytes of allocated memory
 * @crypt_stat: Pointer to crypt_stat struct for the current inode
 * @src: Data to be md5'd
 * @len: Length of @src
 *
 * Uses the allocated crypto context that crypt_stat references to
 * generate the MD5 sum of the contents of src.
 */
static int ecryptfs_calculate_md5(char *dst,
                                  struct ecryptfs_crypt_stat *crypt_stat,
                                  char *src, int len)
{
        struct scatterlist sg;
        struct hash_desc desc = {
                .tfm = crypt_stat->hash_tfm,
                .flags = CRYPTO_TFM_REQ_MAY_SLEEP
        };
        int rc = 0;

        mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
        sg_init_one(&sg, (u8 *)src, len);
        if (!desc.tfm) {
                desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
                                             CRYPTO_ALG_ASYNC);
                if (IS_ERR(desc.tfm)) {
                        rc = PTR_ERR(desc.tfm);
                        ecryptfs_printk(KERN_ERR, "Error attempting to "
                                        "allocate crypto context; rc = [%d]\n",
                                        rc);
                        goto out;
                }
                crypt_stat->hash_tfm = desc.tfm;
        }
        rc = crypto_hash_init(&desc);
        if (rc) {
                printk(KERN_ERR
                       "%s: Error initializing crypto hash; rc = [%d]\n",
                       __func__, rc);
                goto out;
        }
        rc = crypto_hash_update(&desc, &sg, len);
        if (rc) {
                printk(KERN_ERR
                       "%s: Error updating crypto hash; rc = [%d]\n",
                       __func__, rc);
                goto out;
        }
        rc = crypto_hash_final(&desc, dst);
        if (rc) {
                printk(KERN_ERR
                       "%s: Error finalizing crypto hash; rc = [%d]\n",
                       __func__, rc);
                goto out;
        }
out:
        mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
        return rc;
}

static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
                                                  char *cipher_name,
                                                  char *chaining_modifier)
{
        int cipher_name_len = strlen(cipher_name);
        int chaining_modifier_len = strlen(chaining_modifier);
        int algified_name_len;
        int rc;

        algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
        (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
        if (!(*algified_name)) {
                rc = -ENOMEM;
                goto out;
        }
        snprintf((*algified_name), algified_name_len, "%s(%s)",
                 chaining_modifier, cipher_name);
        rc = 0;
out:
        return rc;
}

/**
 * ecryptfs_derive_iv
 * @iv: destination for the derived iv vale
 * @crypt_stat: Pointer to crypt_stat struct for the current inode
 * @offset: Offset of the extent whose IV we are to derive
 *
 * Generate the initialization vector from the given root IV and page
 * offset.
 *
 * Returns zero on success; non-zero on error.
 */
static int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
                              loff_t offset)
{
        int rc = 0;
        char dst[MD5_DIGEST_SIZE];
        char src[ECRYPTFS_MAX_IV_BYTES + 16];

        if (unlikely(ecryptfs_verbosity > 0)) {
                ecryptfs_printk(KERN_DEBUG, "root iv:\n");
                ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
        }
        /* TODO: It is probably secure to just cast the least
         * significant bits of the root IV into an unsigned long and
         * add the offset to that rather than go through all this
         * hashing business. -Halcrow */
        memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
        memset((src + crypt_stat->iv_bytes), 0, 16);
        snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
        if (unlikely(ecryptfs_verbosity > 0)) {
                ecryptfs_printk(KERN_DEBUG, "source:\n");
                ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
        }
        rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
                                    (crypt_stat->iv_bytes + 16));
        if (rc) {
                ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
                                "MD5 while generating IV for a page\n");
                goto out;
        }
        memcpy(iv, dst, crypt_stat->iv_bytes);
        if (unlikely(ecryptfs_verbosity > 0)) {
                ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
                ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
        }
out:
        return rc;
}

/**
 * ecryptfs_init_crypt_stat
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 *
 * Initialize the crypt_stat structure.
 */
void
ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
{
        memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
        INIT_LIST_HEAD(&crypt_stat->keysig_list);
        mutex_init(&crypt_stat->keysig_list_mutex);
        mutex_init(&crypt_stat->cs_mutex);
        mutex_init(&crypt_stat->cs_tfm_mutex);
        mutex_init(&crypt_stat->cs_hash_tfm_mutex);
        crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
}

/**
 * ecryptfs_destroy_crypt_stat
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 *
 * Releases all memory associated with a crypt_stat struct.
 */
void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
{
        struct ecryptfs_key_sig *key_sig, *key_sig_tmp;

        if (crypt_stat->tfm)
                crypto_free_blkcipher(crypt_stat->tfm);
        if (crypt_stat->hash_tfm)
                crypto_free_hash(crypt_stat->hash_tfm);
        mutex_lock(&crypt_stat->keysig_list_mutex);
        list_for_each_entry_safe(key_sig, key_sig_tmp,
                                 &crypt_stat->keysig_list, crypt_stat_list) {
                list_del(&key_sig->crypt_stat_list);
                kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
        }
        mutex_unlock(&crypt_stat->keysig_list_mutex);
        memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
}

void ecryptfs_destroy_mount_crypt_stat(
        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
        struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;

        if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
                return;
        mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
        list_for_each_entry_safe(auth_tok, auth_tok_tmp,
                                 &mount_crypt_stat->global_auth_tok_list,
                                 mount_crypt_stat_list) {
                list_del(&auth_tok->mount_crypt_stat_list);
                mount_crypt_stat->num_global_auth_toks--;
                if (auth_tok->global_auth_tok_key
                    && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
                        key_put(auth_tok->global_auth_tok_key);
                kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
        }
        mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
        memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
}

/**
 * virt_to_scatterlist
 * @addr: Virtual address
 * @size: Size of data; should be an even multiple of the block size
 * @sg: Pointer to scatterlist array; set to NULL to obtain only
 *      the number of scatterlist structs required in array
 * @sg_size: Max array size
 *
 * Fills in a scatterlist array with page references for a passed
 * virtual address.
 *
 * Returns the number of scatterlist structs in array used
 */
int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
                        int sg_size)
{
        int i = 0;
        struct page *pg;
        int offset;
        int remainder_of_page;

        sg_init_table(sg, sg_size);

        while (size > 0 && i < sg_size) {
                pg = virt_to_page(addr);
                offset = offset_in_page(addr);
                if (sg)
                        sg_set_page(&sg[i], pg, 0, offset);
                remainder_of_page = PAGE_CACHE_SIZE - offset;
                if (size >= remainder_of_page) {
                        if (sg)
                                sg[i].length = remainder_of_page;
                        addr += remainder_of_page;
                        size -= remainder_of_page;
                } else {
                        if (sg)
                                sg[i].length = size;
                        addr += size;
                        size = 0;
                }
                i++;
        }
        if (size > 0)
                return -ENOMEM;
        return i;
}

/**
 * encrypt_scatterlist
 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
 * @dest_sg: Destination of encrypted data
 * @src_sg: Data to be encrypted
 * @size: Length of data to be encrypted
 * @iv: iv to use during encryption
 *
 * Returns the number of bytes encrypted; negative value on error
 */
static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
                               struct scatterlist *dest_sg,
                               struct scatterlist *src_sg, int size,
                               unsigned char *iv)
{
        struct blkcipher_desc desc = {
                .tfm = crypt_stat->tfm,
                .info = iv,
                .flags = CRYPTO_TFM_REQ_MAY_SLEEP
        };
        int rc = 0;

        BUG_ON(!crypt_stat || !crypt_stat->tfm
               || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
        if (unlikely(ecryptfs_verbosity > 0)) {
                ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
                                crypt_stat->key_size);
                ecryptfs_dump_hex(crypt_stat->key,
                                  crypt_stat->key_size);
        }
        /* Consider doing this once, when the file is opened */
        mutex_lock(&crypt_stat->cs_tfm_mutex);
        if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
                rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
                                             crypt_stat->key_size);
                crypt_stat->flags |= ECRYPTFS_KEY_SET;
        }
        if (rc) {
                ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
                                rc);
                mutex_unlock(&crypt_stat->cs_tfm_mutex);
                rc = -EINVAL;
                goto out;
        }
        ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
        crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
        mutex_unlock(&crypt_stat->cs_tfm_mutex);
out:
        return rc;
}

/**
 * ecryptfs_lower_offset_for_extent
 *
 * Convert an eCryptfs page index into a lower byte offset
 */
static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
                                             struct ecryptfs_crypt_stat *crypt_stat)
{
        (*offset) = (crypt_stat->num_header_bytes_at_front
                     + (crypt_stat->extent_size * extent_num));
}

/**
 * ecryptfs_encrypt_extent
 * @enc_extent_page: Allocated page into which to encrypt the data in
 *                   @page
 * @crypt_stat: crypt_stat containing cryptographic context for the
 *              encryption operation
 * @page: Page containing plaintext data extent to encrypt
 * @extent_offset: Page extent offset for use in generating IV
 *
 * Encrypts one extent of data.
 *
 * Return zero on success; non-zero otherwise
 */
static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
                                   struct ecryptfs_crypt_stat *crypt_stat,
                                   struct page *page,
                                   unsigned long extent_offset)
{
        loff_t extent_base;
        char extent_iv[ECRYPTFS_MAX_IV_BYTES];
        int rc;

        extent_base = (((loff_t)page->index)
                       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
        rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
                                (extent_base + extent_offset));
        if (rc) {
                ecryptfs_printk(KERN_ERR, "Error attempting to "
                                "derive IV for extent [0x%.16x]; "
                                "rc = [%d]\n", (extent_base + extent_offset),
                                rc);
                goto out;
        }
        if (unlikely(ecryptfs_verbosity > 0)) {
                ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
                                "with iv:\n");
                ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
                ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
                                "encryption:\n");
                ecryptfs_dump_hex((char *)
                                  (page_address(page)
                                   + (extent_offset * crypt_stat->extent_size)),
                                  8);
        }
        rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
                                          page, (extent_offset
                                                 * crypt_stat->extent_size),
                                          crypt_stat->extent_size, extent_iv);
        if (rc < 0) {
                printk(KERN_ERR "%s: Error attempting to encrypt page with "
                       "page->index = [%ld], extent_offset = [%ld]; "
                       "rc = [%d]\n", __func__, page->index, extent_offset,
                       rc);
                goto out;
        }
        rc = 0;
        if (unlikely(ecryptfs_verbosity > 0)) {
                ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
                                "rc = [%d]\n", (extent_base + extent_offset),
                                rc);
                ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
                                "encryption:\n");
                ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
        }
out:
        return rc;
}

/**
 * ecryptfs_encrypt_page
 * @page: Page mapped from the eCryptfs inode for the file; contains
 *        decrypted content that needs to be encrypted (to a temporary
 *        page; not in place) and written out to the lower file
 *
 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
 * that eCryptfs pages may straddle the lower pages -- for instance,
 * if the file was created on a machine with an 8K page size
 * (resulting in an 8K header), and then the file is copied onto a
 * host with a 32K page size, then when reading page 0 of the eCryptfs
 * file, 24K of page 0 of the lower file will be read and decrypted,
 * and then 8K of page 1 of the lower file will be read and decrypted.
 *
 * Returns zero on success; negative on error
 */
int ecryptfs_encrypt_page(struct page *page)
{
        struct inode *ecryptfs_inode;
        struct ecryptfs_crypt_stat *crypt_stat;
        char *enc_extent_virt;
        struct page *enc_extent_page = NULL;
        loff_t extent_offset;
        int rc = 0;

        ecryptfs_inode = page->mapping->host;
        crypt_stat =
                &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
        if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
                rc = ecryptfs_write_lower_page_segment(ecryptfs_inode, page,
                                                       0, PAGE_CACHE_SIZE);
                if (rc)
                        printk(KERN_ERR "%s: Error attempting to copy "
                               "page at index [%ld]\n", __func__,
                               page->index);
                goto out;
        }
        enc_extent_page = alloc_page(GFP_USER);
        if (!enc_extent_page) {
                rc = -ENOMEM;
                ecryptfs_printk(KERN_ERR, "Error allocating memory for "
                                "encrypted extent\n");
                goto out;
        }
        enc_extent_virt = kmap(enc_extent_page);
        for (extent_offset = 0;
             extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
             extent_offset++) {
                loff_t offset;

                rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
                                             extent_offset);
                if (rc) {
                        printk(KERN_ERR "%s: Error encrypting extent; "
                               "rc = [%d]\n", __func__, rc);
                        goto out;
                }
                ecryptfs_lower_offset_for_extent(
                        &offset, ((((loff_t)page->index)
                                   * (PAGE_CACHE_SIZE
                                      / crypt_stat->extent_size))
                                  + extent_offset), crypt_stat);
                rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
                                          offset, crypt_stat->extent_size);
                if (rc) {
                        ecryptfs_printk(KERN_ERR, "Error attempting "
                                        "to write lower page; rc = [%d]"
                                        "\n", rc);
                        goto out;
                }
        }
out:
        if (enc_extent_page) {
                kunmap(enc_extent_page);
                __free_page(enc_extent_page);
        }
        return rc;
}

static int ecryptfs_decrypt_extent(struct page *page,
                                   struct ecryptfs_crypt_stat *crypt_stat,
                                   struct page *enc_extent_page,
                                   unsigned long extent_offset)
{
        loff_t extent_base;
        char extent_iv[ECRYPTFS_MAX_IV_BYTES];
        int rc;

        extent_base = (((loff_t)page->index)
                       * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
        rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
                                (extent_base + extent_offset));
        if (rc) {
                ecryptfs_printk(KERN_ERR, "Error attempting to "
                                "derive IV for extent [0x%.16x]; "
                                "rc = [%d]\n", (extent_base + extent_offset),
                                rc);
                goto out;
        }
        if (unlikely(ecryptfs_verbosity > 0)) {
                ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
                                "with iv:\n");
                ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
                ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
                                "decryption:\n");
                ecryptfs_dump_hex((char *)
                                  (page_address(enc_extent_page)
                                   + (extent_offset * crypt_stat->extent_size)),
                                  8);
        }
        rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
                                          (extent_offset
                                           * crypt_stat->extent_size),
                                          enc_extent_page, 0,
                                          crypt_stat->extent_size, extent_iv);
        if (rc < 0) {
                printk(KERN_ERR "%s: Error attempting to decrypt to page with "
                       "page->index = [%ld], extent_offset = [%ld]; "
                       "rc = [%d]\n", __func__, page->index, extent_offset,
                       rc);
                goto out;
        }
        rc = 0;
        if (unlikely(ecryptfs_verbosity > 0)) {
                ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16x]; "
                                "rc = [%d]\n", (extent_base + extent_offset),
                                rc);
                ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
                                "decryption:\n");
                ecryptfs_dump_hex((char *)(page_address(page)
                                           + (extent_offset
                                              * crypt_stat->extent_size)), 8);
        }
out:
        return rc;
}

/**
 * ecryptfs_decrypt_page
 * @page: Page mapped from the eCryptfs inode for the file; data read
 *        and decrypted from the lower file will be written into this
 *        page
 *
 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
 * that eCryptfs pages may straddle the lower pages -- for instance,
 * if the file was created on a machine with an 8K page size
 * (resulting in an 8K header), and then the file is copied onto a
 * host with a 32K page size, then when reading page 0 of the eCryptfs
 * file, 24K of page 0 of the lower file will be read and decrypted,
 * and then 8K of page 1 of the lower file will be read and decrypted.
 *
 * Returns zero on success; negative on error
 */
int ecryptfs_decrypt_page(struct page *page)
{
        struct inode *ecryptfs_inode;
        struct ecryptfs_crypt_stat *crypt_stat;
        char *enc_extent_virt;
        struct page *enc_extent_page = NULL;
        unsigned long extent_offset;
        int rc = 0;

        ecryptfs_inode = page->mapping->host;
        crypt_stat =
                &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
        if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
                rc = ecryptfs_read_lower_page_segment(page, page->index, 0,
                                                      PAGE_CACHE_SIZE,
                                                      ecryptfs_inode);
                if (rc)
                        printk(KERN_ERR "%s: Error attempting to copy "
                               "page at index [%ld]\n", __func__,
                               page->index);
                goto out;
        }
        enc_extent_page = alloc_page(GFP_USER);
        if (!enc_extent_page) {
                rc = -ENOMEM;
                ecryptfs_printk(KERN_ERR, "Error allocating memory for "
                                "encrypted extent\n");
                goto out;
        }
        enc_extent_virt = kmap(enc_extent_page);
        for (extent_offset = 0;
             extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
             extent_offset++) {
                loff_t offset;

                ecryptfs_lower_offset_for_extent(
                        &offset, ((page->index * (PAGE_CACHE_SIZE
                                                  / crypt_stat->extent_size))
                                  + extent_offset), crypt_stat);
                rc = ecryptfs_read_lower(enc_extent_virt, offset,
                                         crypt_stat->extent_size,
                                         ecryptfs_inode);
                if (rc) {
                        ecryptfs_printk(KERN_ERR, "Error attempting "
                                        "to read lower page; rc = [%d]"
                                        "\n", rc);
                        goto out;
                }
                rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
                                             extent_offset);
                if (rc) {
                        printk(KERN_ERR "%s: Error encrypting extent; "
                               "rc = [%d]\n", __func__, rc);
                        goto out;
                }
        }
out:
        if (enc_extent_page) {
                kunmap(enc_extent_page);
                __free_page(enc_extent_page);
        }
        return rc;
}

/**
 * decrypt_scatterlist
 * @crypt_stat: Cryptographic context
 * @dest_sg: The destination scatterlist to decrypt into
 * @src_sg: The source scatterlist to decrypt from
 * @size: The number of bytes to decrypt
 * @iv: The initialization vector to use for the decryption
 *
 * Returns the number of bytes decrypted; negative value on error
 */
static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
                               struct scatterlist *dest_sg,
                               struct scatterlist *src_sg, int size,
                               unsigned char *iv)
{
        struct blkcipher_desc desc = {
                .tfm = crypt_stat->tfm,
                .info = iv,
                .flags = CRYPTO_TFM_REQ_MAY_SLEEP
        };
        int rc = 0;

        /* Consider doing this once, when the file is opened */
        mutex_lock(&crypt_stat->cs_tfm_mutex);
        rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
                                     crypt_stat->key_size);
        if (rc) {
                ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
                                rc);
                mutex_unlock(&crypt_stat->cs_tfm_mutex);
                rc = -EINVAL;
                goto out;
        }
        ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
        rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
        mutex_unlock(&crypt_stat->cs_tfm_mutex);
        if (rc) {
                ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
                                rc);
                goto out;
        }
        rc = size;
out:
        return rc;
}

/**
 * ecryptfs_encrypt_page_offset
 * @crypt_stat: The cryptographic context
 * @dst_page: The page to encrypt into
 * @dst_offset: The offset in the page to encrypt into
 * @src_page: The page to encrypt from
 * @src_offset: The offset in the page to encrypt from
 * @size: The number of bytes to encrypt
 * @iv: The initialization vector to use for the encryption
 *
 * Returns the number of bytes encrypted
 */
static int
ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
                             struct page *dst_page, int dst_offset,
                             struct page *src_page, int src_offset, int size,
                             unsigned char *iv)
{
        struct scatterlist src_sg, dst_sg;

        sg_init_table(&src_sg, 1);
        sg_init_table(&dst_sg, 1);

        sg_set_page(&src_sg, src_page, size, src_offset);
        sg_set_page(&dst_sg, dst_page, size, dst_offset);
        return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
}

/**
 * ecryptfs_decrypt_page_offset
 * @crypt_stat: The cryptographic context
 * @dst_page: The page to decrypt into
 * @dst_offset: The offset in the page to decrypt into
 * @src_page: The page to decrypt from
 * @src_offset: The offset in the page to decrypt from
 * @size: The number of bytes to decrypt
 * @iv: The initialization vector to use for the decryption
 *
 * Returns the number of bytes decrypted
 */
static int
ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
                             struct page *dst_page, int dst_offset,
                             struct page *src_page, int src_offset, int size,
                             unsigned char *iv)
{
        struct scatterlist src_sg, dst_sg;

        sg_init_table(&src_sg, 1);
        sg_set_page(&src_sg, src_page, size, src_offset);

        sg_init_table(&dst_sg, 1);
        sg_set_page(&dst_sg, dst_page, size, dst_offset);

        return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
}

#define ECRYPTFS_MAX_SCATTERLIST_LEN 4

/**
 * ecryptfs_init_crypt_ctx
 * @crypt_stat: Uninitilized crypt stats structure
 *
 * Initialize the crypto context.
 *
 * TODO: Performance: Keep a cache of initialized cipher contexts;
 * only init if needed
 */
int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
{
        char *full_alg_name;
        int rc = -EINVAL;

        if (!crypt_stat->cipher) {
                ecryptfs_printk(KERN_ERR, "No cipher specified\n");
                goto out;
        }
        ecryptfs_printk(KERN_DEBUG,
                        "Initializing cipher [%s]; strlen = [%d]; "
                        "key_size_bits = [%d]\n",
                        crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
                        crypt_stat->key_size << 3);
        if (crypt_stat->tfm) {
                rc = 0;
                goto out;
        }
        mutex_lock(&crypt_stat->cs_tfm_mutex);
        rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
                                                    crypt_stat->cipher, "cbc");
        if (rc)
                goto out_unlock;
        crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
                                                 CRYPTO_ALG_ASYNC);
        kfree(full_alg_name);
        if (IS_ERR(crypt_stat->tfm)) {
                rc = PTR_ERR(crypt_stat->tfm);
                ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
                                "Error initializing cipher [%s]\n",
                                crypt_stat->cipher);
                goto out_unlock;
        }
        crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
        rc = 0;
out_unlock:
        mutex_unlock(&crypt_stat->cs_tfm_mutex);
out:
        return rc;
}

static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
{
        int extent_size_tmp;

        crypt_stat->extent_mask = 0xFFFFFFFF;
        crypt_stat->extent_shift = 0;
        if (crypt_stat->extent_size == 0)
                return;
        extent_size_tmp = crypt_stat->extent_size;
        while ((extent_size_tmp & 0x01) == 0) {
                extent_size_tmp >>= 1;
                crypt_stat->extent_mask <<= 1;
                crypt_stat->extent_shift++;
        }
}

void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
{
        /* Default values; may be overwritten as we are parsing the
         * packets. */
        crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
        set_extent_mask_and_shift(crypt_stat);
        crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
        if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
                crypt_stat->num_header_bytes_at_front = 0;
        else {
                if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
                        crypt_stat->num_header_bytes_at_front =
                                ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
                else
                        crypt_stat->num_header_bytes_at_front = PAGE_CACHE_SIZE;
        }
}

/**
 * ecryptfs_compute_root_iv
 * @crypt_stats
 *
 * On error, sets the root IV to all 0's.
 */
int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
{
        int rc = 0;
        char dst[MD5_DIGEST_SIZE];

        BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
        BUG_ON(crypt_stat->iv_bytes <= 0);
        if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
                rc = -EINVAL;
                ecryptfs_printk(KERN_WARNING, "Session key not valid; "
                                "cannot generate root IV\n");
                goto out;
        }
        rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
                                    crypt_stat->key_size);
        if (rc) {
                ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
                                "MD5 while generating root IV\n");
                goto out;
        }
        memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
out:
        if (rc) {
                memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
                crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
        }
        return rc;
}

static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
{
        get_random_bytes(crypt_stat->key, crypt_stat->key_size);
        crypt_stat->flags |= ECRYPTFS_KEY_VALID;
        ecryptfs_compute_root_iv(crypt_stat);
        if (unlikely(ecryptfs_verbosity > 0)) {
                ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
                ecryptfs_dump_hex(crypt_stat->key,
                                  crypt_stat->key_size);
        }
}

/**
 * ecryptfs_copy_mount_wide_flags_to_inode_flags
 * @crypt_stat: The inode's cryptographic context
 * @mount_crypt_stat: The mount point's cryptographic context
 *
 * This function propagates the mount-wide flags to individual inode
 * flags.
 */
static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
        struct ecryptfs_crypt_stat *crypt_stat,
        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
        if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
                crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
        if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
                crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
}

static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
        struct ecryptfs_crypt_stat *crypt_stat,
        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
        struct ecryptfs_global_auth_tok *global_auth_tok;
        int rc = 0;

        mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
        list_for_each_entry(global_auth_tok,
                            &mount_crypt_stat->global_auth_tok_list,
                            mount_crypt_stat_list) {
                rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
                if (rc) {
                        printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
                        mutex_unlock(
                                &mount_crypt_stat->global_auth_tok_list_mutex);
                        goto out;
                }
        }
        mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
out:
        return rc;
}

/**
 * ecryptfs_set_default_crypt_stat_vals
 * @crypt_stat: The inode's cryptographic context
 * @mount_crypt_stat: The mount point's cryptographic context
 *
 * Default values in the event that policy does not override them.
 */
static void ecryptfs_set_default_crypt_stat_vals(
        struct ecryptfs_crypt_stat *crypt_stat,
        struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
{
        ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
                                                      mount_crypt_stat);
        ecryptfs_set_default_sizes(crypt_stat);
        strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
        crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
        crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
        crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
        crypt_stat->mount_crypt_stat = mount_crypt_stat;
}

/**
 * ecryptfs_new_file_context
 * @ecryptfs_dentry: The eCryptfs dentry
 *
 * If the crypto context for the file has not yet been established,
 * this is where we do that.  Establishing a new crypto context
 * involves the following decisions:
 *  - What cipher to use?
 *  - What set of authentication tokens to use?
 * Here we just worry about getting enough information into the
 * authentication tokens so that we know that they are available.
 * We associate the available authentication tokens with the new file
 * via the set of signatures in the crypt_stat struct.  Later, when
 * the headers are actually written out, we may again defer to
 * userspace to perform the encryption of the session key; for the
 * foreseeable future, this will be the case with public key packets.
 *
 * Returns zero on success; non-zero otherwise
 */
int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
{
        struct ecryptfs_crypt_stat *crypt_stat =
            &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
        struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
            &ecryptfs_superblock_to_private(
                    ecryptfs_dentry->d_sb)->mount_crypt_stat;
        int cipher_name_len;
        int rc = 0;

        ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
        crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
        ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
                                                      mount_crypt_stat);
        rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
                                                         mount_crypt_stat);
        if (rc) {
                printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
                       "to the inode key sigs; rc = [%d]\n", rc);
                goto out;
        }
        cipher_name_len =
                strlen(mount_crypt_stat->global_default_cipher_name);
        memcpy(crypt_stat->cipher,
               mount_crypt_stat->global_default_cipher_name,
               cipher_name_len);
        crypt_stat->cipher[cipher_name_len] = '\0';
        crypt_stat->key_size =
                mount_crypt_stat->global_default_cipher_key_size;
        ecryptfs_generate_new_key(crypt_stat);
        rc = ecryptfs_init_crypt_ctx(crypt_stat);
        if (rc)
                ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
                                "context for cipher [%s]: rc = [%d]\n",
                                crypt_stat->cipher, rc);
out:
        return rc;
}

/**
 * contains_ecryptfs_marker - check for the ecryptfs marker
 * @data: The data block in which to check
 *
 * Returns one if marker found; zero if not found
 */
static int contains_ecryptfs_marker(char *data)
{
        u32 m_1, m_2;

        m_1 = get_unaligned_be32(data);
        m_2 = get_unaligned_be32(data + 4);
        if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
                return 1;
        ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
                        "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
                        MAGIC_ECRYPTFS_MARKER);
        ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
                        "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
        return 0;
}

struct ecryptfs_flag_map_elem {
        u32 file_flag;
        u32 local_flag;
};

/* Add support for additional flags by adding elements here. */
static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
        {0x00000001, ECRYPTFS_ENABLE_HMAC},
        {0x00000002, ECRYPTFS_ENCRYPTED},
        {0x00000004, ECRYPTFS_METADATA_IN_XATTR}
};

/**
 * ecryptfs_process_flags
 * @crypt_stat: The cryptographic context
 * @page_virt: Source data to be parsed
 * @bytes_read: Updated with the number of bytes read
 *
 * Returns zero on success; non-zero if the flag set is invalid
 */
static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
                                  char *page_virt, int *bytes_read)
{
        int rc = 0;
        int i;
        u32 flags;

        flags = get_unaligned_be32(page_virt);
        for (i = 0; i < ((sizeof(ecryptfs_flag_map)
                          / sizeof(struct ecryptfs_flag_map_elem))); i++)
                if (flags & ecryptfs_flag_map[i].file_flag) {
                        crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
                } else
                        crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
        /* Version is in top 8 bits of the 32-bit flag vector */
        crypt_stat->file_version = ((flags >> 24) & 0xFF);
        (*bytes_read) = 4;
        return rc;
}

/**
 * write_ecryptfs_marker
 * @page_virt: The pointer to in a page to begin writing the marker
 * @written: Number of bytes written
 *
 * Marker = 0x3c81b7f5
 */
static void write_ecryptfs_marker(char *page_virt, size_t *written)
{
        u32 m_1, m_2;

        get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
        m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
        put_unaligned_be32(m_1, page_virt);
        page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
        put_unaligned_be32(m_2, page_virt);
        (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
}

static void
write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
                     size_t *written)
{
        u32 flags = 0;
        int i;

        for (i = 0; i < ((sizeof(ecryptfs_flag_map)
                          / sizeof(struct ecryptfs_flag_map_elem))); i++)
                if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
                        flags |= ecryptfs_flag_map[i].file_flag;
        /* Version is in top 8 bits of the 32-bit flag vector */
        flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
        put_unaligned_be32(flags, page_virt);
        (*written) = 4;
}

struct ecryptfs_cipher_code_str_map_elem {
        char cipher_str[16];
        u8 cipher_code;
};

/* Add support for additional ciphers by adding elements here. The
 * cipher_code is whatever OpenPGP applicatoins use to identify the
 * ciphers. List in order of probability. */
static struct ecryptfs_cipher_code_str_map_elem
ecryptfs_cipher_code_str_map[] = {
        {"aes",RFC2440_CIPHER_AES_128 },
        {"blowfish", RFC2440_CIPHER_BLOWFISH},
        {"des3_ede", RFC2440_CIPHER_DES3_EDE},
        {"cast5", RFC2440_CIPHER_CAST_5},
        {"twofish", RFC2440_CIPHER_TWOFISH},
        {"cast6", RFC2440_CIPHER_CAST_6},
        {"aes", RFC2440_CIPHER_AES_192},
        {"aes", RFC2440_CIPHER_AES_256}
};

/**
 * ecryptfs_code_for_cipher_string
 * @crypt_stat: The cryptographic context
 *
 * Returns zero on no match, or the cipher code on match
 */
u8 ecryptfs_code_for_cipher_string(struct ecryptfs_crypt_stat *crypt_stat)
{
        int i;
        u8 code = 0;
        struct ecryptfs_cipher_code_str_map_elem *map =
                ecryptfs_cipher_code_str_map;

        if (strcmp(crypt_stat->cipher, "aes") == 0) {
                switch (crypt_stat->key_size) {
                case 16:
                        code = RFC2440_CIPHER_AES_128;
                        break;
                case 24:
                        code = RFC2440_CIPHER_AES_192;
                        break;
                case 32:
                        code = RFC2440_CIPHER_AES_256;
                }
        } else {
                for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
                        if (strcmp(crypt_stat->cipher, map[i].cipher_str) == 0){
                                code = map[i].cipher_code;
                                break;
                        }
        }
        return code;
}

/**
 * ecryptfs_cipher_code_to_string
 * @str: Destination to write out the cipher name
 * @cipher_code: The code to convert to cipher name string
 *
 * Returns zero on success
 */
int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
{
        int rc = 0;
        int i;

        str[0] = '\0';
        for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
                if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
                        strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
        if (str[0] == '\0') {
                ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
                                "[%d]\n", cipher_code);
                rc = -EINVAL;
        }
        return rc;
}

int ecryptfs_read_and_validate_header_region(char *data,
                                             struct inode *ecryptfs_inode)
{
        struct ecryptfs_crypt_stat *crypt_stat =
                &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
        int rc;

        rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size,
                                 ecryptfs_inode);
        if (rc) {
                printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n",
                       __func__, rc);
                goto out;
        }
        if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) {
                rc = -EINVAL;
                ecryptfs_printk(KERN_DEBUG, "Valid marker not found\n");
        }
out:
        return rc;
}

void
ecryptfs_write_header_metadata(char *virt,
                               struct ecryptfs_crypt_stat *crypt_stat,
                               size_t *written)
{
        u32 header_extent_size;
        u16 num_header_extents_at_front;

        header_extent_size = (u32)crypt_stat->extent_size;
        num_header_extents_at_front =
                (u16)(crypt_stat->num_header_bytes_at_front
                      / crypt_stat->extent_size);
        put_unaligned_be32(header_extent_size, virt);
        virt += 4;
        put_unaligned_be16(num_header_extents_at_front, virt);
        (*written) = 6;
}

struct kmem_cache *ecryptfs_header_cache_1;
struct kmem_cache *ecryptfs_header_cache_2;

/**
 * ecryptfs_write_headers_virt
 * @page_virt: The virtual address to write the headers to
 * @size: Set to the number of bytes written by this function
 * @crypt_stat: The cryptographic context
 * @ecryptfs_dentry: The eCryptfs dentry
 *
 * Format version: 1
 *
 *   Header Extent:
 *     Octets 0-7:        Unencrypted file size (big-endian)
 *     Octets 8-15:       eCryptfs special marker
 *     Octets 16-19:      Flags
 *      Octet 16:         File format version number (between 0 and 255)
 *      Octets 17-18:     Reserved
 *      Octet 19:         Bit 1 (lsb): Reserved
 *                        Bit 2: Encrypted?
 *                        Bits 3-8: Reserved
 *     Octets 20-23:      Header extent size (big-endian)
 *     Octets 24-25:      Number of header extents at front of file
 *                        (big-endian)
 *     Octet  26:         Begin RFC 2440 authentication token packet set
 *   Data Extent 0:
 *     Lower data (CBC encrypted)
 *   Data Extent 1:
 *     Lower data (CBC encrypted)
 *   ...
 *
 * Returns zero on success
 */
static int ecryptfs_write_headers_virt(char *page_virt, size_t *size,
                                       struct ecryptfs_crypt_stat *crypt_stat,
                                       struct dentry *ecryptfs_dentry)
{
        int rc;
        size_t written;
        size_t offset;

        offset = ECRYPTFS_FILE_SIZE_BYTES;
        write_ecryptfs_marker((page_virt + offset), &written);
        offset += written;
        write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
        offset += written;
        ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
                                       &written);
        offset += written;
        rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
                                              ecryptfs_dentry, &written,
                                              PAGE_CACHE_SIZE - offset);
        if (rc)
                ecryptfs_printk(KERN_WARNING, "Error generating key packet "
                                "set; rc = [%d]\n", rc);
        if (size) {
                offset += written;
                *size = offset;
        }
        return rc;
}

static int
ecryptfs_write_metadata_to_contents(struct ecryptfs_crypt_stat *crypt_stat,
                                    struct dentry *ecryptfs_dentry,
                                    char *virt)
{
        int rc;

        rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, virt,
                                  0, crypt_stat->num_header_bytes_at_front);
        if (rc)
                printk(KERN_ERR "%s: Error attempting to write header "
                       "information to lower file; rc = [%d]\n", __func__,
                       rc);
        return rc;
}

static int
ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
                                 struct ecryptfs_crypt_stat *crypt_stat,
                                 char *page_virt, size_t size)
{
        int rc;

        rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
                               size, 0);
        return rc;
}

/**
 * ecryptfs_write_metadata
 * @ecryptfs_dentry: The eCryptfs dentry
 *
 * Write the file headers out.  This will likely involve a userspace
 * callout, in which the session key is encrypted with one or more
 * public keys and/or the passphrase necessary to do the encryption is
 * retrieved via a prompt.  Exactly what happens at this point should
 * be policy-dependent.
 *
 * Returns zero on success; non-zero on error
 */
int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry)
{
        struct ecryptfs_crypt_stat *crypt_stat =
                &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
        char *virt;
        size_t size = 0;
        int rc = 0;

        if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
                if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
                        printk(KERN_ERR "Key is invalid; bailing out\n");
                        rc = -EINVAL;
                        goto out;
                }
        } else {
                printk(KERN_WARNING "%s: Encrypted flag not set\n",
                       __func__);
                rc = -EINVAL;
                goto out;
        }
        /* Released in this function */
        virt = kzalloc(crypt_stat->num_header_bytes_at_front, GFP_KERNEL);
        if (!virt) {
                printk(KERN_ERR "%s: Out of memory\n", __func__);
                rc = -ENOMEM;
                goto out;
        }
        rc = ecryptfs_write_headers_virt(virt, &size, crypt_stat,
                                         ecryptfs_dentry);
        if (unlikely(rc)) {
                printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
                       __func__, rc);
                goto out_free;
        }
        if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
                rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry,
                                                      crypt_stat, virt, size);
        else
                rc = ecryptfs_write_metadata_to_contents(crypt_stat,
                                                         ecryptfs_dentry, virt);
        if (rc) {
                printk(KERN_ERR "%s: Error writing metadata out to lower file; "
                       "rc = [%d]\n", __func__, rc);
                goto out_free;
        }
out_free:
        memset(virt, 0, crypt_stat->num_header_bytes_at_front);
        kfree(virt);
out:
        return rc;
}

#define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
#define ECRYPTFS_VALIDATE_HEADER_SIZE 1
static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
                                 char *virt, int *bytes_read,
                                 int validate_header_size)
{
        int rc = 0;
        u32 header_extent_size;
        u16 num_header_extents_at_front;

        header_extent_size = get_unaligned_be32(virt);
        virt += sizeof(__be32);
        num_header_extents_at_front = get_unaligned_be16(virt);
        crypt_stat->num_header_bytes_at_front =
                (((size_t)num_header_extents_at_front
                  * (size_t)header_extent_size));
        (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
        if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
            && (crypt_stat->num_header_bytes_at_front
                < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
                rc = -EINVAL;
                printk(KERN_WARNING "Invalid header size: [%zd]\n",
                       crypt_stat->num_header_bytes_at_front);
        }
        return rc;
}

/**
 * set_default_header_data
 * @crypt_stat: The cryptographic context
 *
 * For version 0 file format; this function is only for backwards
 * compatibility for files created with the prior versions of
 * eCryptfs.
 */
static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
{
        crypt_stat->num_header_bytes_at_front =
                ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
}

/**
 * ecryptfs_read_headers_virt
 * @page_virt: The virtual address into which to read the headers
 * @crypt_stat: The cryptographic context
 * @ecryptfs_dentry: The eCryptfs dentry
 * @validate_header_size: Whether to validate the header size while reading
 *
 * Read/parse the header data. The header format is detailed in the
 * comment block for the ecryptfs_write_headers_virt() function.
 *
 * Returns zero on success
 */
static int ecryptfs_read_headers_virt(char *page_virt,
                                      struct ecryptfs_crypt_stat *crypt_stat,
                                      struct dentry *ecryptfs_dentry,
                                      int validate_header_size)
{
        int rc = 0;
        int offset;
        int bytes_read;

        ecryptfs_set_default_sizes(crypt_stat);
        crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
                ecryptfs_dentry->d_sb)->mount_crypt_stat;
        offset = ECRYPTFS_FILE_SIZE_BYTES;
        rc = contains_ecryptfs_marker(page_virt + offset);
        if (rc == 0) {
                rc = -EINVAL;
                goto out;
        }
        offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
        rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
                                    &bytes_read);
        if (rc) {
                ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
                goto out;
        }
        if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
                ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
                                "file version [%d] is supported by this "
                                "version of eCryptfs\n",
                                crypt_stat->file_version,
                                ECRYPTFS_SUPPORTED_FILE_VERSION);
                rc = -EINVAL;
                goto out;
        }
        offset += bytes_read;
        if (crypt_stat->file_version >= 1) {
                rc = parse_header_metadata(crypt_stat, (page_virt + offset),
                                           &bytes_read, validate_header_size);
                if (rc) {
                        ecryptfs_printk(KERN_WARNING, "Error reading header "
                                        "metadata; rc = [%d]\n", rc);
                }
                offset += bytes_read;
        } else
                set_default_header_data(crypt_stat);
        rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
                                       ecryptfs_dentry);
out:
        return rc;
}

/**
 * ecryptfs_read_xattr_region
 * @page_virt: The vitual address into which to read the xattr data
 * @ecryptfs_inode: The eCryptfs inode
 *
 * Attempts to read the crypto metadata from the extended attribute
 * region of the lower file.
 *
 * Returns zero on success; non-zero on error
 */
int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
{
        struct dentry *lower_dentry =
                ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
        ssize_t size;
        int rc = 0;

        size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
                                       page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
        if (size < 0) {
                if (unlikely(ecryptfs_verbosity > 0))
                        printk(KERN_INFO "Error attempting to read the [%s] "
                               "xattr from the lower file; return value = "
                               "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
                rc = -EINVAL;
                goto out;
        }
out:
        return rc;
}

int ecryptfs_read_and_validate_xattr_region(char *page_virt,
                                            struct dentry *ecryptfs_dentry)
{
        int rc;

        rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode);
        if (rc)
                goto out;
        if (!contains_ecryptfs_marker(page_virt + ECRYPTFS_FILE_SIZE_BYTES)) {
                printk(KERN_WARNING "Valid data found in [%s] xattr, but "
                        "the marker is invalid\n", ECRYPTFS_XATTR_NAME);
                rc = -EINVAL;
        }
out:
        return rc;
}

/**
 * ecryptfs_read_metadata
 *
 * Common entry point for reading file metadata. From here, we could
 * retrieve the header information from the header region of the file,
 * the xattr region of the file, or some other repostory that is
 * stored separately from the file itself. The current implementation
 * supports retrieving the metadata information from the file contents
 * and from the xattr region.
 *
 * Returns zero if valid headers found and parsed; non-zero otherwise
 */
int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
{
        int rc = 0;
        char *page_virt = NULL;
        struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
        struct ecryptfs_crypt_stat *crypt_stat =
            &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
        struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
                &ecryptfs_superblock_to_private(
                        ecryptfs_dentry->d_sb)->mount_crypt_stat;

        ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
                                                      mount_crypt_stat);
        /* Read the first page from the underlying file */
        page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
        if (!page_virt) {
                rc = -ENOMEM;
                printk(KERN_ERR "%s: Unable to allocate page_virt\n",
                       __func__);
                goto out;
        }
        rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
                                 ecryptfs_inode);
        if (!rc)
                rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
                                                ecryptfs_dentry,
                                                ECRYPTFS_VALIDATE_HEADER_SIZE);
        if (rc) {
                rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
                if (rc) {
                        printk(KERN_DEBUG "Valid eCryptfs headers not found in "
                               "file header region or xattr region\n");
                        rc = -EINVAL;
                        goto out;
                }
                rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
                                                ecryptfs_dentry,
                                                ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
                if (rc) {
                        printk(KERN_DEBUG "Valid eCryptfs headers not found in "
                               "file xattr region either\n");
                        rc = -EINVAL;
                }
                if (crypt_stat->mount_crypt_stat->flags
                    & ECRYPTFS_XATTR_METADATA_ENABLED) {
                        crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
                } else {
                        printk(KERN_WARNING "Attempt to access file with "
                               "crypto metadata only in the extended attribute "
                               "region, but eCryptfs was mounted without "
                               "xattr support enabled. eCryptfs will not treat "
                               "this like an encrypted file.\n");
                        rc = -EINVAL;
                }
        }
out:
        if (page_virt) {
                memset(page_virt, 0, PAGE_CACHE_SIZE);
                kmem_cache_free(ecryptfs_header_cache_1, page_virt);
        }
        return rc;
}

/**
 * ecryptfs_encode_filename - converts a plaintext file name to cipher text
 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
 * @name: The plaintext name
 * @length: The length of the plaintext
 * @encoded_name: The encypted name
 *
 * Encrypts and encodes a filename into something that constitutes a
 * valid filename for a filesystem, with printable characters.
 *
 * We assume that we have a properly initialized crypto context,
 * pointed to by crypt_stat->tfm.
 *
 * TODO: Implement filename decoding and decryption here, in place of
 * memcpy. We are keeping the framework around for now to (1)
 * facilitate testing of the components needed to implement filename
 * encryption and (2) to provide a code base from which other
 * developers in the community can easily implement this feature.
 *
 * Returns the length of encoded filename; negative if error
 */
int
ecryptfs_encode_filename(struct ecryptfs_crypt_stat *crypt_stat,
                         const char *name, int length, char **encoded_name)
{
        int error = 0;

        (*encoded_name) = kmalloc(length + 2, GFP_KERNEL);
        if (!(*encoded_name)) {
                error = -ENOMEM;
                goto out;
        }
        /* TODO: Filename encryption is a scheduled feature for a
         * future version of eCryptfs. This function is here only for
         * the purpose of providing a framework for other developers
         * to easily implement filename encryption. Hint: Replace this
         * memcpy() with a call to encrypt and encode the
         * filename, the set the length accordingly. */
        memcpy((void *)(*encoded_name), (void *)name, length);
        (*encoded_name)[length] = '\0';
        error = length + 1;
out:
        return error;
}

/**
 * ecryptfs_decode_filename - converts the cipher text name to plaintext
 * @crypt_stat: The crypt_stat struct associated with the file
 * @name: The filename in cipher text
 * @length: The length of the cipher text name
 * @decrypted_name: The plaintext name
 *
 * Decodes and decrypts the filename.
 *
 * We assume that we have a properly initialized crypto context,
 * pointed to by crypt_stat->tfm.
 *
 * TODO: Implement filename decoding and decryption here, in place of
 * memcpy. We are keeping the framework around for now to (1)
 * facilitate testing of the components needed to implement filename
 * encryption and (2) to provide a code base from which other
 * developers in the community can easily implement this feature.
 *
 * Returns the length of decoded filename; negative if error
 */
int
ecryptfs_decode_filename(struct ecryptfs_crypt_stat *crypt_stat,
                         const char *name, int length, char **decrypted_name)
{
        int error = 0;

        (*decrypted_name) = kmalloc(length + 2, GFP_KERNEL);
        if (!(*decrypted_name)) {
                error = -ENOMEM;
                goto out;
        }
        /* TODO: Filename encryption is a scheduled feature for a
         * future version of eCryptfs. This function is here only for
         * the purpose of providing a framework for other developers
         * to easily implement filename encryption. Hint: Replace this
         * memcpy() with a call to decode and decrypt the
         * filename, the set the length accordingly. */
        memcpy((void *)(*decrypted_name), (void *)name, length);
        (*decrypted_name)[length + 1] = '\0';   /* Only for convenience
                                                 * in printing out the
                                                 * string in debug
                                                 * messages */
        error = length;
out:
        return error;
}

/**
 * ecryptfs_process_key_cipher - Perform key cipher initialization.
 * @key_tfm: Crypto context for key material, set by this function
 * @cipher_name: Name of the cipher
 * @key_size: Size of the key in bytes
 *
 * Returns zero on success. Any crypto_tfm structs allocated here
 * should be released by other functions, such as on a superblock put
 * event, regardless of whether this function succeeds for fails.
 */
static int
ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
                            char *cipher_name, size_t *key_size)
{
        char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
        char *full_alg_name;
        int rc;

        *key_tfm = NULL;
        if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
                rc = -EINVAL;
                printk(KERN_ERR "Requested key size is [%Zd] bytes; maximum "
                      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
                goto out;
        }
        rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
                                                    "ecb");
        if (rc)
                goto out;
        *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
        kfree(full_alg_name);
        if (IS_ERR(*key_tfm)) {
                rc = PTR_ERR(*key_tfm);
                printk(KERN_ERR "Unable to allocate crypto cipher with name "
                       "[%s]; rc = [%d]\n", cipher_name, rc);
                goto out;
        }
        crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
        if (*key_size == 0) {
                struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);

                *key_size = alg->max_keysize;
        }
        get_random_bytes(dummy_key, *key_size);
        rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
        if (rc) {
                printk(KERN_ERR "Error attempting to set key of size [%Zd] for "
                       "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc);
                rc = -EINVAL;
                goto out;
        }
out:
        return rc;
}

struct kmem_cache *ecryptfs_key_tfm_cache;
static struct list_head key_tfm_list;
struct mutex key_tfm_list_mutex;

int ecryptfs_init_crypto(void)
{
        mutex_init(&key_tfm_list_mutex);
        INIT_LIST_HEAD(&key_tfm_list);
        return 0;
}

/**
 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
 *
 * Called only at module unload time
 */
int ecryptfs_destroy_crypto(void)
{
        struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;

        mutex_lock(&key_tfm_list_mutex);
        list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
                                 key_tfm_list) {
                list_del(&key_tfm->key_tfm_list);
                if (key_tfm->key_tfm)
                        crypto_free_blkcipher(key_tfm->key_tfm);
                kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
        }
        mutex_unlock(&key_tfm_list_mutex);
        return 0;
}

int
ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
                         size_t key_size)
{
        struct ecryptfs_key_tfm *tmp_tfm;
        int rc = 0;

        BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));

        tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
        if (key_tfm != NULL)
                (*key_tfm) = tmp_tfm;
        if (!tmp_tfm) {
                rc = -ENOMEM;
                printk(KERN_ERR "Error attempting to allocate from "
                       "ecryptfs_key_tfm_cache\n");
                goto out;
        }
        mutex_init(&tmp_tfm->key_tfm_mutex);
        strncpy(tmp_tfm->cipher_name, cipher_name,
                ECRYPTFS_MAX_CIPHER_NAME_SIZE);
        tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
        tmp_tfm->key_size = key_size;
        rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
                                         tmp_tfm->cipher_name,
                                         &tmp_tfm->key_size);
        if (rc) {
                printk(KERN_ERR "Error attempting to initialize key TFM "
                       "cipher with name = [%s]; rc = [%d]\n",
                       tmp_tfm->cipher_name, rc);
                kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
                if (key_tfm != NULL)
                        (*key_tfm) = NULL;
                goto out;
        }
        list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
out:
        return rc;
}

/**
 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
 * @cipher_name: the name of the cipher to search for
 * @key_tfm: set to corresponding tfm if found
 *
 * Searches for cached key_tfm matching @cipher_name
 * Must be called with &key_tfm_list_mutex held
 * Returns 1 if found, with @key_tfm set
 * Returns 0 if not found, with @key_tfm set to NULL
 */
int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
{
        struct ecryptfs_key_tfm *tmp_key_tfm;

        BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));

        list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
                if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
                        if (key_tfm)
                                (*key_tfm) = tmp_key_tfm;
                        return 1;
                }
        }
        if (key_tfm)
                (*key_tfm) = NULL;
        return 0;
}

/**
 * ecryptfs_get_tfm_and_mutex_for_cipher_name
 *
 * @tfm: set to cached tfm found, or new tfm created
 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
 * @cipher_name: the name of the cipher to search for and/or add
 *
 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
 * Searches for cached item first, and creates new if not found.
 * Returns 0 on success, non-zero if adding new cipher failed
 */
int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
                                               struct mutex **tfm_mutex,
                                               char *cipher_name)
{
        struct ecryptfs_key_tfm *key_tfm;
        int rc = 0;

        (*tfm) = NULL;
        (*tfm_mutex) = NULL;

        mutex_lock(&key_tfm_list_mutex);
        if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
                rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
                if (rc) {
                        printk(KERN_ERR "Error adding new key_tfm to list; "
                                        "rc = [%d]\n", rc);
                        goto out;
                }
        }
        (*tfm) = key_tfm->key_tfm;
        (*tfm_mutex) = &key_tfm->key_tfm_mutex;
out:
        mutex_unlock(&key_tfm_list_mutex);
        return rc;
}

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading