[funini.com] -> [kei@sodan] -> Kernel Reading

root/sound/soc/codecs/wm8903.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. wm8903_read_reg_cache
  2. wm8903_hw_read
  3. wm8903_read
  4. wm8903_write_reg_cache
  5. wm8903_write
  6. wm8903_run_sequence
  7. wm8903_sync_reg_cache
  8. wm8903_reset
  9. wm8903_output_event
  10. wm8903_class_w_put
  11. wm8903_add_controls
  12. wm8903_add_widgets
  13. wm8903_set_bias_level
  14. wm8903_set_dai_sysclk
  15. wm8903_set_dai_fmt
  16. wm8903_digital_mute
  17. wm8903_startup
  18. wm8903_shutdown
  19. wm8903_hw_params
  20. wm8903_suspend
  21. wm8903_resume
  22. wm8903_init
  23. wm8903_i2c_probe
  24. wm8903_i2c_remove
  25. wm8903_probe
  26. wm8903_remove

/*
 * wm8903.c  --  WM8903 ALSA SoC Audio driver
 *
 * Copyright 2008 Wolfson Microelectronics
 *
 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * TODO:
 *  - TDM mode configuration.
 *  - Mic detect.
 *  - Digital microphone support.
 *  - Interrupt support (mic detect and sequencer).
 */

#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/i2c.h>
#include <linux/platform_device.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/tlv.h>
#include <sound/soc.h>
#include <sound/soc-dapm.h>
#include <sound/initval.h>

#include "wm8903.h"

struct wm8903_priv {
        int sysclk;

        /* Reference counts */
        int charge_pump_users;
        int class_w_users;
        int playback_active;
        int capture_active;

        struct snd_pcm_substream *master_substream;
        struct snd_pcm_substream *slave_substream;
};

/* Register defaults at reset */
static u16 wm8903_reg_defaults[] = {
        0x8903,     /* R0   - SW Reset and ID */
        0x0000,     /* R1   - Revision Number */
        0x0000,     /* R2 */
        0x0000,     /* R3 */
        0x0018,     /* R4   - Bias Control 0 */
        0x0000,     /* R5   - VMID Control 0 */
        0x0000,     /* R6   - Mic Bias Control 0 */
        0x0000,     /* R7 */
        0x0001,     /* R8   - Analogue DAC 0 */
        0x0000,     /* R9 */
        0x0001,     /* R10  - Analogue ADC 0 */
        0x0000,     /* R11 */
        0x0000,     /* R12  - Power Management 0 */
        0x0000,     /* R13  - Power Management 1 */
        0x0000,     /* R14  - Power Management 2 */
        0x0000,     /* R15  - Power Management 3 */
        0x0000,     /* R16  - Power Management 4 */
        0x0000,     /* R17  - Power Management 5 */
        0x0000,     /* R18  - Power Management 6 */
        0x0000,     /* R19 */
        0x0400,     /* R20  - Clock Rates 0 */
        0x0D07,     /* R21  - Clock Rates 1 */
        0x0000,     /* R22  - Clock Rates 2 */
        0x0000,     /* R23 */
        0x0050,     /* R24  - Audio Interface 0 */
        0x0242,     /* R25  - Audio Interface 1 */
        0x0008,     /* R26  - Audio Interface 2 */
        0x0022,     /* R27  - Audio Interface 3 */
        0x0000,     /* R28 */
        0x0000,     /* R29 */
        0x00C0,     /* R30  - DAC Digital Volume Left */
        0x00C0,     /* R31  - DAC Digital Volume Right */
        0x0000,     /* R32  - DAC Digital 0 */
        0x0000,     /* R33  - DAC Digital 1 */
        0x0000,     /* R34 */
        0x0000,     /* R35 */
        0x00C0,     /* R36  - ADC Digital Volume Left */
        0x00C0,     /* R37  - ADC Digital Volume Right */
        0x0000,     /* R38  - ADC Digital 0 */
        0x0073,     /* R39  - Digital Microphone 0 */
        0x09BF,     /* R40  - DRC 0 */
        0x3241,     /* R41  - DRC 1 */
        0x0020,     /* R42  - DRC 2 */
        0x0000,     /* R43  - DRC 3 */
        0x0085,     /* R44  - Analogue Left Input 0 */
        0x0085,     /* R45  - Analogue Right Input 0 */
        0x0044,     /* R46  - Analogue Left Input 1 */
        0x0044,     /* R47  - Analogue Right Input 1 */
        0x0000,     /* R48 */
        0x0000,     /* R49 */
        0x0008,     /* R50  - Analogue Left Mix 0 */
        0x0004,     /* R51  - Analogue Right Mix 0 */
        0x0000,     /* R52  - Analogue Spk Mix Left 0 */
        0x0000,     /* R53  - Analogue Spk Mix Left 1 */
        0x0000,     /* R54  - Analogue Spk Mix Right 0 */
        0x0000,     /* R55  - Analogue Spk Mix Right 1 */
        0x0000,     /* R56 */
        0x002D,     /* R57  - Analogue OUT1 Left */
        0x002D,     /* R58  - Analogue OUT1 Right */
        0x0039,     /* R59  - Analogue OUT2 Left */
        0x0039,     /* R60  - Analogue OUT2 Right */
        0x0100,     /* R61 */
        0x0139,     /* R62  - Analogue OUT3 Left */
        0x0139,     /* R63  - Analogue OUT3 Right */
        0x0000,     /* R64 */
        0x0000,     /* R65  - Analogue SPK Output Control 0 */
        0x0000,     /* R66 */
        0x0010,     /* R67  - DC Servo 0 */
        0x0100,     /* R68 */
        0x00A4,     /* R69  - DC Servo 2 */
        0x0807,     /* R70 */
        0x0000,     /* R71 */
        0x0000,     /* R72 */
        0x0000,     /* R73 */
        0x0000,     /* R74 */
        0x0000,     /* R75 */
        0x0000,     /* R76 */
        0x0000,     /* R77 */
        0x0000,     /* R78 */
        0x000E,     /* R79 */
        0x0000,     /* R80 */
        0x0000,     /* R81 */
        0x0000,     /* R82 */
        0x0000,     /* R83 */
        0x0000,     /* R84 */
        0x0000,     /* R85 */
        0x0000,     /* R86 */
        0x0006,     /* R87 */
        0x0000,     /* R88 */
        0x0000,     /* R89 */
        0x0000,     /* R90  - Analogue HP 0 */
        0x0060,     /* R91 */
        0x0000,     /* R92 */
        0x0000,     /* R93 */
        0x0000,     /* R94  - Analogue Lineout 0 */
        0x0060,     /* R95 */
        0x0000,     /* R96 */
        0x0000,     /* R97 */
        0x0000,     /* R98  - Charge Pump 0 */
        0x1F25,     /* R99 */
        0x2B19,     /* R100 */
        0x01C0,     /* R101 */
        0x01EF,     /* R102 */
        0x2B00,     /* R103 */
        0x0000,     /* R104 - Class W 0 */
        0x01C0,     /* R105 */
        0x1C10,     /* R106 */
        0x0000,     /* R107 */
        0x0000,     /* R108 - Write Sequencer 0 */
        0x0000,     /* R109 - Write Sequencer 1 */
        0x0000,     /* R110 - Write Sequencer 2 */
        0x0000,     /* R111 - Write Sequencer 3 */
        0x0000,     /* R112 - Write Sequencer 4 */
        0x0000,     /* R113 */
        0x0000,     /* R114 - Control Interface */
        0x0000,     /* R115 */
        0x00A8,     /* R116 - GPIO Control 1 */
        0x00A8,     /* R117 - GPIO Control 2 */
        0x00A8,     /* R118 - GPIO Control 3 */
        0x0220,     /* R119 - GPIO Control 4 */
        0x01A0,     /* R120 - GPIO Control 5 */
        0x0000,     /* R121 - Interrupt Status 1 */
        0xFFFF,     /* R122 - Interrupt Status 1 Mask */
        0x0000,     /* R123 - Interrupt Polarity 1 */
        0x0000,     /* R124 */
        0x0003,     /* R125 */
        0x0000,     /* R126 - Interrupt Control */
        0x0000,     /* R127 */
        0x0005,     /* R128 */
        0x0000,     /* R129 - Control Interface Test 1 */
        0x0000,     /* R130 */
        0x0000,     /* R131 */
        0x0000,     /* R132 */
        0x0000,     /* R133 */
        0x0000,     /* R134 */
        0x03FF,     /* R135 */
        0x0007,     /* R136 */
        0x0040,     /* R137 */
        0x0000,     /* R138 */
        0x0000,     /* R139 */
        0x0000,     /* R140 */
        0x0000,     /* R141 */
        0x0000,     /* R142 */
        0x0000,     /* R143 */
        0x0000,     /* R144 */
        0x0000,     /* R145 */
        0x0000,     /* R146 */
        0x0000,     /* R147 */
        0x4000,     /* R148 */
        0x6810,     /* R149 - Charge Pump Test 1 */
        0x0004,     /* R150 */
        0x0000,     /* R151 */
        0x0000,     /* R152 */
        0x0000,     /* R153 */
        0x0000,     /* R154 */
        0x0000,     /* R155 */
        0x0000,     /* R156 */
        0x0000,     /* R157 */
        0x0000,     /* R158 */
        0x0000,     /* R159 */
        0x0000,     /* R160 */
        0x0000,     /* R161 */
        0x0000,     /* R162 */
        0x0000,     /* R163 */
        0x0028,     /* R164 - Clock Rate Test 4 */
        0x0004,     /* R165 */
        0x0000,     /* R166 */
        0x0060,     /* R167 */
        0x0000,     /* R168 */
        0x0000,     /* R169 */
        0x0000,     /* R170 */
        0x0000,     /* R171 */
        0x0000,     /* R172 - Analogue Output Bias 0 */
};

static unsigned int wm8903_read_reg_cache(struct snd_soc_codec *codec,
                                                 unsigned int reg)
{
        u16 *cache = codec->reg_cache;

        BUG_ON(reg >= ARRAY_SIZE(wm8903_reg_defaults));

        return cache[reg];
}

static unsigned int wm8903_hw_read(struct snd_soc_codec *codec, u8 reg)
{
        struct i2c_msg xfer[2];
        u16 data;
        int ret;
        struct i2c_client *client = codec->control_data;

        /* Write register */
        xfer[0].addr = client->addr;
        xfer[0].flags = 0;
        xfer[0].len = 1;
        xfer[0].buf = &reg;

        /* Read data */
        xfer[1].addr = client->addr;
        xfer[1].flags = I2C_M_RD;
        xfer[1].len = 2;
        xfer[1].buf = (u8 *)&data;

        ret = i2c_transfer(client->adapter, xfer, 2);
        if (ret != 2) {
                pr_err("i2c_transfer returned %d\n", ret);
                return 0;
        }

        return (data >> 8) | ((data & 0xff) << 8);
}

static unsigned int wm8903_read(struct snd_soc_codec *codec,
                                unsigned int reg)
{
        switch (reg) {
        case WM8903_SW_RESET_AND_ID:
        case WM8903_REVISION_NUMBER:
        case WM8903_INTERRUPT_STATUS_1:
        case WM8903_WRITE_SEQUENCER_4:
                return wm8903_hw_read(codec, reg);

        default:
                return wm8903_read_reg_cache(codec, reg);
        }
}

static void wm8903_write_reg_cache(struct snd_soc_codec *codec,
                                   u16 reg, unsigned int value)
{
        u16 *cache = codec->reg_cache;

        BUG_ON(reg >= ARRAY_SIZE(wm8903_reg_defaults));

        switch (reg) {
        case WM8903_SW_RESET_AND_ID:
        case WM8903_REVISION_NUMBER:
                break;

        default:
                cache[reg] = value;
                break;
        }
}

static int wm8903_write(struct snd_soc_codec *codec, unsigned int reg,
                        unsigned int value)
{
        u8 data[3];

        wm8903_write_reg_cache(codec, reg, value);

        /* Data format is 1 byte of address followed by 2 bytes of data */
        data[0] = reg;
        data[1] = (value >> 8) & 0xff;
        data[2] = value & 0xff;

        if (codec->hw_write(codec->control_data, data, 3) == 2)
                return 0;
        else
                return -EIO;
}

static int wm8903_run_sequence(struct snd_soc_codec *codec, unsigned int start)
{
        u16 reg[5];
        struct i2c_client *i2c = codec->control_data;

        BUG_ON(start > 48);

        /* Enable the sequencer */
        reg[0] = wm8903_read(codec, WM8903_WRITE_SEQUENCER_0);
        reg[0] |= WM8903_WSEQ_ENA;
        wm8903_write(codec, WM8903_WRITE_SEQUENCER_0, reg[0]);

        dev_dbg(&i2c->dev, "Starting sequence at %d\n", start);

        wm8903_write(codec, WM8903_WRITE_SEQUENCER_3,
                     start | WM8903_WSEQ_START);

        /* Wait for it to complete.  If we have the interrupt wired up then
         * we could block waiting for an interrupt, though polling may still
         * be desirable for diagnostic purposes.
         */
        do {
                msleep(10);

                reg[4] = wm8903_read(codec, WM8903_WRITE_SEQUENCER_4);
        } while (reg[4] & WM8903_WSEQ_BUSY);

        dev_dbg(&i2c->dev, "Sequence complete\n");

        /* Disable the sequencer again */
        wm8903_write(codec, WM8903_WRITE_SEQUENCER_0,
                     reg[0] & ~WM8903_WSEQ_ENA);

        return 0;
}

static void wm8903_sync_reg_cache(struct snd_soc_codec *codec, u16 *cache)
{
        int i;

        /* There really ought to be something better we can do here :/ */
        for (i = 0; i < ARRAY_SIZE(wm8903_reg_defaults); i++)
                cache[i] = wm8903_hw_read(codec, i);
}

static void wm8903_reset(struct snd_soc_codec *codec)
{
        wm8903_write(codec, WM8903_SW_RESET_AND_ID, 0);
}

#define WM8903_OUTPUT_SHORT 0x8
#define WM8903_OUTPUT_OUT   0x4
#define WM8903_OUTPUT_INT   0x2
#define WM8903_OUTPUT_IN    0x1

/*
 * Event for headphone and line out amplifier power changes.  Special
 * power up/down sequences are required in order to maximise pop/click
 * performance.
 */
static int wm8903_output_event(struct snd_soc_dapm_widget *w,
                               struct snd_kcontrol *kcontrol, int event)
{
        struct snd_soc_codec *codec = w->codec;
        struct wm8903_priv *wm8903 = codec->private_data;
        struct i2c_client *i2c = codec->control_data;
        u16 val;
        u16 reg;
        int shift;
        u16 cp_reg = wm8903_read(codec, WM8903_CHARGE_PUMP_0);

        switch (w->reg) {
        case WM8903_POWER_MANAGEMENT_2:
                reg = WM8903_ANALOGUE_HP_0;
                break;
        case WM8903_POWER_MANAGEMENT_3:
                reg = WM8903_ANALOGUE_LINEOUT_0;
                break;
        default:
                BUG();
        }

        switch (w->shift) {
        case 0:
                shift = 0;
                break;
        case 1:
                shift = 4;
                break;
        default:
                BUG();
        }

        if (event & SND_SOC_DAPM_PRE_PMU) {
                val = wm8903_read(codec, reg);

                /* Short the output */
                val &= ~(WM8903_OUTPUT_SHORT << shift);
                wm8903_write(codec, reg, val);

                wm8903->charge_pump_users++;

                dev_dbg(&i2c->dev, "Charge pump use count now %d\n",
                        wm8903->charge_pump_users);

                if (wm8903->charge_pump_users == 1) {
                        dev_dbg(&i2c->dev, "Enabling charge pump\n");
                        wm8903_write(codec, WM8903_CHARGE_PUMP_0,
                                     cp_reg | WM8903_CP_ENA);
                        mdelay(4);
                }
        }

        if (event & SND_SOC_DAPM_POST_PMU) {
                val = wm8903_read(codec, reg);

                val |= (WM8903_OUTPUT_IN << shift);
                wm8903_write(codec, reg, val);

                val |= (WM8903_OUTPUT_INT << shift);
                wm8903_write(codec, reg, val);

                /* Turn on the output ENA_OUTP */
                val |= (WM8903_OUTPUT_OUT << shift);
                wm8903_write(codec, reg, val);

                /* Remove the short */
                val |= (WM8903_OUTPUT_SHORT << shift);
                wm8903_write(codec, reg, val);
        }

        if (event & SND_SOC_DAPM_PRE_PMD) {
                val = wm8903_read(codec, reg);

                /* Short the output */
                val &= ~(WM8903_OUTPUT_SHORT << shift);
                wm8903_write(codec, reg, val);

                /* Then disable the intermediate and output stages */
                val &= ~((WM8903_OUTPUT_OUT | WM8903_OUTPUT_INT |
                          WM8903_OUTPUT_IN) << shift);
                wm8903_write(codec, reg, val);
        }

        if (event & SND_SOC_DAPM_POST_PMD) {
                wm8903->charge_pump_users--;

                dev_dbg(&i2c->dev, "Charge pump use count now %d\n",
                        wm8903->charge_pump_users);

                if (wm8903->charge_pump_users == 0) {
                        dev_dbg(&i2c->dev, "Disabling charge pump\n");
                        wm8903_write(codec, WM8903_CHARGE_PUMP_0,
                                     cp_reg & ~WM8903_CP_ENA);
                }
        }

        return 0;
}

/*
 * When used with DAC outputs only the WM8903 charge pump supports
 * operation in class W mode, providing very low power consumption
 * when used with digital sources.  Enable and disable this mode
 * automatically depending on the mixer configuration.
 *
 * All the relevant controls are simple switches.
 */
static int wm8903_class_w_put(struct snd_kcontrol *kcontrol,
                              struct snd_ctl_elem_value *ucontrol)
{
        struct snd_soc_dapm_widget *widget = snd_kcontrol_chip(kcontrol);
        struct snd_soc_codec *codec = widget->codec;
        struct wm8903_priv *wm8903 = codec->private_data;
        struct i2c_client *i2c = codec->control_data;
        u16 reg;
        int ret;

        reg = wm8903_read(codec, WM8903_CLASS_W_0);

        /* Turn it off if we're about to enable bypass */
        if (ucontrol->value.integer.value[0]) {
                if (wm8903->class_w_users == 0) {
                        dev_dbg(&i2c->dev, "Disabling Class W\n");
                        wm8903_write(codec, WM8903_CLASS_W_0, reg &
                                     ~(WM8903_CP_DYN_FREQ | WM8903_CP_DYN_V));
                }
                wm8903->class_w_users++;
        }

        /* Implement the change */
        ret = snd_soc_dapm_put_volsw(kcontrol, ucontrol);

        /* If we've just disabled the last bypass path turn Class W on */
        if (!ucontrol->value.integer.value[0]) {
                if (wm8903->class_w_users == 1) {
                        dev_dbg(&i2c->dev, "Enabling Class W\n");
                        wm8903_write(codec, WM8903_CLASS_W_0, reg |
                                     WM8903_CP_DYN_FREQ | WM8903_CP_DYN_V);
                }
                wm8903->class_w_users--;
        }

        dev_dbg(&i2c->dev, "Bypass use count now %d\n",
                wm8903->class_w_users);

        return ret;
}

#define SOC_DAPM_SINGLE_W(xname, reg, shift, max, invert) \
{       .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
        .info = snd_soc_info_volsw, \
        .get = snd_soc_dapm_get_volsw, .put = wm8903_class_w_put, \
        .private_value =  SOC_SINGLE_VALUE(reg, shift, max, invert) }


/* ALSA can only do steps of .01dB */
static const DECLARE_TLV_DB_SCALE(digital_tlv, -7200, 75, 1);

static const DECLARE_TLV_DB_SCALE(out_tlv, -5700, 100, 0);

static const DECLARE_TLV_DB_SCALE(drc_tlv_thresh, 0, 75, 0);
static const DECLARE_TLV_DB_SCALE(drc_tlv_amp, -2250, 75, 0);
static const DECLARE_TLV_DB_SCALE(drc_tlv_min, 0, 600, 0);
static const DECLARE_TLV_DB_SCALE(drc_tlv_max, 1200, 600, 0);
static const DECLARE_TLV_DB_SCALE(drc_tlv_startup, -300, 50, 0);

static const char *drc_slope_text[] = {
        "1", "1/2", "1/4", "1/8", "1/16", "0"
};

static const struct soc_enum drc_slope_r0 =
        SOC_ENUM_SINGLE(WM8903_DRC_2, 3, 6, drc_slope_text);

static const struct soc_enum drc_slope_r1 =
        SOC_ENUM_SINGLE(WM8903_DRC_2, 0, 6, drc_slope_text);

static const char *drc_attack_text[] = {
        "instantaneous",
        "363us", "762us", "1.45ms", "2.9ms", "5.8ms", "11.6ms", "23.2ms",
        "46.4ms", "92.8ms", "185.6ms"
};

static const struct soc_enum drc_attack =
        SOC_ENUM_SINGLE(WM8903_DRC_1, 12, 11, drc_attack_text);

static const char *drc_decay_text[] = {
        "186ms", "372ms", "743ms", "1.49s", "2.97s", "5.94s", "11.89s",
        "23.87s", "47.56s"
};

static const struct soc_enum drc_decay =
        SOC_ENUM_SINGLE(WM8903_DRC_1, 8, 9, drc_decay_text);

static const char *drc_ff_delay_text[] = {
        "5 samples", "9 samples"
};

static const struct soc_enum drc_ff_delay =
        SOC_ENUM_SINGLE(WM8903_DRC_0, 5, 2, drc_ff_delay_text);

static const char *drc_qr_decay_text[] = {
        "0.725ms", "1.45ms", "5.8ms"
};

static const struct soc_enum drc_qr_decay =
        SOC_ENUM_SINGLE(WM8903_DRC_1, 4, 3, drc_qr_decay_text);

static const char *drc_smoothing_text[] = {
        "Low", "Medium", "High"
};

static const struct soc_enum drc_smoothing =
        SOC_ENUM_SINGLE(WM8903_DRC_0, 11, 3, drc_smoothing_text);

static const char *soft_mute_text[] = {
        "Fast (fs/2)", "Slow (fs/32)"
};

static const struct soc_enum soft_mute =
        SOC_ENUM_SINGLE(WM8903_DAC_DIGITAL_1, 10, 2, soft_mute_text);

static const char *mute_mode_text[] = {
        "Hard", "Soft"
};

static const struct soc_enum mute_mode =
        SOC_ENUM_SINGLE(WM8903_DAC_DIGITAL_1, 9, 2, mute_mode_text);

static const char *dac_deemphasis_text[] = {
        "Disabled", "32kHz", "44.1kHz", "48kHz"
};

static const struct soc_enum dac_deemphasis =
        SOC_ENUM_SINGLE(WM8903_DAC_DIGITAL_1, 1, 4, dac_deemphasis_text);

static const char *companding_text[] = {
        "ulaw", "alaw"
};

static const struct soc_enum dac_companding =
        SOC_ENUM_SINGLE(WM8903_AUDIO_INTERFACE_0, 0, 2, companding_text);

static const struct soc_enum adc_companding =
        SOC_ENUM_SINGLE(WM8903_AUDIO_INTERFACE_0, 2, 2, companding_text);

static const char *input_mode_text[] = {
        "Single-Ended", "Differential Line", "Differential Mic"
};

static const struct soc_enum linput_mode_enum =
        SOC_ENUM_SINGLE(WM8903_ANALOGUE_LEFT_INPUT_1, 0, 3, input_mode_text);

static const struct soc_enum rinput_mode_enum =
        SOC_ENUM_SINGLE(WM8903_ANALOGUE_RIGHT_INPUT_1, 0, 3, input_mode_text);

static const char *linput_mux_text[] = {
        "IN1L", "IN2L", "IN3L"
};

static const struct soc_enum linput_enum =
        SOC_ENUM_SINGLE(WM8903_ANALOGUE_LEFT_INPUT_1, 2, 3, linput_mux_text);

static const struct soc_enum linput_inv_enum =
        SOC_ENUM_SINGLE(WM8903_ANALOGUE_LEFT_INPUT_1, 4, 3, linput_mux_text);

static const char *rinput_mux_text[] = {
        "IN1R", "IN2R", "IN3R"
};

static const struct soc_enum rinput_enum =
        SOC_ENUM_SINGLE(WM8903_ANALOGUE_RIGHT_INPUT_1, 2, 3, rinput_mux_text);

static const struct soc_enum rinput_inv_enum =
        SOC_ENUM_SINGLE(WM8903_ANALOGUE_RIGHT_INPUT_1, 4, 3, rinput_mux_text);


static const struct snd_kcontrol_new wm8903_snd_controls[] = {

/* Input PGAs - No TLV since the scale depends on PGA mode */
SOC_SINGLE("Left Input PGA Switch", WM8903_ANALOGUE_LEFT_INPUT_0,
           7, 1, 1),
SOC_SINGLE("Left Input PGA Volume", WM8903_ANALOGUE_LEFT_INPUT_0,
           0, 31, 0),
SOC_SINGLE("Left Input PGA Common Mode Switch", WM8903_ANALOGUE_LEFT_INPUT_1,
           6, 1, 0),

SOC_SINGLE("Right Input PGA Switch", WM8903_ANALOGUE_RIGHT_INPUT_0,
           7, 1, 1),
SOC_SINGLE("Right Input PGA Volume", WM8903_ANALOGUE_RIGHT_INPUT_0,
           0, 31, 0),
SOC_SINGLE("Right Input PGA Common Mode Switch", WM8903_ANALOGUE_RIGHT_INPUT_1,
           6, 1, 0),

/* ADCs */
SOC_SINGLE("DRC Switch", WM8903_DRC_0, 15, 1, 0),
SOC_ENUM("DRC Compressor Slope R0", drc_slope_r0),
SOC_ENUM("DRC Compressor Slope R1", drc_slope_r1),
SOC_SINGLE_TLV("DRC Compressor Threashold Volume", WM8903_DRC_3, 5, 124, 1,
               drc_tlv_thresh),
SOC_SINGLE_TLV("DRC Volume", WM8903_DRC_3, 0, 30, 1, drc_tlv_amp),
SOC_SINGLE_TLV("DRC Minimum Gain Volume", WM8903_DRC_1, 2, 3, 1, drc_tlv_min),
SOC_SINGLE_TLV("DRC Maximum Gain Volume", WM8903_DRC_1, 0, 3, 0, drc_tlv_max),
SOC_ENUM("DRC Attack Rate", drc_attack),
SOC_ENUM("DRC Decay Rate", drc_decay),
SOC_ENUM("DRC FF Delay", drc_ff_delay),
SOC_SINGLE("DRC Anticlip Switch", WM8903_DRC_0, 1, 1, 0),
SOC_SINGLE("DRC QR Switch", WM8903_DRC_0, 2, 1, 0),
SOC_SINGLE_TLV("DRC QR Threashold Volume", WM8903_DRC_0, 6, 3, 0, drc_tlv_max),
SOC_ENUM("DRC QR Decay Rate", drc_qr_decay),
SOC_SINGLE("DRC Smoothing Switch", WM8903_DRC_0, 3, 1, 0),
SOC_SINGLE("DRC Smoothing Hysteresis Switch", WM8903_DRC_0, 0, 1, 0),
SOC_ENUM("DRC Smoothing Threashold", drc_smoothing),
SOC_SINGLE_TLV("DRC Startup Volume", WM8903_DRC_0, 6, 18, 0, drc_tlv_startup),

SOC_DOUBLE_R_TLV("Digital Capture Volume", WM8903_ADC_DIGITAL_VOLUME_LEFT,
                 WM8903_ADC_DIGITAL_VOLUME_RIGHT, 1, 96, 0, digital_tlv),
SOC_ENUM("ADC Companding Mode", adc_companding),
SOC_SINGLE("ADC Companding Switch", WM8903_AUDIO_INTERFACE_0, 3, 1, 0),

/* DAC */
SOC_DOUBLE_R_TLV("Digital Playback Volume", WM8903_DAC_DIGITAL_VOLUME_LEFT,
                 WM8903_DAC_DIGITAL_VOLUME_RIGHT, 1, 120, 0, digital_tlv),
SOC_ENUM("DAC Soft Mute Rate", soft_mute),
SOC_ENUM("DAC Mute Mode", mute_mode),
SOC_SINGLE("DAC Mono Switch", WM8903_DAC_DIGITAL_1, 12, 1, 0),
SOC_ENUM("DAC De-emphasis", dac_deemphasis),
SOC_SINGLE("DAC Sloping Stopband Filter Switch",
           WM8903_DAC_DIGITAL_1, 11, 1, 0),
SOC_ENUM("DAC Companding Mode", dac_companding),
SOC_SINGLE("DAC Companding Switch", WM8903_AUDIO_INTERFACE_0, 1, 1, 0),

/* Headphones */
SOC_DOUBLE_R("Headphone Switch",
             WM8903_ANALOGUE_OUT1_LEFT, WM8903_ANALOGUE_OUT1_RIGHT,
             8, 1, 1),
SOC_DOUBLE_R("Headphone ZC Switch",
             WM8903_ANALOGUE_OUT1_LEFT, WM8903_ANALOGUE_OUT1_RIGHT,
             6, 1, 0),
SOC_DOUBLE_R_TLV("Headphone Volume",
                 WM8903_ANALOGUE_OUT1_LEFT, WM8903_ANALOGUE_OUT1_RIGHT,
                 0, 63, 0, out_tlv),

/* Line out */
SOC_DOUBLE_R("Line Out Switch",
             WM8903_ANALOGUE_OUT2_LEFT, WM8903_ANALOGUE_OUT2_RIGHT,
             8, 1, 1),
SOC_DOUBLE_R("Line Out ZC Switch",
             WM8903_ANALOGUE_OUT2_LEFT, WM8903_ANALOGUE_OUT2_RIGHT,
             6, 1, 0),
SOC_DOUBLE_R_TLV("Line Out Volume",
                 WM8903_ANALOGUE_OUT2_LEFT, WM8903_ANALOGUE_OUT2_RIGHT,
                 0, 63, 0, out_tlv),

/* Speaker */
SOC_DOUBLE_R("Speaker Switch",
             WM8903_ANALOGUE_OUT3_LEFT, WM8903_ANALOGUE_OUT3_RIGHT, 8, 1, 1),
SOC_DOUBLE_R("Speaker ZC Switch",
             WM8903_ANALOGUE_OUT3_LEFT, WM8903_ANALOGUE_OUT3_RIGHT, 6, 1, 0),
SOC_DOUBLE_R_TLV("Speaker Volume",
                 WM8903_ANALOGUE_OUT3_LEFT, WM8903_ANALOGUE_OUT3_RIGHT,
                 0, 63, 0, out_tlv),
};

static int wm8903_add_controls(struct snd_soc_codec *codec)
{
        int err, i;

        for (i = 0; i < ARRAY_SIZE(wm8903_snd_controls); i++) {
                err = snd_ctl_add(codec->card,
                                  snd_soc_cnew(&wm8903_snd_controls[i],
                                               codec, NULL));
                if (err < 0)
                        return err;
        }

        return 0;
}

static const struct snd_kcontrol_new linput_mode_mux =
        SOC_DAPM_ENUM("Left Input Mode Mux", linput_mode_enum);

static const struct snd_kcontrol_new rinput_mode_mux =
        SOC_DAPM_ENUM("Right Input Mode Mux", rinput_mode_enum);

static const struct snd_kcontrol_new linput_mux =
        SOC_DAPM_ENUM("Left Input Mux", linput_enum);

static const struct snd_kcontrol_new linput_inv_mux =
        SOC_DAPM_ENUM("Left Inverting Input Mux", linput_inv_enum);

static const struct snd_kcontrol_new rinput_mux =
        SOC_DAPM_ENUM("Right Input Mux", rinput_enum);

static const struct snd_kcontrol_new rinput_inv_mux =
        SOC_DAPM_ENUM("Right Inverting Input Mux", rinput_inv_enum);

static const struct snd_kcontrol_new left_output_mixer[] = {
SOC_DAPM_SINGLE("DACL Switch", WM8903_ANALOGUE_LEFT_MIX_0, 3, 1, 0),
SOC_DAPM_SINGLE("DACR Switch", WM8903_ANALOGUE_LEFT_MIX_0, 2, 1, 0),
SOC_DAPM_SINGLE_W("Left Bypass Switch", WM8903_ANALOGUE_LEFT_MIX_0, 1, 1, 0),
SOC_DAPM_SINGLE_W("Right Bypass Switch", WM8903_ANALOGUE_LEFT_MIX_0, 1, 1, 0),
};

static const struct snd_kcontrol_new right_output_mixer[] = {
SOC_DAPM_SINGLE("DACL Switch", WM8903_ANALOGUE_RIGHT_MIX_0, 3, 1, 0),
SOC_DAPM_SINGLE("DACR Switch", WM8903_ANALOGUE_RIGHT_MIX_0, 2, 1, 0),
SOC_DAPM_SINGLE_W("Left Bypass Switch", WM8903_ANALOGUE_RIGHT_MIX_0, 1, 1, 0),
SOC_DAPM_SINGLE_W("Right Bypass Switch", WM8903_ANALOGUE_RIGHT_MIX_0, 1, 1, 0),
};

static const struct snd_kcontrol_new left_speaker_mixer[] = {
SOC_DAPM_SINGLE("DACL Switch", WM8903_ANALOGUE_SPK_MIX_LEFT_0, 3, 1, 0),
SOC_DAPM_SINGLE("DACR Switch", WM8903_ANALOGUE_SPK_MIX_LEFT_0, 2, 1, 0),
SOC_DAPM_SINGLE("Left Bypass Switch", WM8903_ANALOGUE_SPK_MIX_LEFT_0, 1, 1, 0),
SOC_DAPM_SINGLE("Right Bypass Switch", WM8903_ANALOGUE_SPK_MIX_LEFT_0,
                1, 1, 0),
};

static const struct snd_kcontrol_new right_speaker_mixer[] = {
SOC_DAPM_SINGLE("DACL Switch", WM8903_ANALOGUE_SPK_MIX_RIGHT_0, 3, 1, 0),
SOC_DAPM_SINGLE("DACR Switch", WM8903_ANALOGUE_SPK_MIX_RIGHT_0, 2, 1, 0),
SOC_DAPM_SINGLE("Left Bypass Switch", WM8903_ANALOGUE_SPK_MIX_RIGHT_0,
                1, 1, 0),
SOC_DAPM_SINGLE("Right Bypass Switch", WM8903_ANALOGUE_SPK_MIX_RIGHT_0,
                1, 1, 0),
};

static const struct snd_soc_dapm_widget wm8903_dapm_widgets[] = {
SND_SOC_DAPM_INPUT("IN1L"),
SND_SOC_DAPM_INPUT("IN1R"),
SND_SOC_DAPM_INPUT("IN2L"),
SND_SOC_DAPM_INPUT("IN2R"),
SND_SOC_DAPM_INPUT("IN3L"),
SND_SOC_DAPM_INPUT("IN3R"),

SND_SOC_DAPM_OUTPUT("HPOUTL"),
SND_SOC_DAPM_OUTPUT("HPOUTR"),
SND_SOC_DAPM_OUTPUT("LINEOUTL"),
SND_SOC_DAPM_OUTPUT("LINEOUTR"),
SND_SOC_DAPM_OUTPUT("LOP"),
SND_SOC_DAPM_OUTPUT("LON"),
SND_SOC_DAPM_OUTPUT("ROP"),
SND_SOC_DAPM_OUTPUT("RON"),

SND_SOC_DAPM_MICBIAS("Mic Bias", WM8903_MIC_BIAS_CONTROL_0, 0, 0),

SND_SOC_DAPM_MUX("Left Input Mux", SND_SOC_NOPM, 0, 0, &linput_mux),
SND_SOC_DAPM_MUX("Left Input Inverting Mux", SND_SOC_NOPM, 0, 0,
                 &linput_inv_mux),
SND_SOC_DAPM_MUX("Left Input Mode Mux", SND_SOC_NOPM, 0, 0, &linput_mode_mux),

SND_SOC_DAPM_MUX("Right Input Mux", SND_SOC_NOPM, 0, 0, &rinput_mux),
SND_SOC_DAPM_MUX("Right Input Inverting Mux", SND_SOC_NOPM, 0, 0,
                 &rinput_inv_mux),
SND_SOC_DAPM_MUX("Right Input Mode Mux", SND_SOC_NOPM, 0, 0, &rinput_mode_mux),

SND_SOC_DAPM_PGA("Left Input PGA", WM8903_POWER_MANAGEMENT_0, 1, 0, NULL, 0),
SND_SOC_DAPM_PGA("Right Input PGA", WM8903_POWER_MANAGEMENT_0, 0, 0, NULL, 0),

SND_SOC_DAPM_ADC("ADCL", "Left HiFi Capture", WM8903_POWER_MANAGEMENT_6, 1, 0),
SND_SOC_DAPM_ADC("ADCR", "Right HiFi Capture", WM8903_POWER_MANAGEMENT_6, 0, 0),

SND_SOC_DAPM_DAC("DACL", "Left Playback", WM8903_POWER_MANAGEMENT_6, 3, 0),
SND_SOC_DAPM_DAC("DACR", "Right Playback", WM8903_POWER_MANAGEMENT_6, 2, 0),

SND_SOC_DAPM_MIXER("Left Output Mixer", WM8903_POWER_MANAGEMENT_1, 1, 0,
                   left_output_mixer, ARRAY_SIZE(left_output_mixer)),
SND_SOC_DAPM_MIXER("Right Output Mixer", WM8903_POWER_MANAGEMENT_1, 0, 0,
                   right_output_mixer, ARRAY_SIZE(right_output_mixer)),

SND_SOC_DAPM_MIXER("Left Speaker Mixer", WM8903_POWER_MANAGEMENT_4, 1, 0,
                   left_speaker_mixer, ARRAY_SIZE(left_speaker_mixer)),
SND_SOC_DAPM_MIXER("Right Speaker Mixer", WM8903_POWER_MANAGEMENT_4, 0, 0,
                   right_speaker_mixer, ARRAY_SIZE(right_speaker_mixer)),

SND_SOC_DAPM_PGA_E("Left Headphone Output PGA", WM8903_POWER_MANAGEMENT_2,
                   1, 0, NULL, 0, wm8903_output_event,
                   SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
                   SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_PGA_E("Right Headphone Output PGA", WM8903_POWER_MANAGEMENT_2,
                   0, 0, NULL, 0, wm8903_output_event,
                   SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
                   SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD),

SND_SOC_DAPM_PGA_E("Left Line Output PGA", WM8903_POWER_MANAGEMENT_3, 1, 0,
                   NULL, 0, wm8903_output_event,
                   SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
                   SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_PGA_E("Right Line Output PGA", WM8903_POWER_MANAGEMENT_3, 0, 0,
                   NULL, 0, wm8903_output_event,
                   SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMU |
                   SND_SOC_DAPM_PRE_PMD | SND_SOC_DAPM_POST_PMD),

SND_SOC_DAPM_PGA("Left Speaker PGA", WM8903_POWER_MANAGEMENT_5, 1, 0,
                 NULL, 0),
SND_SOC_DAPM_PGA("Right Speaker PGA", WM8903_POWER_MANAGEMENT_5, 0, 0,
                 NULL, 0),

};

static const struct snd_soc_dapm_route intercon[] = {

        { "Left Input Mux", "IN1L", "IN1L" },
        { "Left Input Mux", "IN2L", "IN2L" },
        { "Left Input Mux", "IN3L", "IN3L" },

        { "Left Input Inverting Mux", "IN1L", "IN1L" },
        { "Left Input Inverting Mux", "IN2L", "IN2L" },
        { "Left Input Inverting Mux", "IN3L", "IN3L" },

        { "Right Input Mux", "IN1R", "IN1R" },
        { "Right Input Mux", "IN2R", "IN2R" },
        { "Right Input Mux", "IN3R", "IN3R" },

        { "Right Input Inverting Mux", "IN1R", "IN1R" },
        { "Right Input Inverting Mux", "IN2R", "IN2R" },
        { "Right Input Inverting Mux", "IN3R", "IN3R" },

        { "Left Input Mode Mux", "Single-Ended", "Left Input Inverting Mux" },
        { "Left Input Mode Mux", "Differential Line",
          "Left Input Mux" },
        { "Left Input Mode Mux", "Differential Line",
          "Left Input Inverting Mux" },
        { "Left Input Mode Mux", "Differential Mic",
          "Left Input Mux" },
        { "Left Input Mode Mux", "Differential Mic",
          "Left Input Inverting Mux" },

        { "Right Input Mode Mux", "Single-Ended",
          "Right Input Inverting Mux" },
        { "Right Input Mode Mux", "Differential Line",
          "Right Input Mux" },
        { "Right Input Mode Mux", "Differential Line",
          "Right Input Inverting Mux" },
        { "Right Input Mode Mux", "Differential Mic",
          "Right Input Mux" },
        { "Right Input Mode Mux", "Differential Mic",
          "Right Input Inverting Mux" },

        { "Left Input PGA", NULL, "Left Input Mode Mux" },
        { "Right Input PGA", NULL, "Right Input Mode Mux" },

        { "ADCL", NULL, "Left Input PGA" },
        { "ADCR", NULL, "Right Input PGA" },

        { "Left Output Mixer", "Left Bypass Switch", "Left Input PGA" },
        { "Left Output Mixer", "Right Bypass Switch", "Right Input PGA" },
        { "Left Output Mixer", "DACL Switch", "DACL" },
        { "Left Output Mixer", "DACR Switch", "DACR" },

        { "Right Output Mixer", "Left Bypass Switch", "Left Input PGA" },
        { "Right Output Mixer", "Right Bypass Switch", "Right Input PGA" },
        { "Right Output Mixer", "DACL Switch", "DACL" },
        { "Right Output Mixer", "DACR Switch", "DACR" },

        { "Left Speaker Mixer", "Left Bypass Switch", "Left Input PGA" },
        { "Left Speaker Mixer", "Right Bypass Switch", "Right Input PGA" },
        { "Left Speaker Mixer", "DACL Switch", "DACL" },
        { "Left Speaker Mixer", "DACR Switch", "DACR" },

        { "Right Speaker Mixer", "Left Bypass Switch", "Left Input PGA" },
        { "Right Speaker Mixer", "Right Bypass Switch", "Right Input PGA" },
        { "Right Speaker Mixer", "DACL Switch", "DACL" },
        { "Right Speaker Mixer", "DACR Switch", "DACR" },

        { "Left Line Output PGA", NULL, "Left Output Mixer" },
        { "Right Line Output PGA", NULL, "Right Output Mixer" },

        { "Left Headphone Output PGA", NULL, "Left Output Mixer" },
        { "Right Headphone Output PGA", NULL, "Right Output Mixer" },

        { "Left Speaker PGA", NULL, "Left Speaker Mixer" },
        { "Right Speaker PGA", NULL, "Right Speaker Mixer" },

        { "HPOUTL", NULL, "Left Headphone Output PGA" },
        { "HPOUTR", NULL, "Right Headphone Output PGA" },

        { "LINEOUTL", NULL, "Left Line Output PGA" },
        { "LINEOUTR", NULL, "Right Line Output PGA" },

        { "LOP", NULL, "Left Speaker PGA" },
        { "LON", NULL, "Left Speaker PGA" },

        { "ROP", NULL, "Right Speaker PGA" },
        { "RON", NULL, "Right Speaker PGA" },
};

static int wm8903_add_widgets(struct snd_soc_codec *codec)
{
        snd_soc_dapm_new_controls(codec, wm8903_dapm_widgets,
                                  ARRAY_SIZE(wm8903_dapm_widgets));

        snd_soc_dapm_add_routes(codec, intercon, ARRAY_SIZE(intercon));

        snd_soc_dapm_new_widgets(codec);

        return 0;
}

static int wm8903_set_bias_level(struct snd_soc_codec *codec,
                                 enum snd_soc_bias_level level)
{
        struct i2c_client *i2c = codec->control_data;
        u16 reg, reg2;

        switch (level) {
        case SND_SOC_BIAS_ON:
        case SND_SOC_BIAS_PREPARE:
                reg = wm8903_read(codec, WM8903_VMID_CONTROL_0);
                reg &= ~(WM8903_VMID_RES_MASK);
                reg |= WM8903_VMID_RES_50K;
                wm8903_write(codec, WM8903_VMID_CONTROL_0, reg);
                break;

        case SND_SOC_BIAS_STANDBY:
                if (codec->bias_level == SND_SOC_BIAS_OFF) {
                        wm8903_run_sequence(codec, 0);
                        wm8903_sync_reg_cache(codec, codec->reg_cache);

                        /* Enable low impedence charge pump output */
                        reg = wm8903_read(codec,
                                          WM8903_CONTROL_INTERFACE_TEST_1);
                        wm8903_write(codec, WM8903_CONTROL_INTERFACE_TEST_1,
                                     reg | WM8903_TEST_KEY);
                        reg2 = wm8903_read(codec, WM8903_CHARGE_PUMP_TEST_1);
                        wm8903_write(codec, WM8903_CHARGE_PUMP_TEST_1,
                                     reg2 | WM8903_CP_SW_KELVIN_MODE_MASK);
                        wm8903_write(codec, WM8903_CONTROL_INTERFACE_TEST_1,
                                     reg);

                        /* By default no bypass paths are enabled so
                         * enable Class W support.
                         */
                        dev_dbg(&i2c->dev, "Enabling Class W\n");
                        wm8903_write(codec, WM8903_CLASS_W_0, reg |
                                     WM8903_CP_DYN_FREQ | WM8903_CP_DYN_V);
                }

                reg = wm8903_read(codec, WM8903_VMID_CONTROL_0);
                reg &= ~(WM8903_VMID_RES_MASK);
                reg |= WM8903_VMID_RES_250K;
                wm8903_write(codec, WM8903_VMID_CONTROL_0, reg);
                break;

        case SND_SOC_BIAS_OFF:
                wm8903_run_sequence(codec, 32);
                break;
        }

        codec->bias_level = level;

        return 0;
}

static int wm8903_set_dai_sysclk(struct snd_soc_dai *codec_dai,
                                 int clk_id, unsigned int freq, int dir)
{
        struct snd_soc_codec *codec = codec_dai->codec;
        struct wm8903_priv *wm8903 = codec->private_data;

        wm8903->sysclk = freq;

        return 0;
}

static int wm8903_set_dai_fmt(struct snd_soc_dai *codec_dai,
                              unsigned int fmt)
{
        struct snd_soc_codec *codec = codec_dai->codec;
        u16 aif1 = wm8903_read(codec, WM8903_AUDIO_INTERFACE_1);

        aif1 &= ~(WM8903_LRCLK_DIR | WM8903_BCLK_DIR | WM8903_AIF_FMT_MASK |
                  WM8903_AIF_LRCLK_INV | WM8903_AIF_BCLK_INV);

        switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
        case SND_SOC_DAIFMT_CBS_CFS:
                break;
        case SND_SOC_DAIFMT_CBS_CFM:
                aif1 |= WM8903_LRCLK_DIR;
                break;
        case SND_SOC_DAIFMT_CBM_CFM:
                aif1 |= WM8903_LRCLK_DIR | WM8903_BCLK_DIR;
                break;
        case SND_SOC_DAIFMT_CBM_CFS:
                aif1 |= WM8903_BCLK_DIR;
                break;
        default:
                return -EINVAL;
        }

        switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
        case SND_SOC_DAIFMT_DSP_A:
                aif1 |= 0x3;
                break;
        case SND_SOC_DAIFMT_DSP_B:
                aif1 |= 0x3 | WM8903_AIF_LRCLK_INV;
                break;
        case SND_SOC_DAIFMT_I2S:
                aif1 |= 0x2;
                break;
        case SND_SOC_DAIFMT_RIGHT_J:
                aif1 |= 0x1;
                break;
        case SND_SOC_DAIFMT_LEFT_J:
                break;
        default:
                return -EINVAL;
        }

        /* Clock inversion */
        switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
        case SND_SOC_DAIFMT_DSP_A:
        case SND_SOC_DAIFMT_DSP_B:
                /* frame inversion not valid for DSP modes */
                switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
                case SND_SOC_DAIFMT_NB_NF:
                        break;
                case SND_SOC_DAIFMT_IB_NF:
                        aif1 |= WM8903_AIF_BCLK_INV;
                        break;
                default:
                        return -EINVAL;
                }
                break;
        case SND_SOC_DAIFMT_I2S:
        case SND_SOC_DAIFMT_RIGHT_J:
        case SND_SOC_DAIFMT_LEFT_J:
                switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
                case SND_SOC_DAIFMT_NB_NF:
                        break;
                case SND_SOC_DAIFMT_IB_IF:
                        aif1 |= WM8903_AIF_BCLK_INV | WM8903_AIF_LRCLK_INV;
                        break;
                case SND_SOC_DAIFMT_IB_NF:
                        aif1 |= WM8903_AIF_BCLK_INV;
                        break;
                case SND_SOC_DAIFMT_NB_IF:
                        aif1 |= WM8903_AIF_LRCLK_INV;
                        break;
                default:
                        return -EINVAL;
                }
                break;
        default:
                return -EINVAL;
        }

        wm8903_write(codec, WM8903_AUDIO_INTERFACE_1, aif1);

        return 0;
}

static int wm8903_digital_mute(struct snd_soc_dai *codec_dai, int mute)
{
        struct snd_soc_codec *codec = codec_dai->codec;
        u16 reg;

        reg = wm8903_read(codec, WM8903_DAC_DIGITAL_1);

        if (mute)
                reg |= WM8903_DAC_MUTE;
        else
                reg &= ~WM8903_DAC_MUTE;

        wm8903_write(codec, WM8903_DAC_DIGITAL_1, reg);

        return 0;
}

/* Lookup table for CLK_SYS/fs ratio.  256fs or more is recommended
 * for optimal performance so we list the lower rates first and match
 * on the last match we find. */
static struct {
        int div;
        int rate;
        int mode;
        int mclk_div;
} clk_sys_ratios[] = {
        {   64, 0x0, 0x0, 1 },
        {   68, 0x0, 0x1, 1 },
        {  125, 0x0, 0x2, 1 },
        {  128, 0x1, 0x0, 1 },
        {  136, 0x1, 0x1, 1 },
        {  192, 0x2, 0x0, 1 },
        {  204, 0x2, 0x1, 1 },

        {   64, 0x0, 0x0, 2 },
        {   68, 0x0, 0x1, 2 },
        {  125, 0x0, 0x2, 2 },
        {  128, 0x1, 0x0, 2 },
        {  136, 0x1, 0x1, 2 },
        {  192, 0x2, 0x0, 2 },
        {  204, 0x2, 0x1, 2 },

        {  250, 0x2, 0x2, 1 },
        {  256, 0x3, 0x0, 1 },
        {  272, 0x3, 0x1, 1 },
        {  384, 0x4, 0x0, 1 },
        {  408, 0x4, 0x1, 1 },
        {  375, 0x4, 0x2, 1 },
        {  512, 0x5, 0x0, 1 },
        {  544, 0x5, 0x1, 1 },
        {  500, 0x5, 0x2, 1 },
        {  768, 0x6, 0x0, 1 },
        {  816, 0x6, 0x1, 1 },
        {  750, 0x6, 0x2, 1 },
        { 1024, 0x7, 0x0, 1 },
        { 1088, 0x7, 0x1, 1 },
        { 1000, 0x7, 0x2, 1 },
        { 1408, 0x8, 0x0, 1 },
        { 1496, 0x8, 0x1, 1 },
        { 1536, 0x9, 0x0, 1 },
        { 1632, 0x9, 0x1, 1 },
        { 1500, 0x9, 0x2, 1 },

        {  250, 0x2, 0x2, 2 },
        {  256, 0x3, 0x0, 2 },
        {  272, 0x3, 0x1, 2 },
        {  384, 0x4, 0x0, 2 },
        {  408, 0x4, 0x1, 2 },
        {  375, 0x4, 0x2, 2 },
        {  512, 0x5, 0x0, 2 },
        {  544, 0x5, 0x1, 2 },
        {  500, 0x5, 0x2, 2 },
        {  768, 0x6, 0x0, 2 },
        {  816, 0x6, 0x1, 2 },
        {  750, 0x6, 0x2, 2 },
        { 1024, 0x7, 0x0, 2 },
        { 1088, 0x7, 0x1, 2 },
        { 1000, 0x7, 0x2, 2 },
        { 1408, 0x8, 0x0, 2 },
        { 1496, 0x8, 0x1, 2 },
        { 1536, 0x9, 0x0, 2 },
        { 1632, 0x9, 0x1, 2 },
        { 1500, 0x9, 0x2, 2 },
};

/* CLK_SYS/BCLK ratios - multiplied by 10 due to .5s */
static struct {
        int ratio;
        int div;
} bclk_divs[] = {
        {  10,  0 },
        {  15,  1 },
        {  20,  2 },
        {  30,  3 },
        {  40,  4 },
        {  50,  5 },
        {  55,  6 },
        {  60,  7 },
        {  80,  8 },
        { 100,  9 },
        { 110, 10 },
        { 120, 11 },
        { 160, 12 },
        { 200, 13 },
        { 220, 14 },
        { 240, 15 },
        { 250, 16 },
        { 300, 17 },
        { 320, 18 },
        { 440, 19 },
        { 480, 20 },
};

/* Sample rates for DSP */
static struct {
        int rate;
        int value;
} sample_rates[] = {
        {  8000,  0 },
        { 11025,  1 },
        { 12000,  2 },
        { 16000,  3 },
        { 22050,  4 },
        { 24000,  5 },
        { 32000,  6 },
        { 44100,  7 },
        { 48000,  8 },
        { 88200,  9 },
        { 96000, 10 },
        { 0,      0 },
};

static int wm8903_startup(struct snd_pcm_substream *substream)
{
        struct snd_soc_pcm_runtime *rtd = substream->private_data;
        struct snd_soc_device *socdev = rtd->socdev;
        struct snd_soc_codec *codec = socdev->codec;
        struct wm8903_priv *wm8903 = codec->private_data;
        struct i2c_client *i2c = codec->control_data;
        struct snd_pcm_runtime *master_runtime;

        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
                wm8903->playback_active++;
        else
                wm8903->capture_active++;

        /* The DAI has shared clocks so if we already have a playback or
         * capture going then constrain this substream to match it.
         */
        if (wm8903->master_substream) {
                master_runtime = wm8903->master_substream->runtime;

                dev_dbg(&i2c->dev, "Constraining to %d bits at %dHz\n",
                        master_runtime->sample_bits,
                        master_runtime->rate);

                snd_pcm_hw_constraint_minmax(substream->runtime,
                                             SNDRV_PCM_HW_PARAM_RATE,
                                             master_runtime->rate,
                                             master_runtime->rate);

                snd_pcm_hw_constraint_minmax(substream->runtime,
                                             SNDRV_PCM_HW_PARAM_SAMPLE_BITS,
                                             master_runtime->sample_bits,
                                             master_runtime->sample_bits);

                wm8903->slave_substream = substream;
        } else
                wm8903->master_substream = substream;

        return 0;
}

static void wm8903_shutdown(struct snd_pcm_substream *substream)
{
        struct snd_soc_pcm_runtime *rtd = substream->private_data;
        struct snd_soc_device *socdev = rtd->socdev;
        struct snd_soc_codec *codec = socdev->codec;
        struct wm8903_priv *wm8903 = codec->private_data;

        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
                wm8903->playback_active--;
        else
                wm8903->capture_active--;

        if (wm8903->master_substream == substream)
                wm8903->master_substream = wm8903->slave_substream;

        wm8903->slave_substream = NULL;
}

static int wm8903_hw_params(struct snd_pcm_substream *substream,
                            struct snd_pcm_hw_params *params)
{
        struct snd_soc_pcm_runtime *rtd = substream->private_data;
        struct snd_soc_device *socdev = rtd->socdev;
        struct snd_soc_codec *codec = socdev->codec;
        struct wm8903_priv *wm8903 = codec->private_data;
        struct i2c_client *i2c = codec->control_data;
        int fs = params_rate(params);
        int bclk;
        int bclk_div;
        int i;
        int dsp_config;
        int clk_config;
        int best_val;
        int cur_val;
        int clk_sys;

        u16 aif1 = wm8903_read(codec, WM8903_AUDIO_INTERFACE_1);
        u16 aif2 = wm8903_read(codec, WM8903_AUDIO_INTERFACE_2);
        u16 aif3 = wm8903_read(codec, WM8903_AUDIO_INTERFACE_3);
        u16 clock0 = wm8903_read(codec, WM8903_CLOCK_RATES_0);
        u16 clock1 = wm8903_read(codec, WM8903_CLOCK_RATES_1);

        if (substream == wm8903->slave_substream) {
                dev_dbg(&i2c->dev, "Ignoring hw_params for slave substream\n");
                return 0;
        }

        /* Configure sample rate logic for DSP - choose nearest rate */
        dsp_config = 0;
        best_val = abs(sample_rates[dsp_config].rate - fs);
        for (i = 1; i < ARRAY_SIZE(sample_rates); i++) {
                cur_val = abs(sample_rates[i].rate - fs);
                if (cur_val <= best_val) {
                        dsp_config = i;
                        best_val = cur_val;
                }
        }

        /* Constraints should stop us hitting this but let's make sure */
        if (wm8903->capture_active)
                switch (sample_rates[dsp_config].rate) {
                case 88200:
                case 96000:
                        dev_err(&i2c->dev, "%dHz unsupported by ADC\n",
                                fs);
                        return -EINVAL;

                default:
                        break;
                }

        dev_dbg(&i2c->dev, "DSP fs = %dHz\n", sample_rates[dsp_config].rate);
        clock1 &= ~WM8903_SAMPLE_RATE_MASK;
        clock1 |= sample_rates[dsp_config].value;

        aif1 &= ~WM8903_AIF_WL_MASK;
        bclk = 2 * fs;
        switch (params_format(params)) {
        case SNDRV_PCM_FORMAT_S16_LE:
                bclk *= 16;
                break;
        case SNDRV_PCM_FORMAT_S20_3LE:
                bclk *= 20;
                aif1 |= 0x4;
                break;
        case SNDRV_PCM_FORMAT_S24_LE:
                bclk *= 24;
                aif1 |= 0x8;
                break;
        case SNDRV_PCM_FORMAT_S32_LE:
                bclk *= 32;
                aif1 |= 0xc;
                break;
        default:
                return -EINVAL;
        }

        dev_dbg(&i2c->dev, "MCLK = %dHz, target sample rate = %dHz\n",
                wm8903->sysclk, fs);

        /* We may not have an MCLK which allows us to generate exactly
         * the clock we want, particularly with USB derived inputs, so
         * approximate.
         */
        clk_config = 0;
        best_val = abs((wm8903->sysclk /
                        (clk_sys_ratios[0].mclk_div *
                         clk_sys_ratios[0].div)) - fs);
        for (i = 1; i < ARRAY_SIZE(clk_sys_ratios); i++) {
                cur_val = abs((wm8903->sysclk /
                               (clk_sys_ratios[i].mclk_div *
                                clk_sys_ratios[i].div)) - fs);

                if (cur_val <= best_val) {
                        clk_config = i;
                        best_val = cur_val;
                }
        }

        if (clk_sys_ratios[clk_config].mclk_div == 2) {
                clock0 |= WM8903_MCLKDIV2;
                clk_sys = wm8903->sysclk / 2;
        } else {
                clock0 &= ~WM8903_MCLKDIV2;
                clk_sys = wm8903->sysclk;
        }

        clock1 &= ~(WM8903_CLK_SYS_RATE_MASK |
                    WM8903_CLK_SYS_MODE_MASK);
        clock1 |= clk_sys_ratios[clk_config].rate << WM8903_CLK_SYS_RATE_SHIFT;
        clock1 |= clk_sys_ratios[clk_config].mode << WM8903_CLK_SYS_MODE_SHIFT;

        dev_dbg(&i2c->dev, "CLK_SYS_RATE=%x, CLK_SYS_MODE=%x div=%d\n",
                clk_sys_ratios[clk_config].rate,
                clk_sys_ratios[clk_config].mode,
                clk_sys_ratios[clk_config].div);

        dev_dbg(&i2c->dev, "Actual CLK_SYS = %dHz\n", clk_sys);

        /* We may not get quite the right frequency if using
         * approximate clocks so look for the closest match that is
         * higher than the target (we need to ensure that there enough
         * BCLKs to clock out the samples).
         */
        bclk_div = 0;
        best_val = ((clk_sys * 10) / bclk_divs[0].ratio) - bclk;
        i = 1;
        while (i < ARRAY_SIZE(bclk_divs)) {
                cur_val = ((clk_sys * 10) / bclk_divs[i].ratio) - bclk;
                if (cur_val < 0) /* BCLK table is sorted */
                        break;
                bclk_div = i;
                best_val = cur_val;
                i++;
        }

        aif2 &= ~WM8903_BCLK_DIV_MASK;
        aif3 &= ~WM8903_LRCLK_RATE_MASK;

        dev_dbg(&i2c->dev, "BCLK ratio %d for %dHz - actual BCLK = %dHz\n",
                bclk_divs[bclk_div].ratio / 10, bclk,
                (clk_sys * 10) / bclk_divs[bclk_div].ratio);

        aif2 |= bclk_divs[bclk_div].div;
        aif3 |= bclk / fs;

        wm8903_write(codec, WM8903_CLOCK_RATES_0, clock0);
        wm8903_write(codec, WM8903_CLOCK_RATES_1, clock1);
        wm8903_write(codec, WM8903_AUDIO_INTERFACE_1, aif1);
        wm8903_write(codec, WM8903_AUDIO_INTERFACE_2, aif2);
        wm8903_write(codec, WM8903_AUDIO_INTERFACE_3, aif3);

        return 0;
}

#define WM8903_PLAYBACK_RATES (SNDRV_PCM_RATE_8000 |\
                               SNDRV_PCM_RATE_11025 |   \
                               SNDRV_PCM_RATE_16000 |   \
                               SNDRV_PCM_RATE_22050 |   \
                               SNDRV_PCM_RATE_32000 |   \
                               SNDRV_PCM_RATE_44100 |   \
                               SNDRV_PCM_RATE_48000 |   \
                               SNDRV_PCM_RATE_88200 |   \
                               SNDRV_PCM_RATE_96000)

#define WM8903_CAPTURE_RATES (SNDRV_PCM_RATE_8000 |\
                              SNDRV_PCM_RATE_11025 |    \
                              SNDRV_PCM_RATE_16000 |    \
                              SNDRV_PCM_RATE_22050 |    \
                              SNDRV_PCM_RATE_32000 |    \
                              SNDRV_PCM_RATE_44100 |    \
                              SNDRV_PCM_RATE_48000)

#define WM8903_FORMATS (SNDRV_PCM_FMTBIT_S16_LE |\
                        SNDRV_PCM_FMTBIT_S20_3LE |\
                        SNDRV_PCM_FMTBIT_S24_LE)

struct snd_soc_dai wm8903_dai = {
        .name = "WM8903",
        .playback = {
                .stream_name = "Playback",
                .channels_min = 2,
                .channels_max = 2,
                .rates = WM8903_PLAYBACK_RATES,
                .formats = WM8903_FORMATS,
        },
        .capture = {
                 .stream_name = "Capture",
                 .channels_min = 2,
                 .channels_max = 2,
                 .rates = WM8903_CAPTURE_RATES,
                 .formats = WM8903_FORMATS,
         },
        .ops = {
                 .startup = wm8903_startup,
                 .shutdown = wm8903_shutdown,
                 .hw_params = wm8903_hw_params,
        },
        .dai_ops = {
                 .digital_mute = wm8903_digital_mute,
                 .set_fmt = wm8903_set_dai_fmt,
                 .set_sysclk = wm8903_set_dai_sysclk
        }
};
EXPORT_SYMBOL_GPL(wm8903_dai);

static int wm8903_suspend(struct platform_device *pdev, pm_message_t state)
{
        struct snd_soc_device *socdev = platform_get_drvdata(pdev);
        struct snd_soc_codec *codec = socdev->codec;

        wm8903_set_bias_level(codec, SND_SOC_BIAS_OFF);

        return 0;
}

static int wm8903_resume(struct platform_device *pdev)
{
        struct snd_soc_device *socdev = platform_get_drvdata(pdev);
        struct snd_soc_codec *codec = socdev->codec;
        struct i2c_client *i2c = codec->control_data;
        int i;
        u16 *reg_cache = codec->reg_cache;
        u16 *tmp_cache = kmemdup(codec->reg_cache, sizeof(wm8903_reg_defaults),
                                 GFP_KERNEL);

        /* Bring the codec back up to standby first to minimise pop/clicks */
        wm8903_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
        wm8903_set_bias_level(codec, codec->suspend_bias_level);

        /* Sync back everything else */
        if (tmp_cache) {
                for (i = 2; i < ARRAY_SIZE(wm8903_reg_defaults); i++)
                        if (tmp_cache[i] != reg_cache[i])
                                wm8903_write(codec, i, tmp_cache[i]);
        } else {
                dev_err(&i2c->dev, "Failed to allocate temporary cache\n");
        }

        return 0;
}

/*
 * initialise the WM8903 driver
 * register the mixer and dsp interfaces with the kernel
 */
static int wm8903_init(struct snd_soc_device *socdev)
{
        struct snd_soc_codec *codec = socdev->codec;
        struct i2c_client *i2c = codec->control_data;
        int ret = 0;
        u16 val;

        val = wm8903_hw_read(codec, WM8903_SW_RESET_AND_ID);
        if (val != wm8903_reg_defaults[WM8903_SW_RESET_AND_ID]) {
                dev_err(&i2c->dev,
                        "Device with ID register %x is not a WM8903\n", val);
                return -ENODEV;
        }

        codec->name = "WM8903";
        codec->owner = THIS_MODULE;
        codec->read = wm8903_read;
        codec->write = wm8903_write;
        codec->bias_level = SND_SOC_BIAS_OFF;
        codec->set_bias_level = wm8903_set_bias_level;
        codec->dai = &wm8903_dai;
        codec->num_dai = 1;
        codec->reg_cache_size = ARRAY_SIZE(wm8903_reg_defaults);
        codec->reg_cache = kmemdup(wm8903_reg_defaults,
                                   sizeof(wm8903_reg_defaults),
                                   GFP_KERNEL);
        if (codec->reg_cache == NULL) {
                dev_err(&i2c->dev, "Failed to allocate register cache\n");
                return -ENOMEM;
        }

        val = wm8903_read(codec, WM8903_REVISION_NUMBER);
        dev_info(&i2c->dev, "WM8903 revision %d\n",
                 val & WM8903_CHIP_REV_MASK);

        wm8903_reset(codec);

        /* register pcms */
        ret = snd_soc_new_pcms(socdev, SNDRV_DEFAULT_IDX1, SNDRV_DEFAULT_STR1);
        if (ret < 0) {
                dev_err(&i2c->dev, "failed to create pcms\n");
                goto pcm_err;
        }

        /* SYSCLK is required for pretty much anything */
        wm8903_write(codec, WM8903_CLOCK_RATES_2, WM8903_CLK_SYS_ENA);

        /* power on device */
        wm8903_set_bias_level(codec, SND_SOC_BIAS_STANDBY);

        /* Latch volume update bits */
        val = wm8903_read(codec, WM8903_ADC_DIGITAL_VOLUME_LEFT);
        val |= WM8903_ADCVU;
        wm8903_write(codec, WM8903_ADC_DIGITAL_VOLUME_LEFT, val);
        wm8903_write(codec, WM8903_ADC_DIGITAL_VOLUME_RIGHT, val);

        val = wm8903_read(codec, WM8903_DAC_DIGITAL_VOLUME_LEFT);
        val |= WM8903_DACVU;
        wm8903_write(codec, WM8903_DAC_DIGITAL_VOLUME_LEFT, val);
        wm8903_write(codec, WM8903_DAC_DIGITAL_VOLUME_RIGHT, val);

        val = wm8903_read(codec, WM8903_ANALOGUE_OUT1_LEFT);
        val |= WM8903_HPOUTVU;
        wm8903_write(codec, WM8903_ANALOGUE_OUT1_LEFT, val);
        wm8903_write(codec, WM8903_ANALOGUE_OUT1_RIGHT, val);

        val = wm8903_read(codec, WM8903_ANALOGUE_OUT2_LEFT);
        val |= WM8903_LINEOUTVU;
        wm8903_write(codec, WM8903_ANALOGUE_OUT2_LEFT, val);
        wm8903_write(codec, WM8903_ANALOGUE_OUT2_RIGHT, val);

        val = wm8903_read(codec, WM8903_ANALOGUE_OUT3_LEFT);
        val |= WM8903_SPKVU;
        wm8903_write(codec, WM8903_ANALOGUE_OUT3_LEFT, val);
        wm8903_write(codec, WM8903_ANALOGUE_OUT3_RIGHT, val);

        /* Enable DAC soft mute by default */
        val = wm8903_read(codec, WM8903_DAC_DIGITAL_1);
        val |= WM8903_DAC_MUTEMODE;
        wm8903_write(codec, WM8903_DAC_DIGITAL_1, val);

        wm8903_add_controls(codec);
        wm8903_add_widgets(codec);
        ret = snd_soc_register_card(socdev);
        if (ret < 0) {
                dev_err(&i2c->dev, "wm8903: failed to register card\n");
                goto card_err;
        }

        return ret;

card_err:
        snd_soc_free_pcms(socdev);
        snd_soc_dapm_free(socdev);
pcm_err:
        kfree(codec->reg_cache);
        return ret;
}

static struct snd_soc_device *wm8903_socdev;

static int wm8903_i2c_probe(struct i2c_client *i2c,
                            const struct i2c_device_id *id)
{
        struct snd_soc_device *socdev = wm8903_socdev;
        struct snd_soc_codec *codec = socdev->codec;
        int ret;

        i2c_set_clientdata(i2c, codec);
        codec->control_data = i2c;

        ret = wm8903_init(socdev);
        if (ret < 0)
                dev_err(&i2c->dev, "Device initialisation failed\n");

        return ret;
}

static int wm8903_i2c_remove(struct i2c_client *client)
{
        struct snd_soc_codec *codec = i2c_get_clientdata(client);
        kfree(codec->reg_cache);
        return 0;
}

/* i2c codec control layer */
static const struct i2c_device_id wm8903_i2c_id[] = {
       { "wm8903", 0 },
       { }
};
MODULE_DEVICE_TABLE(i2c, wm8903_i2c_id);

static struct i2c_driver wm8903_i2c_driver = {
        .driver = {
                .name = "WM8903",
                .owner = THIS_MODULE,
        },
        .probe    = wm8903_i2c_probe,
        .remove   = wm8903_i2c_remove,
        .id_table = wm8903_i2c_id,
};

static int wm8903_probe(struct platform_device *pdev)
{
        struct snd_soc_device *socdev = platform_get_drvdata(pdev);
        struct wm8903_setup_data *setup;
        struct snd_soc_codec *codec;
        struct wm8903_priv *wm8903;
        struct i2c_board_info board_info;
        struct i2c_adapter *adapter;
        struct i2c_client *i2c_client;
        int ret = 0;

        setup = socdev->codec_data;

        if (!setup->i2c_address) {
                dev_err(&pdev->dev, "No codec address provided\n");
                return -ENODEV;
        }

        codec = kzalloc(sizeof(struct snd_soc_codec), GFP_KERNEL);
        if (codec == NULL)
                return -ENOMEM;

        wm8903 = kzalloc(sizeof(struct wm8903_priv), GFP_KERNEL);
        if (wm8903 == NULL) {
                ret = -ENOMEM;
                goto err_codec;
        }

        codec->private_data = wm8903;
        socdev->codec = codec;
        mutex_init(&codec->mutex);
        INIT_LIST_HEAD(&codec->dapm_widgets);
        INIT_LIST_HEAD(&codec->dapm_paths);

        wm8903_socdev = socdev;

        codec->hw_write = (hw_write_t)i2c_master_send;
        ret = i2c_add_driver(&wm8903_i2c_driver);
        if (ret != 0) {
                dev_err(&pdev->dev, "can't add i2c driver\n");
                goto err_priv;
        } else {
                memset(&board_info, 0, sizeof(board_info));
                strlcpy(board_info.type, "wm8903", I2C_NAME_SIZE);
                board_info.addr = setup->i2c_address;

                adapter = i2c_get_adapter(setup->i2c_bus);
                if (!adapter) {
                        dev_err(&pdev->dev, "Can't get I2C bus %d\n",
                                setup->i2c_bus);
                        ret = -ENODEV;
                        goto err_adapter;
                }

                i2c_client = i2c_new_device(adapter, &board_info);
                i2c_put_adapter(adapter);
                if (i2c_client == NULL) {
                        dev_err(&pdev->dev,
                                "I2C driver registration failed\n");
                        ret = -ENODEV;
                        goto err_adapter;
                }
        }

        return ret;

err_adapter:
        i2c_del_driver(&wm8903_i2c_driver);
err_priv:
        kfree(codec->private_data);
err_codec:
        kfree(codec);
        return ret;
}

/* power down chip */
static int wm8903_remove(struct platform_device *pdev)
{
        struct snd_soc_device *socdev = platform_get_drvdata(pdev);
        struct snd_soc_codec *codec = socdev->codec;

        if (codec->control_data)
                wm8903_set_bias_level(codec, SND_SOC_BIAS_OFF);

        snd_soc_free_pcms(socdev);
        snd_soc_dapm_free(socdev);
        i2c_unregister_device(socdev->codec->control_data);
        i2c_del_driver(&wm8903_i2c_driver);
        kfree(codec->private_data);
        kfree(codec);

        return 0;
}

struct snd_soc_codec_device soc_codec_dev_wm8903 = {
        .probe =        wm8903_probe,
        .remove =       wm8903_remove,
        .suspend =      wm8903_suspend,
        .resume =       wm8903_resume,
};
EXPORT_SYMBOL_GPL(soc_codec_dev_wm8903);

MODULE_DESCRIPTION("ASoC WM8903 driver");
MODULE_AUTHOR("Mark Brown <broonie@opensource.wolfsonmicro.cm>");
MODULE_LICENSE("GPL");

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading