[funini.com] -> [kei@sodan] -> Kernel Reading

root/arch/x86/kvm/svm.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. to_svm
  2. svm_has
  3. pop_irq
  4. push_irq
  5. clgi
  6. stgi
  7. invlpga
  8. kvm_read_cr2
  9. kvm_write_cr2
  10. read_dr6
  11. write_dr6
  12. read_dr7
  13. write_dr7
  14. force_new_asid
  15. flush_guest_tlb
  16. svm_set_efer
  17. svm_queue_exception
  18. svm_exception_injected
  19. is_external_interrupt
  20. skip_emulated_instruction
  21. has_svm
  22. svm_hardware_disable
  23. svm_hardware_enable
  24. svm_cpu_uninit
  25. svm_cpu_init
  26. set_msr_interception
  27. svm_vcpu_init_msrpm
  28. svm_enable_lbrv
  29. svm_disable_lbrv
  30. svm_hardware_setup
  31. svm_hardware_unsetup
  32. init_seg
  33. init_sys_seg
  34. init_vmcb
  35. svm_vcpu_reset
  36. svm_create_vcpu
  37. svm_free_vcpu
  38. svm_vcpu_load
  39. svm_vcpu_put
  40. svm_cache_regs
  41. svm_decache_regs
  42. svm_get_rflags
  43. svm_set_rflags
  44. svm_seg
  45. svm_get_segment_base
  46. svm_get_segment
  47. svm_get_cpl
  48. svm_get_idt
  49. svm_set_idt
  50. svm_get_gdt
  51. svm_set_gdt
  52. svm_decache_cr4_guest_bits
  53. svm_set_cr0
  54. svm_set_cr4
  55. svm_set_segment
  56. svm_guest_debug
  57. svm_get_irq
  58. load_host_msrs
  59. save_host_msrs
  60. new_asid
  61. svm_get_dr
  62. svm_set_dr
  63. pf_interception
  64. ud_interception
  65. nm_interception
  66. mc_interception
  67. shutdown_interception
  68. io_interception
  69. nmi_interception
  70. intr_interception
  71. nop_on_interception
  72. halt_interception
  73. vmmcall_interception
  74. invalid_op_interception
  75. task_switch_interception
  76. cpuid_interception
  77. emulate_on_interception
  78. cr8_write_interception
  79. svm_get_msr
  80. rdmsr_interception
  81. svm_set_msr
  82. wrmsr_interception
  83. msr_interception
  84. interrupt_window_interception
  85. handle_exit
  86. reload_tss
  87. pre_svm_run
  88. svm_inject_irq
  89. svm_set_irq
  90. update_cr8_intercept
  91. svm_intr_assist
  92. kvm_reput_irq
  93. svm_do_inject_vector
  94. do_interrupt_requests
  95. svm_set_tss_addr
  96. save_db_regs
  97. load_db_regs
  98. svm_flush_tlb
  99. svm_prepare_guest_switch
  100. sync_cr8_to_lapic
  101. sync_lapic_to_cr8
  102. svm_vcpu_run
  103. svm_set_cr3
  104. is_disabled
  105. svm_patch_hypercall
  106. svm_check_processor_compat
  107. svm_cpu_has_accelerated_tpr
  108. get_npt_level
  109. svm_init
  110. svm_exit

/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * AMD SVM support
 *
 * Copyright (C) 2006 Qumranet, Inc.
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */
#include <linux/kvm_host.h>

#include "kvm_svm.h"
#include "irq.h"
#include "mmu.h"

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/vmalloc.h>
#include <linux/highmem.h>
#include <linux/sched.h>

#include <asm/desc.h>

#define __ex(x) __kvm_handle_fault_on_reboot(x)

MODULE_AUTHOR("Qumranet");
MODULE_LICENSE("GPL");

#define IOPM_ALLOC_ORDER 2
#define MSRPM_ALLOC_ORDER 1

#define DB_VECTOR 1
#define UD_VECTOR 6
#define GP_VECTOR 13

#define DR7_GD_MASK (1 << 13)
#define DR6_BD_MASK (1 << 13)

#define SEG_TYPE_LDT 2
#define SEG_TYPE_BUSY_TSS16 3

#define SVM_FEATURE_NPT  (1 << 0)
#define SVM_FEATURE_LBRV (1 << 1)
#define SVM_DEATURE_SVML (1 << 2)

#define DEBUGCTL_RESERVED_BITS (~(0x3fULL))

/* enable NPT for AMD64 and X86 with PAE */
#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
static bool npt_enabled = true;
#else
static bool npt_enabled = false;
#endif
static int npt = 1;

module_param(npt, int, S_IRUGO);

static void kvm_reput_irq(struct vcpu_svm *svm);
static void svm_flush_tlb(struct kvm_vcpu *vcpu);

static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
{
        return container_of(vcpu, struct vcpu_svm, vcpu);
}

static unsigned long iopm_base;

struct kvm_ldttss_desc {
        u16 limit0;
        u16 base0;
        unsigned base1 : 8, type : 5, dpl : 2, p : 1;
        unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
        u32 base3;
        u32 zero1;
} __attribute__((packed));

struct svm_cpu_data {
        int cpu;

        u64 asid_generation;
        u32 max_asid;
        u32 next_asid;
        struct kvm_ldttss_desc *tss_desc;

        struct page *save_area;
};

static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
static uint32_t svm_features;

struct svm_init_data {
        int cpu;
        int r;
};

static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};

#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
#define MSRS_RANGE_SIZE 2048
#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)

#define MAX_INST_SIZE 15

static inline u32 svm_has(u32 feat)
{
        return svm_features & feat;
}

static inline u8 pop_irq(struct kvm_vcpu *vcpu)
{
        int word_index = __ffs(vcpu->arch.irq_summary);
        int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
        int irq = word_index * BITS_PER_LONG + bit_index;

        clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
        if (!vcpu->arch.irq_pending[word_index])
                clear_bit(word_index, &vcpu->arch.irq_summary);
        return irq;
}

static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
{
        set_bit(irq, vcpu->arch.irq_pending);
        set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
}

static inline void clgi(void)
{
        asm volatile (__ex(SVM_CLGI));
}

static inline void stgi(void)
{
        asm volatile (__ex(SVM_STGI));
}

static inline void invlpga(unsigned long addr, u32 asid)
{
        asm volatile (__ex(SVM_INVLPGA) :: "a"(addr), "c"(asid));
}

static inline unsigned long kvm_read_cr2(void)
{
        unsigned long cr2;

        asm volatile ("mov %%cr2, %0" : "=r" (cr2));
        return cr2;
}

static inline void kvm_write_cr2(unsigned long val)
{
        asm volatile ("mov %0, %%cr2" :: "r" (val));
}

static inline unsigned long read_dr6(void)
{
        unsigned long dr6;

        asm volatile ("mov %%dr6, %0" : "=r" (dr6));
        return dr6;
}

static inline void write_dr6(unsigned long val)
{
        asm volatile ("mov %0, %%dr6" :: "r" (val));
}

static inline unsigned long read_dr7(void)
{
        unsigned long dr7;

        asm volatile ("mov %%dr7, %0" : "=r" (dr7));
        return dr7;
}

static inline void write_dr7(unsigned long val)
{
        asm volatile ("mov %0, %%dr7" :: "r" (val));
}

static inline void force_new_asid(struct kvm_vcpu *vcpu)
{
        to_svm(vcpu)->asid_generation--;
}

static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
{
        force_new_asid(vcpu);
}

static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
{
        if (!npt_enabled && !(efer & EFER_LMA))
                efer &= ~EFER_LME;

        to_svm(vcpu)->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
        vcpu->arch.shadow_efer = efer;
}

static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
                                bool has_error_code, u32 error_code)
{
        struct vcpu_svm *svm = to_svm(vcpu);

        svm->vmcb->control.event_inj = nr
                | SVM_EVTINJ_VALID
                | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
                | SVM_EVTINJ_TYPE_EXEPT;
        svm->vmcb->control.event_inj_err = error_code;
}

static bool svm_exception_injected(struct kvm_vcpu *vcpu)
{
        struct vcpu_svm *svm = to_svm(vcpu);

        return !(svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID);
}

static int is_external_interrupt(u32 info)
{
        info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
        return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
}

static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
{
        struct vcpu_svm *svm = to_svm(vcpu);

        if (!svm->next_rip) {
                printk(KERN_DEBUG "%s: NOP\n", __func__);
                return;
        }
        if (svm->next_rip - svm->vmcb->save.rip > MAX_INST_SIZE)
                printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
                       __func__,
                       svm->vmcb->save.rip,
                       svm->next_rip);

        vcpu->arch.rip = svm->vmcb->save.rip = svm->next_rip;
        svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;

        vcpu->arch.interrupt_window_open = 1;
}

static int has_svm(void)
{
        uint32_t eax, ebx, ecx, edx;

        if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
                printk(KERN_INFO "has_svm: not amd\n");
                return 0;
        }

        cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
        if (eax < SVM_CPUID_FUNC) {
                printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
                return 0;
        }

        cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
        if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
                printk(KERN_DEBUG "has_svm: svm not available\n");
                return 0;
        }
        return 1;
}

static void svm_hardware_disable(void *garbage)
{
        uint64_t efer;

        wrmsrl(MSR_VM_HSAVE_PA, 0);
        rdmsrl(MSR_EFER, efer);
        wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
}

static void svm_hardware_enable(void *garbage)
{

        struct svm_cpu_data *svm_data;
        uint64_t efer;
        struct desc_ptr gdt_descr;
        struct desc_struct *gdt;
        int me = raw_smp_processor_id();

        if (!has_svm()) {
                printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
                return;
        }
        svm_data = per_cpu(svm_data, me);

        if (!svm_data) {
                printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
                       me);
                return;
        }

        svm_data->asid_generation = 1;
        svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
        svm_data->next_asid = svm_data->max_asid + 1;

        asm volatile ("sgdt %0" : "=m"(gdt_descr));
        gdt = (struct desc_struct *)gdt_descr.address;
        svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);

        rdmsrl(MSR_EFER, efer);
        wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);

        wrmsrl(MSR_VM_HSAVE_PA,
               page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
}

static void svm_cpu_uninit(int cpu)
{
        struct svm_cpu_data *svm_data
                = per_cpu(svm_data, raw_smp_processor_id());

        if (!svm_data)
                return;

        per_cpu(svm_data, raw_smp_processor_id()) = NULL;
        __free_page(svm_data->save_area);
        kfree(svm_data);
}

static int svm_cpu_init(int cpu)
{
        struct svm_cpu_data *svm_data;
        int r;

        svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
        if (!svm_data)
                return -ENOMEM;
        svm_data->cpu = cpu;
        svm_data->save_area = alloc_page(GFP_KERNEL);
        r = -ENOMEM;
        if (!svm_data->save_area)
                goto err_1;

        per_cpu(svm_data, cpu) = svm_data;

        return 0;

err_1:
        kfree(svm_data);
        return r;

}

static void set_msr_interception(u32 *msrpm, unsigned msr,
                                 int read, int write)
{
        int i;

        for (i = 0; i < NUM_MSR_MAPS; i++) {
                if (msr >= msrpm_ranges[i] &&
                    msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
                        u32 msr_offset = (i * MSRS_IN_RANGE + msr -
                                          msrpm_ranges[i]) * 2;

                        u32 *base = msrpm + (msr_offset / 32);
                        u32 msr_shift = msr_offset % 32;
                        u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
                        *base = (*base & ~(0x3 << msr_shift)) |
                                (mask << msr_shift);
                        return;
                }
        }
        BUG();
}

static void svm_vcpu_init_msrpm(u32 *msrpm)
{
        memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));

#ifdef CONFIG_X86_64
        set_msr_interception(msrpm, MSR_GS_BASE, 1, 1);
        set_msr_interception(msrpm, MSR_FS_BASE, 1, 1);
        set_msr_interception(msrpm, MSR_KERNEL_GS_BASE, 1, 1);
        set_msr_interception(msrpm, MSR_LSTAR, 1, 1);
        set_msr_interception(msrpm, MSR_CSTAR, 1, 1);
        set_msr_interception(msrpm, MSR_SYSCALL_MASK, 1, 1);
#endif
        set_msr_interception(msrpm, MSR_K6_STAR, 1, 1);
        set_msr_interception(msrpm, MSR_IA32_SYSENTER_CS, 1, 1);
        set_msr_interception(msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
        set_msr_interception(msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
}

static void svm_enable_lbrv(struct vcpu_svm *svm)
{
        u32 *msrpm = svm->msrpm;

        svm->vmcb->control.lbr_ctl = 1;
        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
        set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
        set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
}

static void svm_disable_lbrv(struct vcpu_svm *svm)
{
        u32 *msrpm = svm->msrpm;

        svm->vmcb->control.lbr_ctl = 0;
        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
        set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
        set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
}

static __init int svm_hardware_setup(void)
{
        int cpu;
        struct page *iopm_pages;
        void *iopm_va;
        int r;

        iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);

        if (!iopm_pages)
                return -ENOMEM;

        iopm_va = page_address(iopm_pages);
        memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
        clear_bit(0x80, iopm_va); /* allow direct access to PC debug port */
        iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;

        if (boot_cpu_has(X86_FEATURE_NX))
                kvm_enable_efer_bits(EFER_NX);

        for_each_online_cpu(cpu) {
                r = svm_cpu_init(cpu);
                if (r)
                        goto err;
        }

        svm_features = cpuid_edx(SVM_CPUID_FUNC);

        if (!svm_has(SVM_FEATURE_NPT))
                npt_enabled = false;

        if (npt_enabled && !npt) {
                printk(KERN_INFO "kvm: Nested Paging disabled\n");
                npt_enabled = false;
        }

        if (npt_enabled) {
                printk(KERN_INFO "kvm: Nested Paging enabled\n");
                kvm_enable_tdp();
        } else
                kvm_disable_tdp();

        return 0;

err:
        __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
        iopm_base = 0;
        return r;
}

static __exit void svm_hardware_unsetup(void)
{
        int cpu;

        for_each_online_cpu(cpu)
                svm_cpu_uninit(cpu);

        __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
        iopm_base = 0;
}

static void init_seg(struct vmcb_seg *seg)
{
        seg->selector = 0;
        seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
                SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
        seg->limit = 0xffff;
        seg->base = 0;
}

static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
{
        seg->selector = 0;
        seg->attrib = SVM_SELECTOR_P_MASK | type;
        seg->limit = 0xffff;
        seg->base = 0;
}

static void init_vmcb(struct vcpu_svm *svm)
{
        struct vmcb_control_area *control = &svm->vmcb->control;
        struct vmcb_save_area *save = &svm->vmcb->save;

        control->intercept_cr_read =    INTERCEPT_CR0_MASK |
                                        INTERCEPT_CR3_MASK |
                                        INTERCEPT_CR4_MASK;

        control->intercept_cr_write =   INTERCEPT_CR0_MASK |
                                        INTERCEPT_CR3_MASK |
                                        INTERCEPT_CR4_MASK |
                                        INTERCEPT_CR8_MASK;

        control->intercept_dr_read =    INTERCEPT_DR0_MASK |
                                        INTERCEPT_DR1_MASK |
                                        INTERCEPT_DR2_MASK |
                                        INTERCEPT_DR3_MASK;

        control->intercept_dr_write =   INTERCEPT_DR0_MASK |
                                        INTERCEPT_DR1_MASK |
                                        INTERCEPT_DR2_MASK |
                                        INTERCEPT_DR3_MASK |
                                        INTERCEPT_DR5_MASK |
                                        INTERCEPT_DR7_MASK;

        control->intercept_exceptions = (1 << PF_VECTOR) |
                                        (1 << UD_VECTOR) |
                                        (1 << MC_VECTOR);


        control->intercept =    (1ULL << INTERCEPT_INTR) |
                                (1ULL << INTERCEPT_NMI) |
                                (1ULL << INTERCEPT_SMI) |
                                (1ULL << INTERCEPT_CPUID) |
                                (1ULL << INTERCEPT_INVD) |
                                (1ULL << INTERCEPT_HLT) |
                                (1ULL << INTERCEPT_INVLPGA) |
                                (1ULL << INTERCEPT_IOIO_PROT) |
                                (1ULL << INTERCEPT_MSR_PROT) |
                                (1ULL << INTERCEPT_TASK_SWITCH) |
                                (1ULL << INTERCEPT_SHUTDOWN) |
                                (1ULL << INTERCEPT_VMRUN) |
                                (1ULL << INTERCEPT_VMMCALL) |
                                (1ULL << INTERCEPT_VMLOAD) |
                                (1ULL << INTERCEPT_VMSAVE) |
                                (1ULL << INTERCEPT_STGI) |
                                (1ULL << INTERCEPT_CLGI) |
                                (1ULL << INTERCEPT_SKINIT) |
                                (1ULL << INTERCEPT_WBINVD) |
                                (1ULL << INTERCEPT_MONITOR) |
                                (1ULL << INTERCEPT_MWAIT);

        control->iopm_base_pa = iopm_base;
        control->msrpm_base_pa = __pa(svm->msrpm);
        control->tsc_offset = 0;
        control->int_ctl = V_INTR_MASKING_MASK;

        init_seg(&save->es);
        init_seg(&save->ss);
        init_seg(&save->ds);
        init_seg(&save->fs);
        init_seg(&save->gs);

        save->cs.selector = 0xf000;
        /* Executable/Readable Code Segment */
        save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
                SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
        save->cs.limit = 0xffff;
        /*
         * cs.base should really be 0xffff0000, but vmx can't handle that, so
         * be consistent with it.
         *
         * Replace when we have real mode working for vmx.
         */
        save->cs.base = 0xf0000;

        save->gdtr.limit = 0xffff;
        save->idtr.limit = 0xffff;

        init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
        init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);

        save->efer = MSR_EFER_SVME_MASK;
        save->dr6 = 0xffff0ff0;
        save->dr7 = 0x400;
        save->rflags = 2;
        save->rip = 0x0000fff0;

        /*
         * cr0 val on cpu init should be 0x60000010, we enable cpu
         * cache by default. the orderly way is to enable cache in bios.
         */
        save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
        save->cr4 = X86_CR4_PAE;
        /* rdx = ?? */

        if (npt_enabled) {
                /* Setup VMCB for Nested Paging */
                control->nested_ctl = 1;
                control->intercept &= ~(1ULL << INTERCEPT_TASK_SWITCH);
                control->intercept_exceptions &= ~(1 << PF_VECTOR);
                control->intercept_cr_read &= ~(INTERCEPT_CR0_MASK|
                                                INTERCEPT_CR3_MASK);
                control->intercept_cr_write &= ~(INTERCEPT_CR0_MASK|
                                                 INTERCEPT_CR3_MASK);
                save->g_pat = 0x0007040600070406ULL;
                /* enable caching because the QEMU Bios doesn't enable it */
                save->cr0 = X86_CR0_ET;
                save->cr3 = 0;
                save->cr4 = 0;
        }
        force_new_asid(&svm->vcpu);
}

static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
{
        struct vcpu_svm *svm = to_svm(vcpu);

        init_vmcb(svm);

        if (vcpu->vcpu_id != 0) {
                svm->vmcb->save.rip = 0;
                svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
                svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
        }

        return 0;
}

static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
{
        struct vcpu_svm *svm;
        struct page *page;
        struct page *msrpm_pages;
        int err;

        svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
        if (!svm) {
                err = -ENOMEM;
                goto out;
        }

        err = kvm_vcpu_init(&svm->vcpu, kvm, id);
        if (err)
                goto free_svm;

        page = alloc_page(GFP_KERNEL);
        if (!page) {
                err = -ENOMEM;
                goto uninit;
        }

        err = -ENOMEM;
        msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
        if (!msrpm_pages)
                goto uninit;
        svm->msrpm = page_address(msrpm_pages);
        svm_vcpu_init_msrpm(svm->msrpm);

        svm->vmcb = page_address(page);
        clear_page(svm->vmcb);
        svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
        svm->asid_generation = 0;
        memset(svm->db_regs, 0, sizeof(svm->db_regs));
        init_vmcb(svm);

        fx_init(&svm->vcpu);
        svm->vcpu.fpu_active = 1;
        svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
        if (svm->vcpu.vcpu_id == 0)
                svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;

        return &svm->vcpu;

uninit:
        kvm_vcpu_uninit(&svm->vcpu);
free_svm:
        kmem_cache_free(kvm_vcpu_cache, svm);
out:
        return ERR_PTR(err);
}

static void svm_free_vcpu(struct kvm_vcpu *vcpu)
{
        struct vcpu_svm *svm = to_svm(vcpu);

        __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
        __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
        kvm_vcpu_uninit(vcpu);
        kmem_cache_free(kvm_vcpu_cache, svm);
}

static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
        struct vcpu_svm *svm = to_svm(vcpu);
        int i;

        if (unlikely(cpu != vcpu->cpu)) {
                u64 tsc_this, delta;

                /*
                 * Make sure that the guest sees a monotonically
                 * increasing TSC.
                 */
                rdtscll(tsc_this);
                delta = vcpu->arch.host_tsc - tsc_this;
                svm->vmcb->control.tsc_offset += delta;
                vcpu->cpu = cpu;
                kvm_migrate_timers(vcpu);
        }

        for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
                rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
}

static void svm_vcpu_put(struct kvm_vcpu *vcpu)
{
        struct vcpu_svm *svm = to_svm(vcpu);
        int i;

        ++vcpu->stat.host_state_reload;
        for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
                wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);

        rdtscll(vcpu->arch.host_tsc);
}

static void svm_cache_regs(struct kvm_vcpu *vcpu)
{
        struct vcpu_svm *svm = to_svm(vcpu);

        vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
        vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
        vcpu->arch.rip = svm->vmcb->save.rip;
}

static void svm_decache_regs(struct kvm_vcpu *vcpu)
{
        struct vcpu_svm *svm = to_svm(vcpu);
        svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
        svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
        svm->vmcb->save.rip = vcpu->arch.rip;
}

static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
{
        return to_svm(vcpu)->vmcb->save.rflags;
}

static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
{
        to_svm(vcpu)->vmcb->save.rflags = rflags;
}

static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
{
        struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;

        switch (seg) {
        case VCPU_SREG_CS: return &save->cs;
        case VCPU_SREG_DS: return &save->ds;
        case VCPU_SREG_ES: return &save->es;
        case VCPU_SREG_FS: return &save->fs;
        case VCPU_SREG_GS: return &save->gs;
        case VCPU_SREG_SS: return &save->ss;
        case VCPU_SREG_TR: return &save->tr;
        case VCPU_SREG_LDTR: return &save->ldtr;
        }
        BUG();
        return NULL;
}

static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
{
        struct vmcb_seg *s = svm_seg(vcpu, seg);

        return s->base;
}

static void svm_get_segment(struct kvm_vcpu *vcpu,
                            struct kvm_segment *var, int seg)
{
        struct vmcb_seg *s = svm_seg(vcpu, seg);

        var->base = s->base;
        var->limit = s->limit;
        var->selector = s->selector;
        var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
        var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
        var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
        var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
        var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
        var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
        var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
        var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
        var->unusable = !var->present;
}

static int svm_get_cpl(struct kvm_vcpu *vcpu)
{
        struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;

        return save->cpl;
}

static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
{
        struct vcpu_svm *svm = to_svm(vcpu);

        dt->limit = svm->vmcb->save.idtr.limit;
        dt->base = svm->vmcb->save.idtr.base;
}

static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
{
        struct vcpu_svm *svm = to_svm(vcpu);

        svm->vmcb->save.idtr.limit = dt->limit;
        svm->vmcb->save.idtr.base = dt->base ;
}

static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
{
        struct vcpu_svm *svm = to_svm(vcpu);

        dt->limit = svm->vmcb->save.gdtr.limit;
        dt->base = svm->vmcb->save.gdtr.base;
}

static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
{
        struct vcpu_svm *svm = to_svm(vcpu);

        svm->vmcb->save.gdtr.limit = dt->limit;
        svm->vmcb->save.gdtr.base = dt->base ;
}

static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
{
}

static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
{
        struct vcpu_svm *svm = to_svm(vcpu);

#ifdef CONFIG_X86_64
        if (vcpu->arch.shadow_efer & EFER_LME) {
                if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
                        vcpu->arch.shadow_efer |= EFER_LMA;
                        svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
                }

                if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
                        vcpu->arch.shadow_efer &= ~EFER_LMA;
                        svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
                }
        }
#endif
        if (npt_enabled)
                goto set;

        if ((vcpu->arch.cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
                svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
                vcpu->fpu_active = 1;
        }

        vcpu->arch.cr0 = cr0;
        cr0 |= X86_CR0_PG | X86_CR0_WP;
        if (!vcpu->fpu_active) {
                svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
                cr0 |= X86_CR0_TS;
        }
set:
        /*
         * re-enable caching here because the QEMU bios
         * does not do it - this results in some delay at
         * reboot
         */
        cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
        svm->vmcb->save.cr0 = cr0;
}

static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
{
        unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
        unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;

        if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
                force_new_asid(vcpu);

        vcpu->arch.cr4 = cr4;
        if (!npt_enabled)
                cr4 |= X86_CR4_PAE;
        cr4 |= host_cr4_mce;
        to_svm(vcpu)->vmcb->save.cr4 = cr4;
}

static void svm_set_segment(struct kvm_vcpu *vcpu,
                            struct kvm_segment *var, int seg)
{
        struct vcpu_svm *svm = to_svm(vcpu);
        struct vmcb_seg *s = svm_seg(vcpu, seg);

        s->base = var->base;
        s->limit = var->limit;
        s->selector = var->selector;
        if (var->unusable)
                s->attrib = 0;
        else {
                s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
                s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
                s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
                s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
                s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
                s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
                s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
                s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
        }
        if (seg == VCPU_SREG_CS)
                svm->vmcb->save.cpl
                        = (svm->vmcb->save.cs.attrib
                           >> SVM_SELECTOR_DPL_SHIFT) & 3;

}

static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
{
        return -EOPNOTSUPP;
}

static int svm_get_irq(struct kvm_vcpu *vcpu)
{
        struct vcpu_svm *svm = to_svm(vcpu);
        u32 exit_int_info = svm->vmcb->control.exit_int_info;

        if (is_external_interrupt(exit_int_info))
                return exit_int_info & SVM_EVTINJ_VEC_MASK;
        return -1;
}

static void load_host_msrs(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_X86_64
        wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
#endif
}

static void save_host_msrs(struct kvm_vcpu *vcpu)
{
#ifdef CONFIG_X86_64
        rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
#endif
}

static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
{
        if (svm_data->next_asid > svm_data->max_asid) {
                ++svm_data->asid_generation;
                svm_data->next_asid = 1;
                svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
        }

        svm->vcpu.cpu = svm_data->cpu;
        svm->asid_generation = svm_data->asid_generation;
        svm->vmcb->control.asid = svm_data->next_asid++;
}

static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
{
        unsigned long val = to_svm(vcpu)->db_regs[dr];
        KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
        return val;
}

static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
                       int *exception)
{
        struct vcpu_svm *svm = to_svm(vcpu);

        *exception = 0;

        if (svm->vmcb->save.dr7 & DR7_GD_MASK) {
                svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
                svm->vmcb->save.dr6 |= DR6_BD_MASK;
                *exception = DB_VECTOR;
                return;
        }

        switch (dr) {
        case 0 ... 3:
                svm->db_regs[dr] = value;
                return;
        case 4 ... 5:
                if (vcpu->arch.cr4 & X86_CR4_DE) {
                        *exception = UD_VECTOR;
                        return;
                }
        case 7: {
                if (value & ~((1ULL << 32) - 1)) {
                        *exception = GP_VECTOR;
                        return;
                }
                svm->vmcb->save.dr7 = value;
                return;
        }
        default:
                printk(KERN_DEBUG "%s: unexpected dr %u\n",
                       __func__, dr);
                *exception = UD_VECTOR;
                return;
        }
}

static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
        u32 exit_int_info = svm->vmcb->control.exit_int_info;
        struct kvm *kvm = svm->vcpu.kvm;
        u64 fault_address;
        u32 error_code;
        bool event_injection = false;

        if (!irqchip_in_kernel(kvm) &&
            is_external_interrupt(exit_int_info)) {
                event_injection = true;
                push_irq(&svm->vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
        }

        fault_address  = svm->vmcb->control.exit_info_2;
        error_code = svm->vmcb->control.exit_info_1;

        if (!npt_enabled)
                KVMTRACE_3D(PAGE_FAULT, &svm->vcpu, error_code,
                            (u32)fault_address, (u32)(fault_address >> 32),
                            handler);
        else
                KVMTRACE_3D(TDP_FAULT, &svm->vcpu, error_code,
                            (u32)fault_address, (u32)(fault_address >> 32),
                            handler);
        /*
         * FIXME: Tis shouldn't be necessary here, but there is a flush
         * missing in the MMU code. Until we find this bug, flush the
         * complete TLB here on an NPF
         */
        if (npt_enabled)
                svm_flush_tlb(&svm->vcpu);

        if (event_injection)
                kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
        return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
}

static int ud_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
        int er;

        er = emulate_instruction(&svm->vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
        if (er != EMULATE_DONE)
                kvm_queue_exception(&svm->vcpu, UD_VECTOR);
        return 1;
}

static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
        svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
        if (!(svm->vcpu.arch.cr0 & X86_CR0_TS))
                svm->vmcb->save.cr0 &= ~X86_CR0_TS;
        svm->vcpu.fpu_active = 1;

        return 1;
}

static int mc_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
        /*
         * On an #MC intercept the MCE handler is not called automatically in
         * the host. So do it by hand here.
         */
        asm volatile (
                "int $0x12\n");
        /* not sure if we ever come back to this point */

        return 1;
}

static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
        /*
         * VMCB is undefined after a SHUTDOWN intercept
         * so reinitialize it.
         */
        clear_page(svm->vmcb);
        init_vmcb(svm);

        kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
        return 0;
}

static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
        u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
        int size, down, in, string, rep;
        unsigned port;

        ++svm->vcpu.stat.io_exits;

        svm->next_rip = svm->vmcb->control.exit_info_2;

        string = (io_info & SVM_IOIO_STR_MASK) != 0;

        if (string) {
                if (emulate_instruction(&svm->vcpu,
                                        kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
                        return 0;
                return 1;
        }

        in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
        port = io_info >> 16;
        size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
        rep = (io_info & SVM_IOIO_REP_MASK) != 0;
        down = (svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;

        return kvm_emulate_pio(&svm->vcpu, kvm_run, in, size, port);
}

static int nmi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
        KVMTRACE_0D(NMI, &svm->vcpu, handler);
        return 1;
}

static int intr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
        ++svm->vcpu.stat.irq_exits;
        KVMTRACE_0D(INTR, &svm->vcpu, handler);
        return 1;
}

static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
        return 1;
}

static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
        svm->next_rip = svm->vmcb->save.rip + 1;
        skip_emulated_instruction(&svm->vcpu);
        return kvm_emulate_halt(&svm->vcpu);
}

static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
        svm->next_rip = svm->vmcb->save.rip + 3;
        skip_emulated_instruction(&svm->vcpu);
        kvm_emulate_hypercall(&svm->vcpu);
        return 1;
}

static int invalid_op_interception(struct vcpu_svm *svm,
                                   struct kvm_run *kvm_run)
{
        kvm_queue_exception(&svm->vcpu, UD_VECTOR);
        return 1;
}

static int task_switch_interception(struct vcpu_svm *svm,
                                    struct kvm_run *kvm_run)
{
        u16 tss_selector;

        tss_selector = (u16)svm->vmcb->control.exit_info_1;
        if (svm->vmcb->control.exit_info_2 &
            (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
                return kvm_task_switch(&svm->vcpu, tss_selector,
                                       TASK_SWITCH_IRET);
        if (svm->vmcb->control.exit_info_2 &
            (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
                return kvm_task_switch(&svm->vcpu, tss_selector,
                                       TASK_SWITCH_JMP);
        return kvm_task_switch(&svm->vcpu, tss_selector, TASK_SWITCH_CALL);
}

static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
        svm->next_rip = svm->vmcb->save.rip + 2;
        kvm_emulate_cpuid(&svm->vcpu);
        return 1;
}

static int emulate_on_interception(struct vcpu_svm *svm,
                                   struct kvm_run *kvm_run)
{
        if (emulate_instruction(&svm->vcpu, NULL, 0, 0, 0) != EMULATE_DONE)
                pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
        return 1;
}

static int cr8_write_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
        emulate_instruction(&svm->vcpu, NULL, 0, 0, 0);
        if (irqchip_in_kernel(svm->vcpu.kvm))
                return 1;
        kvm_run->exit_reason = KVM_EXIT_SET_TPR;
        return 0;
}

static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
{
        struct vcpu_svm *svm = to_svm(vcpu);

        switch (ecx) {
        case MSR_IA32_TIME_STAMP_COUNTER: {
                u64 tsc;

                rdtscll(tsc);
                *data = svm->vmcb->control.tsc_offset + tsc;
                break;
        }
        case MSR_K6_STAR:
                *data = svm->vmcb->save.star;
                break;
#ifdef CONFIG_X86_64
        case MSR_LSTAR:
                *data = svm->vmcb->save.lstar;
                break;
        case MSR_CSTAR:
                *data = svm->vmcb->save.cstar;
                break;
        case MSR_KERNEL_GS_BASE:
                *data = svm->vmcb->save.kernel_gs_base;
                break;
        case MSR_SYSCALL_MASK:
                *data = svm->vmcb->save.sfmask;
                break;
#endif
        case MSR_IA32_SYSENTER_CS:
                *data = svm->vmcb->save.sysenter_cs;
                break;
        case MSR_IA32_SYSENTER_EIP:
                *data = svm->vmcb->save.sysenter_eip;
                break;
        case MSR_IA32_SYSENTER_ESP:
                *data = svm->vmcb->save.sysenter_esp;
                break;
        /* Nobody will change the following 5 values in the VMCB so
           we can safely return them on rdmsr. They will always be 0
           until LBRV is implemented. */
        case MSR_IA32_DEBUGCTLMSR:
                *data = svm->vmcb->save.dbgctl;
                break;
        case MSR_IA32_LASTBRANCHFROMIP:
                *data = svm->vmcb->save.br_from;
                break;
        case MSR_IA32_LASTBRANCHTOIP:
                *data = svm->vmcb->save.br_to;
                break;
        case MSR_IA32_LASTINTFROMIP:
                *data = svm->vmcb->save.last_excp_from;
                break;
        case MSR_IA32_LASTINTTOIP:
                *data = svm->vmcb->save.last_excp_to;
                break;
        default:
                return kvm_get_msr_common(vcpu, ecx, data);
        }
        return 0;
}

static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
        u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
        u64 data;

        if (svm_get_msr(&svm->vcpu, ecx, &data))
                kvm_inject_gp(&svm->vcpu, 0);
        else {
                KVMTRACE_3D(MSR_READ, &svm->vcpu, ecx, (u32)data,
                            (u32)(data >> 32), handler);

                svm->vmcb->save.rax = data & 0xffffffff;
                svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
                svm->next_rip = svm->vmcb->save.rip + 2;
                skip_emulated_instruction(&svm->vcpu);
        }
        return 1;
}

static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
{
        struct vcpu_svm *svm = to_svm(vcpu);

        switch (ecx) {
        case MSR_IA32_TIME_STAMP_COUNTER: {
                u64 tsc;

                rdtscll(tsc);
                svm->vmcb->control.tsc_offset = data - tsc;
                break;
        }
        case MSR_K6_STAR:
                svm->vmcb->save.star = data;
                break;
#ifdef CONFIG_X86_64
        case MSR_LSTAR:
                svm->vmcb->save.lstar = data;
                break;
        case MSR_CSTAR:
                svm->vmcb->save.cstar = data;
                break;
        case MSR_KERNEL_GS_BASE:
                svm->vmcb->save.kernel_gs_base = data;
                break;
        case MSR_SYSCALL_MASK:
                svm->vmcb->save.sfmask = data;
                break;
#endif
        case MSR_IA32_SYSENTER_CS:
                svm->vmcb->save.sysenter_cs = data;
                break;
        case MSR_IA32_SYSENTER_EIP:
                svm->vmcb->save.sysenter_eip = data;
                break;
        case MSR_IA32_SYSENTER_ESP:
                svm->vmcb->save.sysenter_esp = data;
                break;
        case MSR_IA32_DEBUGCTLMSR:
                if (!svm_has(SVM_FEATURE_LBRV)) {
                        pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
                                        __func__, data);
                        break;
                }
                if (data & DEBUGCTL_RESERVED_BITS)
                        return 1;

                svm->vmcb->save.dbgctl = data;
                if (data & (1ULL<<0))
                        svm_enable_lbrv(svm);
                else
                        svm_disable_lbrv(svm);
                break;
        case MSR_K7_EVNTSEL0:
        case MSR_K7_EVNTSEL1:
        case MSR_K7_EVNTSEL2:
        case MSR_K7_EVNTSEL3:
        case MSR_K7_PERFCTR0:
        case MSR_K7_PERFCTR1:
        case MSR_K7_PERFCTR2:
        case MSR_K7_PERFCTR3:
                /*
                 * Just discard all writes to the performance counters; this
                 * should keep both older linux and windows 64-bit guests
                 * happy
                 */
                pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", ecx, data);

                break;
        default:
                return kvm_set_msr_common(vcpu, ecx, data);
        }
        return 0;
}

static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
        u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
        u64 data = (svm->vmcb->save.rax & -1u)
                | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);

        KVMTRACE_3D(MSR_WRITE, &svm->vcpu, ecx, (u32)data, (u32)(data >> 32),
                    handler);

        svm->next_rip = svm->vmcb->save.rip + 2;
        if (svm_set_msr(&svm->vcpu, ecx, data))
                kvm_inject_gp(&svm->vcpu, 0);
        else
                skip_emulated_instruction(&svm->vcpu);
        return 1;
}

static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
{
        if (svm->vmcb->control.exit_info_1)
                return wrmsr_interception(svm, kvm_run);
        else
                return rdmsr_interception(svm, kvm_run);
}

static int interrupt_window_interception(struct vcpu_svm *svm,
                                   struct kvm_run *kvm_run)
{
        KVMTRACE_0D(PEND_INTR, &svm->vcpu, handler);

        svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
        svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
        /*
         * If the user space waits to inject interrupts, exit as soon as
         * possible
         */
        if (kvm_run->request_interrupt_window &&
            !svm->vcpu.arch.irq_summary) {
                ++svm->vcpu.stat.irq_window_exits;
                kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
                return 0;
        }

        return 1;
}

static int (*svm_exit_handlers[])(struct vcpu_svm *svm,
                                      struct kvm_run *kvm_run) = {
        [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
        [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
        [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
        [SVM_EXIT_READ_CR8]                     = emulate_on_interception,
        /* for now: */
        [SVM_EXIT_WRITE_CR0]                    = emulate_on_interception,
        [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
        [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
        [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
        [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
        [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
        [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
        [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
        [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
        [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
        [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
        [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
        [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
        [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
        [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
        [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
        [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
        [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
        [SVM_EXIT_INTR]                         = intr_interception,
        [SVM_EXIT_NMI]                          = nmi_interception,
        [SVM_EXIT_SMI]                          = nop_on_interception,
        [SVM_EXIT_INIT]                         = nop_on_interception,
        [SVM_EXIT_VINTR]                        = interrupt_window_interception,
        /* [SVM_EXIT_CR0_SEL_WRITE]             = emulate_on_interception, */
        [SVM_EXIT_CPUID]                        = cpuid_interception,
        [SVM_EXIT_INVD]                         = emulate_on_interception,
        [SVM_EXIT_HLT]                          = halt_interception,
        [SVM_EXIT_INVLPG]                       = emulate_on_interception,
        [SVM_EXIT_INVLPGA]                      = invalid_op_interception,
        [SVM_EXIT_IOIO]                         = io_interception,
        [SVM_EXIT_MSR]                          = msr_interception,
        [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
        [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
        [SVM_EXIT_VMRUN]                        = invalid_op_interception,
        [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
        [SVM_EXIT_VMLOAD]                       = invalid_op_interception,
        [SVM_EXIT_VMSAVE]                       = invalid_op_interception,
        [SVM_EXIT_STGI]                         = invalid_op_interception,
        [SVM_EXIT_CLGI]                         = invalid_op_interception,
        [SVM_EXIT_SKINIT]                       = invalid_op_interception,
        [SVM_EXIT_WBINVD]                       = emulate_on_interception,
        [SVM_EXIT_MONITOR]                      = invalid_op_interception,
        [SVM_EXIT_MWAIT]                        = invalid_op_interception,
        [SVM_EXIT_NPF]                          = pf_interception,
};

static int handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
{
        struct vcpu_svm *svm = to_svm(vcpu);
        u32 exit_code = svm->vmcb->control.exit_code;

        KVMTRACE_3D(VMEXIT, vcpu, exit_code, (u32)svm->vmcb->save.rip,
                    (u32)((u64)svm->vmcb->save.rip >> 32), entryexit);

        if (npt_enabled) {
                int mmu_reload = 0;
                if ((vcpu->arch.cr0 ^ svm->vmcb->save.cr0) & X86_CR0_PG) {
                        svm_set_cr0(vcpu, svm->vmcb->save.cr0);
                        mmu_reload = 1;
                }
                vcpu->arch.cr0 = svm->vmcb->save.cr0;
                vcpu->arch.cr3 = svm->vmcb->save.cr3;
                if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
                        if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
                                kvm_inject_gp(vcpu, 0);
                                return 1;
                        }
                }
                if (mmu_reload) {
                        kvm_mmu_reset_context(vcpu);
                        kvm_mmu_load(vcpu);
                }
        }

        kvm_reput_irq(svm);

        if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
                kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
                kvm_run->fail_entry.hardware_entry_failure_reason
                        = svm->vmcb->control.exit_code;
                return 0;
        }

        if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
            exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
            exit_code != SVM_EXIT_NPF)
                printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
                       "exit_code 0x%x\n",
                       __func__, svm->vmcb->control.exit_int_info,
                       exit_code);

        if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
            || !svm_exit_handlers[exit_code]) {
                kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
                kvm_run->hw.hardware_exit_reason = exit_code;
                return 0;
        }

        return svm_exit_handlers[exit_code](svm, kvm_run);
}

static void reload_tss(struct kvm_vcpu *vcpu)
{
        int cpu = raw_smp_processor_id();

        struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
        svm_data->tss_desc->type = 9; /* available 32/64-bit TSS */
        load_TR_desc();
}

static void pre_svm_run(struct vcpu_svm *svm)
{
        int cpu = raw_smp_processor_id();

        struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);

        svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
        if (svm->vcpu.cpu != cpu ||
            svm->asid_generation != svm_data->asid_generation)
                new_asid(svm, svm_data);
}


static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
{
        struct vmcb_control_area *control;

        KVMTRACE_1D(INJ_VIRQ, &svm->vcpu, (u32)irq, handler);

        control = &svm->vmcb->control;
        control->int_vector = irq;
        control->int_ctl &= ~V_INTR_PRIO_MASK;
        control->int_ctl |= V_IRQ_MASK |
                ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
}

static void svm_set_irq(struct kvm_vcpu *vcpu, int irq)
{
        struct vcpu_svm *svm = to_svm(vcpu);

        svm_inject_irq(svm, irq);
}

static void update_cr8_intercept(struct kvm_vcpu *vcpu)
{
        struct vcpu_svm *svm = to_svm(vcpu);
        struct vmcb *vmcb = svm->vmcb;
        int max_irr, tpr;

        if (!irqchip_in_kernel(vcpu->kvm) || vcpu->arch.apic->vapic_addr)
                return;

        vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;

        max_irr = kvm_lapic_find_highest_irr(vcpu);
        if (max_irr == -1)
                return;

        tpr = kvm_lapic_get_cr8(vcpu) << 4;

        if (tpr >= (max_irr & 0xf0))
                vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
}

static void svm_intr_assist(struct kvm_vcpu *vcpu)
{
        struct vcpu_svm *svm = to_svm(vcpu);
        struct vmcb *vmcb = svm->vmcb;
        int intr_vector = -1;

        if ((vmcb->control.exit_int_info & SVM_EVTINJ_VALID) &&
            ((vmcb->control.exit_int_info & SVM_EVTINJ_TYPE_MASK) == 0)) {
                intr_vector = vmcb->control.exit_int_info &
                              SVM_EVTINJ_VEC_MASK;
                vmcb->control.exit_int_info = 0;
                svm_inject_irq(svm, intr_vector);
                goto out;
        }

        if (vmcb->control.int_ctl & V_IRQ_MASK)
                goto out;

        if (!kvm_cpu_has_interrupt(vcpu))
                goto out;

        if (!(vmcb->save.rflags & X86_EFLAGS_IF) ||
            (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
            (vmcb->control.event_inj & SVM_EVTINJ_VALID)) {
                /* unable to deliver irq, set pending irq */
                vmcb->control.intercept |= (1ULL << INTERCEPT_VINTR);
                svm_inject_irq(svm, 0x0);
                goto out;
        }
        /* Okay, we can deliver the interrupt: grab it and update PIC state. */
        intr_vector = kvm_cpu_get_interrupt(vcpu);
        svm_inject_irq(svm, intr_vector);
        kvm_timer_intr_post(vcpu, intr_vector);
out:
        update_cr8_intercept(vcpu);
}

static void kvm_reput_irq(struct vcpu_svm *svm)
{
        struct vmcb_control_area *control = &svm->vmcb->control;

        if ((control->int_ctl & V_IRQ_MASK)
            && !irqchip_in_kernel(svm->vcpu.kvm)) {
                control->int_ctl &= ~V_IRQ_MASK;
                push_irq(&svm->vcpu, control->int_vector);
        }

        svm->vcpu.arch.interrupt_window_open =
                !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
}

static void svm_do_inject_vector(struct vcpu_svm *svm)
{
        struct kvm_vcpu *vcpu = &svm->vcpu;
        int word_index = __ffs(vcpu->arch.irq_summary);
        int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
        int irq = word_index * BITS_PER_LONG + bit_index;

        clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
        if (!vcpu->arch.irq_pending[word_index])
                clear_bit(word_index, &vcpu->arch.irq_summary);
        svm_inject_irq(svm, irq);
}

static void do_interrupt_requests(struct kvm_vcpu *vcpu,
                                       struct kvm_run *kvm_run)
{
        struct vcpu_svm *svm = to_svm(vcpu);
        struct vmcb_control_area *control = &svm->vmcb->control;

        svm->vcpu.arch.interrupt_window_open =
                (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
                 (svm->vmcb->save.rflags & X86_EFLAGS_IF));

        if (svm->vcpu.arch.interrupt_window_open && svm->vcpu.arch.irq_summary)
                /*
                 * If interrupts enabled, and not blocked by sti or mov ss. Good.
                 */
                svm_do_inject_vector(svm);

        /*
         * Interrupts blocked.  Wait for unblock.
         */
        if (!svm->vcpu.arch.interrupt_window_open &&
            (svm->vcpu.arch.irq_summary || kvm_run->request_interrupt_window))
                control->intercept |= 1ULL << INTERCEPT_VINTR;
         else
                control->intercept &= ~(1ULL << INTERCEPT_VINTR);
}

static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
{
        return 0;
}

static void save_db_regs(unsigned long *db_regs)
{
        asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
        asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
        asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
        asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
}

static void load_db_regs(unsigned long *db_regs)
{
        asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
        asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
        asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
        asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
}

static void svm_flush_tlb(struct kvm_vcpu *vcpu)
{
        force_new_asid(vcpu);
}

static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
{
}

static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
{
        struct vcpu_svm *svm = to_svm(vcpu);

        if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
                int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
                kvm_lapic_set_tpr(vcpu, cr8);
        }
}

static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
{
        struct vcpu_svm *svm = to_svm(vcpu);
        u64 cr8;

        if (!irqchip_in_kernel(vcpu->kvm))
                return;

        cr8 = kvm_get_cr8(vcpu);
        svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
        svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
}

static void svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
{
        struct vcpu_svm *svm = to_svm(vcpu);
        u16 fs_selector;
        u16 gs_selector;
        u16 ldt_selector;

        pre_svm_run(svm);

        sync_lapic_to_cr8(vcpu);

        save_host_msrs(vcpu);
        fs_selector = kvm_read_fs();
        gs_selector = kvm_read_gs();
        ldt_selector = kvm_read_ldt();
        svm->host_cr2 = kvm_read_cr2();
        svm->host_dr6 = read_dr6();
        svm->host_dr7 = read_dr7();
        svm->vmcb->save.cr2 = vcpu->arch.cr2;
        /* required for live migration with NPT */
        if (npt_enabled)
                svm->vmcb->save.cr3 = vcpu->arch.cr3;

        if (svm->vmcb->save.dr7 & 0xff) {
                write_dr7(0);
                save_db_regs(svm->host_db_regs);
                load_db_regs(svm->db_regs);
        }

        clgi();

        local_irq_enable();

        asm volatile (
#ifdef CONFIG_X86_64
                "push %%rbp; \n\t"
#else
                "push %%ebp; \n\t"
#endif

#ifdef CONFIG_X86_64
                "mov %c[rbx](%[svm]), %%rbx \n\t"
                "mov %c[rcx](%[svm]), %%rcx \n\t"
                "mov %c[rdx](%[svm]), %%rdx \n\t"
                "mov %c[rsi](%[svm]), %%rsi \n\t"
                "mov %c[rdi](%[svm]), %%rdi \n\t"
                "mov %c[rbp](%[svm]), %%rbp \n\t"
                "mov %c[r8](%[svm]),  %%r8  \n\t"
                "mov %c[r9](%[svm]),  %%r9  \n\t"
                "mov %c[r10](%[svm]), %%r10 \n\t"
                "mov %c[r11](%[svm]), %%r11 \n\t"
                "mov %c[r12](%[svm]), %%r12 \n\t"
                "mov %c[r13](%[svm]), %%r13 \n\t"
                "mov %c[r14](%[svm]), %%r14 \n\t"
                "mov %c[r15](%[svm]), %%r15 \n\t"
#else
                "mov %c[rbx](%[svm]), %%ebx \n\t"
                "mov %c[rcx](%[svm]), %%ecx \n\t"
                "mov %c[rdx](%[svm]), %%edx \n\t"
                "mov %c[rsi](%[svm]), %%esi \n\t"
                "mov %c[rdi](%[svm]), %%edi \n\t"
                "mov %c[rbp](%[svm]), %%ebp \n\t"
#endif

#ifdef CONFIG_X86_64
                /* Enter guest mode */
                "push %%rax \n\t"
                "mov %c[vmcb](%[svm]), %%rax \n\t"
                __ex(SVM_VMLOAD) "\n\t"
                __ex(SVM_VMRUN) "\n\t"
                __ex(SVM_VMSAVE) "\n\t"
                "pop %%rax \n\t"
#else
                /* Enter guest mode */
                "push %%eax \n\t"
                "mov %c[vmcb](%[svm]), %%eax \n\t"
                __ex(SVM_VMLOAD) "\n\t"
                __ex(SVM_VMRUN) "\n\t"
                __ex(SVM_VMSAVE) "\n\t"
                "pop %%eax \n\t"
#endif

                /* Save guest registers, load host registers */
#ifdef CONFIG_X86_64
                "mov %%rbx, %c[rbx](%[svm]) \n\t"
                "mov %%rcx, %c[rcx](%[svm]) \n\t"
                "mov %%rdx, %c[rdx](%[svm]) \n\t"
                "mov %%rsi, %c[rsi](%[svm]) \n\t"
                "mov %%rdi, %c[rdi](%[svm]) \n\t"
                "mov %%rbp, %c[rbp](%[svm]) \n\t"
                "mov %%r8,  %c[r8](%[svm]) \n\t"
                "mov %%r9,  %c[r9](%[svm]) \n\t"
                "mov %%r10, %c[r10](%[svm]) \n\t"
                "mov %%r11, %c[r11](%[svm]) \n\t"
                "mov %%r12, %c[r12](%[svm]) \n\t"
                "mov %%r13, %c[r13](%[svm]) \n\t"
                "mov %%r14, %c[r14](%[svm]) \n\t"
                "mov %%r15, %c[r15](%[svm]) \n\t"

                "pop  %%rbp; \n\t"
#else
                "mov %%ebx, %c[rbx](%[svm]) \n\t"
                "mov %%ecx, %c[rcx](%[svm]) \n\t"
                "mov %%edx, %c[rdx](%[svm]) \n\t"
                "mov %%esi, %c[rsi](%[svm]) \n\t"
                "mov %%edi, %c[rdi](%[svm]) \n\t"
                "mov %%ebp, %c[rbp](%[svm]) \n\t"

                "pop  %%ebp; \n\t"
#endif
                :
                : [svm]"a"(svm),
                  [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
                  [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
                  [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
                  [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
                  [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
                  [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
                  [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
#ifdef CONFIG_X86_64
                  , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
                  [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
                  [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
                  [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
                  [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
                  [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
                  [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
                  [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
#endif
                : "cc", "memory"
#ifdef CONFIG_X86_64
                , "rbx", "rcx", "rdx", "rsi", "rdi"
                , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
#else
                , "ebx", "ecx", "edx" , "esi", "edi"
#endif
                );

        if ((svm->vmcb->save.dr7 & 0xff))
                load_db_regs(svm->host_db_regs);

        vcpu->arch.cr2 = svm->vmcb->save.cr2;

        write_dr6(svm->host_dr6);
        write_dr7(svm->host_dr7);
        kvm_write_cr2(svm->host_cr2);

        kvm_load_fs(fs_selector);
        kvm_load_gs(gs_selector);
        kvm_load_ldt(ldt_selector);
        load_host_msrs(vcpu);

        reload_tss(vcpu);

        local_irq_disable();

        stgi();

        sync_cr8_to_lapic(vcpu);

        svm->next_rip = 0;
}

static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
{
        struct vcpu_svm *svm = to_svm(vcpu);

        if (npt_enabled) {
                svm->vmcb->control.nested_cr3 = root;
                force_new_asid(vcpu);
                return;
        }

        svm->vmcb->save.cr3 = root;
        force_new_asid(vcpu);

        if (vcpu->fpu_active) {
                svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
                svm->vmcb->save.cr0 |= X86_CR0_TS;
                vcpu->fpu_active = 0;
        }
}

static int is_disabled(void)
{
        u64 vm_cr;

        rdmsrl(MSR_VM_CR, vm_cr);
        if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
                return 1;

        return 0;
}

static void
svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
{
        /*
         * Patch in the VMMCALL instruction:
         */
        hypercall[0] = 0x0f;
        hypercall[1] = 0x01;
        hypercall[2] = 0xd9;
}

static void svm_check_processor_compat(void *rtn)
{
        *(int *)rtn = 0;
}

static bool svm_cpu_has_accelerated_tpr(void)
{
        return false;
}

static int get_npt_level(void)
{
#ifdef CONFIG_X86_64
        return PT64_ROOT_LEVEL;
#else
        return PT32E_ROOT_LEVEL;
#endif
}

static struct kvm_x86_ops svm_x86_ops = {
        .cpu_has_kvm_support = has_svm,
        .disabled_by_bios = is_disabled,
        .hardware_setup = svm_hardware_setup,
        .hardware_unsetup = svm_hardware_unsetup,
        .check_processor_compatibility = svm_check_processor_compat,
        .hardware_enable = svm_hardware_enable,
        .hardware_disable = svm_hardware_disable,
        .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,

        .vcpu_create = svm_create_vcpu,
        .vcpu_free = svm_free_vcpu,
        .vcpu_reset = svm_vcpu_reset,

        .prepare_guest_switch = svm_prepare_guest_switch,
        .vcpu_load = svm_vcpu_load,
        .vcpu_put = svm_vcpu_put,

        .set_guest_debug = svm_guest_debug,
        .get_msr = svm_get_msr,
        .set_msr = svm_set_msr,
        .get_segment_base = svm_get_segment_base,
        .get_segment = svm_get_segment,
        .set_segment = svm_set_segment,
        .get_cpl = svm_get_cpl,
        .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
        .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
        .set_cr0 = svm_set_cr0,
        .set_cr3 = svm_set_cr3,
        .set_cr4 = svm_set_cr4,
        .set_efer = svm_set_efer,
        .get_idt = svm_get_idt,
        .set_idt = svm_set_idt,
        .get_gdt = svm_get_gdt,
        .set_gdt = svm_set_gdt,
        .get_dr = svm_get_dr,
        .set_dr = svm_set_dr,
        .cache_regs = svm_cache_regs,
        .decache_regs = svm_decache_regs,
        .get_rflags = svm_get_rflags,
        .set_rflags = svm_set_rflags,

        .tlb_flush = svm_flush_tlb,

        .run = svm_vcpu_run,
        .handle_exit = handle_exit,
        .skip_emulated_instruction = skip_emulated_instruction,
        .patch_hypercall = svm_patch_hypercall,
        .get_irq = svm_get_irq,
        .set_irq = svm_set_irq,
        .queue_exception = svm_queue_exception,
        .exception_injected = svm_exception_injected,
        .inject_pending_irq = svm_intr_assist,
        .inject_pending_vectors = do_interrupt_requests,

        .set_tss_addr = svm_set_tss_addr,
        .get_tdp_level = get_npt_level,
};

static int __init svm_init(void)
{
        return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
                              THIS_MODULE);
}

static void __exit svm_exit(void)
{
        kvm_exit();
}

module_init(svm_init)
module_exit(svm_exit)

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading