[funini.com] -> [kei@sodan] -> Kernel Reading

root/arch/x86/kernel/process.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. arch_dup_task_struct
  2. free_thread_xstate
  3. free_thread_info
  4. arch_task_cache_init
  5. disable_hlt
  6. enable_hlt
  7. hlt_use_halt
  8. hlt_use_halt
  9. default_idle
  10. do_nothing
  11. cpu_idle_wait
  12. mwait_idle_with_hints
  13. mwait_idle
  14. poll_idle
  15. mwait_usable
  16. check_c1e_idle
  17. c1e_remove_cpu
  18. c1e_idle
  19. select_idle_routine
  20. idle_setup

#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/module.h>
#include <linux/pm.h>
#include <linux/clockchips.h>
#include <asm/system.h>

unsigned long idle_halt;
EXPORT_SYMBOL(idle_halt);
unsigned long idle_nomwait;
EXPORT_SYMBOL(idle_nomwait);

struct kmem_cache *task_xstate_cachep;

int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
{
        *dst = *src;
        if (src->thread.xstate) {
                dst->thread.xstate = kmem_cache_alloc(task_xstate_cachep,
                                                      GFP_KERNEL);
                if (!dst->thread.xstate)
                        return -ENOMEM;
                WARN_ON((unsigned long)dst->thread.xstate & 15);
                memcpy(dst->thread.xstate, src->thread.xstate, xstate_size);
        }
        return 0;
}

void free_thread_xstate(struct task_struct *tsk)
{
        if (tsk->thread.xstate) {
                kmem_cache_free(task_xstate_cachep, tsk->thread.xstate);
                tsk->thread.xstate = NULL;
        }
}

void free_thread_info(struct thread_info *ti)
{
        free_thread_xstate(ti->task);
        free_pages((unsigned long)ti, get_order(THREAD_SIZE));
}

void arch_task_cache_init(void)
{
        task_xstate_cachep =
                kmem_cache_create("task_xstate", xstate_size,
                                  __alignof__(union thread_xstate),
                                  SLAB_PANIC, NULL);
}

/*
 * Idle related variables and functions
 */
unsigned long boot_option_idle_override = 0;
EXPORT_SYMBOL(boot_option_idle_override);

/*
 * Powermanagement idle function, if any..
 */
void (*pm_idle)(void);
EXPORT_SYMBOL(pm_idle);

#ifdef CONFIG_X86_32
/*
 * This halt magic was a workaround for ancient floppy DMA
 * wreckage. It should be safe to remove.
 */
static int hlt_counter;
void disable_hlt(void)
{
        hlt_counter++;
}
EXPORT_SYMBOL(disable_hlt);

void enable_hlt(void)
{
        hlt_counter--;
}
EXPORT_SYMBOL(enable_hlt);

static inline int hlt_use_halt(void)
{
        return (!hlt_counter && boot_cpu_data.hlt_works_ok);
}
#else
static inline int hlt_use_halt(void)
{
        return 1;
}
#endif

/*
 * We use this if we don't have any better
 * idle routine..
 */
void default_idle(void)
{
        if (hlt_use_halt()) {
                current_thread_info()->status &= ~TS_POLLING;
                /*
                 * TS_POLLING-cleared state must be visible before we
                 * test NEED_RESCHED:
                 */
                smp_mb();

                if (!need_resched())
                        safe_halt();    /* enables interrupts racelessly */
                else
                        local_irq_enable();
                current_thread_info()->status |= TS_POLLING;
        } else {
                local_irq_enable();
                /* loop is done by the caller */
                cpu_relax();
        }
}
#ifdef CONFIG_APM_MODULE
EXPORT_SYMBOL(default_idle);
#endif

static void do_nothing(void *unused)
{
}

/*
 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
 * pm_idle and update to new pm_idle value. Required while changing pm_idle
 * handler on SMP systems.
 *
 * Caller must have changed pm_idle to the new value before the call. Old
 * pm_idle value will not be used by any CPU after the return of this function.
 */
void cpu_idle_wait(void)
{
        smp_mb();
        /* kick all the CPUs so that they exit out of pm_idle */
        smp_call_function(do_nothing, NULL, 1);
}
EXPORT_SYMBOL_GPL(cpu_idle_wait);

/*
 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
 * which can obviate IPI to trigger checking of need_resched.
 * We execute MONITOR against need_resched and enter optimized wait state
 * through MWAIT. Whenever someone changes need_resched, we would be woken
 * up from MWAIT (without an IPI).
 *
 * New with Core Duo processors, MWAIT can take some hints based on CPU
 * capability.
 */
void mwait_idle_with_hints(unsigned long ax, unsigned long cx)
{
        if (!need_resched()) {
                __monitor((void *)&current_thread_info()->flags, 0, 0);
                smp_mb();
                if (!need_resched())
                        __mwait(ax, cx);
        }
}

/* Default MONITOR/MWAIT with no hints, used for default C1 state */
static void mwait_idle(void)
{
        if (!need_resched()) {
                __monitor((void *)&current_thread_info()->flags, 0, 0);
                smp_mb();
                if (!need_resched())
                        __sti_mwait(0, 0);
                else
                        local_irq_enable();
        } else
                local_irq_enable();
}

/*
 * On SMP it's slightly faster (but much more power-consuming!)
 * to poll the ->work.need_resched flag instead of waiting for the
 * cross-CPU IPI to arrive. Use this option with caution.
 */
static void poll_idle(void)
{
        local_irq_enable();
        while (!need_resched())
                cpu_relax();
}

/*
 * mwait selection logic:
 *
 * It depends on the CPU. For AMD CPUs that support MWAIT this is
 * wrong. Family 0x10 and 0x11 CPUs will enter C1 on HLT. Powersavings
 * then depend on a clock divisor and current Pstate of the core. If
 * all cores of a processor are in halt state (C1) the processor can
 * enter the C1E (C1 enhanced) state. If mwait is used this will never
 * happen.
 *
 * idle=mwait overrides this decision and forces the usage of mwait.
 */
static int __cpuinitdata force_mwait;

#define MWAIT_INFO                      0x05
#define MWAIT_ECX_EXTENDED_INFO         0x01
#define MWAIT_EDX_C1                    0xf0

static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c)
{
        u32 eax, ebx, ecx, edx;

        if (force_mwait)
                return 1;

        if (c->cpuid_level < MWAIT_INFO)
                return 0;

        cpuid(MWAIT_INFO, &eax, &ebx, &ecx, &edx);
        /* Check, whether EDX has extended info about MWAIT */
        if (!(ecx & MWAIT_ECX_EXTENDED_INFO))
                return 1;

        /*
         * edx enumeratios MONITOR/MWAIT extensions. Check, whether
         * C1  supports MWAIT
         */
        return (edx & MWAIT_EDX_C1);
}

/*
 * Check for AMD CPUs, which have potentially C1E support
 */
static int __cpuinit check_c1e_idle(const struct cpuinfo_x86 *c)
{
        if (c->x86_vendor != X86_VENDOR_AMD)
                return 0;

        if (c->x86 < 0x0F)
                return 0;

        /* Family 0x0f models < rev F do not have C1E */
        if (c->x86 == 0x0f && c->x86_model < 0x40)
                return 0;

        return 1;
}

static cpumask_t c1e_mask = CPU_MASK_NONE;
static int c1e_detected;

void c1e_remove_cpu(int cpu)
{
        cpu_clear(cpu, c1e_mask);
}

/*
 * C1E aware idle routine. We check for C1E active in the interrupt
 * pending message MSR. If we detect C1E, then we handle it the same
 * way as C3 power states (local apic timer and TSC stop)
 */
static void c1e_idle(void)
{
        if (need_resched())
                return;

        if (!c1e_detected) {
                u32 lo, hi;

                rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
                if (lo & K8_INTP_C1E_ACTIVE_MASK) {
                        c1e_detected = 1;
                        if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
                                mark_tsc_unstable("TSC halt in AMD C1E");
                        printk(KERN_INFO "System has AMD C1E enabled\n");
                        set_cpu_cap(&boot_cpu_data, X86_FEATURE_AMDC1E);
                }
        }

        if (c1e_detected) {
                int cpu = smp_processor_id();

                if (!cpu_isset(cpu, c1e_mask)) {
                        cpu_set(cpu, c1e_mask);
                        /*
                         * Force broadcast so ACPI can not interfere. Needs
                         * to run with interrupts enabled as it uses
                         * smp_function_call.
                         */
                        local_irq_enable();
                        clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_FORCE,
                                           &cpu);
                        printk(KERN_INFO "Switch to broadcast mode on CPU%d\n",
                               cpu);
                        local_irq_disable();
                }
                clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_ENTER, &cpu);

                default_idle();

                /*
                 * The switch back from broadcast mode needs to be
                 * called with interrupts disabled.
                 */
                 local_irq_disable();
                 clockevents_notify(CLOCK_EVT_NOTIFY_BROADCAST_EXIT, &cpu);
                 local_irq_enable();
        } else
                default_idle();
}

void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c)
{
#ifdef CONFIG_X86_SMP
        if (pm_idle == poll_idle && smp_num_siblings > 1) {
                printk(KERN_WARNING "WARNING: polling idle and HT enabled,"
                        " performance may degrade.\n");
        }
#endif
        if (pm_idle)
                return;

        if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) {
                /*
                 * One CPU supports mwait => All CPUs supports mwait
                 */
                printk(KERN_INFO "using mwait in idle threads.\n");
                pm_idle = mwait_idle;
        } else if (check_c1e_idle(c)) {
                printk(KERN_INFO "using C1E aware idle routine\n");
                pm_idle = c1e_idle;
        } else
                pm_idle = default_idle;
}

static int __init idle_setup(char *str)
{
        if (!str)
                return -EINVAL;

        if (!strcmp(str, "poll")) {
                printk("using polling idle threads.\n");
                pm_idle = poll_idle;
        } else if (!strcmp(str, "mwait"))
                force_mwait = 1;
        else if (!strcmp(str, "halt")) {
                /*
                 * When the boot option of idle=halt is added, halt is
                 * forced to be used for CPU idle. In such case CPU C2/C3
                 * won't be used again.
                 * To continue to load the CPU idle driver, don't touch
                 * the boot_option_idle_override.
                 */
                pm_idle = default_idle;
                idle_halt = 1;
                return 0;
        } else if (!strcmp(str, "nomwait")) {
                /*
                 * If the boot option of "idle=nomwait" is added,
                 * it means that mwait will be disabled for CPU C2/C3
                 * states. In such case it won't touch the variable
                 * of boot_option_idle_override.
                 */
                idle_nomwait = 1;
                return 0;
        } else
                return -1;

        boot_option_idle_override = 1;
        return 0;
}
early_param("idle", idle_setup);


/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading