[funini.com] -> [kei@sodan] -> Kernel Reading

root/arch/x86/kernel/cpu/intel_cacheinfo.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. amd_cpuid4
  2. amd_check_l3_disable
  3. cpuid4_cache_lookup
  4. find_num_cache_leaves
  5. init_intel_cacheinfo
  6. cache_shared_cpu_map_setup
  7. cache_remove_shared_cpu_map
  8. cache_shared_cpu_map_setup
  9. cache_remove_shared_cpu_map
  10. free_cache_attributes
  11. detect_cache_attributes
  12. show_size
  13. show_shared_cpu_map_func
  14. show_shared_cpu_map
  15. show_shared_cpu_list
  16. show_type
  17. get_k8_northbridge
  18. get_k8_northbridge
  19. show_cache_disable
  20. store_cache_disable
  21. show
  22. store
  23. cpuid4_cache_sysfs_exit
  24. cpuid4_cache_sysfs_init
  25. cache_add_dev
  26. cache_remove_dev
  27. cacheinfo_cpu_callback
  28. cache_sysfs_init

/*
 *      Routines to indentify caches on Intel CPU.
 *
 *      Changes:
 *      Venkatesh Pallipadi     : Adding cache identification through cpuid(4)
 *              Ashok Raj <ashok.raj@intel.com>: Work with CPU hotplug infrastructure.
 *      Andi Kleen / Andreas Herrmann   : CPUID4 emulation on AMD.
 */

#include <linux/init.h>
#include <linux/slab.h>
#include <linux/device.h>
#include <linux/compiler.h>
#include <linux/cpu.h>
#include <linux/sched.h>
#include <linux/pci.h>

#include <asm/processor.h>
#include <asm/smp.h>

#define LVL_1_INST      1
#define LVL_1_DATA      2
#define LVL_2           3
#define LVL_3           4
#define LVL_TRACE       5

struct _cache_table
{
        unsigned char descriptor;
        char cache_type;
        short size;
};

/* all the cache descriptor types we care about (no TLB or trace cache entries) */
static struct _cache_table cache_table[] __cpuinitdata =
{
        { 0x06, LVL_1_INST, 8 },        /* 4-way set assoc, 32 byte line size */
        { 0x08, LVL_1_INST, 16 },       /* 4-way set assoc, 32 byte line size */
        { 0x0a, LVL_1_DATA, 8 },        /* 2 way set assoc, 32 byte line size */
        { 0x0c, LVL_1_DATA, 16 },       /* 4-way set assoc, 32 byte line size */
        { 0x22, LVL_3,      512 },      /* 4-way set assoc, sectored cache, 64 byte line size */
        { 0x23, LVL_3,      1024 },     /* 8-way set assoc, sectored cache, 64 byte line size */
        { 0x25, LVL_3,      2048 },     /* 8-way set assoc, sectored cache, 64 byte line size */
        { 0x29, LVL_3,      4096 },     /* 8-way set assoc, sectored cache, 64 byte line size */
        { 0x2c, LVL_1_DATA, 32 },       /* 8-way set assoc, 64 byte line size */
        { 0x30, LVL_1_INST, 32 },       /* 8-way set assoc, 64 byte line size */
        { 0x39, LVL_2,      128 },      /* 4-way set assoc, sectored cache, 64 byte line size */
        { 0x3a, LVL_2,      192 },      /* 6-way set assoc, sectored cache, 64 byte line size */
        { 0x3b, LVL_2,      128 },      /* 2-way set assoc, sectored cache, 64 byte line size */
        { 0x3c, LVL_2,      256 },      /* 4-way set assoc, sectored cache, 64 byte line size */
        { 0x3d, LVL_2,      384 },      /* 6-way set assoc, sectored cache, 64 byte line size */
        { 0x3e, LVL_2,      512 },      /* 4-way set assoc, sectored cache, 64 byte line size */
        { 0x3f, LVL_2,      256 },      /* 2-way set assoc, 64 byte line size */
        { 0x41, LVL_2,      128 },      /* 4-way set assoc, 32 byte line size */
        { 0x42, LVL_2,      256 },      /* 4-way set assoc, 32 byte line size */
        { 0x43, LVL_2,      512 },      /* 4-way set assoc, 32 byte line size */
        { 0x44, LVL_2,      1024 },     /* 4-way set assoc, 32 byte line size */
        { 0x45, LVL_2,      2048 },     /* 4-way set assoc, 32 byte line size */
        { 0x46, LVL_3,      4096 },     /* 4-way set assoc, 64 byte line size */
        { 0x47, LVL_3,      8192 },     /* 8-way set assoc, 64 byte line size */
        { 0x49, LVL_3,      4096 },     /* 16-way set assoc, 64 byte line size */
        { 0x4a, LVL_3,      6144 },     /* 12-way set assoc, 64 byte line size */
        { 0x4b, LVL_3,      8192 },     /* 16-way set assoc, 64 byte line size */
        { 0x4c, LVL_3,     12288 },     /* 12-way set assoc, 64 byte line size */
        { 0x4d, LVL_3,     16384 },     /* 16-way set assoc, 64 byte line size */
        { 0x4e, LVL_2,      6144 },     /* 24-way set assoc, 64 byte line size */
        { 0x60, LVL_1_DATA, 16 },       /* 8-way set assoc, sectored cache, 64 byte line size */
        { 0x66, LVL_1_DATA, 8 },        /* 4-way set assoc, sectored cache, 64 byte line size */
        { 0x67, LVL_1_DATA, 16 },       /* 4-way set assoc, sectored cache, 64 byte line size */
        { 0x68, LVL_1_DATA, 32 },       /* 4-way set assoc, sectored cache, 64 byte line size */
        { 0x70, LVL_TRACE,  12 },       /* 8-way set assoc */
        { 0x71, LVL_TRACE,  16 },       /* 8-way set assoc */
        { 0x72, LVL_TRACE,  32 },       /* 8-way set assoc */
        { 0x73, LVL_TRACE,  64 },       /* 8-way set assoc */
        { 0x78, LVL_2,    1024 },       /* 4-way set assoc, 64 byte line size */
        { 0x79, LVL_2,     128 },       /* 8-way set assoc, sectored cache, 64 byte line size */
        { 0x7a, LVL_2,     256 },       /* 8-way set assoc, sectored cache, 64 byte line size */
        { 0x7b, LVL_2,     512 },       /* 8-way set assoc, sectored cache, 64 byte line size */
        { 0x7c, LVL_2,    1024 },       /* 8-way set assoc, sectored cache, 64 byte line size */
        { 0x7d, LVL_2,    2048 },       /* 8-way set assoc, 64 byte line size */
        { 0x7f, LVL_2,     512 },       /* 2-way set assoc, 64 byte line size */
        { 0x82, LVL_2,     256 },       /* 8-way set assoc, 32 byte line size */
        { 0x83, LVL_2,     512 },       /* 8-way set assoc, 32 byte line size */
        { 0x84, LVL_2,    1024 },       /* 8-way set assoc, 32 byte line size */
        { 0x85, LVL_2,    2048 },       /* 8-way set assoc, 32 byte line size */
        { 0x86, LVL_2,     512 },       /* 4-way set assoc, 64 byte line size */
        { 0x87, LVL_2,    1024 },       /* 8-way set assoc, 64 byte line size */
        { 0x00, 0, 0}
};


enum _cache_type
{
        CACHE_TYPE_NULL = 0,
        CACHE_TYPE_DATA = 1,
        CACHE_TYPE_INST = 2,
        CACHE_TYPE_UNIFIED = 3
};

union _cpuid4_leaf_eax {
        struct {
                enum _cache_type        type:5;
                unsigned int            level:3;
                unsigned int            is_self_initializing:1;
                unsigned int            is_fully_associative:1;
                unsigned int            reserved:4;
                unsigned int            num_threads_sharing:12;
                unsigned int            num_cores_on_die:6;
        } split;
        u32 full;
};

union _cpuid4_leaf_ebx {
        struct {
                unsigned int            coherency_line_size:12;
                unsigned int            physical_line_partition:10;
                unsigned int            ways_of_associativity:10;
        } split;
        u32 full;
};

union _cpuid4_leaf_ecx {
        struct {
                unsigned int            number_of_sets:32;
        } split;
        u32 full;
};

struct _cpuid4_info {
        union _cpuid4_leaf_eax eax;
        union _cpuid4_leaf_ebx ebx;
        union _cpuid4_leaf_ecx ecx;
        unsigned long size;
        unsigned long can_disable;
        cpumask_t shared_cpu_map;       /* future?: only cpus/node is needed */
};

#ifdef CONFIG_PCI
static struct pci_device_id k8_nb_id[] = {
        { PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x1103) },
        { PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x1203) },
        {}
};
#endif

unsigned short                  num_cache_leaves;

/* AMD doesn't have CPUID4. Emulate it here to report the same
   information to the user.  This makes some assumptions about the machine:
   L2 not shared, no SMT etc. that is currently true on AMD CPUs.

   In theory the TLBs could be reported as fake type (they are in "dummy").
   Maybe later */
union l1_cache {
        struct {
                unsigned line_size : 8;
                unsigned lines_per_tag : 8;
                unsigned assoc : 8;
                unsigned size_in_kb : 8;
        };
        unsigned val;
};

union l2_cache {
        struct {
                unsigned line_size : 8;
                unsigned lines_per_tag : 4;
                unsigned assoc : 4;
                unsigned size_in_kb : 16;
        };
        unsigned val;
};

union l3_cache {
        struct {
                unsigned line_size : 8;
                unsigned lines_per_tag : 4;
                unsigned assoc : 4;
                unsigned res : 2;
                unsigned size_encoded : 14;
        };
        unsigned val;
};

static unsigned short assocs[] __cpuinitdata = {
        [1] = 1, [2] = 2, [4] = 4, [6] = 8,
        [8] = 16, [0xa] = 32, [0xb] = 48,
        [0xc] = 64,
        [0xf] = 0xffff // ??
};

static unsigned char levels[] __cpuinitdata = { 1, 1, 2, 3 };
static unsigned char types[] __cpuinitdata = { 1, 2, 3, 3 };

static void __cpuinit
amd_cpuid4(int leaf, union _cpuid4_leaf_eax *eax,
                     union _cpuid4_leaf_ebx *ebx,
                     union _cpuid4_leaf_ecx *ecx)
{
        unsigned dummy;
        unsigned line_size, lines_per_tag, assoc, size_in_kb;
        union l1_cache l1i, l1d;
        union l2_cache l2;
        union l3_cache l3;
        union l1_cache *l1 = &l1d;

        eax->full = 0;
        ebx->full = 0;
        ecx->full = 0;

        cpuid(0x80000005, &dummy, &dummy, &l1d.val, &l1i.val);
        cpuid(0x80000006, &dummy, &dummy, &l2.val, &l3.val);

        switch (leaf) {
        case 1:
                l1 = &l1i;
        case 0:
                if (!l1->val)
                        return;
                assoc = l1->assoc;
                line_size = l1->line_size;
                lines_per_tag = l1->lines_per_tag;
                size_in_kb = l1->size_in_kb;
                break;
        case 2:
                if (!l2.val)
                        return;
                assoc = l2.assoc;
                line_size = l2.line_size;
                lines_per_tag = l2.lines_per_tag;
                /* cpu_data has errata corrections for K7 applied */
                size_in_kb = current_cpu_data.x86_cache_size;
                break;
        case 3:
                if (!l3.val)
                        return;
                assoc = l3.assoc;
                line_size = l3.line_size;
                lines_per_tag = l3.lines_per_tag;
                size_in_kb = l3.size_encoded * 512;
                break;
        default:
                return;
        }

        eax->split.is_self_initializing = 1;
        eax->split.type = types[leaf];
        eax->split.level = levels[leaf];
        if (leaf == 3)
                eax->split.num_threads_sharing = current_cpu_data.x86_max_cores - 1;
        else
                eax->split.num_threads_sharing = 0;
        eax->split.num_cores_on_die = current_cpu_data.x86_max_cores - 1;


        if (assoc == 0xf)
                eax->split.is_fully_associative = 1;
        ebx->split.coherency_line_size = line_size - 1;
        ebx->split.ways_of_associativity = assocs[assoc] - 1;
        ebx->split.physical_line_partition = lines_per_tag - 1;
        ecx->split.number_of_sets = (size_in_kb * 1024) / line_size /
                (ebx->split.ways_of_associativity + 1) - 1;
}

static void __cpuinit
amd_check_l3_disable(int index, struct _cpuid4_info *this_leaf)
{
        if (index < 3)
                return;
        this_leaf->can_disable = 1;
}

static int
__cpuinit cpuid4_cache_lookup(int index, struct _cpuid4_info *this_leaf)
{
        union _cpuid4_leaf_eax  eax;
        union _cpuid4_leaf_ebx  ebx;
        union _cpuid4_leaf_ecx  ecx;
        unsigned                edx;

        if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
                amd_cpuid4(index, &eax, &ebx, &ecx);
                if (boot_cpu_data.x86 >= 0x10)
                        amd_check_l3_disable(index, this_leaf);
        } else {
                cpuid_count(4, index, &eax.full, &ebx.full, &ecx.full, &edx);
        }

        if (eax.split.type == CACHE_TYPE_NULL)
                return -EIO; /* better error ? */

        this_leaf->eax = eax;
        this_leaf->ebx = ebx;
        this_leaf->ecx = ecx;
        this_leaf->size = (ecx.split.number_of_sets          + 1) *
                          (ebx.split.coherency_line_size     + 1) *
                          (ebx.split.physical_line_partition + 1) *
                          (ebx.split.ways_of_associativity   + 1);
        return 0;
}

static int __cpuinit find_num_cache_leaves(void)
{
        unsigned int            eax, ebx, ecx, edx;
        union _cpuid4_leaf_eax  cache_eax;
        int                     i = -1;

        do {
                ++i;
                /* Do cpuid(4) loop to find out num_cache_leaves */
                cpuid_count(4, i, &eax, &ebx, &ecx, &edx);
                cache_eax.full = eax;
        } while (cache_eax.split.type != CACHE_TYPE_NULL);
        return i;
}

unsigned int __cpuinit init_intel_cacheinfo(struct cpuinfo_x86 *c)
{
        unsigned int trace = 0, l1i = 0, l1d = 0, l2 = 0, l3 = 0; /* Cache sizes */
        unsigned int new_l1d = 0, new_l1i = 0; /* Cache sizes from cpuid(4) */
        unsigned int new_l2 = 0, new_l3 = 0, i; /* Cache sizes from cpuid(4) */
        unsigned int l2_id = 0, l3_id = 0, num_threads_sharing, index_msb;
#ifdef CONFIG_X86_HT
        unsigned int cpu = c->cpu_index;
#endif

        if (c->cpuid_level > 3) {
                static int is_initialized;

                if (is_initialized == 0) {
                        /* Init num_cache_leaves from boot CPU */
                        num_cache_leaves = find_num_cache_leaves();
                        is_initialized++;
                }

                /*
                 * Whenever possible use cpuid(4), deterministic cache
                 * parameters cpuid leaf to find the cache details
                 */
                for (i = 0; i < num_cache_leaves; i++) {
                        struct _cpuid4_info this_leaf;

                        int retval;

                        retval = cpuid4_cache_lookup(i, &this_leaf);
                        if (retval >= 0) {
                                switch(this_leaf.eax.split.level) {
                                    case 1:
                                        if (this_leaf.eax.split.type ==
                                                        CACHE_TYPE_DATA)
                                                new_l1d = this_leaf.size/1024;
                                        else if (this_leaf.eax.split.type ==
                                                        CACHE_TYPE_INST)
                                                new_l1i = this_leaf.size/1024;
                                        break;
                                    case 2:
                                        new_l2 = this_leaf.size/1024;
                                        num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
                                        index_msb = get_count_order(num_threads_sharing);
                                        l2_id = c->apicid >> index_msb;
                                        break;
                                    case 3:
                                        new_l3 = this_leaf.size/1024;
                                        num_threads_sharing = 1 + this_leaf.eax.split.num_threads_sharing;
                                        index_msb = get_count_order(num_threads_sharing);
                                        l3_id = c->apicid >> index_msb;
                                        break;
                                    default:
                                        break;
                                }
                        }
                }
        }
        /*
         * Don't use cpuid2 if cpuid4 is supported. For P4, we use cpuid2 for
         * trace cache
         */
        if ((num_cache_leaves == 0 || c->x86 == 15) && c->cpuid_level > 1) {
                /* supports eax=2  call */
                int j, n;
                unsigned int regs[4];
                unsigned char *dp = (unsigned char *)regs;
                int only_trace = 0;

                if (num_cache_leaves != 0 && c->x86 == 15)
                        only_trace = 1;

                /* Number of times to iterate */
                n = cpuid_eax(2) & 0xFF;

                for ( i = 0 ; i < n ; i++ ) {
                        cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);

                        /* If bit 31 is set, this is an unknown format */
                        for ( j = 0 ; j < 3 ; j++ ) {
                                if (regs[j] & (1 << 31)) regs[j] = 0;
                        }

                        /* Byte 0 is level count, not a descriptor */
                        for ( j = 1 ; j < 16 ; j++ ) {
                                unsigned char des = dp[j];
                                unsigned char k = 0;

                                /* look up this descriptor in the table */
                                while (cache_table[k].descriptor != 0)
                                {
                                        if (cache_table[k].descriptor == des) {
                                                if (only_trace && cache_table[k].cache_type != LVL_TRACE)
                                                        break;
                                                switch (cache_table[k].cache_type) {
                                                case LVL_1_INST:
                                                        l1i += cache_table[k].size;
                                                        break;
                                                case LVL_1_DATA:
                                                        l1d += cache_table[k].size;
                                                        break;
                                                case LVL_2:
                                                        l2 += cache_table[k].size;
                                                        break;
                                                case LVL_3:
                                                        l3 += cache_table[k].size;
                                                        break;
                                                case LVL_TRACE:
                                                        trace += cache_table[k].size;
                                                        break;
                                                }

                                                break;
                                        }

                                        k++;
                                }
                        }
                }
        }

        if (new_l1d)
                l1d = new_l1d;

        if (new_l1i)
                l1i = new_l1i;

        if (new_l2) {
                l2 = new_l2;
#ifdef CONFIG_X86_HT
                per_cpu(cpu_llc_id, cpu) = l2_id;
#endif
        }

        if (new_l3) {
                l3 = new_l3;
#ifdef CONFIG_X86_HT
                per_cpu(cpu_llc_id, cpu) = l3_id;
#endif
        }

        if (trace)
                printk (KERN_INFO "CPU: Trace cache: %dK uops", trace);
        else if ( l1i )
                printk (KERN_INFO "CPU: L1 I cache: %dK", l1i);

        if (l1d)
                printk(", L1 D cache: %dK\n", l1d);
        else
                printk("\n");

        if (l2)
                printk(KERN_INFO "CPU: L2 cache: %dK\n", l2);

        if (l3)
                printk(KERN_INFO "CPU: L3 cache: %dK\n", l3);

        c->x86_cache_size = l3 ? l3 : (l2 ? l2 : (l1i+l1d));

        return l2;
}

/* pointer to _cpuid4_info array (for each cache leaf) */
static DEFINE_PER_CPU(struct _cpuid4_info *, cpuid4_info);
#define CPUID4_INFO_IDX(x, y)   (&((per_cpu(cpuid4_info, x))[y]))

#ifdef CONFIG_SMP
static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index)
{
        struct _cpuid4_info     *this_leaf, *sibling_leaf;
        unsigned long num_threads_sharing;
        int index_msb, i;
        struct cpuinfo_x86 *c = &cpu_data(cpu);

        this_leaf = CPUID4_INFO_IDX(cpu, index);
        num_threads_sharing = 1 + this_leaf->eax.split.num_threads_sharing;

        if (num_threads_sharing == 1)
                cpu_set(cpu, this_leaf->shared_cpu_map);
        else {
                index_msb = get_count_order(num_threads_sharing);

                for_each_online_cpu(i) {
                        if (cpu_data(i).apicid >> index_msb ==
                            c->apicid >> index_msb) {
                                cpu_set(i, this_leaf->shared_cpu_map);
                                if (i != cpu && per_cpu(cpuid4_info, i))  {
                                        sibling_leaf = CPUID4_INFO_IDX(i, index);
                                        cpu_set(cpu, sibling_leaf->shared_cpu_map);
                                }
                        }
                }
        }
}
static void __cpuinit cache_remove_shared_cpu_map(unsigned int cpu, int index)
{
        struct _cpuid4_info     *this_leaf, *sibling_leaf;
        int sibling;

        this_leaf = CPUID4_INFO_IDX(cpu, index);
        for_each_cpu_mask_nr(sibling, this_leaf->shared_cpu_map) {
                sibling_leaf = CPUID4_INFO_IDX(sibling, index);
                cpu_clear(cpu, sibling_leaf->shared_cpu_map);
        }
}
#else
static void __cpuinit cache_shared_cpu_map_setup(unsigned int cpu, int index) {}
static void __cpuinit cache_remove_shared_cpu_map(unsigned int cpu, int index) {}
#endif

static void __cpuinit free_cache_attributes(unsigned int cpu)
{
        int i;

        for (i = 0; i < num_cache_leaves; i++)
                cache_remove_shared_cpu_map(cpu, i);

        kfree(per_cpu(cpuid4_info, cpu));
        per_cpu(cpuid4_info, cpu) = NULL;
}

static int __cpuinit detect_cache_attributes(unsigned int cpu)
{
        struct _cpuid4_info     *this_leaf;
        unsigned long           j;
        int                     retval;
        cpumask_t               oldmask;

        if (num_cache_leaves == 0)
                return -ENOENT;

        per_cpu(cpuid4_info, cpu) = kzalloc(
            sizeof(struct _cpuid4_info) * num_cache_leaves, GFP_KERNEL);
        if (per_cpu(cpuid4_info, cpu) == NULL)
                return -ENOMEM;

        oldmask = current->cpus_allowed;
        retval = set_cpus_allowed_ptr(current, &cpumask_of_cpu(cpu));
        if (retval)
                goto out;

        /* Do cpuid and store the results */
        for (j = 0; j < num_cache_leaves; j++) {
                this_leaf = CPUID4_INFO_IDX(cpu, j);
                retval = cpuid4_cache_lookup(j, this_leaf);
                if (unlikely(retval < 0)) {
                        int i;

                        for (i = 0; i < j; i++)
                                cache_remove_shared_cpu_map(cpu, i);
                        break;
                }
                cache_shared_cpu_map_setup(cpu, j);
        }
        set_cpus_allowed_ptr(current, &oldmask);

out:
        if (retval) {
                kfree(per_cpu(cpuid4_info, cpu));
                per_cpu(cpuid4_info, cpu) = NULL;
        }

        return retval;
}

#ifdef CONFIG_SYSFS

#include <linux/kobject.h>
#include <linux/sysfs.h>

extern struct sysdev_class cpu_sysdev_class; /* from drivers/base/cpu.c */

/* pointer to kobject for cpuX/cache */
static DEFINE_PER_CPU(struct kobject *, cache_kobject);

struct _index_kobject {
        struct kobject kobj;
        unsigned int cpu;
        unsigned short index;
};

/* pointer to array of kobjects for cpuX/cache/indexY */
static DEFINE_PER_CPU(struct _index_kobject *, index_kobject);
#define INDEX_KOBJECT_PTR(x, y)         (&((per_cpu(index_kobject, x))[y]))

#define show_one_plus(file_name, object, val)                           \
static ssize_t show_##file_name                                         \
                        (struct _cpuid4_info *this_leaf, char *buf)     \
{                                                                       \
        return sprintf (buf, "%lu\n", (unsigned long)this_leaf->object + val); \
}

show_one_plus(level, eax.split.level, 0);
show_one_plus(coherency_line_size, ebx.split.coherency_line_size, 1);
show_one_plus(physical_line_partition, ebx.split.physical_line_partition, 1);
show_one_plus(ways_of_associativity, ebx.split.ways_of_associativity, 1);
show_one_plus(number_of_sets, ecx.split.number_of_sets, 1);

static ssize_t show_size(struct _cpuid4_info *this_leaf, char *buf)
{
        return sprintf (buf, "%luK\n", this_leaf->size / 1024);
}

static ssize_t show_shared_cpu_map_func(struct _cpuid4_info *this_leaf,
                                        int type, char *buf)
{
        ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf;
        int n = 0;

        if (len > 1) {
                cpumask_t *mask = &this_leaf->shared_cpu_map;

                n = type?
                        cpulist_scnprintf(buf, len-2, *mask):
                        cpumask_scnprintf(buf, len-2, *mask);
                buf[n++] = '\n';
                buf[n] = '\0';
        }
        return n;
}

static inline ssize_t show_shared_cpu_map(struct _cpuid4_info *leaf, char *buf)
{
        return show_shared_cpu_map_func(leaf, 0, buf);
}

static inline ssize_t show_shared_cpu_list(struct _cpuid4_info *leaf, char *buf)
{
        return show_shared_cpu_map_func(leaf, 1, buf);
}

static ssize_t show_type(struct _cpuid4_info *this_leaf, char *buf) {
        switch(this_leaf->eax.split.type) {
            case CACHE_TYPE_DATA:
                return sprintf(buf, "Data\n");
                break;
            case CACHE_TYPE_INST:
                return sprintf(buf, "Instruction\n");
                break;
            case CACHE_TYPE_UNIFIED:
                return sprintf(buf, "Unified\n");
                break;
            default:
                return sprintf(buf, "Unknown\n");
                break;
        }
}

#define to_object(k)    container_of(k, struct _index_kobject, kobj)
#define to_attr(a)      container_of(a, struct _cache_attr, attr)

#ifdef CONFIG_PCI
static struct pci_dev *get_k8_northbridge(int node)
{
        struct pci_dev *dev = NULL;
        int i;

        for (i = 0; i <= node; i++) {
                do {
                        dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev);
                        if (!dev)
                                break;
                } while (!pci_match_id(&k8_nb_id[0], dev));
                if (!dev)
                        break;
        }
        return dev;
}
#else
static struct pci_dev *get_k8_northbridge(int node)
{
        return NULL;
}
#endif

static ssize_t show_cache_disable(struct _cpuid4_info *this_leaf, char *buf)
{
        int node = cpu_to_node(first_cpu(this_leaf->shared_cpu_map));
        struct pci_dev *dev = NULL;
        ssize_t ret = 0;
        int i;

        if (!this_leaf->can_disable)
                return sprintf(buf, "Feature not enabled\n");

        dev = get_k8_northbridge(node);
        if (!dev) {
                printk(KERN_ERR "Attempting AMD northbridge operation on a system with no northbridge\n");
                return -EINVAL;
        }

        for (i = 0; i < 2; i++) {
                unsigned int reg;

                pci_read_config_dword(dev, 0x1BC + i * 4, &reg);

                ret += sprintf(buf, "%sEntry: %d\n", buf, i);
                ret += sprintf(buf, "%sReads:  %s\tNew Entries: %s\n",  
                        buf,
                        reg & 0x80000000 ? "Disabled" : "Allowed",
                        reg & 0x40000000 ? "Disabled" : "Allowed");
                ret += sprintf(buf, "%sSubCache: %x\tIndex: %x\n",
                        buf, (reg & 0x30000) >> 16, reg & 0xfff);
        }
        return ret;
}

static ssize_t
store_cache_disable(struct _cpuid4_info *this_leaf, const char *buf,
                    size_t count)
{
        int node = cpu_to_node(first_cpu(this_leaf->shared_cpu_map));
        struct pci_dev *dev = NULL;
        unsigned int ret, index, val;

        if (!this_leaf->can_disable)
                return 0;

        if (strlen(buf) > 15)
                return -EINVAL;

        ret = sscanf(buf, "%x %x", &index, &val);
        if (ret != 2)
                return -EINVAL;
        if (index > 1)
                return -EINVAL;

        val |= 0xc0000000;
        dev = get_k8_northbridge(node);
        if (!dev) {
                printk(KERN_ERR "Attempting AMD northbridge operation on a system with no northbridge\n");
                return -EINVAL;
        }

        pci_write_config_dword(dev, 0x1BC + index * 4, val & ~0x40000000);
        wbinvd();
        pci_write_config_dword(dev, 0x1BC + index * 4, val);

        return 1;
}

struct _cache_attr {
        struct attribute attr;
        ssize_t (*show)(struct _cpuid4_info *, char *);
        ssize_t (*store)(struct _cpuid4_info *, const char *, size_t count);
};

#define define_one_ro(_name) \
static struct _cache_attr _name = \
        __ATTR(_name, 0444, show_##_name, NULL)

define_one_ro(level);
define_one_ro(type);
define_one_ro(coherency_line_size);
define_one_ro(physical_line_partition);
define_one_ro(ways_of_associativity);
define_one_ro(number_of_sets);
define_one_ro(size);
define_one_ro(shared_cpu_map);
define_one_ro(shared_cpu_list);

static struct _cache_attr cache_disable = __ATTR(cache_disable, 0644, show_cache_disable, store_cache_disable);

static struct attribute * default_attrs[] = {
        &type.attr,
        &level.attr,
        &coherency_line_size.attr,
        &physical_line_partition.attr,
        &ways_of_associativity.attr,
        &number_of_sets.attr,
        &size.attr,
        &shared_cpu_map.attr,
        &shared_cpu_list.attr,
        &cache_disable.attr,
        NULL
};

static ssize_t show(struct kobject * kobj, struct attribute * attr, char * buf)
{
        struct _cache_attr *fattr = to_attr(attr);
        struct _index_kobject *this_leaf = to_object(kobj);
        ssize_t ret;

        ret = fattr->show ?
                fattr->show(CPUID4_INFO_IDX(this_leaf->cpu, this_leaf->index),
                        buf) :
                0;
        return ret;
}

static ssize_t store(struct kobject * kobj, struct attribute * attr,
                     const char * buf, size_t count)
{
        struct _cache_attr *fattr = to_attr(attr);
        struct _index_kobject *this_leaf = to_object(kobj);
        ssize_t ret;

        ret = fattr->store ?
                fattr->store(CPUID4_INFO_IDX(this_leaf->cpu, this_leaf->index),
                        buf, count) :
                0;
        return ret;
}

static struct sysfs_ops sysfs_ops = {
        .show   = show,
        .store  = store,
};

static struct kobj_type ktype_cache = {
        .sysfs_ops      = &sysfs_ops,
        .default_attrs  = default_attrs,
};

static struct kobj_type ktype_percpu_entry = {
        .sysfs_ops      = &sysfs_ops,
};

static void __cpuinit cpuid4_cache_sysfs_exit(unsigned int cpu)
{
        kfree(per_cpu(cache_kobject, cpu));
        kfree(per_cpu(index_kobject, cpu));
        per_cpu(cache_kobject, cpu) = NULL;
        per_cpu(index_kobject, cpu) = NULL;
        free_cache_attributes(cpu);
}

static int __cpuinit cpuid4_cache_sysfs_init(unsigned int cpu)
{
        int err;

        if (num_cache_leaves == 0)
                return -ENOENT;

        err = detect_cache_attributes(cpu);
        if (err)
                return err;

        /* Allocate all required memory */
        per_cpu(cache_kobject, cpu) =
                kzalloc(sizeof(struct kobject), GFP_KERNEL);
        if (unlikely(per_cpu(cache_kobject, cpu) == NULL))
                goto err_out;

        per_cpu(index_kobject, cpu) = kzalloc(
            sizeof(struct _index_kobject ) * num_cache_leaves, GFP_KERNEL);
        if (unlikely(per_cpu(index_kobject, cpu) == NULL))
                goto err_out;

        return 0;

err_out:
        cpuid4_cache_sysfs_exit(cpu);
        return -ENOMEM;
}

static cpumask_t cache_dev_map = CPU_MASK_NONE;

/* Add/Remove cache interface for CPU device */
static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
{
        unsigned int cpu = sys_dev->id;
        unsigned long i, j;
        struct _index_kobject *this_object;
        int retval;

        retval = cpuid4_cache_sysfs_init(cpu);
        if (unlikely(retval < 0))
                return retval;

        retval = kobject_init_and_add(per_cpu(cache_kobject, cpu),
                                      &ktype_percpu_entry,
                                      &sys_dev->kobj, "%s", "cache");
        if (retval < 0) {
                cpuid4_cache_sysfs_exit(cpu);
                return retval;
        }

        for (i = 0; i < num_cache_leaves; i++) {
                this_object = INDEX_KOBJECT_PTR(cpu,i);
                this_object->cpu = cpu;
                this_object->index = i;
                retval = kobject_init_and_add(&(this_object->kobj),
                                              &ktype_cache,
                                              per_cpu(cache_kobject, cpu),
                                              "index%1lu", i);
                if (unlikely(retval)) {
                        for (j = 0; j < i; j++) {
                                kobject_put(&(INDEX_KOBJECT_PTR(cpu,j)->kobj));
                        }
                        kobject_put(per_cpu(cache_kobject, cpu));
                        cpuid4_cache_sysfs_exit(cpu);
                        return retval;
                }
                kobject_uevent(&(this_object->kobj), KOBJ_ADD);
        }
        cpu_set(cpu, cache_dev_map);

        kobject_uevent(per_cpu(cache_kobject, cpu), KOBJ_ADD);
        return 0;
}

static void __cpuinit cache_remove_dev(struct sys_device * sys_dev)
{
        unsigned int cpu = sys_dev->id;
        unsigned long i;

        if (per_cpu(cpuid4_info, cpu) == NULL)
                return;
        if (!cpu_isset(cpu, cache_dev_map))
                return;
        cpu_clear(cpu, cache_dev_map);

        for (i = 0; i < num_cache_leaves; i++)
                kobject_put(&(INDEX_KOBJECT_PTR(cpu,i)->kobj));
        kobject_put(per_cpu(cache_kobject, cpu));
        cpuid4_cache_sysfs_exit(cpu);
}

static int __cpuinit cacheinfo_cpu_callback(struct notifier_block *nfb,
                                        unsigned long action, void *hcpu)
{
        unsigned int cpu = (unsigned long)hcpu;
        struct sys_device *sys_dev;

        sys_dev = get_cpu_sysdev(cpu);
        switch (action) {
        case CPU_ONLINE:
        case CPU_ONLINE_FROZEN:
                cache_add_dev(sys_dev);
                break;
        case CPU_DEAD:
        case CPU_DEAD_FROZEN:
                cache_remove_dev(sys_dev);
                break;
        }
        return NOTIFY_OK;
}

static struct notifier_block __cpuinitdata cacheinfo_cpu_notifier =
{
        .notifier_call = cacheinfo_cpu_callback,
};

static int __cpuinit cache_sysfs_init(void)
{
        int i;

        if (num_cache_leaves == 0)
                return 0;

        for_each_online_cpu(i) {
                int err;
                struct sys_device *sys_dev = get_cpu_sysdev(i);

                err = cache_add_dev(sys_dev);
                if (err)
                        return err;
        }
        register_hotcpu_notifier(&cacheinfo_cpu_notifier);
        return 0;
}

device_initcall(cache_sysfs_init);

#endif

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading