[funini.com] -> [kei@sodan] -> Kernel Reading

root/sound/spi/at73c213.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. snd_at73c213_write_reg
  2. snd_at73c213_set_bitrate
  3. snd_at73c213_pcm_open
  4. snd_at73c213_pcm_close
  5. snd_at73c213_pcm_hw_params
  6. snd_at73c213_pcm_hw_free
  7. snd_at73c213_pcm_prepare
  8. snd_at73c213_pcm_trigger
  9. snd_at73c213_pcm_pointer
  10. snd_at73c213_pcm_new
  11. snd_at73c213_interrupt
  12. snd_at73c213_mono_get
  13. snd_at73c213_mono_put
  14. snd_at73c213_stereo_info
  15. snd_at73c213_stereo_get
  16. snd_at73c213_stereo_put
  17. snd_at73c213_mono_switch_get
  18. snd_at73c213_mono_switch_put
  19. snd_at73c213_pa_volume_info
  20. snd_at73c213_line_capture_volume_info
  21. snd_at73c213_aux_capture_volume_info
  22. snd_at73c213_mixer
  23. snd_at73c213_ssc_init
  24. snd_at73c213_chip_init
  25. snd_at73c213_dev_free
  26. snd_at73c213_dev_init
  27. snd_at73c213_probe
  28. snd_at73c213_remove
  29. snd_at73c213_suspend
  30. snd_at73c213_resume
  31. at73c213_init
  32. at73c213_exit

/*
 * Driver for AT73C213 16-bit stereo DAC connected to Atmel SSC
 *
 * Copyright (C) 2006-2007 Atmel Norway
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 */

/*#define DEBUG*/

#include <linux/clk.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/platform_device.h>
#include <linux/io.h>

#include <sound/initval.h>
#include <sound/control.h>
#include <sound/core.h>
#include <sound/pcm.h>

#include <linux/atmel-ssc.h>

#include <linux/spi/spi.h>
#include <linux/spi/at73c213.h>

#include "at73c213.h"

#define BITRATE_MIN      8000 /* Hardware limit? */
#define BITRATE_TARGET  CONFIG_SND_AT73C213_TARGET_BITRATE
#define BITRATE_MAX     50000 /* Hardware limit. */

/* Initial (hardware reset) AT73C213 register values. */
static u8 snd_at73c213_original_image[18] =
{
        0x00,   /* 00 - CTRL    */
        0x05,   /* 01 - LLIG    */
        0x05,   /* 02 - RLIG    */
        0x08,   /* 03 - LPMG    */
        0x08,   /* 04 - RPMG    */
        0x00,   /* 05 - LLOG    */
        0x00,   /* 06 - RLOG    */
        0x22,   /* 07 - OLC     */
        0x09,   /* 08 - MC      */
        0x00,   /* 09 - CSFC    */
        0x00,   /* 0A - MISC    */
        0x00,   /* 0B -         */
        0x00,   /* 0C - PRECH   */
        0x05,   /* 0D - AUXG    */
        0x00,   /* 0E -         */
        0x00,   /* 0F -         */
        0x00,   /* 10 - RST     */
        0x00,   /* 11 - PA_CTRL */
};

struct snd_at73c213 {
        struct snd_card                 *card;
        struct snd_pcm                  *pcm;
        struct snd_pcm_substream        *substream;
        struct at73c213_board_info      *board;
        int                             irq;
        int                             period;
        unsigned long                   bitrate;
        struct clk                      *bitclk;
        struct ssc_device               *ssc;
        struct spi_device               *spi;
        u8                              spi_wbuffer[2];
        u8                              spi_rbuffer[2];
        /* Image of the SPI registers in AT73C213. */
        u8                              reg_image[18];
        /* Protect SSC registers against concurrent access. */
        spinlock_t                      lock;
        /* Protect mixer registers against concurrent access. */
        struct mutex                    mixer_lock;
};

#define get_chip(card) ((struct snd_at73c213 *)card->private_data)

static int
snd_at73c213_write_reg(struct snd_at73c213 *chip, u8 reg, u8 val)
{
        struct spi_message msg;
        struct spi_transfer msg_xfer = {
                .len            = 2,
                .cs_change      = 0,
        };
        int retval;

        spi_message_init(&msg);

        chip->spi_wbuffer[0] = reg;
        chip->spi_wbuffer[1] = val;

        msg_xfer.tx_buf = chip->spi_wbuffer;
        msg_xfer.rx_buf = chip->spi_rbuffer;
        spi_message_add_tail(&msg_xfer, &msg);

        retval = spi_sync(chip->spi, &msg);

        if (!retval)
                chip->reg_image[reg] = val;

        return retval;
}

static struct snd_pcm_hardware snd_at73c213_playback_hw = {
        .info           = SNDRV_PCM_INFO_INTERLEAVED |
                          SNDRV_PCM_INFO_BLOCK_TRANSFER,
        .formats        = SNDRV_PCM_FMTBIT_S16_BE,
        .rates          = SNDRV_PCM_RATE_CONTINUOUS,
        .rate_min       = 8000,  /* Replaced by chip->bitrate later. */
        .rate_max       = 50000, /* Replaced by chip->bitrate later. */
        .channels_min   = 1,
        .channels_max   = 2,
        .buffer_bytes_max = 64 * 1024 - 1,
        .period_bytes_min = 512,
        .period_bytes_max = 64 * 1024 - 1,
        .periods_min    = 4,
        .periods_max    = 1024,
};

/*
 * Calculate and set bitrate and divisions.
 */
static int snd_at73c213_set_bitrate(struct snd_at73c213 *chip)
{
        unsigned long ssc_rate = clk_get_rate(chip->ssc->clk);
        unsigned long dac_rate_new, ssc_div;
        int status;
        unsigned long ssc_div_max, ssc_div_min;
        int max_tries;

        /*
         * We connect two clocks here, picking divisors so the I2S clocks
         * out data at the same rate the DAC clocks it in ... and as close
         * as practical to the desired target rate.
         *
         * The DAC master clock (MCLK) is programmable, and is either 256
         * or (not here) 384 times the I2S output clock (BCLK).
         */

        /* SSC clock / (bitrate * stereo * 16-bit). */
        ssc_div = ssc_rate / (BITRATE_TARGET * 2 * 16);
        ssc_div_min = ssc_rate / (BITRATE_MAX * 2 * 16);
        ssc_div_max = ssc_rate / (BITRATE_MIN * 2 * 16);
        max_tries = (ssc_div_max - ssc_div_min) / 2;

        if (max_tries < 1)
                max_tries = 1;

        /* ssc_div must be a power of 2. */
        ssc_div = (ssc_div + 1) & ~1UL;

        if ((ssc_rate / (ssc_div * 2 * 16)) < BITRATE_MIN) {
                ssc_div -= 2;
                if ((ssc_rate / (ssc_div * 2 * 16)) > BITRATE_MAX)
                        return -ENXIO;
        }

        /* Search for a possible bitrate. */
        do {
                /* SSC clock / (ssc divider * 16-bit * stereo). */
                if ((ssc_rate / (ssc_div * 2 * 16)) < BITRATE_MIN)
                        return -ENXIO;

                /* 256 / (2 * 16) = 8 */
                dac_rate_new = 8 * (ssc_rate / ssc_div);

                status = clk_round_rate(chip->board->dac_clk, dac_rate_new);
                if (status < 0)
                        return status;

                /* Ignore difference smaller than 256 Hz. */
                if ((status/256) == (dac_rate_new/256))
                        goto set_rate;

                ssc_div += 2;
        } while (--max_tries);

        /* Not able to find a valid bitrate. */
        return -ENXIO;

set_rate:
        status = clk_set_rate(chip->board->dac_clk, status);
        if (status < 0)
                return status;

        /* Set divider in SSC device. */
        ssc_writel(chip->ssc->regs, CMR, ssc_div/2);

        /* SSC clock / (ssc divider * 16-bit * stereo). */
        chip->bitrate = ssc_rate / (ssc_div * 16 * 2);

        dev_info(&chip->spi->dev,
                        "at73c213: supported bitrate is %lu (%lu divider)\n",
                        chip->bitrate, ssc_div);

        return 0;
}

static int snd_at73c213_pcm_open(struct snd_pcm_substream *substream)
{
        struct snd_at73c213 *chip = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;
        int err;

        /* ensure buffer_size is a multiple of period_size */
        err = snd_pcm_hw_constraint_integer(runtime,
                                        SNDRV_PCM_HW_PARAM_PERIODS);
        if (err < 0)
                return err;
        snd_at73c213_playback_hw.rate_min = chip->bitrate;
        snd_at73c213_playback_hw.rate_max = chip->bitrate;
        runtime->hw = snd_at73c213_playback_hw;
        chip->substream = substream;

        return 0;
}

static int snd_at73c213_pcm_close(struct snd_pcm_substream *substream)
{
        struct snd_at73c213 *chip = snd_pcm_substream_chip(substream);
        chip->substream = NULL;
        return 0;
}

static int snd_at73c213_pcm_hw_params(struct snd_pcm_substream *substream,
                                 struct snd_pcm_hw_params *hw_params)
{
        struct snd_at73c213 *chip = snd_pcm_substream_chip(substream);
        int channels = params_channels(hw_params);
        int val;

        val = ssc_readl(chip->ssc->regs, TFMR);
        val = SSC_BFINS(TFMR_DATNB, channels - 1, val);
        ssc_writel(chip->ssc->regs, TFMR, val);

        return snd_pcm_lib_malloc_pages(substream,
                                        params_buffer_bytes(hw_params));
}

static int snd_at73c213_pcm_hw_free(struct snd_pcm_substream *substream)
{
        return snd_pcm_lib_free_pages(substream);
}

static int snd_at73c213_pcm_prepare(struct snd_pcm_substream *substream)
{
        struct snd_at73c213 *chip = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;
        int block_size;

        block_size = frames_to_bytes(runtime, runtime->period_size);

        chip->period = 0;

        ssc_writel(chip->ssc->regs, PDC_TPR,
                        (long)runtime->dma_addr);
        ssc_writel(chip->ssc->regs, PDC_TCR,
                        runtime->period_size * runtime->channels);
        ssc_writel(chip->ssc->regs, PDC_TNPR,
                        (long)runtime->dma_addr + block_size);
        ssc_writel(chip->ssc->regs, PDC_TNCR,
                        runtime->period_size * runtime->channels);

        return 0;
}

static int snd_at73c213_pcm_trigger(struct snd_pcm_substream *substream,
                                   int cmd)
{
        struct snd_at73c213 *chip = snd_pcm_substream_chip(substream);
        int retval = 0;

        spin_lock(&chip->lock);

        switch (cmd) {
        case SNDRV_PCM_TRIGGER_START:
                ssc_writel(chip->ssc->regs, IER, SSC_BIT(IER_ENDTX));
                ssc_writel(chip->ssc->regs, PDC_PTCR, SSC_BIT(PDC_PTCR_TXTEN));
                break;
        case SNDRV_PCM_TRIGGER_STOP:
                ssc_writel(chip->ssc->regs, PDC_PTCR, SSC_BIT(PDC_PTCR_TXTDIS));
                ssc_writel(chip->ssc->regs, IDR, SSC_BIT(IDR_ENDTX));
                break;
        default:
                dev_dbg(&chip->spi->dev, "spurious command %x\n", cmd);
                retval = -EINVAL;
                break;
        }

        spin_unlock(&chip->lock);

        return retval;
}

static snd_pcm_uframes_t
snd_at73c213_pcm_pointer(struct snd_pcm_substream *substream)
{
        struct snd_at73c213 *chip = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;
        snd_pcm_uframes_t pos;
        unsigned long bytes;

        bytes = ssc_readl(chip->ssc->regs, PDC_TPR)
                - (unsigned long)runtime->dma_addr;

        pos = bytes_to_frames(runtime, bytes);
        if (pos >= runtime->buffer_size)
                pos -= runtime->buffer_size;

        return pos;
}

static struct snd_pcm_ops at73c213_playback_ops = {
        .open           = snd_at73c213_pcm_open,
        .close          = snd_at73c213_pcm_close,
        .ioctl          = snd_pcm_lib_ioctl,
        .hw_params      = snd_at73c213_pcm_hw_params,
        .hw_free        = snd_at73c213_pcm_hw_free,
        .prepare        = snd_at73c213_pcm_prepare,
        .trigger        = snd_at73c213_pcm_trigger,
        .pointer        = snd_at73c213_pcm_pointer,
};

static int __devinit snd_at73c213_pcm_new(struct snd_at73c213 *chip, int device)
{
        struct snd_pcm *pcm;
        int retval;

        retval = snd_pcm_new(chip->card, chip->card->shortname,
                        device, 1, 0, &pcm);
        if (retval < 0)
                goto out;

        pcm->private_data = chip;
        pcm->info_flags = SNDRV_PCM_INFO_BLOCK_TRANSFER;
        strcpy(pcm->name, "at73c213");
        chip->pcm = pcm;

        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &at73c213_playback_ops);

        retval = snd_pcm_lib_preallocate_pages_for_all(chip->pcm,
                        SNDRV_DMA_TYPE_DEV, &chip->ssc->pdev->dev,
                        64 * 1024, 64 * 1024);
out:
        return retval;
}

static irqreturn_t snd_at73c213_interrupt(int irq, void *dev_id)
{
        struct snd_at73c213 *chip = dev_id;
        struct snd_pcm_runtime *runtime = chip->substream->runtime;
        u32 status;
        int offset;
        int block_size;
        int next_period;
        int retval = IRQ_NONE;

        spin_lock(&chip->lock);

        block_size = frames_to_bytes(runtime, runtime->period_size);
        status = ssc_readl(chip->ssc->regs, IMR);

        if (status & SSC_BIT(IMR_ENDTX)) {
                chip->period++;
                if (chip->period == runtime->periods)
                        chip->period = 0;
                next_period = chip->period + 1;
                if (next_period == runtime->periods)
                        next_period = 0;

                offset = block_size * next_period;

                ssc_writel(chip->ssc->regs, PDC_TNPR,
                                (long)runtime->dma_addr + offset);
                ssc_writel(chip->ssc->regs, PDC_TNCR,
                                runtime->period_size * runtime->channels);
                retval = IRQ_HANDLED;
        }

        ssc_readl(chip->ssc->regs, IMR);
        spin_unlock(&chip->lock);

        if (status & SSC_BIT(IMR_ENDTX))
                snd_pcm_period_elapsed(chip->substream);

        return retval;
}

/*
 * Mixer functions.
 */
static int snd_at73c213_mono_get(struct snd_kcontrol *kcontrol,
                                 struct snd_ctl_elem_value *ucontrol)
{
        struct snd_at73c213 *chip = snd_kcontrol_chip(kcontrol);
        int reg = kcontrol->private_value & 0xff;
        int shift = (kcontrol->private_value >> 8) & 0xff;
        int mask = (kcontrol->private_value >> 16) & 0xff;
        int invert = (kcontrol->private_value >> 24) & 0xff;

        mutex_lock(&chip->mixer_lock);

        ucontrol->value.integer.value[0] =
                (chip->reg_image[reg] >> shift) & mask;

        if (invert)
                ucontrol->value.integer.value[0] =
                        mask - ucontrol->value.integer.value[0];

        mutex_unlock(&chip->mixer_lock);

        return 0;
}

static int snd_at73c213_mono_put(struct snd_kcontrol *kcontrol,
                                 struct snd_ctl_elem_value *ucontrol)
{
        struct snd_at73c213 *chip = snd_kcontrol_chip(kcontrol);
        int reg = kcontrol->private_value & 0xff;
        int shift = (kcontrol->private_value >> 8) & 0xff;
        int mask = (kcontrol->private_value >> 16) & 0xff;
        int invert = (kcontrol->private_value >> 24) & 0xff;
        int change, retval;
        unsigned short val;

        val = (ucontrol->value.integer.value[0] & mask);
        if (invert)
                val = mask - val;
        val <<= shift;

        mutex_lock(&chip->mixer_lock);

        val = (chip->reg_image[reg] & ~(mask << shift)) | val;
        change = val != chip->reg_image[reg];
        retval = snd_at73c213_write_reg(chip, reg, val);

        mutex_unlock(&chip->mixer_lock);

        if (retval)
                return retval;

        return change;
}

static int snd_at73c213_stereo_info(struct snd_kcontrol *kcontrol,
                                  struct snd_ctl_elem_info *uinfo)
{
        int mask = (kcontrol->private_value >> 24) & 0xff;

        if (mask == 1)
                uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
        else
                uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;

        uinfo->count = 2;
        uinfo->value.integer.min = 0;
        uinfo->value.integer.max = mask;

        return 0;
}

static int snd_at73c213_stereo_get(struct snd_kcontrol *kcontrol,
                                 struct snd_ctl_elem_value *ucontrol)
{
        struct snd_at73c213 *chip = snd_kcontrol_chip(kcontrol);
        int left_reg = kcontrol->private_value & 0xff;
        int right_reg = (kcontrol->private_value >> 8) & 0xff;
        int shift_left = (kcontrol->private_value >> 16) & 0x07;
        int shift_right = (kcontrol->private_value >> 19) & 0x07;
        int mask = (kcontrol->private_value >> 24) & 0xff;
        int invert = (kcontrol->private_value >> 22) & 1;

        mutex_lock(&chip->mixer_lock);

        ucontrol->value.integer.value[0] =
                (chip->reg_image[left_reg] >> shift_left) & mask;
        ucontrol->value.integer.value[1] =
                (chip->reg_image[right_reg] >> shift_right) & mask;

        if (invert) {
                ucontrol->value.integer.value[0] =
                        mask - ucontrol->value.integer.value[0];
                ucontrol->value.integer.value[1] =
                        mask - ucontrol->value.integer.value[1];
        }

        mutex_unlock(&chip->mixer_lock);

        return 0;
}

static int snd_at73c213_stereo_put(struct snd_kcontrol *kcontrol,
                                 struct snd_ctl_elem_value *ucontrol)
{
        struct snd_at73c213 *chip = snd_kcontrol_chip(kcontrol);
        int left_reg = kcontrol->private_value & 0xff;
        int right_reg = (kcontrol->private_value >> 8) & 0xff;
        int shift_left = (kcontrol->private_value >> 16) & 0x07;
        int shift_right = (kcontrol->private_value >> 19) & 0x07;
        int mask = (kcontrol->private_value >> 24) & 0xff;
        int invert = (kcontrol->private_value >> 22) & 1;
        int change, retval;
        unsigned short val1, val2;

        val1 = ucontrol->value.integer.value[0] & mask;
        val2 = ucontrol->value.integer.value[1] & mask;
        if (invert) {
                val1 = mask - val1;
                val2 = mask - val2;
        }
        val1 <<= shift_left;
        val2 <<= shift_right;

        mutex_lock(&chip->mixer_lock);

        val1 = (chip->reg_image[left_reg] & ~(mask << shift_left)) | val1;
        val2 = (chip->reg_image[right_reg] & ~(mask << shift_right)) | val2;
        change = val1 != chip->reg_image[left_reg]
                || val2 != chip->reg_image[right_reg];
        retval = snd_at73c213_write_reg(chip, left_reg, val1);
        if (retval) {
                mutex_unlock(&chip->mixer_lock);
                goto out;
        }
        retval = snd_at73c213_write_reg(chip, right_reg, val2);
        if (retval) {
                mutex_unlock(&chip->mixer_lock);
                goto out;
        }

        mutex_unlock(&chip->mixer_lock);

        return change;

out:
        return retval;
}

#define snd_at73c213_mono_switch_info   snd_ctl_boolean_mono_info

static int snd_at73c213_mono_switch_get(struct snd_kcontrol *kcontrol,
                                 struct snd_ctl_elem_value *ucontrol)
{
        struct snd_at73c213 *chip = snd_kcontrol_chip(kcontrol);
        int reg = kcontrol->private_value & 0xff;
        int shift = (kcontrol->private_value >> 8) & 0xff;
        int invert = (kcontrol->private_value >> 24) & 0xff;

        mutex_lock(&chip->mixer_lock);

        ucontrol->value.integer.value[0] =
                (chip->reg_image[reg] >> shift) & 0x01;

        if (invert)
                ucontrol->value.integer.value[0] =
                        0x01 - ucontrol->value.integer.value[0];

        mutex_unlock(&chip->mixer_lock);

        return 0;
}

static int snd_at73c213_mono_switch_put(struct snd_kcontrol *kcontrol,
                                 struct snd_ctl_elem_value *ucontrol)
{
        struct snd_at73c213 *chip = snd_kcontrol_chip(kcontrol);
        int reg = kcontrol->private_value & 0xff;
        int shift = (kcontrol->private_value >> 8) & 0xff;
        int mask = (kcontrol->private_value >> 16) & 0xff;
        int invert = (kcontrol->private_value >> 24) & 0xff;
        int change, retval;
        unsigned short val;

        if (ucontrol->value.integer.value[0])
                val = mask;
        else
                val = 0;

        if (invert)
                val = mask - val;
        val <<= shift;

        mutex_lock(&chip->mixer_lock);

        val |= (chip->reg_image[reg] & ~(mask << shift));
        change = val != chip->reg_image[reg];

        retval = snd_at73c213_write_reg(chip, reg, val);

        mutex_unlock(&chip->mixer_lock);

        if (retval)
                return retval;

        return change;
}

static int snd_at73c213_pa_volume_info(struct snd_kcontrol *kcontrol,
                                  struct snd_ctl_elem_info *uinfo)
{
        uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
        uinfo->count = 1;
        uinfo->value.integer.min = 0;
        uinfo->value.integer.max = ((kcontrol->private_value >> 16) & 0xff) - 1;

        return 0;
}

static int snd_at73c213_line_capture_volume_info(
                struct snd_kcontrol *kcontrol,
                struct snd_ctl_elem_info *uinfo)
{
        uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
        uinfo->count = 2;
        /* When inverted will give values 0x10001 => 0. */
        uinfo->value.integer.min = 14;
        uinfo->value.integer.max = 31;

        return 0;
}

static int snd_at73c213_aux_capture_volume_info(
                struct snd_kcontrol *kcontrol,
                struct snd_ctl_elem_info *uinfo)
{
        uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
        uinfo->count = 1;
        /* When inverted will give values 0x10001 => 0. */
        uinfo->value.integer.min = 14;
        uinfo->value.integer.max = 31;

        return 0;
}

#define AT73C213_MONO_SWITCH(xname, xindex, reg, shift, mask, invert)   \
{                                                                       \
        .iface = SNDRV_CTL_ELEM_IFACE_MIXER,                            \
        .name = xname,                                                  \
        .index = xindex,                                                \
        .info = snd_at73c213_mono_switch_info,                          \
        .get = snd_at73c213_mono_switch_get,                            \
        .put = snd_at73c213_mono_switch_put,                            \
        .private_value = (reg | (shift << 8) | (mask << 16) | (invert << 24)) \
}

#define AT73C213_STEREO(xname, xindex, left_reg, right_reg, shift_left, shift_right, mask, invert) \
{                                                                       \
        .iface = SNDRV_CTL_ELEM_IFACE_MIXER,                            \
        .name = xname,                                                  \
        .index = xindex,                                                \
        .info = snd_at73c213_stereo_info,                               \
        .get = snd_at73c213_stereo_get,                                 \
        .put = snd_at73c213_stereo_put,                                 \
        .private_value = (left_reg | (right_reg << 8)                   \
                        | (shift_left << 16) | (shift_right << 19)      \
                        | (mask << 24) | (invert << 22))                \
}

static struct snd_kcontrol_new snd_at73c213_controls[] __devinitdata = {
AT73C213_STEREO("Master Playback Volume", 0, DAC_LMPG, DAC_RMPG, 0, 0, 0x1f, 1),
AT73C213_STEREO("Master Playback Switch", 0, DAC_LMPG, DAC_RMPG, 5, 5, 1, 1),
AT73C213_STEREO("PCM Playback Volume", 0, DAC_LLOG, DAC_RLOG, 0, 0, 0x1f, 1),
AT73C213_STEREO("PCM Playback Switch", 0, DAC_LLOG, DAC_RLOG, 5, 5, 1, 1),
AT73C213_MONO_SWITCH("Mono PA Playback Switch", 0, DAC_CTRL, DAC_CTRL_ONPADRV,
                     0x01, 0),
{
        .iface  = SNDRV_CTL_ELEM_IFACE_MIXER,
        .name   = "PA Playback Volume",
        .index  = 0,
        .info   = snd_at73c213_pa_volume_info,
        .get    = snd_at73c213_mono_get,
        .put    = snd_at73c213_mono_put,
        .private_value  = PA_CTRL | (PA_CTRL_APAGAIN << 8) | \
                (0x0f << 16) | (1 << 24),
},
AT73C213_MONO_SWITCH("PA High Gain Playback Switch", 0, PA_CTRL, PA_CTRL_APALP,
                     0x01, 1),
AT73C213_MONO_SWITCH("PA Playback Switch", 0, PA_CTRL, PA_CTRL_APAON, 0x01, 0),
{
        .iface  = SNDRV_CTL_ELEM_IFACE_MIXER,
        .name   = "Aux Capture Volume",
        .index  = 0,
        .info   = snd_at73c213_aux_capture_volume_info,
        .get    = snd_at73c213_mono_get,
        .put    = snd_at73c213_mono_put,
        .private_value  = DAC_AUXG | (0 << 8) | (0x1f << 16) | (1 << 24),
},
AT73C213_MONO_SWITCH("Aux Capture Switch", 0, DAC_CTRL, DAC_CTRL_ONAUXIN,
                     0x01, 0),
{
        .iface  = SNDRV_CTL_ELEM_IFACE_MIXER,
        .name   = "Line Capture Volume",
        .index  = 0,
        .info   = snd_at73c213_line_capture_volume_info,
        .get    = snd_at73c213_stereo_get,
        .put    = snd_at73c213_stereo_put,
        .private_value  = DAC_LLIG | (DAC_RLIG << 8) | (0 << 16) | (0 << 19)
                | (0x1f << 24) | (1 << 22),
},
AT73C213_MONO_SWITCH("Line Capture Switch", 0, DAC_CTRL, 0, 0x03, 0),
};

static int __devinit snd_at73c213_mixer(struct snd_at73c213 *chip)
{
        struct snd_card *card;
        int errval, idx;

        if (chip == NULL || chip->pcm == NULL)
                return -EINVAL;

        card = chip->card;

        strcpy(card->mixername, chip->pcm->name);

        for (idx = 0; idx < ARRAY_SIZE(snd_at73c213_controls); idx++) {
                errval = snd_ctl_add(card,
                                snd_ctl_new1(&snd_at73c213_controls[idx],
                                        chip));
                if (errval < 0)
                        goto cleanup;
        }

        return 0;

cleanup:
        for (idx = 1; idx < ARRAY_SIZE(snd_at73c213_controls) + 1; idx++) {
                struct snd_kcontrol *kctl;
                kctl = snd_ctl_find_numid(card, idx);
                if (kctl)
                        snd_ctl_remove(card, kctl);
        }
        return errval;
}

/*
 * Device functions
 */
static int __devinit snd_at73c213_ssc_init(struct snd_at73c213 *chip)
{
        /*
         * Continuous clock output.
         * Starts on falling TF.
         * Delay 1 cycle (1 bit).
         * Periode is 16 bit (16 - 1).
         */
        ssc_writel(chip->ssc->regs, TCMR,
                        SSC_BF(TCMR_CKO, 1)
                        | SSC_BF(TCMR_START, 4)
                        | SSC_BF(TCMR_STTDLY, 1)
                        | SSC_BF(TCMR_PERIOD, 16 - 1));
        /*
         * Data length is 16 bit (16 - 1).
         * Transmit MSB first.
         * Transmit 2 words each transfer.
         * Frame sync length is 16 bit (16 - 1).
         * Frame starts on negative pulse.
         */
        ssc_writel(chip->ssc->regs, TFMR,
                        SSC_BF(TFMR_DATLEN, 16 - 1)
                        | SSC_BIT(TFMR_MSBF)
                        | SSC_BF(TFMR_DATNB, 1)
                        | SSC_BF(TFMR_FSLEN, 16 - 1)
                        | SSC_BF(TFMR_FSOS, 1));

        return 0;
}

static int __devinit snd_at73c213_chip_init(struct snd_at73c213 *chip)
{
        int retval;
        unsigned char dac_ctrl = 0;

        retval = snd_at73c213_set_bitrate(chip);
        if (retval)
                goto out;

        /* Enable DAC master clock. */
        clk_enable(chip->board->dac_clk);

        /* Initialize at73c213 on SPI bus. */
        retval = snd_at73c213_write_reg(chip, DAC_RST, 0x04);
        if (retval)
                goto out_clk;
        msleep(1);
        retval = snd_at73c213_write_reg(chip, DAC_RST, 0x03);
        if (retval)
                goto out_clk;

        /* Precharge everything. */
        retval = snd_at73c213_write_reg(chip, DAC_PRECH, 0xff);
        if (retval)
                goto out_clk;
        retval = snd_at73c213_write_reg(chip, PA_CTRL, (1<<PA_CTRL_APAPRECH));
        if (retval)
                goto out_clk;
        retval = snd_at73c213_write_reg(chip, DAC_CTRL,
                        (1<<DAC_CTRL_ONLNOL) | (1<<DAC_CTRL_ONLNOR));
        if (retval)
                goto out_clk;

        msleep(50);

        /* Stop precharging PA. */
        retval = snd_at73c213_write_reg(chip, PA_CTRL,
                        (1<<PA_CTRL_APALP) | 0x0f);
        if (retval)
                goto out_clk;

        msleep(450);

        /* Stop precharging DAC, turn on master power. */
        retval = snd_at73c213_write_reg(chip, DAC_PRECH, (1<<DAC_PRECH_ONMSTR));
        if (retval)
                goto out_clk;

        msleep(1);

        /* Turn on DAC. */
        dac_ctrl = (1<<DAC_CTRL_ONDACL) | (1<<DAC_CTRL_ONDACR)
                | (1<<DAC_CTRL_ONLNOL) | (1<<DAC_CTRL_ONLNOR);

        retval = snd_at73c213_write_reg(chip, DAC_CTRL, dac_ctrl);
        if (retval)
                goto out_clk;

        /* Mute sound. */
        retval = snd_at73c213_write_reg(chip, DAC_LMPG, 0x3f);
        if (retval)
                goto out_clk;
        retval = snd_at73c213_write_reg(chip, DAC_RMPG, 0x3f);
        if (retval)
                goto out_clk;
        retval = snd_at73c213_write_reg(chip, DAC_LLOG, 0x3f);
        if (retval)
                goto out_clk;
        retval = snd_at73c213_write_reg(chip, DAC_RLOG, 0x3f);
        if (retval)
                goto out_clk;
        retval = snd_at73c213_write_reg(chip, DAC_LLIG, 0x11);
        if (retval)
                goto out_clk;
        retval = snd_at73c213_write_reg(chip, DAC_RLIG, 0x11);
        if (retval)
                goto out_clk;
        retval = snd_at73c213_write_reg(chip, DAC_AUXG, 0x11);
        if (retval)
                goto out_clk;

        /* Enable I2S device, i.e. clock output. */
        ssc_writel(chip->ssc->regs, CR, SSC_BIT(CR_TXEN));

        goto out;

out_clk:
        clk_disable(chip->board->dac_clk);
out:
        return retval;
}

static int snd_at73c213_dev_free(struct snd_device *device)
{
        struct snd_at73c213 *chip = device->device_data;

        ssc_writel(chip->ssc->regs, CR, SSC_BIT(CR_TXDIS));
        if (chip->irq >= 0) {
                free_irq(chip->irq, chip);
                chip->irq = -1;
        }

        return 0;
}

static int __devinit snd_at73c213_dev_init(struct snd_card *card,
                                         struct spi_device *spi)
{
        static struct snd_device_ops ops = {
                .dev_free       = snd_at73c213_dev_free,
        };
        struct snd_at73c213 *chip = get_chip(card);
        int irq, retval;

        irq = chip->ssc->irq;
        if (irq < 0)
                return irq;

        spin_lock_init(&chip->lock);
        mutex_init(&chip->mixer_lock);
        chip->card = card;
        chip->irq = -1;

        retval = request_irq(irq, snd_at73c213_interrupt, 0, "at73c213", chip);
        if (retval) {
                dev_dbg(&chip->spi->dev, "unable to request irq %d\n", irq);
                goto out;
        }
        chip->irq = irq;

        memcpy(&chip->reg_image, &snd_at73c213_original_image,
                        sizeof(snd_at73c213_original_image));

        retval = snd_at73c213_ssc_init(chip);
        if (retval)
                goto out_irq;

        retval = snd_at73c213_chip_init(chip);
        if (retval)
                goto out_irq;

        retval = snd_at73c213_pcm_new(chip, 0);
        if (retval)
                goto out_irq;

        retval = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
        if (retval)
                goto out_irq;

        retval = snd_at73c213_mixer(chip);
        if (retval)
                goto out_snd_dev;

        snd_card_set_dev(card, &spi->dev);

        goto out;

out_snd_dev:
        snd_device_free(card, chip);
out_irq:
        free_irq(chip->irq, chip);
        chip->irq = -1;
out:
        return retval;
}

static int __devinit snd_at73c213_probe(struct spi_device *spi)
{
        struct snd_card                 *card;
        struct snd_at73c213             *chip;
        struct at73c213_board_info      *board;
        int                             retval;
        char                            id[16];

        board = spi->dev.platform_data;
        if (!board) {
                dev_dbg(&spi->dev, "no platform_data\n");
                return -ENXIO;
        }

        if (!board->dac_clk) {
                dev_dbg(&spi->dev, "no DAC clk\n");
                return -ENXIO;
        }

        if (IS_ERR(board->dac_clk)) {
                dev_dbg(&spi->dev, "no DAC clk\n");
                return PTR_ERR(board->dac_clk);
        }

        retval = -ENOMEM;

        /* Allocate "card" using some unused identifiers. */
        snprintf(id, sizeof id, "at73c213_%d", board->ssc_id);
        card = snd_card_new(-1, id, THIS_MODULE, sizeof(struct snd_at73c213));
        if (!card)
                goto out;

        chip = card->private_data;
        chip->spi = spi;
        chip->board = board;

        chip->ssc = ssc_request(board->ssc_id);
        if (IS_ERR(chip->ssc)) {
                dev_dbg(&spi->dev, "could not get ssc%d device\n",
                                board->ssc_id);
                retval = PTR_ERR(chip->ssc);
                goto out_card;
        }

        retval = snd_at73c213_dev_init(card, spi);
        if (retval)
                goto out_ssc;

        strcpy(card->driver, "at73c213");
        strcpy(card->shortname, board->shortname);
        sprintf(card->longname, "%s on irq %d", card->shortname, chip->irq);

        retval = snd_card_register(card);
        if (retval)
                goto out_ssc;

        dev_set_drvdata(&spi->dev, card);

        goto out;

out_ssc:
        ssc_free(chip->ssc);
out_card:
        snd_card_free(card);
out:
        return retval;
}

static int __devexit snd_at73c213_remove(struct spi_device *spi)
{
        struct snd_card *card = dev_get_drvdata(&spi->dev);
        struct snd_at73c213 *chip = card->private_data;
        int retval;

        /* Stop playback. */
        ssc_writel(chip->ssc->regs, CR, SSC_BIT(CR_TXDIS));

        /* Mute sound. */
        retval = snd_at73c213_write_reg(chip, DAC_LMPG, 0x3f);
        if (retval)
                goto out;
        retval = snd_at73c213_write_reg(chip, DAC_RMPG, 0x3f);
        if (retval)
                goto out;
        retval = snd_at73c213_write_reg(chip, DAC_LLOG, 0x3f);
        if (retval)
                goto out;
        retval = snd_at73c213_write_reg(chip, DAC_RLOG, 0x3f);
        if (retval)
                goto out;
        retval = snd_at73c213_write_reg(chip, DAC_LLIG, 0x11);
        if (retval)
                goto out;
        retval = snd_at73c213_write_reg(chip, DAC_RLIG, 0x11);
        if (retval)
                goto out;
        retval = snd_at73c213_write_reg(chip, DAC_AUXG, 0x11);
        if (retval)
                goto out;

        /* Turn off PA. */
        retval = snd_at73c213_write_reg(chip, PA_CTRL,
                                        chip->reg_image[PA_CTRL] | 0x0f);
        if (retval)
                goto out;
        msleep(10);
        retval = snd_at73c213_write_reg(chip, PA_CTRL,
                                        (1 << PA_CTRL_APALP) | 0x0f);
        if (retval)
                goto out;

        /* Turn off external DAC. */
        retval = snd_at73c213_write_reg(chip, DAC_CTRL, 0x0c);
        if (retval)
                goto out;
        msleep(2);
        retval = snd_at73c213_write_reg(chip, DAC_CTRL, 0x00);
        if (retval)
                goto out;

        /* Turn off master power. */
        retval = snd_at73c213_write_reg(chip, DAC_PRECH, 0x00);
        if (retval)
                goto out;

out:
        /* Stop DAC master clock. */
        clk_disable(chip->board->dac_clk);

        ssc_free(chip->ssc);
        snd_card_free(card);
        dev_set_drvdata(&spi->dev, NULL);

        return 0;
}

#ifdef CONFIG_PM
static int snd_at73c213_suspend(struct spi_device *spi, pm_message_t msg)
{
        struct snd_card *card = dev_get_drvdata(&spi->dev);
        struct snd_at73c213 *chip = card->private_data;

        ssc_writel(chip->ssc->regs, CR, SSC_BIT(CR_TXDIS));
        clk_disable(chip->board->dac_clk);

        return 0;
}

static int snd_at73c213_resume(struct spi_device *spi)
{
        struct snd_card *card = dev_get_drvdata(&spi->dev);
        struct snd_at73c213 *chip = card->private_data;

        clk_enable(chip->board->dac_clk);
        ssc_writel(chip->ssc->regs, CR, SSC_BIT(CR_TXEN));

        return 0;
}
#else
#define snd_at73c213_suspend NULL
#define snd_at73c213_resume NULL
#endif

static struct spi_driver at73c213_driver = {
        .driver         = {
                .name   = "at73c213",
        },
        .probe          = snd_at73c213_probe,
        .suspend        = snd_at73c213_suspend,
        .resume         = snd_at73c213_resume,
        .remove         = __devexit_p(snd_at73c213_remove),
};

static int __init at73c213_init(void)
{
        return spi_register_driver(&at73c213_driver);
}
module_init(at73c213_init);

static void __exit at73c213_exit(void)
{
        spi_unregister_driver(&at73c213_driver);
}
module_exit(at73c213_exit);

MODULE_AUTHOR("Hans-Christian Egtvedt <hcegtvedt@atmel.com>");
MODULE_DESCRIPTION("Sound driver for AT73C213 with Atmel SSC");
MODULE_LICENSE("GPL");

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading