[funini.com] -> [kei@sodan] -> Kernel Reading

root/fs/ufs/inode.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ufs_block_to_path
  2. ufs_frag_map
  3. ufs_inode_getfrag
  4. ufs_inode_getblock
  5. ufs_getfrag_block
  6. ufs_getfrag
  7. ufs_bread
  8. ufs_writepage
  9. ufs_readpage
  10. __ufs_write_begin
  11. ufs_write_begin
  12. ufs_bmap
  13. ufs_set_inode_ops
  14. ufs1_read_inode
  15. ufs2_read_inode
  16. ufs_iget
  17. ufs1_update_inode
  18. ufs2_update_inode
  19. ufs_update_inode
  20. ufs_write_inode
  21. ufs_sync_inode
  22. ufs_delete_inode

/*
 *  linux/fs/ufs/inode.c
 *
 * Copyright (C) 1998
 * Daniel Pirkl <daniel.pirkl@email.cz>
 * Charles University, Faculty of Mathematics and Physics
 *
 *  from
 *
 *  linux/fs/ext2/inode.c
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/inode.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Goal-directed block allocation by Stephen Tweedie (sct@dcs.ed.ac.uk), 1993
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 */

#include <asm/uaccess.h>
#include <asm/system.h>

#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/time.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/smp_lock.h>
#include <linux/buffer_head.h>

#include "ufs_fs.h"
#include "ufs.h"
#include "swab.h"
#include "util.h"

static u64 ufs_frag_map(struct inode *inode, sector_t frag);

static int ufs_block_to_path(struct inode *inode, sector_t i_block, sector_t offsets[4])
{
        struct ufs_sb_private_info *uspi = UFS_SB(inode->i_sb)->s_uspi;
        int ptrs = uspi->s_apb;
        int ptrs_bits = uspi->s_apbshift;
        const long direct_blocks = UFS_NDADDR,
                indirect_blocks = ptrs,
                double_blocks = (1 << (ptrs_bits * 2));
        int n = 0;


        UFSD("ptrs=uspi->s_apb = %d,double_blocks=%ld \n",ptrs,double_blocks);
        if (i_block < 0) {
                ufs_warning(inode->i_sb, "ufs_block_to_path", "block < 0");
        } else if (i_block < direct_blocks) {
                offsets[n++] = i_block;
        } else if ((i_block -= direct_blocks) < indirect_blocks) {
                offsets[n++] = UFS_IND_BLOCK;
                offsets[n++] = i_block;
        } else if ((i_block -= indirect_blocks) < double_blocks) {
                offsets[n++] = UFS_DIND_BLOCK;
                offsets[n++] = i_block >> ptrs_bits;
                offsets[n++] = i_block & (ptrs - 1);
        } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
                offsets[n++] = UFS_TIND_BLOCK;
                offsets[n++] = i_block >> (ptrs_bits * 2);
                offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
                offsets[n++] = i_block & (ptrs - 1);
        } else {
                ufs_warning(inode->i_sb, "ufs_block_to_path", "block > big");
        }
        return n;
}

/*
 * Returns the location of the fragment from
 * the begining of the filesystem.
 */

static u64 ufs_frag_map(struct inode *inode, sector_t frag)
{
        struct ufs_inode_info *ufsi = UFS_I(inode);
        struct super_block *sb = inode->i_sb;
        struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
        u64 mask = (u64) uspi->s_apbmask>>uspi->s_fpbshift;
        int shift = uspi->s_apbshift-uspi->s_fpbshift;
        sector_t offsets[4], *p;
        int depth = ufs_block_to_path(inode, frag >> uspi->s_fpbshift, offsets);
        u64  ret = 0L;
        __fs32 block;
        __fs64 u2_block = 0L;
        unsigned flags = UFS_SB(sb)->s_flags;
        u64 temp = 0L;

        UFSD(": frag = %llu  depth = %d\n", (unsigned long long)frag, depth);
        UFSD(": uspi->s_fpbshift = %d ,uspi->s_apbmask = %x, mask=%llx\n",
                uspi->s_fpbshift, uspi->s_apbmask,
                (unsigned long long)mask);

        if (depth == 0)
                return 0;

        p = offsets;

        lock_kernel();
        if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
                goto ufs2;

        block = ufsi->i_u1.i_data[*p++];
        if (!block)
                goto out;
        while (--depth) {
                struct buffer_head *bh;
                sector_t n = *p++;

                bh = sb_bread(sb, uspi->s_sbbase + fs32_to_cpu(sb, block)+(n>>shift));
                if (!bh)
                        goto out;
                block = ((__fs32 *) bh->b_data)[n & mask];
                brelse (bh);
                if (!block)
                        goto out;
        }
        ret = (u64) (uspi->s_sbbase + fs32_to_cpu(sb, block) + (frag & uspi->s_fpbmask));
        goto out;
ufs2:
        u2_block = ufsi->i_u1.u2_i_data[*p++];
        if (!u2_block)
                goto out;


        while (--depth) {
                struct buffer_head *bh;
                sector_t n = *p++;


                temp = (u64)(uspi->s_sbbase) + fs64_to_cpu(sb, u2_block);
                bh = sb_bread(sb, temp +(u64) (n>>shift));
                if (!bh)
                        goto out;
                u2_block = ((__fs64 *)bh->b_data)[n & mask];
                brelse(bh);
                if (!u2_block)
                        goto out;
        }
        temp = (u64)uspi->s_sbbase + fs64_to_cpu(sb, u2_block);
        ret = temp + (u64) (frag & uspi->s_fpbmask);

out:
        unlock_kernel();
        return ret;
}

/**
 * ufs_inode_getfrag() - allocate new fragment(s)
 * @inode - pointer to inode
 * @fragment - number of `fragment' which hold pointer
 *   to new allocated fragment(s)
 * @new_fragment - number of new allocated fragment(s)
 * @required - how many fragment(s) we require
 * @err - we set it if something wrong
 * @phys - pointer to where we save physical number of new allocated fragments,
 *   NULL if we allocate not data(indirect blocks for example).
 * @new - we set it if we allocate new block
 * @locked_page - for ufs_new_fragments()
 */
static struct buffer_head *
ufs_inode_getfrag(struct inode *inode, u64 fragment,
                  sector_t new_fragment, unsigned int required, int *err,
                  long *phys, int *new, struct page *locked_page)
{
        struct ufs_inode_info *ufsi = UFS_I(inode);
        struct super_block *sb = inode->i_sb;
        struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
        struct buffer_head * result;
        unsigned blockoff, lastblockoff;
        u64 tmp, goal, lastfrag, block, lastblock;
        void *p, *p2;

        UFSD("ENTER, ino %lu, fragment %llu, new_fragment %llu, required %u, "
             "metadata %d\n", inode->i_ino, (unsigned long long)fragment,
             (unsigned long long)new_fragment, required, !phys);

        /* TODO : to be done for write support
        if ( (flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
             goto ufs2;
         */

        block = ufs_fragstoblks (fragment);
        blockoff = ufs_fragnum (fragment);
        p = ufs_get_direct_data_ptr(uspi, ufsi, block);

        goal = 0;

repeat:
        tmp = ufs_data_ptr_to_cpu(sb, p);

        lastfrag = ufsi->i_lastfrag;
        if (tmp && fragment < lastfrag) {
                if (!phys) {
                        result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
                        if (tmp == ufs_data_ptr_to_cpu(sb, p)) {
                                UFSD("EXIT, result %llu\n",
                                     (unsigned long long)tmp + blockoff);
                                return result;
                        }
                        brelse (result);
                        goto repeat;
                } else {
                        *phys = uspi->s_sbbase + tmp + blockoff;
                        return NULL;
                }
        }

        lastblock = ufs_fragstoblks (lastfrag);
        lastblockoff = ufs_fragnum (lastfrag);
        /*
         * We will extend file into new block beyond last allocated block
         */
        if (lastblock < block) {
                /*
                 * We must reallocate last allocated block
                 */
                if (lastblockoff) {
                        p2 = ufs_get_direct_data_ptr(uspi, ufsi, lastblock);
                        tmp = ufs_new_fragments(inode, p2, lastfrag,
                                                ufs_data_ptr_to_cpu(sb, p2),
                                                uspi->s_fpb - lastblockoff,
                                                err, locked_page);
                        if (!tmp) {
                                if (lastfrag != ufsi->i_lastfrag)
                                        goto repeat;
                                else
                                        return NULL;
                        }
                        lastfrag = ufsi->i_lastfrag;
                        
                }
                tmp = ufs_data_ptr_to_cpu(sb,
                                         ufs_get_direct_data_ptr(uspi, ufsi,
                                                                 lastblock));
                if (tmp)
                        goal = tmp + uspi->s_fpb;
                tmp = ufs_new_fragments (inode, p, fragment - blockoff, 
                                         goal, required + blockoff,
                                         err,
                                         phys != NULL ? locked_page : NULL);
        } else if (lastblock == block) {
        /*
         * We will extend last allocated block
         */
                tmp = ufs_new_fragments(inode, p, fragment -
                                        (blockoff - lastblockoff),
                                        ufs_data_ptr_to_cpu(sb, p),
                                        required +  (blockoff - lastblockoff),
                                        err, phys != NULL ? locked_page : NULL);
        } else /* (lastblock > block) */ {
        /*
         * We will allocate new block before last allocated block
         */
                if (block) {
                        tmp = ufs_data_ptr_to_cpu(sb,
                                                 ufs_get_direct_data_ptr(uspi, ufsi, block - 1));
                        if (tmp)
                                goal = tmp + uspi->s_fpb;
                }
                tmp = ufs_new_fragments(inode, p, fragment - blockoff,
                                        goal, uspi->s_fpb, err,
                                        phys != NULL ? locked_page : NULL);
        }
        if (!tmp) {
                if ((!blockoff && ufs_data_ptr_to_cpu(sb, p)) ||
                    (blockoff && lastfrag != ufsi->i_lastfrag))
                        goto repeat;
                *err = -ENOSPC;
                return NULL;
        }

        if (!phys) {
                result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
        } else {
                *phys = uspi->s_sbbase + tmp + blockoff;
                result = NULL;
                *err = 0;
                *new = 1;
        }

        inode->i_ctime = CURRENT_TIME_SEC;
        if (IS_SYNC(inode))
                ufs_sync_inode (inode);
        mark_inode_dirty(inode);
        UFSD("EXIT, result %llu\n", (unsigned long long)tmp + blockoff);
        return result;

     /* This part : To be implemented ....
        Required only for writing, not required for READ-ONLY.
ufs2:

        u2_block = ufs_fragstoblks(fragment);
        u2_blockoff = ufs_fragnum(fragment);
        p = ufsi->i_u1.u2_i_data + block;
        goal = 0;

repeat2:
        tmp = fs32_to_cpu(sb, *p);
        lastfrag = ufsi->i_lastfrag;

     */
}

/**
 * ufs_inode_getblock() - allocate new block
 * @inode - pointer to inode
 * @bh - pointer to block which hold "pointer" to new allocated block
 * @fragment - number of `fragment' which hold pointer
 *   to new allocated block
 * @new_fragment - number of new allocated fragment
 *  (block will hold this fragment and also uspi->s_fpb-1)
 * @err - see ufs_inode_getfrag()
 * @phys - see ufs_inode_getfrag()
 * @new - see ufs_inode_getfrag()
 * @locked_page - see ufs_inode_getfrag()
 */
static struct buffer_head *
ufs_inode_getblock(struct inode *inode, struct buffer_head *bh,
                  u64 fragment, sector_t new_fragment, int *err,
                  long *phys, int *new, struct page *locked_page)
{
        struct super_block *sb = inode->i_sb;
        struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
        struct buffer_head * result;
        unsigned blockoff;
        u64 tmp, goal, block;
        void *p;

        block = ufs_fragstoblks (fragment);
        blockoff = ufs_fragnum (fragment);

        UFSD("ENTER, ino %lu, fragment %llu, new_fragment %llu, metadata %d\n",
             inode->i_ino, (unsigned long long)fragment,
             (unsigned long long)new_fragment, !phys);

        result = NULL;
        if (!bh)
                goto out;
        if (!buffer_uptodate(bh)) {
                ll_rw_block (READ, 1, &bh);
                wait_on_buffer (bh);
                if (!buffer_uptodate(bh))
                        goto out;
        }
        if (uspi->fs_magic == UFS2_MAGIC)
                p = (__fs64 *)bh->b_data + block;
        else
                p = (__fs32 *)bh->b_data + block;
repeat:
        tmp = ufs_data_ptr_to_cpu(sb, p);
        if (tmp) {
                if (!phys) {
                        result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
                        if (tmp == ufs_data_ptr_to_cpu(sb, p))
                                goto out;
                        brelse (result);
                        goto repeat;
                } else {
                        *phys = uspi->s_sbbase + tmp + blockoff;
                        goto out;
                }
        }

        if (block && (uspi->fs_magic == UFS2_MAGIC ?
                      (tmp = fs64_to_cpu(sb, ((__fs64 *)bh->b_data)[block-1])) :
                      (tmp = fs32_to_cpu(sb, ((__fs32 *)bh->b_data)[block-1]))))
                goal = tmp + uspi->s_fpb;
        else
                goal = bh->b_blocknr + uspi->s_fpb;
        tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), goal,
                                uspi->s_fpb, err, locked_page);
        if (!tmp) {
                if (ufs_data_ptr_to_cpu(sb, p))
                        goto repeat;
                goto out;
        }               


        if (!phys) {
                result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
        } else {
                *phys = uspi->s_sbbase + tmp + blockoff;
                *new = 1;
        }

        mark_buffer_dirty(bh);
        if (IS_SYNC(inode))
                sync_dirty_buffer(bh);
        inode->i_ctime = CURRENT_TIME_SEC;
        mark_inode_dirty(inode);
        UFSD("result %llu\n", (unsigned long long)tmp + blockoff);
out:
        brelse (bh);
        UFSD("EXIT\n");
        return result;
}

/**
 * ufs_getfrag_bloc() - `get_block_t' function, interface between UFS and
 * readpage, writepage and so on
 */

int ufs_getfrag_block(struct inode *inode, sector_t fragment, struct buffer_head *bh_result, int create)
{
        struct super_block * sb = inode->i_sb;
        struct ufs_sb_private_info * uspi = UFS_SB(sb)->s_uspi;
        struct buffer_head * bh;
        int ret, err, new;
        unsigned long ptr,phys;
        u64 phys64 = 0;
        
        if (!create) {
                phys64 = ufs_frag_map(inode, fragment);
                UFSD("phys64 = %llu\n", (unsigned long long)phys64);
                if (phys64)
                        map_bh(bh_result, sb, phys64);
                return 0;
        }

        /* This code entered only while writing ....? */

        err = -EIO;
        new = 0;
        ret = 0;
        bh = NULL;

        lock_kernel();

        UFSD("ENTER, ino %lu, fragment %llu\n", inode->i_ino, (unsigned long long)fragment);
        if (fragment < 0)
                goto abort_negative;
        if (fragment >
            ((UFS_NDADDR + uspi->s_apb + uspi->s_2apb + uspi->s_3apb)
             << uspi->s_fpbshift))
                goto abort_too_big;

        err = 0;
        ptr = fragment;
          
        /*
         * ok, these macros clean the logic up a bit and make
         * it much more readable:
         */
#define GET_INODE_DATABLOCK(x) \
        ufs_inode_getfrag(inode, x, fragment, 1, &err, &phys, &new,\
                          bh_result->b_page)
#define GET_INODE_PTR(x) \
        ufs_inode_getfrag(inode, x, fragment, uspi->s_fpb, &err, NULL, NULL,\
                          bh_result->b_page)
#define GET_INDIRECT_DATABLOCK(x) \
        ufs_inode_getblock(inode, bh, x, fragment,      \
                          &err, &phys, &new, bh_result->b_page)
#define GET_INDIRECT_PTR(x) \
        ufs_inode_getblock(inode, bh, x, fragment,      \
                          &err, NULL, NULL, NULL)

        if (ptr < UFS_NDIR_FRAGMENT) {
                bh = GET_INODE_DATABLOCK(ptr);
                goto out;
        }
        ptr -= UFS_NDIR_FRAGMENT;
        if (ptr < (1 << (uspi->s_apbshift + uspi->s_fpbshift))) {
                bh = GET_INODE_PTR(UFS_IND_FRAGMENT + (ptr >> uspi->s_apbshift));
                goto get_indirect;
        }
        ptr -= 1 << (uspi->s_apbshift + uspi->s_fpbshift);
        if (ptr < (1 << (uspi->s_2apbshift + uspi->s_fpbshift))) {
                bh = GET_INODE_PTR(UFS_DIND_FRAGMENT + (ptr >> uspi->s_2apbshift));
                goto get_double;
        }
        ptr -= 1 << (uspi->s_2apbshift + uspi->s_fpbshift);
        bh = GET_INODE_PTR(UFS_TIND_FRAGMENT + (ptr >> uspi->s_3apbshift));
        bh = GET_INDIRECT_PTR((ptr >> uspi->s_2apbshift) & uspi->s_apbmask);
get_double:
        bh = GET_INDIRECT_PTR((ptr >> uspi->s_apbshift) & uspi->s_apbmask);
get_indirect:
        bh = GET_INDIRECT_DATABLOCK(ptr & uspi->s_apbmask);

#undef GET_INODE_DATABLOCK
#undef GET_INODE_PTR
#undef GET_INDIRECT_DATABLOCK
#undef GET_INDIRECT_PTR

out:
        if (err)
                goto abort;
        if (new)
                set_buffer_new(bh_result);
        map_bh(bh_result, sb, phys);
abort:
        unlock_kernel();
        return err;

abort_negative:
        ufs_warning(sb, "ufs_get_block", "block < 0");
        goto abort;

abort_too_big:
        ufs_warning(sb, "ufs_get_block", "block > big");
        goto abort;
}

static struct buffer_head *ufs_getfrag(struct inode *inode,
                                       unsigned int fragment,
                                       int create, int *err)
{
        struct buffer_head dummy;
        int error;

        dummy.b_state = 0;
        dummy.b_blocknr = -1000;
        error = ufs_getfrag_block(inode, fragment, &dummy, create);
        *err = error;
        if (!error && buffer_mapped(&dummy)) {
                struct buffer_head *bh;
                bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
                if (buffer_new(&dummy)) {
                        memset(bh->b_data, 0, inode->i_sb->s_blocksize);
                        set_buffer_uptodate(bh);
                        mark_buffer_dirty(bh);
                }
                return bh;
        }
        return NULL;
}

struct buffer_head * ufs_bread (struct inode * inode, unsigned fragment,
        int create, int * err)
{
        struct buffer_head * bh;

        UFSD("ENTER, ino %lu, fragment %u\n", inode->i_ino, fragment);
        bh = ufs_getfrag (inode, fragment, create, err);
        if (!bh || buffer_uptodate(bh))                 
                return bh;
        ll_rw_block (READ, 1, &bh);
        wait_on_buffer (bh);
        if (buffer_uptodate(bh))
                return bh;
        brelse (bh);
        *err = -EIO;
        return NULL;
}

static int ufs_writepage(struct page *page, struct writeback_control *wbc)
{
        return block_write_full_page(page,ufs_getfrag_block,wbc);
}

static int ufs_readpage(struct file *file, struct page *page)
{
        return block_read_full_page(page,ufs_getfrag_block);
}

int __ufs_write_begin(struct file *file, struct address_space *mapping,
                        loff_t pos, unsigned len, unsigned flags,
                        struct page **pagep, void **fsdata)
{
        return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
                                ufs_getfrag_block);
}

static int ufs_write_begin(struct file *file, struct address_space *mapping,
                        loff_t pos, unsigned len, unsigned flags,
                        struct page **pagep, void **fsdata)
{
        *pagep = NULL;
        return __ufs_write_begin(file, mapping, pos, len, flags, pagep, fsdata);
}

static sector_t ufs_bmap(struct address_space *mapping, sector_t block)
{
        return generic_block_bmap(mapping,block,ufs_getfrag_block);
}

const struct address_space_operations ufs_aops = {
        .readpage = ufs_readpage,
        .writepage = ufs_writepage,
        .sync_page = block_sync_page,
        .write_begin = ufs_write_begin,
        .write_end = generic_write_end,
        .bmap = ufs_bmap
};

static void ufs_set_inode_ops(struct inode *inode)
{
        if (S_ISREG(inode->i_mode)) {
                inode->i_op = &ufs_file_inode_operations;
                inode->i_fop = &ufs_file_operations;
                inode->i_mapping->a_ops = &ufs_aops;
        } else if (S_ISDIR(inode->i_mode)) {
                inode->i_op = &ufs_dir_inode_operations;
                inode->i_fop = &ufs_dir_operations;
                inode->i_mapping->a_ops = &ufs_aops;
        } else if (S_ISLNK(inode->i_mode)) {
                if (!inode->i_blocks)
                        inode->i_op = &ufs_fast_symlink_inode_operations;
                else {
                        inode->i_op = &page_symlink_inode_operations;
                        inode->i_mapping->a_ops = &ufs_aops;
                }
        } else
                init_special_inode(inode, inode->i_mode,
                                   ufs_get_inode_dev(inode->i_sb, UFS_I(inode)));
}

static int ufs1_read_inode(struct inode *inode, struct ufs_inode *ufs_inode)
{
        struct ufs_inode_info *ufsi = UFS_I(inode);
        struct super_block *sb = inode->i_sb;
        mode_t mode;
        unsigned i;

        /*
         * Copy data to the in-core inode.
         */
        inode->i_mode = mode = fs16_to_cpu(sb, ufs_inode->ui_mode);
        inode->i_nlink = fs16_to_cpu(sb, ufs_inode->ui_nlink);
        if (inode->i_nlink == 0) {
                ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
                return -1;
        }
        
        /*
         * Linux now has 32-bit uid and gid, so we can support EFT.
         */
        inode->i_uid = ufs_get_inode_uid(sb, ufs_inode);
        inode->i_gid = ufs_get_inode_gid(sb, ufs_inode);

        inode->i_size = fs64_to_cpu(sb, ufs_inode->ui_size);
        inode->i_atime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_atime.tv_sec);
        inode->i_ctime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_ctime.tv_sec);
        inode->i_mtime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_mtime.tv_sec);
        inode->i_mtime.tv_nsec = 0;
        inode->i_atime.tv_nsec = 0;
        inode->i_ctime.tv_nsec = 0;
        inode->i_blocks = fs32_to_cpu(sb, ufs_inode->ui_blocks);
        inode->i_generation = fs32_to_cpu(sb, ufs_inode->ui_gen);
        ufsi->i_flags = fs32_to_cpu(sb, ufs_inode->ui_flags);
        ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
        ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);

        
        if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
                for (i = 0; i < (UFS_NDADDR + UFS_NINDIR); i++)
                        ufsi->i_u1.i_data[i] = ufs_inode->ui_u2.ui_addr.ui_db[i];
        } else {
                for (i = 0; i < (UFS_NDADDR + UFS_NINDIR) * 4; i++)
                        ufsi->i_u1.i_symlink[i] = ufs_inode->ui_u2.ui_symlink[i];
        }
        return 0;
}

static int ufs2_read_inode(struct inode *inode, struct ufs2_inode *ufs2_inode)
{
        struct ufs_inode_info *ufsi = UFS_I(inode);
        struct super_block *sb = inode->i_sb;
        mode_t mode;
        unsigned i;

        UFSD("Reading ufs2 inode, ino %lu\n", inode->i_ino);
        /*
         * Copy data to the in-core inode.
         */
        inode->i_mode = mode = fs16_to_cpu(sb, ufs2_inode->ui_mode);
        inode->i_nlink = fs16_to_cpu(sb, ufs2_inode->ui_nlink);
        if (inode->i_nlink == 0) {
                ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
                return -1;
        }

        /*
         * Linux now has 32-bit uid and gid, so we can support EFT.
         */
        inode->i_uid = fs32_to_cpu(sb, ufs2_inode->ui_uid);
        inode->i_gid = fs32_to_cpu(sb, ufs2_inode->ui_gid);

        inode->i_size = fs64_to_cpu(sb, ufs2_inode->ui_size);
        inode->i_atime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_atime);
        inode->i_ctime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_ctime);
        inode->i_mtime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_mtime);
        inode->i_atime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_atimensec);
        inode->i_ctime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_ctimensec);
        inode->i_mtime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_mtimensec);
        inode->i_blocks = fs64_to_cpu(sb, ufs2_inode->ui_blocks);
        inode->i_generation = fs32_to_cpu(sb, ufs2_inode->ui_gen);
        ufsi->i_flags = fs32_to_cpu(sb, ufs2_inode->ui_flags);
        /*
        ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
        ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
        */

        if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
                for (i = 0; i < (UFS_NDADDR + UFS_NINDIR); i++)
                        ufsi->i_u1.u2_i_data[i] =
                                ufs2_inode->ui_u2.ui_addr.ui_db[i];
        } else {
                for (i = 0; i < (UFS_NDADDR + UFS_NINDIR) * 4; i++)
                        ufsi->i_u1.i_symlink[i] = ufs2_inode->ui_u2.ui_symlink[i];
        }
        return 0;
}

struct inode *ufs_iget(struct super_block *sb, unsigned long ino)
{
        struct ufs_inode_info *ufsi;
        struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
        struct buffer_head * bh;
        struct inode *inode;
        int err;

        UFSD("ENTER, ino %lu\n", ino);

        if (ino < UFS_ROOTINO || ino > (uspi->s_ncg * uspi->s_ipg)) {
                ufs_warning(sb, "ufs_read_inode", "bad inode number (%lu)\n",
                            ino);
                return ERR_PTR(-EIO);
        }

        inode = iget_locked(sb, ino);
        if (!inode)
                return ERR_PTR(-ENOMEM);
        if (!(inode->i_state & I_NEW))
                return inode;

        ufsi = UFS_I(inode);

        bh = sb_bread(sb, uspi->s_sbbase + ufs_inotofsba(inode->i_ino));
        if (!bh) {
                ufs_warning(sb, "ufs_read_inode", "unable to read inode %lu\n",
                            inode->i_ino);
                goto bad_inode;
        }
        if ((UFS_SB(sb)->s_flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
                struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data;

                err = ufs2_read_inode(inode,
                                      ufs2_inode + ufs_inotofsbo(inode->i_ino));
        } else {
                struct ufs_inode *ufs_inode = (struct ufs_inode *)bh->b_data;

                err = ufs1_read_inode(inode,
                                      ufs_inode + ufs_inotofsbo(inode->i_ino));
        }

        if (err)
                goto bad_inode;
        inode->i_version++;
        ufsi->i_lastfrag =
                (inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift;
        ufsi->i_dir_start_lookup = 0;
        ufsi->i_osync = 0;

        ufs_set_inode_ops(inode);

        brelse(bh);

        UFSD("EXIT\n");
        unlock_new_inode(inode);
        return inode;

bad_inode:
        iget_failed(inode);
        return ERR_PTR(-EIO);
}

static void ufs1_update_inode(struct inode *inode, struct ufs_inode *ufs_inode)
{
        struct super_block *sb = inode->i_sb;
        struct ufs_inode_info *ufsi = UFS_I(inode);
        unsigned i;

        ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode);
        ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink);

        ufs_set_inode_uid(sb, ufs_inode, inode->i_uid);
        ufs_set_inode_gid(sb, ufs_inode, inode->i_gid);
                
        ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size);
        ufs_inode->ui_atime.tv_sec = cpu_to_fs32(sb, inode->i_atime.tv_sec);
        ufs_inode->ui_atime.tv_usec = 0;
        ufs_inode->ui_ctime.tv_sec = cpu_to_fs32(sb, inode->i_ctime.tv_sec);
        ufs_inode->ui_ctime.tv_usec = 0;
        ufs_inode->ui_mtime.tv_sec = cpu_to_fs32(sb, inode->i_mtime.tv_sec);
        ufs_inode->ui_mtime.tv_usec = 0;
        ufs_inode->ui_blocks = cpu_to_fs32(sb, inode->i_blocks);
        ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags);
        ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation);

        if ((UFS_SB(sb)->s_flags & UFS_UID_MASK) == UFS_UID_EFT) {
                ufs_inode->ui_u3.ui_sun.ui_shadow = cpu_to_fs32(sb, ufsi->i_shadow);
                ufs_inode->ui_u3.ui_sun.ui_oeftflag = cpu_to_fs32(sb, ufsi->i_oeftflag);
        }

        if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
                /* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */
                ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.i_data[0];
        } else if (inode->i_blocks) {
                for (i = 0; i < (UFS_NDADDR + UFS_NINDIR); i++)
                        ufs_inode->ui_u2.ui_addr.ui_db[i] = ufsi->i_u1.i_data[i];
        }
        else {
                for (i = 0; i < (UFS_NDADDR + UFS_NINDIR) * 4; i++)
                        ufs_inode->ui_u2.ui_symlink[i] = ufsi->i_u1.i_symlink[i];
        }

        if (!inode->i_nlink)
                memset (ufs_inode, 0, sizeof(struct ufs_inode));
}

static void ufs2_update_inode(struct inode *inode, struct ufs2_inode *ufs_inode)
{
        struct super_block *sb = inode->i_sb;
        struct ufs_inode_info *ufsi = UFS_I(inode);
        unsigned i;

        UFSD("ENTER\n");
        ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode);
        ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink);

        ufs_inode->ui_uid = cpu_to_fs32(sb, inode->i_uid);
        ufs_inode->ui_gid = cpu_to_fs32(sb, inode->i_gid);

        ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size);
        ufs_inode->ui_atime = cpu_to_fs64(sb, inode->i_atime.tv_sec);
        ufs_inode->ui_atimensec = cpu_to_fs32(sb, inode->i_atime.tv_nsec);
        ufs_inode->ui_ctime = cpu_to_fs64(sb, inode->i_ctime.tv_sec);
        ufs_inode->ui_ctimensec = cpu_to_fs32(sb, inode->i_ctime.tv_nsec);
        ufs_inode->ui_mtime = cpu_to_fs64(sb, inode->i_mtime.tv_sec);
        ufs_inode->ui_mtimensec = cpu_to_fs32(sb, inode->i_mtime.tv_nsec);

        ufs_inode->ui_blocks = cpu_to_fs64(sb, inode->i_blocks);
        ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags);
        ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation);

        if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
                /* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */
                ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.u2_i_data[0];
        } else if (inode->i_blocks) {
                for (i = 0; i < (UFS_NDADDR + UFS_NINDIR); i++)
                        ufs_inode->ui_u2.ui_addr.ui_db[i] = ufsi->i_u1.u2_i_data[i];
        } else {
                for (i = 0; i < (UFS_NDADDR + UFS_NINDIR) * 4; i++)
                        ufs_inode->ui_u2.ui_symlink[i] = ufsi->i_u1.i_symlink[i];
        }

        if (!inode->i_nlink)
                memset (ufs_inode, 0, sizeof(struct ufs2_inode));
        UFSD("EXIT\n");
}

static int ufs_update_inode(struct inode * inode, int do_sync)
{
        struct super_block *sb = inode->i_sb;
        struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
        struct buffer_head * bh;

        UFSD("ENTER, ino %lu\n", inode->i_ino);

        if (inode->i_ino < UFS_ROOTINO ||
            inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) {
                ufs_warning (sb, "ufs_read_inode", "bad inode number (%lu)\n", inode->i_ino);
                return -1;
        }

        bh = sb_bread(sb, ufs_inotofsba(inode->i_ino));
        if (!bh) {
                ufs_warning (sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino);
                return -1;
        }
        if (uspi->fs_magic == UFS2_MAGIC) {
                struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data;

                ufs2_update_inode(inode,
                                  ufs2_inode + ufs_inotofsbo(inode->i_ino));
        } else {
                struct ufs_inode *ufs_inode = (struct ufs_inode *) bh->b_data;

                ufs1_update_inode(inode, ufs_inode + ufs_inotofsbo(inode->i_ino));
        }
                
        mark_buffer_dirty(bh);
        if (do_sync)
                sync_dirty_buffer(bh);
        brelse (bh);
        
        UFSD("EXIT\n");
        return 0;
}

int ufs_write_inode (struct inode * inode, int wait)
{
        int ret;
        lock_kernel();
        ret = ufs_update_inode (inode, wait);
        unlock_kernel();
        return ret;
}

int ufs_sync_inode (struct inode *inode)
{
        return ufs_update_inode (inode, 1);
}

void ufs_delete_inode (struct inode * inode)
{
        loff_t old_i_size;

        truncate_inode_pages(&inode->i_data, 0);
        if (is_bad_inode(inode))
                goto no_delete;
        /*UFS_I(inode)->i_dtime = CURRENT_TIME;*/
        lock_kernel();
        mark_inode_dirty(inode);
        ufs_update_inode(inode, IS_SYNC(inode));
        old_i_size = inode->i_size;
        inode->i_size = 0;
        if (inode->i_blocks && ufs_truncate(inode, old_i_size))
                ufs_warning(inode->i_sb, __func__, "ufs_truncate failed\n");
        ufs_free_inode (inode);
        unlock_kernel();
        return;
no_delete:
        clear_inode(inode);     /* We must guarantee clearing of inode... */
}

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading