[funini.com] -> [kei@sodan] -> Kernel Reading

root/fs/gfs2/ops_fstype.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. gfs2_tune_init
  2. init_sbd
  3. gfs2_check_sb
  4. end_bio_io_page
  5. gfs2_sb_in
  6. gfs2_read_super
  7. gfs2_read_sb
  8. init_names
  9. init_locking
  10. gfs2_lookup_root
  11. init_sb
  12. map_journal_extents
  13. gfs2_lm_others_may_mount
  14. init_journal
  15. init_inodes
  16. init_per_node
  17. init_threads
  18. gfs2_lm_mount
  19. gfs2_lm_unmount
  20. fill_super
  21. gfs2_get_sb
  22. get_gfs2_sb
  23. gfs2_get_sb_meta
  24. gfs2_kill_sb

/*
 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
 *
 * This copyrighted material is made available to anyone wishing to use,
 * modify, copy, or redistribute it subject to the terms and conditions
 * of the GNU General Public License version 2.
 */

#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/completion.h>
#include <linux/buffer_head.h>
#include <linux/blkdev.h>
#include <linux/kthread.h>
#include <linux/namei.h>
#include <linux/mount.h>
#include <linux/gfs2_ondisk.h>
#include <linux/lm_interface.h>

#include "gfs2.h"
#include "incore.h"
#include "bmap.h"
#include "daemon.h"
#include "glock.h"
#include "glops.h"
#include "inode.h"
#include "mount.h"
#include "ops_fstype.h"
#include "ops_dentry.h"
#include "ops_super.h"
#include "recovery.h"
#include "rgrp.h"
#include "super.h"
#include "sys.h"
#include "util.h"
#include "log.h"

#define DO 0
#define UNDO 1

static const u32 gfs2_old_fs_formats[] = {
        0
};

static const u32 gfs2_old_multihost_formats[] = {
        0
};

/**
 * gfs2_tune_init - Fill a gfs2_tune structure with default values
 * @gt: tune
 *
 */

static void gfs2_tune_init(struct gfs2_tune *gt)
{
        spin_lock_init(&gt->gt_spin);

        gt->gt_demote_secs = 300;
        gt->gt_incore_log_blocks = 1024;
        gt->gt_log_flush_secs = 60;
        gt->gt_recoverd_secs = 60;
        gt->gt_logd_secs = 1;
        gt->gt_quotad_secs = 5;
        gt->gt_quota_simul_sync = 64;
        gt->gt_quota_warn_period = 10;
        gt->gt_quota_scale_num = 1;
        gt->gt_quota_scale_den = 1;
        gt->gt_quota_cache_secs = 300;
        gt->gt_quota_quantum = 60;
        gt->gt_new_files_jdata = 0;
        gt->gt_max_readahead = 1 << 18;
        gt->gt_stall_secs = 600;
        gt->gt_complain_secs = 10;
        gt->gt_statfs_quantum = 30;
        gt->gt_statfs_slow = 0;
}

static struct gfs2_sbd *init_sbd(struct super_block *sb)
{
        struct gfs2_sbd *sdp;

        sdp = kzalloc(sizeof(struct gfs2_sbd), GFP_KERNEL);
        if (!sdp)
                return NULL;

        sb->s_fs_info = sdp;
        sdp->sd_vfs = sb;

        gfs2_tune_init(&sdp->sd_tune);

        INIT_LIST_HEAD(&sdp->sd_reclaim_list);
        spin_lock_init(&sdp->sd_reclaim_lock);
        init_waitqueue_head(&sdp->sd_reclaim_wq);

        mutex_init(&sdp->sd_inum_mutex);
        spin_lock_init(&sdp->sd_statfs_spin);

        spin_lock_init(&sdp->sd_rindex_spin);
        mutex_init(&sdp->sd_rindex_mutex);
        INIT_LIST_HEAD(&sdp->sd_rindex_list);
        INIT_LIST_HEAD(&sdp->sd_rindex_mru_list);

        INIT_LIST_HEAD(&sdp->sd_jindex_list);
        spin_lock_init(&sdp->sd_jindex_spin);
        mutex_init(&sdp->sd_jindex_mutex);

        INIT_LIST_HEAD(&sdp->sd_quota_list);
        spin_lock_init(&sdp->sd_quota_spin);
        mutex_init(&sdp->sd_quota_mutex);

        spin_lock_init(&sdp->sd_log_lock);

        INIT_LIST_HEAD(&sdp->sd_log_le_buf);
        INIT_LIST_HEAD(&sdp->sd_log_le_revoke);
        INIT_LIST_HEAD(&sdp->sd_log_le_rg);
        INIT_LIST_HEAD(&sdp->sd_log_le_databuf);
        INIT_LIST_HEAD(&sdp->sd_log_le_ordered);

        mutex_init(&sdp->sd_log_reserve_mutex);
        INIT_LIST_HEAD(&sdp->sd_ail1_list);
        INIT_LIST_HEAD(&sdp->sd_ail2_list);

        init_rwsem(&sdp->sd_log_flush_lock);
        atomic_set(&sdp->sd_log_in_flight, 0);
        init_waitqueue_head(&sdp->sd_log_flush_wait);

        INIT_LIST_HEAD(&sdp->sd_revoke_list);

        mutex_init(&sdp->sd_freeze_lock);

        return sdp;
}


/**
 * gfs2_check_sb - Check superblock
 * @sdp: the filesystem
 * @sb: The superblock
 * @silent: Don't print a message if the check fails
 *
 * Checks the version code of the FS is one that we understand how to
 * read and that the sizes of the various on-disk structures have not
 * changed.
 */

static int gfs2_check_sb(struct gfs2_sbd *sdp, struct gfs2_sb_host *sb, int silent)
{
        unsigned int x;

        if (sb->sb_magic != GFS2_MAGIC ||
            sb->sb_type != GFS2_METATYPE_SB) {
                if (!silent)
                        printk(KERN_WARNING "GFS2: not a GFS2 filesystem\n");
                return -EINVAL;
        }

        /*  If format numbers match exactly, we're done.  */

        if (sb->sb_fs_format == GFS2_FORMAT_FS &&
            sb->sb_multihost_format == GFS2_FORMAT_MULTI)
                return 0;

        if (sb->sb_fs_format != GFS2_FORMAT_FS) {
                for (x = 0; gfs2_old_fs_formats[x]; x++)
                        if (gfs2_old_fs_formats[x] == sb->sb_fs_format)
                                break;

                if (!gfs2_old_fs_formats[x]) {
                        printk(KERN_WARNING
                               "GFS2: code version (%u, %u) is incompatible "
                               "with ondisk format (%u, %u)\n",
                               GFS2_FORMAT_FS, GFS2_FORMAT_MULTI,
                               sb->sb_fs_format, sb->sb_multihost_format);
                        printk(KERN_WARNING
                               "GFS2: I don't know how to upgrade this FS\n");
                        return -EINVAL;
                }
        }

        if (sb->sb_multihost_format != GFS2_FORMAT_MULTI) {
                for (x = 0; gfs2_old_multihost_formats[x]; x++)
                        if (gfs2_old_multihost_formats[x] ==
                            sb->sb_multihost_format)
                                break;

                if (!gfs2_old_multihost_formats[x]) {
                        printk(KERN_WARNING
                               "GFS2: code version (%u, %u) is incompatible "
                               "with ondisk format (%u, %u)\n",
                               GFS2_FORMAT_FS, GFS2_FORMAT_MULTI,
                               sb->sb_fs_format, sb->sb_multihost_format);
                        printk(KERN_WARNING
                               "GFS2: I don't know how to upgrade this FS\n");
                        return -EINVAL;
                }
        }

        if (!sdp->sd_args.ar_upgrade) {
                printk(KERN_WARNING
                       "GFS2: code version (%u, %u) is incompatible "
                       "with ondisk format (%u, %u)\n",
                       GFS2_FORMAT_FS, GFS2_FORMAT_MULTI,
                       sb->sb_fs_format, sb->sb_multihost_format);
                printk(KERN_INFO
                       "GFS2: Use the \"upgrade\" mount option to upgrade "
                       "the FS\n");
                printk(KERN_INFO "GFS2: See the manual for more details\n");
                return -EINVAL;
        }

        return 0;
}

static void end_bio_io_page(struct bio *bio, int error)
{
        struct page *page = bio->bi_private;

        if (!error)
                SetPageUptodate(page);
        else
                printk(KERN_WARNING "gfs2: error %d reading superblock\n", error);
        unlock_page(page);
}

static void gfs2_sb_in(struct gfs2_sb_host *sb, const void *buf)
{
        const struct gfs2_sb *str = buf;

        sb->sb_magic = be32_to_cpu(str->sb_header.mh_magic);
        sb->sb_type = be32_to_cpu(str->sb_header.mh_type);
        sb->sb_format = be32_to_cpu(str->sb_header.mh_format);
        sb->sb_fs_format = be32_to_cpu(str->sb_fs_format);
        sb->sb_multihost_format = be32_to_cpu(str->sb_multihost_format);
        sb->sb_bsize = be32_to_cpu(str->sb_bsize);
        sb->sb_bsize_shift = be32_to_cpu(str->sb_bsize_shift);
        sb->sb_master_dir.no_addr = be64_to_cpu(str->sb_master_dir.no_addr);
        sb->sb_master_dir.no_formal_ino = be64_to_cpu(str->sb_master_dir.no_formal_ino);
        sb->sb_root_dir.no_addr = be64_to_cpu(str->sb_root_dir.no_addr);
        sb->sb_root_dir.no_formal_ino = be64_to_cpu(str->sb_root_dir.no_formal_ino);

        memcpy(sb->sb_lockproto, str->sb_lockproto, GFS2_LOCKNAME_LEN);
        memcpy(sb->sb_locktable, str->sb_locktable, GFS2_LOCKNAME_LEN);
}

/**
 * gfs2_read_super - Read the gfs2 super block from disk
 * @sdp: The GFS2 super block
 * @sector: The location of the super block
 * @error: The error code to return
 *
 * This uses the bio functions to read the super block from disk
 * because we want to be 100% sure that we never read cached data.
 * A super block is read twice only during each GFS2 mount and is
 * never written to by the filesystem. The first time its read no
 * locks are held, and the only details which are looked at are those
 * relating to the locking protocol. Once locking is up and working,
 * the sb is read again under the lock to establish the location of
 * the master directory (contains pointers to journals etc) and the
 * root directory.
 *
 * Returns: 0 on success or error
 */

static int gfs2_read_super(struct gfs2_sbd *sdp, sector_t sector)
{
        struct super_block *sb = sdp->sd_vfs;
        struct gfs2_sb *p;
        struct page *page;
        struct bio *bio;

        page = alloc_page(GFP_NOFS);
        if (unlikely(!page))
                return -ENOBUFS;

        ClearPageUptodate(page);
        ClearPageDirty(page);
        lock_page(page);

        bio = bio_alloc(GFP_NOFS, 1);
        if (unlikely(!bio)) {
                __free_page(page);
                return -ENOBUFS;
        }

        bio->bi_sector = sector * (sb->s_blocksize >> 9);
        bio->bi_bdev = sb->s_bdev;
        bio_add_page(bio, page, PAGE_SIZE, 0);

        bio->bi_end_io = end_bio_io_page;
        bio->bi_private = page;
        submit_bio(READ_SYNC | (1 << BIO_RW_META), bio);
        wait_on_page_locked(page);
        bio_put(bio);
        if (!PageUptodate(page)) {
                __free_page(page);
                return -EIO;
        }
        p = kmap(page);
        gfs2_sb_in(&sdp->sd_sb, p);
        kunmap(page);
        __free_page(page);
        return 0;
}
/**
 * gfs2_read_sb - Read super block
 * @sdp: The GFS2 superblock
 * @gl: the glock for the superblock (assumed to be held)
 * @silent: Don't print message if mount fails
 *
 */

static int gfs2_read_sb(struct gfs2_sbd *sdp, struct gfs2_glock *gl, int silent)
{
        u32 hash_blocks, ind_blocks, leaf_blocks;
        u32 tmp_blocks;
        unsigned int x;
        int error;

        error = gfs2_read_super(sdp, GFS2_SB_ADDR >> sdp->sd_fsb2bb_shift);
        if (error) {
                if (!silent)
                        fs_err(sdp, "can't read superblock\n");
                return error;
        }

        error = gfs2_check_sb(sdp, &sdp->sd_sb, silent);
        if (error)
                return error;

        sdp->sd_fsb2bb_shift = sdp->sd_sb.sb_bsize_shift -
                               GFS2_BASIC_BLOCK_SHIFT;
        sdp->sd_fsb2bb = 1 << sdp->sd_fsb2bb_shift;
        sdp->sd_diptrs = (sdp->sd_sb.sb_bsize -
                          sizeof(struct gfs2_dinode)) / sizeof(u64);
        sdp->sd_inptrs = (sdp->sd_sb.sb_bsize -
                          sizeof(struct gfs2_meta_header)) / sizeof(u64);
        sdp->sd_jbsize = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_meta_header);
        sdp->sd_hash_bsize = sdp->sd_sb.sb_bsize / 2;
        sdp->sd_hash_bsize_shift = sdp->sd_sb.sb_bsize_shift - 1;
        sdp->sd_hash_ptrs = sdp->sd_hash_bsize / sizeof(u64);
        sdp->sd_qc_per_block = (sdp->sd_sb.sb_bsize -
                                sizeof(struct gfs2_meta_header)) /
                                sizeof(struct gfs2_quota_change);

        /* Compute maximum reservation required to add a entry to a directory */

        hash_blocks = DIV_ROUND_UP(sizeof(u64) * (1 << GFS2_DIR_MAX_DEPTH),
                             sdp->sd_jbsize);

        ind_blocks = 0;
        for (tmp_blocks = hash_blocks; tmp_blocks > sdp->sd_diptrs;) {
                tmp_blocks = DIV_ROUND_UP(tmp_blocks, sdp->sd_inptrs);
                ind_blocks += tmp_blocks;
        }

        leaf_blocks = 2 + GFS2_DIR_MAX_DEPTH;

        sdp->sd_max_dirres = hash_blocks + ind_blocks + leaf_blocks;

        sdp->sd_heightsize[0] = sdp->sd_sb.sb_bsize -
                                sizeof(struct gfs2_dinode);
        sdp->sd_heightsize[1] = sdp->sd_sb.sb_bsize * sdp->sd_diptrs;
        for (x = 2;; x++) {
                u64 space, d;
                u32 m;

                space = sdp->sd_heightsize[x - 1] * sdp->sd_inptrs;
                d = space;
                m = do_div(d, sdp->sd_inptrs);

                if (d != sdp->sd_heightsize[x - 1] || m)
                        break;
                sdp->sd_heightsize[x] = space;
        }
        sdp->sd_max_height = x;
        sdp->sd_heightsize[x] = ~0;
        gfs2_assert(sdp, sdp->sd_max_height <= GFS2_MAX_META_HEIGHT);

        sdp->sd_jheightsize[0] = sdp->sd_sb.sb_bsize -
                                 sizeof(struct gfs2_dinode);
        sdp->sd_jheightsize[1] = sdp->sd_jbsize * sdp->sd_diptrs;
        for (x = 2;; x++) {
                u64 space, d;
                u32 m;

                space = sdp->sd_jheightsize[x - 1] * sdp->sd_inptrs;
                d = space;
                m = do_div(d, sdp->sd_inptrs);

                if (d != sdp->sd_jheightsize[x - 1] || m)
                        break;
                sdp->sd_jheightsize[x] = space;
        }
        sdp->sd_max_jheight = x;
        sdp->sd_jheightsize[x] = ~0;
        gfs2_assert(sdp, sdp->sd_max_jheight <= GFS2_MAX_META_HEIGHT);

        return 0;
}

static int init_names(struct gfs2_sbd *sdp, int silent)
{
        char *proto, *table;
        int error = 0;

        proto = sdp->sd_args.ar_lockproto;
        table = sdp->sd_args.ar_locktable;

        /*  Try to autodetect  */

        if (!proto[0] || !table[0]) {
                error = gfs2_read_super(sdp, GFS2_SB_ADDR >> sdp->sd_fsb2bb_shift);
                if (error)
                        return error;

                error = gfs2_check_sb(sdp, &sdp->sd_sb, silent);
                if (error)
                        goto out;

                if (!proto[0])
                        proto = sdp->sd_sb.sb_lockproto;
                if (!table[0])
                        table = sdp->sd_sb.sb_locktable;
        }

        if (!table[0])
                table = sdp->sd_vfs->s_id;

        strlcpy(sdp->sd_proto_name, proto, GFS2_FSNAME_LEN);
        strlcpy(sdp->sd_table_name, table, GFS2_FSNAME_LEN);

        table = sdp->sd_table_name;
        while ((table = strchr(table, '/')))
                *table = '_';

out:
        return error;
}

static int init_locking(struct gfs2_sbd *sdp, struct gfs2_holder *mount_gh,
                        int undo)
{
        struct task_struct *p;
        int error = 0;

        if (undo)
                goto fail_trans;

        for (sdp->sd_glockd_num = 0;
             sdp->sd_glockd_num < sdp->sd_args.ar_num_glockd;
             sdp->sd_glockd_num++) {
                p = kthread_run(gfs2_glockd, sdp, "gfs2_glockd");
                error = IS_ERR(p);
                if (error) {
                        fs_err(sdp, "can't start glockd thread: %d\n", error);
                        goto fail;
                }
                sdp->sd_glockd_process[sdp->sd_glockd_num] = p;
        }

        error = gfs2_glock_nq_num(sdp,
                                  GFS2_MOUNT_LOCK, &gfs2_nondisk_glops,
                                  LM_ST_EXCLUSIVE, LM_FLAG_NOEXP | GL_NOCACHE,
                                  mount_gh);
        if (error) {
                fs_err(sdp, "can't acquire mount glock: %d\n", error);
                goto fail;
        }

        error = gfs2_glock_nq_num(sdp,
                                  GFS2_LIVE_LOCK, &gfs2_nondisk_glops,
                                  LM_ST_SHARED,
                                  LM_FLAG_NOEXP | GL_EXACT,
                                  &sdp->sd_live_gh);
        if (error) {
                fs_err(sdp, "can't acquire live glock: %d\n", error);
                goto fail_mount;
        }

        error = gfs2_glock_get(sdp, GFS2_RENAME_LOCK, &gfs2_nondisk_glops,
                               CREATE, &sdp->sd_rename_gl);
        if (error) {
                fs_err(sdp, "can't create rename glock: %d\n", error);
                goto fail_live;
        }

        error = gfs2_glock_get(sdp, GFS2_TRANS_LOCK, &gfs2_trans_glops,
                               CREATE, &sdp->sd_trans_gl);
        if (error) {
                fs_err(sdp, "can't create transaction glock: %d\n", error);
                goto fail_rename;
        }
        set_bit(GLF_STICKY, &sdp->sd_trans_gl->gl_flags);

        return 0;

fail_trans:
        gfs2_glock_put(sdp->sd_trans_gl);
fail_rename:
        gfs2_glock_put(sdp->sd_rename_gl);
fail_live:
        gfs2_glock_dq_uninit(&sdp->sd_live_gh);
fail_mount:
        gfs2_glock_dq_uninit(mount_gh);
fail:
        while (sdp->sd_glockd_num--)
                kthread_stop(sdp->sd_glockd_process[sdp->sd_glockd_num]);

        return error;
}

static int gfs2_lookup_root(struct super_block *sb, struct dentry **dptr,
                            u64 no_addr, const char *name)
{
        struct gfs2_sbd *sdp = sb->s_fs_info;
        struct dentry *dentry;
        struct inode *inode;

        inode = gfs2_inode_lookup(sb, DT_DIR, no_addr, 0, 0);
        if (IS_ERR(inode)) {
                fs_err(sdp, "can't read in %s inode: %ld\n", name, PTR_ERR(inode));
                return PTR_ERR(inode);
        }
        dentry = d_alloc_root(inode);
        if (!dentry) {
                fs_err(sdp, "can't alloc %s dentry\n", name);
                iput(inode);
                return -ENOMEM;
        }
        dentry->d_op = &gfs2_dops;
        *dptr = dentry;
        return 0;
}

static int init_sb(struct gfs2_sbd *sdp, int silent)
{
        struct super_block *sb = sdp->sd_vfs;
        struct gfs2_holder sb_gh;
        u64 no_addr;
        int ret;

        ret = gfs2_glock_nq_num(sdp, GFS2_SB_LOCK, &gfs2_meta_glops,
                                LM_ST_SHARED, 0, &sb_gh);
        if (ret) {
                fs_err(sdp, "can't acquire superblock glock: %d\n", ret);
                return ret;
        }

        ret = gfs2_read_sb(sdp, sb_gh.gh_gl, silent);
        if (ret) {
                fs_err(sdp, "can't read superblock: %d\n", ret);
                goto out;
        }

        /* Set up the buffer cache and SB for real */
        if (sdp->sd_sb.sb_bsize < bdev_hardsect_size(sb->s_bdev)) {
                ret = -EINVAL;
                fs_err(sdp, "FS block size (%u) is too small for device "
                       "block size (%u)\n",
                       sdp->sd_sb.sb_bsize, bdev_hardsect_size(sb->s_bdev));
                goto out;
        }
        if (sdp->sd_sb.sb_bsize > PAGE_SIZE) {
                ret = -EINVAL;
                fs_err(sdp, "FS block size (%u) is too big for machine "
                       "page size (%u)\n",
                       sdp->sd_sb.sb_bsize, (unsigned int)PAGE_SIZE);
                goto out;
        }
        sb_set_blocksize(sb, sdp->sd_sb.sb_bsize);

        /* Get the root inode */
        no_addr = sdp->sd_sb.sb_root_dir.no_addr;
        ret = gfs2_lookup_root(sb, &sdp->sd_root_dir, no_addr, "root");
        if (ret)
                goto out;

        /* Get the master inode */
        no_addr = sdp->sd_sb.sb_master_dir.no_addr;
        ret = gfs2_lookup_root(sb, &sdp->sd_master_dir, no_addr, "master");
        if (ret) {
                dput(sdp->sd_root_dir);
                goto out;
        }
        sb->s_root = dget(sdp->sd_args.ar_meta ? sdp->sd_master_dir : sdp->sd_root_dir);
out:
        gfs2_glock_dq_uninit(&sb_gh);
        return ret;
}

/**
 * map_journal_extents - create a reusable "extent" mapping from all logical
 * blocks to all physical blocks for the given journal.  This will save
 * us time when writing journal blocks.  Most journals will have only one
 * extent that maps all their logical blocks.  That's because gfs2.mkfs
 * arranges the journal blocks sequentially to maximize performance.
 * So the extent would map the first block for the entire file length.
 * However, gfs2_jadd can happen while file activity is happening, so
 * those journals may not be sequential.  Less likely is the case where
 * the users created their own journals by mounting the metafs and
 * laying it out.  But it's still possible.  These journals might have
 * several extents.
 *
 * TODO: This should be done in bigger chunks rather than one block at a time,
 *       but since it's only done at mount time, I'm not worried about the
 *       time it takes.
 */
static int map_journal_extents(struct gfs2_sbd *sdp)
{
        struct gfs2_jdesc *jd = sdp->sd_jdesc;
        unsigned int lb;
        u64 db, prev_db; /* logical block, disk block, prev disk block */
        struct gfs2_inode *ip = GFS2_I(jd->jd_inode);
        struct gfs2_journal_extent *jext = NULL;
        struct buffer_head bh;
        int rc = 0;

        prev_db = 0;

        for (lb = 0; lb < ip->i_di.di_size >> sdp->sd_sb.sb_bsize_shift; lb++) {
                bh.b_state = 0;
                bh.b_blocknr = 0;
                bh.b_size = 1 << ip->i_inode.i_blkbits;
                rc = gfs2_block_map(jd->jd_inode, lb, &bh, 0);
                db = bh.b_blocknr;
                if (rc || !db) {
                        printk(KERN_INFO "GFS2 journal mapping error %d: lb="
                               "%u db=%llu\n", rc, lb, (unsigned long long)db);
                        break;
                }
                if (!prev_db || db != prev_db + 1) {
                        jext = kzalloc(sizeof(struct gfs2_journal_extent),
                                       GFP_KERNEL);
                        if (!jext) {
                                printk(KERN_INFO "GFS2 error: out of memory "
                                       "mapping journal extents.\n");
                                rc = -ENOMEM;
                                break;
                        }
                        jext->dblock = db;
                        jext->lblock = lb;
                        jext->blocks = 1;
                        list_add_tail(&jext->extent_list, &jd->extent_list);
                } else {
                        jext->blocks++;
                }
                prev_db = db;
        }
        return rc;
}

static void gfs2_lm_others_may_mount(struct gfs2_sbd *sdp)
{
        if (!sdp->sd_lockstruct.ls_ops->lm_others_may_mount)
                return;
        if (likely(!test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
                sdp->sd_lockstruct.ls_ops->lm_others_may_mount(
                                        sdp->sd_lockstruct.ls_lockspace);
}

static int init_journal(struct gfs2_sbd *sdp, int undo)
{
        struct inode *master = sdp->sd_master_dir->d_inode;
        struct gfs2_holder ji_gh;
        struct task_struct *p;
        struct gfs2_inode *ip;
        int jindex = 1;
        int error = 0;

        if (undo) {
                jindex = 0;
                goto fail_recoverd;
        }

        sdp->sd_jindex = gfs2_lookup_simple(master, "jindex");
        if (IS_ERR(sdp->sd_jindex)) {
                fs_err(sdp, "can't lookup journal index: %d\n", error);
                return PTR_ERR(sdp->sd_jindex);
        }
        ip = GFS2_I(sdp->sd_jindex);
        set_bit(GLF_STICKY, &ip->i_gl->gl_flags);

        /* Load in the journal index special file */

        error = gfs2_jindex_hold(sdp, &ji_gh);
        if (error) {
                fs_err(sdp, "can't read journal index: %d\n", error);
                goto fail;
        }

        error = -EINVAL;
        if (!gfs2_jindex_size(sdp)) {
                fs_err(sdp, "no journals!\n");
                goto fail_jindex;
        }

        if (sdp->sd_args.ar_spectator) {
                sdp->sd_jdesc = gfs2_jdesc_find(sdp, 0);
                atomic_set(&sdp->sd_log_blks_free, sdp->sd_jdesc->jd_blocks);
        } else {
                if (sdp->sd_lockstruct.ls_jid >= gfs2_jindex_size(sdp)) {
                        fs_err(sdp, "can't mount journal #%u\n",
                               sdp->sd_lockstruct.ls_jid);
                        fs_err(sdp, "there are only %u journals (0 - %u)\n",
                               gfs2_jindex_size(sdp),
                               gfs2_jindex_size(sdp) - 1);
                        goto fail_jindex;
                }
                sdp->sd_jdesc = gfs2_jdesc_find(sdp, sdp->sd_lockstruct.ls_jid);

                error = gfs2_glock_nq_num(sdp, sdp->sd_lockstruct.ls_jid,
                                          &gfs2_journal_glops,
                                          LM_ST_EXCLUSIVE, LM_FLAG_NOEXP,
                                          &sdp->sd_journal_gh);
                if (error) {
                        fs_err(sdp, "can't acquire journal glock: %d\n", error);
                        goto fail_jindex;
                }

                ip = GFS2_I(sdp->sd_jdesc->jd_inode);
                error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED,
                                           LM_FLAG_NOEXP | GL_EXACT | GL_NOCACHE,
                                           &sdp->sd_jinode_gh);
                if (error) {
                        fs_err(sdp, "can't acquire journal inode glock: %d\n",
                               error);
                        goto fail_journal_gh;
                }

                error = gfs2_jdesc_check(sdp->sd_jdesc);
                if (error) {
                        fs_err(sdp, "my journal (%u) is bad: %d\n",
                               sdp->sd_jdesc->jd_jid, error);
                        goto fail_jinode_gh;
                }
                atomic_set(&sdp->sd_log_blks_free, sdp->sd_jdesc->jd_blocks);

                /* Map the extents for this journal's blocks */
                map_journal_extents(sdp);
        }

        if (sdp->sd_lockstruct.ls_first) {
                unsigned int x;
                for (x = 0; x < sdp->sd_journals; x++) {
                        error = gfs2_recover_journal(gfs2_jdesc_find(sdp, x));
                        if (error) {
                                fs_err(sdp, "error recovering journal %u: %d\n",
                                       x, error);
                                goto fail_jinode_gh;
                        }
                }

                gfs2_lm_others_may_mount(sdp);
        } else if (!sdp->sd_args.ar_spectator) {
                error = gfs2_recover_journal(sdp->sd_jdesc);
                if (error) {
                        fs_err(sdp, "error recovering my journal: %d\n", error);
                        goto fail_jinode_gh;
                }
        }

        set_bit(SDF_JOURNAL_CHECKED, &sdp->sd_flags);
        gfs2_glock_dq_uninit(&ji_gh);
        jindex = 0;

        p = kthread_run(gfs2_recoverd, sdp, "gfs2_recoverd");
        error = IS_ERR(p);
        if (error) {
                fs_err(sdp, "can't start recoverd thread: %d\n", error);
                goto fail_jinode_gh;
        }
        sdp->sd_recoverd_process = p;

        return 0;

fail_recoverd:
        kthread_stop(sdp->sd_recoverd_process);
fail_jinode_gh:
        if (!sdp->sd_args.ar_spectator)
                gfs2_glock_dq_uninit(&sdp->sd_jinode_gh);
fail_journal_gh:
        if (!sdp->sd_args.ar_spectator)
                gfs2_glock_dq_uninit(&sdp->sd_journal_gh);
fail_jindex:
        gfs2_jindex_free(sdp);
        if (jindex)
                gfs2_glock_dq_uninit(&ji_gh);
fail:
        iput(sdp->sd_jindex);
        return error;
}


static int init_inodes(struct gfs2_sbd *sdp, int undo)
{
        int error = 0;
        struct gfs2_inode *ip;
        struct inode *master = sdp->sd_master_dir->d_inode;

        if (undo)
                goto fail_qinode;

        error = init_journal(sdp, undo);
        if (error)
                goto fail;

        /* Read in the master inode number inode */
        sdp->sd_inum_inode = gfs2_lookup_simple(master, "inum");
        if (IS_ERR(sdp->sd_inum_inode)) {
                error = PTR_ERR(sdp->sd_inum_inode);
                fs_err(sdp, "can't read in inum inode: %d\n", error);
                goto fail_journal;
        }


        /* Read in the master statfs inode */
        sdp->sd_statfs_inode = gfs2_lookup_simple(master, "statfs");
        if (IS_ERR(sdp->sd_statfs_inode)) {
                error = PTR_ERR(sdp->sd_statfs_inode);
                fs_err(sdp, "can't read in statfs inode: %d\n", error);
                goto fail_inum;
        }

        /* Read in the resource index inode */
        sdp->sd_rindex = gfs2_lookup_simple(master, "rindex");
        if (IS_ERR(sdp->sd_rindex)) {
                error = PTR_ERR(sdp->sd_rindex);
                fs_err(sdp, "can't get resource index inode: %d\n", error);
                goto fail_statfs;
        }
        ip = GFS2_I(sdp->sd_rindex);
        set_bit(GLF_STICKY, &ip->i_gl->gl_flags);
        sdp->sd_rindex_uptodate = 0;

        /* Read in the quota inode */
        sdp->sd_quota_inode = gfs2_lookup_simple(master, "quota");
        if (IS_ERR(sdp->sd_quota_inode)) {
                error = PTR_ERR(sdp->sd_quota_inode);
                fs_err(sdp, "can't get quota file inode: %d\n", error);
                goto fail_rindex;
        }
        return 0;

fail_qinode:
        iput(sdp->sd_quota_inode);
fail_rindex:
        gfs2_clear_rgrpd(sdp);
        iput(sdp->sd_rindex);
fail_statfs:
        iput(sdp->sd_statfs_inode);
fail_inum:
        iput(sdp->sd_inum_inode);
fail_journal:
        init_journal(sdp, UNDO);
fail:
        return error;
}

static int init_per_node(struct gfs2_sbd *sdp, int undo)
{
        struct inode *pn = NULL;
        char buf[30];
        int error = 0;
        struct gfs2_inode *ip;
        struct inode *master = sdp->sd_master_dir->d_inode;

        if (sdp->sd_args.ar_spectator)
                return 0;

        if (undo)
                goto fail_qc_gh;

        pn = gfs2_lookup_simple(master, "per_node");
        if (IS_ERR(pn)) {
                error = PTR_ERR(pn);
                fs_err(sdp, "can't find per_node directory: %d\n", error);
                return error;
        }

        sprintf(buf, "inum_range%u", sdp->sd_jdesc->jd_jid);
        sdp->sd_ir_inode = gfs2_lookup_simple(pn, buf);
        if (IS_ERR(sdp->sd_ir_inode)) {
                error = PTR_ERR(sdp->sd_ir_inode);
                fs_err(sdp, "can't find local \"ir\" file: %d\n", error);
                goto fail;
        }

        sprintf(buf, "statfs_change%u", sdp->sd_jdesc->jd_jid);
        sdp->sd_sc_inode = gfs2_lookup_simple(pn, buf);
        if (IS_ERR(sdp->sd_sc_inode)) {
                error = PTR_ERR(sdp->sd_sc_inode);
                fs_err(sdp, "can't find local \"sc\" file: %d\n", error);
                goto fail_ir_i;
        }

        sprintf(buf, "quota_change%u", sdp->sd_jdesc->jd_jid);
        sdp->sd_qc_inode = gfs2_lookup_simple(pn, buf);
        if (IS_ERR(sdp->sd_qc_inode)) {
                error = PTR_ERR(sdp->sd_qc_inode);
                fs_err(sdp, "can't find local \"qc\" file: %d\n", error);
                goto fail_ut_i;
        }

        iput(pn);
        pn = NULL;

        ip = GFS2_I(sdp->sd_ir_inode);
        error = gfs2_glock_nq_init(ip->i_gl,
                                   LM_ST_EXCLUSIVE, 0,
                                   &sdp->sd_ir_gh);
        if (error) {
                fs_err(sdp, "can't lock local \"ir\" file: %d\n", error);
                goto fail_qc_i;
        }

        ip = GFS2_I(sdp->sd_sc_inode);
        error = gfs2_glock_nq_init(ip->i_gl,
                                   LM_ST_EXCLUSIVE, 0,
                                   &sdp->sd_sc_gh);
        if (error) {
                fs_err(sdp, "can't lock local \"sc\" file: %d\n", error);
                goto fail_ir_gh;
        }

        ip = GFS2_I(sdp->sd_qc_inode);
        error = gfs2_glock_nq_init(ip->i_gl,
                                   LM_ST_EXCLUSIVE, 0,
                                   &sdp->sd_qc_gh);
        if (error) {
                fs_err(sdp, "can't lock local \"qc\" file: %d\n", error);
                goto fail_ut_gh;
        }

        return 0;

fail_qc_gh:
        gfs2_glock_dq_uninit(&sdp->sd_qc_gh);
fail_ut_gh:
        gfs2_glock_dq_uninit(&sdp->sd_sc_gh);
fail_ir_gh:
        gfs2_glock_dq_uninit(&sdp->sd_ir_gh);
fail_qc_i:
        iput(sdp->sd_qc_inode);
fail_ut_i:
        iput(sdp->sd_sc_inode);
fail_ir_i:
        iput(sdp->sd_ir_inode);
fail:
        if (pn)
                iput(pn);
        return error;
}

static int init_threads(struct gfs2_sbd *sdp, int undo)
{
        struct task_struct *p;
        int error = 0;

        if (undo)
                goto fail_quotad;

        sdp->sd_log_flush_time = jiffies;
        sdp->sd_jindex_refresh_time = jiffies;

        p = kthread_run(gfs2_logd, sdp, "gfs2_logd");
        error = IS_ERR(p);
        if (error) {
                fs_err(sdp, "can't start logd thread: %d\n", error);
                return error;
        }
        sdp->sd_logd_process = p;

        sdp->sd_statfs_sync_time = jiffies;
        sdp->sd_quota_sync_time = jiffies;

        p = kthread_run(gfs2_quotad, sdp, "gfs2_quotad");
        error = IS_ERR(p);
        if (error) {
                fs_err(sdp, "can't start quotad thread: %d\n", error);
                goto fail;
        }
        sdp->sd_quotad_process = p;

        return 0;


fail_quotad:
        kthread_stop(sdp->sd_quotad_process);
fail:
        kthread_stop(sdp->sd_logd_process);
        return error;
}

/**
 * gfs2_lm_mount - mount a locking protocol
 * @sdp: the filesystem
 * @args: mount arguements
 * @silent: if 1, don't complain if the FS isn't a GFS2 fs
 *
 * Returns: errno
 */

static int gfs2_lm_mount(struct gfs2_sbd *sdp, int silent)
{
        char *proto = sdp->sd_proto_name;
        char *table = sdp->sd_table_name;
        int flags = LM_MFLAG_CONV_NODROP;
        int error;

        if (sdp->sd_args.ar_spectator)
                flags |= LM_MFLAG_SPECTATOR;

        fs_info(sdp, "Trying to join cluster \"%s\", \"%s\"\n", proto, table);

        error = gfs2_mount_lockproto(proto, table, sdp->sd_args.ar_hostdata,
                                     gfs2_glock_cb, sdp,
                                     GFS2_MIN_LVB_SIZE, flags,
                                     &sdp->sd_lockstruct, &sdp->sd_kobj);
        if (error) {
                fs_info(sdp, "can't mount proto=%s, table=%s, hostdata=%s\n",
                        proto, table, sdp->sd_args.ar_hostdata);
                goto out;
        }

        if (gfs2_assert_warn(sdp, sdp->sd_lockstruct.ls_ops) ||
            gfs2_assert_warn(sdp, sdp->sd_lockstruct.ls_lvb_size >=
                                  GFS2_MIN_LVB_SIZE)) {
                gfs2_unmount_lockproto(&sdp->sd_lockstruct);
                goto out;
        }

        if (sdp->sd_args.ar_spectator)
                snprintf(sdp->sd_fsname, GFS2_FSNAME_LEN, "%s.s", table);
        else
                snprintf(sdp->sd_fsname, GFS2_FSNAME_LEN, "%s.%u", table,
                         sdp->sd_lockstruct.ls_jid);

        fs_info(sdp, "Joined cluster. Now mounting FS...\n");

        if ((sdp->sd_lockstruct.ls_flags & LM_LSFLAG_LOCAL) &&
            !sdp->sd_args.ar_ignore_local_fs) {
                sdp->sd_args.ar_localflocks = 1;
                sdp->sd_args.ar_localcaching = 1;
        }

out:
        return error;
}

void gfs2_lm_unmount(struct gfs2_sbd *sdp)
{
        if (likely(!test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
                gfs2_unmount_lockproto(&sdp->sd_lockstruct);
}

/**
 * fill_super - Read in superblock
 * @sb: The VFS superblock
 * @data: Mount options
 * @silent: Don't complain if it's not a GFS2 filesystem
 *
 * Returns: errno
 */

static int fill_super(struct super_block *sb, void *data, int silent)
{
        struct gfs2_sbd *sdp;
        struct gfs2_holder mount_gh;
        int error;

        sdp = init_sbd(sb);
        if (!sdp) {
                printk(KERN_WARNING "GFS2: can't alloc struct gfs2_sbd\n");
                return -ENOMEM;
        }

        error = gfs2_mount_args(sdp, (char *)data, 0);
        if (error) {
                printk(KERN_WARNING "GFS2: can't parse mount arguments\n");
                goto fail;
        }

        sb->s_magic = GFS2_MAGIC;
        sb->s_op = &gfs2_super_ops;
        sb->s_export_op = &gfs2_export_ops;
        sb->s_time_gran = 1;
        sb->s_maxbytes = MAX_LFS_FILESIZE;

        /* Set up the buffer cache and fill in some fake block size values
           to allow us to read-in the on-disk superblock. */
        sdp->sd_sb.sb_bsize = sb_min_blocksize(sb, GFS2_BASIC_BLOCK);
        sdp->sd_sb.sb_bsize_shift = sb->s_blocksize_bits;
        sdp->sd_fsb2bb_shift = sdp->sd_sb.sb_bsize_shift -
                               GFS2_BASIC_BLOCK_SHIFT;
        sdp->sd_fsb2bb = 1 << sdp->sd_fsb2bb_shift;

        error = init_names(sdp, silent);
        if (error)
                goto fail;

        gfs2_create_debugfs_file(sdp);

        error = gfs2_sys_fs_add(sdp);
        if (error)
                goto fail;

        error = gfs2_lm_mount(sdp, silent);
        if (error)
                goto fail_sys;

        error = init_locking(sdp, &mount_gh, DO);
        if (error)
                goto fail_lm;

        error = init_sb(sdp, silent);
        if (error)
                goto fail_locking;

        error = init_inodes(sdp, DO);
        if (error)
                goto fail_sb;

        error = init_per_node(sdp, DO);
        if (error)
                goto fail_inodes;

        error = gfs2_statfs_init(sdp);
        if (error) {
                fs_err(sdp, "can't initialize statfs subsystem: %d\n", error);
                goto fail_per_node;
        }

        error = init_threads(sdp, DO);
        if (error)
                goto fail_per_node;

        if (!(sb->s_flags & MS_RDONLY)) {
                error = gfs2_make_fs_rw(sdp);
                if (error) {
                        fs_err(sdp, "can't make FS RW: %d\n", error);
                        goto fail_threads;
                }
        }

        gfs2_glock_dq_uninit(&mount_gh);

        return 0;

fail_threads:
        init_threads(sdp, UNDO);
fail_per_node:
        init_per_node(sdp, UNDO);
fail_inodes:
        init_inodes(sdp, UNDO);
fail_sb:
        if (sdp->sd_root_dir)
                dput(sdp->sd_root_dir);
        if (sdp->sd_master_dir)
                dput(sdp->sd_master_dir);
        sb->s_root = NULL;
fail_locking:
        init_locking(sdp, &mount_gh, UNDO);
fail_lm:
        gfs2_gl_hash_clear(sdp);
        gfs2_lm_unmount(sdp);
        while (invalidate_inodes(sb))
                yield();
fail_sys:
        gfs2_sys_fs_del(sdp);
fail:
        gfs2_delete_debugfs_file(sdp);
        kfree(sdp);
        sb->s_fs_info = NULL;
        return error;
}

static int gfs2_get_sb(struct file_system_type *fs_type, int flags,
                       const char *dev_name, void *data, struct vfsmount *mnt)
{
        return get_sb_bdev(fs_type, flags, dev_name, data, fill_super, mnt);
}

static struct super_block *get_gfs2_sb(const char *dev_name)
{
        struct super_block *sb;
        struct nameidata nd;
        int error;

        error = path_lookup(dev_name, LOOKUP_FOLLOW, &nd);
        if (error) {
                printk(KERN_WARNING "GFS2: path_lookup on %s returned error %d\n",
                       dev_name, error);
                return NULL;
        }
        sb = nd.path.dentry->d_inode->i_sb;
        if (sb && (sb->s_type == &gfs2_fs_type))
                atomic_inc(&sb->s_active);
        else
                sb = NULL;
        path_put(&nd.path);
        return sb;
}

static int gfs2_get_sb_meta(struct file_system_type *fs_type, int flags,
                            const char *dev_name, void *data, struct vfsmount *mnt)
{
        struct super_block *sb = NULL;
        struct gfs2_sbd *sdp;

        sb = get_gfs2_sb(dev_name);
        if (!sb) {
                printk(KERN_WARNING "GFS2: gfs2 mount does not exist\n");
                return -ENOENT;
        }
        sdp = sb->s_fs_info;
        mnt->mnt_sb = sb;
        mnt->mnt_root = dget(sdp->sd_master_dir);
        return 0;
}

static void gfs2_kill_sb(struct super_block *sb)
{
        struct gfs2_sbd *sdp = sb->s_fs_info;
        if (sdp) {
                gfs2_meta_syncfs(sdp);
                dput(sdp->sd_root_dir);
                dput(sdp->sd_master_dir);
                sdp->sd_root_dir = NULL;
                sdp->sd_master_dir = NULL;
        }
        shrink_dcache_sb(sb);
        kill_block_super(sb);
        if (sdp)
                gfs2_delete_debugfs_file(sdp);
}

struct file_system_type gfs2_fs_type = {
        .name = "gfs2",
        .fs_flags = FS_REQUIRES_DEV,
        .get_sb = gfs2_get_sb,
        .kill_sb = gfs2_kill_sb,
        .owner = THIS_MODULE,
};

struct file_system_type gfs2meta_fs_type = {
        .name = "gfs2meta",
        .fs_flags = FS_REQUIRES_DEV,
        .get_sb = gfs2_get_sb_meta,
        .owner = THIS_MODULE,
};


/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading