[funini.com] -> [kei@sodan] -> Kernel Reading

root/sound/pci/pcxhr/pcxhr.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. pcxhr_pll_freq_register
  2. pcxhr_get_clock_reg
  3. pcxhr_set_clock
  4. pcxhr_get_external_clock
  5. pcxhr_set_stream_state
  6. pcxhr_set_format
  7. pcxhr_update_r_buffer
  8. pcxhr_pipe_sample_count
  9. pcxhr_stream_scheduled_get_pipe
  10. pcxhr_trigger_tasklet
  11. pcxhr_trigger
  12. pcxhr_hardware_timer
  13. pcxhr_prepare
  14. pcxhr_hw_params
  15. pcxhr_hw_free
  16. pcxhr_open
  17. pcxhr_close
  18. pcxhr_stream_pointer
  19. pcxhr_create_pcm
  20. pcxhr_chip_free
  21. pcxhr_chip_dev_free
  22. pcxhr_create
  23. pcxhr_proc_info
  24. pcxhr_proc_sync
  25. pcxhr_proc_init
  26. pcxhr_free
  27. pcxhr_probe
  28. pcxhr_remove
  29. pcxhr_module_init
  30. pcxhr_module_exit

/*
 * Driver for Digigram pcxhr compatible soundcards
 *
 * main file with alsa callbacks
 *
 * Copyright (c) 2004 by Digigram <alsa@digigram.com>
 *
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 */


#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/moduleparam.h>
#include <linux/mutex.h>

#include <sound/core.h>
#include <sound/initval.h>
#include <sound/info.h>
#include <sound/control.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include "pcxhr.h"
#include "pcxhr_mixer.h"
#include "pcxhr_hwdep.h"
#include "pcxhr_core.h"

#define DRIVER_NAME "pcxhr"

MODULE_AUTHOR("Markus Bollinger <bollinger@digigram.com>");
MODULE_DESCRIPTION("Digigram " DRIVER_NAME " " PCXHR_DRIVER_VERSION_STRING);
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{Digigram," DRIVER_NAME "}}");

static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;              /* Index 0-MAX */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;               /* ID for this card */
static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;      /* Enable this card */
static int mono[SNDRV_CARDS];                                   /* capture in mono only */

module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for Digigram " DRIVER_NAME " soundcard");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for Digigram " DRIVER_NAME " soundcard");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable Digigram " DRIVER_NAME " soundcard");
module_param_array(mono, bool, NULL, 0444);
MODULE_PARM_DESC(mono, "Mono capture mode (default is stereo)");

enum {
        PCI_ID_VX882HR,
        PCI_ID_PCX882HR,
        PCI_ID_VX881HR,
        PCI_ID_PCX881HR,
        PCI_ID_PCX1222HR,
        PCI_ID_PCX1221HR,
        PCI_ID_LAST
};

static struct pci_device_id pcxhr_ids[] = {
        { 0x10b5, 0x9656, 0x1369, 0xb001, 0, 0, PCI_ID_VX882HR, },   /* VX882HR */
        { 0x10b5, 0x9656, 0x1369, 0xb101, 0, 0, PCI_ID_PCX882HR, },  /* PCX882HR */
        { 0x10b5, 0x9656, 0x1369, 0xb201, 0, 0, PCI_ID_VX881HR, },   /* VX881HR */
        { 0x10b5, 0x9656, 0x1369, 0xb301, 0, 0, PCI_ID_PCX881HR, },  /* PCX881HR */
        { 0x10b5, 0x9656, 0x1369, 0xb501, 0, 0, PCI_ID_PCX1222HR, }, /* PCX1222HR */
        { 0x10b5, 0x9656, 0x1369, 0xb701, 0, 0, PCI_ID_PCX1221HR, }, /* PCX1221HR */
        { 0, }
};

MODULE_DEVICE_TABLE(pci, pcxhr_ids);

struct board_parameters {
        char* board_name;
        short playback_chips;
        short capture_chips;
        short firmware_num;
};
static struct board_parameters pcxhr_board_params[] = {
[PCI_ID_VX882HR] =      { "VX882HR",   4, 4, 41, },
[PCI_ID_PCX882HR] =     { "PCX882HR",  4, 4, 41, },
[PCI_ID_VX881HR] =      { "VX881HR",   4, 4, 41, },
[PCI_ID_PCX881HR] =     { "PCX881HR",  4, 4, 41, },
[PCI_ID_PCX1222HR] =    { "PCX1222HR", 6, 1, 42, },
[PCI_ID_PCX1221HR] =    { "PCX1221HR", 6, 1, 42, },
};


static int pcxhr_pll_freq_register(unsigned int freq, unsigned int* pllreg,
                                   unsigned int* realfreq)
{
        unsigned int reg;

        if (freq < 6900 || freq > 110250)
                return -EINVAL;
        reg = (28224000 * 10) / freq;
        reg = (reg + 5) / 10;
        if (reg < 0x200)
                *pllreg = reg + 0x800;
        else if (reg < 0x400)
                *pllreg = reg & 0x1ff;
        else if (reg < 0x800) {
                *pllreg = ((reg >> 1) & 0x1ff) + 0x200;
                reg &= ~1;
        } else {
                *pllreg = ((reg >> 2) & 0x1ff) + 0x400;
                reg &= ~3;
        }
        if (realfreq)
                *realfreq = ((28224000 * 10) / reg + 5) / 10;
        return 0;
}


#define PCXHR_FREQ_REG_MASK             0x1f
#define PCXHR_FREQ_QUARTZ_48000         0x00
#define PCXHR_FREQ_QUARTZ_24000         0x01
#define PCXHR_FREQ_QUARTZ_12000         0x09
#define PCXHR_FREQ_QUARTZ_32000         0x08
#define PCXHR_FREQ_QUARTZ_16000         0x04
#define PCXHR_FREQ_QUARTZ_8000          0x0c
#define PCXHR_FREQ_QUARTZ_44100         0x02
#define PCXHR_FREQ_QUARTZ_22050         0x0a
#define PCXHR_FREQ_QUARTZ_11025         0x06
#define PCXHR_FREQ_PLL                  0x05
#define PCXHR_FREQ_QUARTZ_192000        0x10
#define PCXHR_FREQ_QUARTZ_96000         0x18
#define PCXHR_FREQ_QUARTZ_176400        0x14
#define PCXHR_FREQ_QUARTZ_88200         0x1c
#define PCXHR_FREQ_QUARTZ_128000        0x12
#define PCXHR_FREQ_QUARTZ_64000         0x1a

#define PCXHR_FREQ_WORD_CLOCK           0x0f
#define PCXHR_FREQ_SYNC_AES             0x0e
#define PCXHR_FREQ_AES_1                0x07
#define PCXHR_FREQ_AES_2                0x0b
#define PCXHR_FREQ_AES_3                0x03
#define PCXHR_FREQ_AES_4                0x0d

#define PCXHR_MODIFY_CLOCK_S_BIT        0x04

#define PCXHR_IRQ_TIMER_FREQ            92000
#define PCXHR_IRQ_TIMER_PERIOD          48

static int pcxhr_get_clock_reg(struct pcxhr_mgr *mgr, unsigned int rate,
                               unsigned int *reg, unsigned int *freq)
{
        unsigned int val, realfreq, pllreg;
        struct pcxhr_rmh rmh;
        int err;

        realfreq = rate;
        switch (mgr->use_clock_type) {
        case PCXHR_CLOCK_TYPE_INTERNAL :        /* clock by quartz or pll */
                switch (rate) {
                case 48000 :    val = PCXHR_FREQ_QUARTZ_48000;  break;
                case 24000 :    val = PCXHR_FREQ_QUARTZ_24000;  break;
                case 12000 :    val = PCXHR_FREQ_QUARTZ_12000;  break;
                case 32000 :    val = PCXHR_FREQ_QUARTZ_32000;  break;
                case 16000 :    val = PCXHR_FREQ_QUARTZ_16000;  break;
                case 8000 :     val = PCXHR_FREQ_QUARTZ_8000;   break;
                case 44100 :    val = PCXHR_FREQ_QUARTZ_44100;  break;
                case 22050 :    val = PCXHR_FREQ_QUARTZ_22050;  break;
                case 11025 :    val = PCXHR_FREQ_QUARTZ_11025;  break;
                case 192000 :   val = PCXHR_FREQ_QUARTZ_192000; break;
                case 96000 :    val = PCXHR_FREQ_QUARTZ_96000;  break;
                case 176400 :   val = PCXHR_FREQ_QUARTZ_176400; break;
                case 88200 :    val = PCXHR_FREQ_QUARTZ_88200;  break;
                case 128000 :   val = PCXHR_FREQ_QUARTZ_128000; break;
                case 64000 :    val = PCXHR_FREQ_QUARTZ_64000;  break;
                default :
                        val = PCXHR_FREQ_PLL;
                        /* get the value for the pll register */
                        err = pcxhr_pll_freq_register(rate, &pllreg, &realfreq);
                        if (err)
                                return err;
                        pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE);
                        rmh.cmd[0] |= IO_NUM_REG_GENCLK;
                        rmh.cmd[1]  = pllreg & MASK_DSP_WORD;
                        rmh.cmd[2]  = pllreg >> 24;
                        rmh.cmd_len = 3;
                        err = pcxhr_send_msg(mgr, &rmh);
                        if (err < 0) {
                                snd_printk(KERN_ERR
                                           "error CMD_ACCESS_IO_WRITE for PLL register : %x!\n",
                                           err );
                                return err;
                        }
                }
                break;
        case PCXHR_CLOCK_TYPE_WORD_CLOCK :      val = PCXHR_FREQ_WORD_CLOCK;    break;
        case PCXHR_CLOCK_TYPE_AES_SYNC :        val = PCXHR_FREQ_SYNC_AES;      break;
        case PCXHR_CLOCK_TYPE_AES_1 :           val = PCXHR_FREQ_AES_1;         break;
        case PCXHR_CLOCK_TYPE_AES_2 :           val = PCXHR_FREQ_AES_2;         break;
        case PCXHR_CLOCK_TYPE_AES_3 :           val = PCXHR_FREQ_AES_3;         break;
        case PCXHR_CLOCK_TYPE_AES_4 :           val = PCXHR_FREQ_AES_4;         break;
        default : return -EINVAL;
        }
        *reg = val;
        *freq = realfreq;
        return 0;
}


int pcxhr_set_clock(struct pcxhr_mgr *mgr, unsigned int rate)
{
        unsigned int val, realfreq, speed;
        struct pcxhr_rmh rmh;
        int err, changed;

        if (rate == 0)
                return 0; /* nothing to do */

        err = pcxhr_get_clock_reg(mgr, rate, &val, &realfreq);
        if (err)
                return err;

        /* codec speed modes */
        if (rate < 55000)
                speed = 0;      /* single speed */
        else if (rate < 100000)
                speed = 1;      /* dual speed */
        else
                speed = 2;      /* quad speed */
        if (mgr->codec_speed != speed) {
                pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE);      /* mute outputs */
                rmh.cmd[0] |= IO_NUM_REG_MUTE_OUT;
                err = pcxhr_send_msg(mgr, &rmh);
                if (err)
                        return err;

                pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_WRITE);      /* set speed ratio */
                rmh.cmd[0] |= IO_NUM_SPEED_RATIO;
                rmh.cmd[1] = speed;
                rmh.cmd_len = 2;
                err = pcxhr_send_msg(mgr, &rmh);
                if (err)
                        return err;
        }
        /* set the new frequency */
        snd_printdd("clock register : set %x\n", val);
        err = pcxhr_write_io_num_reg_cont(mgr, PCXHR_FREQ_REG_MASK, val, &changed);
        if (err)
                return err;
        mgr->sample_rate_real = realfreq;
        mgr->cur_clock_type = mgr->use_clock_type;

        /* unmute after codec speed modes */
        if (mgr->codec_speed != speed) {
                pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_READ);       /* unmute outputs */
                rmh.cmd[0] |= IO_NUM_REG_MUTE_OUT;
                err = pcxhr_send_msg(mgr, &rmh);
                if (err)
                        return err;
                mgr->codec_speed = speed;                       /* save new codec speed */
        }

        if (changed) {
                pcxhr_init_rmh(&rmh, CMD_MODIFY_CLOCK);
                rmh.cmd[0] |= PCXHR_MODIFY_CLOCK_S_BIT;         /* resync fifos  */
                if (rate < PCXHR_IRQ_TIMER_FREQ)
                        rmh.cmd[1] = PCXHR_IRQ_TIMER_PERIOD;
                else
                        rmh.cmd[1] = PCXHR_IRQ_TIMER_PERIOD * 2;
                rmh.cmd[2] = rate;
                rmh.cmd_len = 3;
                err = pcxhr_send_msg(mgr, &rmh);
                if (err)
                        return err;
        }
        snd_printdd("pcxhr_set_clock to %dHz (realfreq=%d)\n", rate, realfreq);
        return 0;
}


int pcxhr_get_external_clock(struct pcxhr_mgr *mgr, enum pcxhr_clock_type clock_type,
                             int *sample_rate)
{
        struct pcxhr_rmh rmh;
        unsigned char reg;
        int err, rate;

        switch (clock_type) {
        case PCXHR_CLOCK_TYPE_WORD_CLOCK :      reg = REG_STATUS_WORD_CLOCK;    break;
        case PCXHR_CLOCK_TYPE_AES_SYNC :        reg = REG_STATUS_AES_SYNC;      break;
        case PCXHR_CLOCK_TYPE_AES_1 :           reg = REG_STATUS_AES_1;         break;
        case PCXHR_CLOCK_TYPE_AES_2 :           reg = REG_STATUS_AES_2;         break;
        case PCXHR_CLOCK_TYPE_AES_3 :           reg = REG_STATUS_AES_3;         break;
        case PCXHR_CLOCK_TYPE_AES_4 :           reg = REG_STATUS_AES_4;         break;
        default : return -EINVAL;
        }
        pcxhr_init_rmh(&rmh, CMD_ACCESS_IO_READ);
        rmh.cmd_len = 2;
        rmh.cmd[0] |= IO_NUM_REG_STATUS;
        if (mgr->last_reg_stat != reg) {
                rmh.cmd[1]  = reg;
                err = pcxhr_send_msg(mgr, &rmh);
                if (err)
                        return err;
                udelay(100);            /* wait minimum 2 sample_frames at 32kHz ! */
                mgr->last_reg_stat = reg;
        }
        rmh.cmd[1]  = REG_STATUS_CURRENT;
        err = pcxhr_send_msg(mgr, &rmh);
        if (err)
                return err;
        switch (rmh.stat[1] & 0x0f) {
        case REG_STATUS_SYNC_32000 :    rate = 32000; break;
        case REG_STATUS_SYNC_44100 :    rate = 44100; break;
        case REG_STATUS_SYNC_48000 :    rate = 48000; break;
        case REG_STATUS_SYNC_64000 :    rate = 64000; break;
        case REG_STATUS_SYNC_88200 :    rate = 88200; break;
        case REG_STATUS_SYNC_96000 :    rate = 96000; break;
        case REG_STATUS_SYNC_128000 :   rate = 128000; break;
        case REG_STATUS_SYNC_176400 :   rate = 176400; break;
        case REG_STATUS_SYNC_192000 :   rate = 192000; break;
        default: rate = 0;
        }
        snd_printdd("External clock is at %d Hz\n", rate);
        *sample_rate = rate;
        return 0;
}


/*
 *  start or stop playback/capture substream
 */
static int pcxhr_set_stream_state(struct pcxhr_stream *stream)
{
        int err;
        struct snd_pcxhr *chip;
        struct pcxhr_rmh rmh;
        int stream_mask, start;

        if (stream->status == PCXHR_STREAM_STATUS_SCHEDULE_RUN)
                start = 1;
        else {
                if (stream->status != PCXHR_STREAM_STATUS_SCHEDULE_STOP) {
                        snd_printk(KERN_ERR "ERROR pcxhr_set_stream_state CANNOT be stopped\n");
                        return -EINVAL;
                }
                start = 0;
        }
        if (!stream->substream)
                return -EINVAL;

        stream->timer_abs_periods = 0;
        stream->timer_period_frag = 0;            /* reset theoretical stream pos */
        stream->timer_buf_periods = 0;
        stream->timer_is_synced = 0;

        stream_mask = stream->pipe->is_capture ? 1 : 1<<stream->substream->number;

        pcxhr_init_rmh(&rmh, start ? CMD_START_STREAM : CMD_STOP_STREAM);
        pcxhr_set_pipe_cmd_params(&rmh, stream->pipe->is_capture,
                                  stream->pipe->first_audio, 0, stream_mask);

        chip = snd_pcm_substream_chip(stream->substream);

        err = pcxhr_send_msg(chip->mgr, &rmh);
        if (err)
                snd_printk(KERN_ERR "ERROR pcxhr_set_stream_state err=%x;\n", err);
        stream->status = start ? PCXHR_STREAM_STATUS_STARTED : PCXHR_STREAM_STATUS_STOPPED;
        return err;
}

#define HEADER_FMT_BASE_LIN             0xfed00000
#define HEADER_FMT_BASE_FLOAT           0xfad00000
#define HEADER_FMT_INTEL                0x00008000
#define HEADER_FMT_24BITS               0x00004000
#define HEADER_FMT_16BITS               0x00002000
#define HEADER_FMT_UPTO11               0x00000200
#define HEADER_FMT_UPTO32               0x00000100
#define HEADER_FMT_MONO                 0x00000080

static int pcxhr_set_format(struct pcxhr_stream *stream)
{
        int err, is_capture, sample_rate, stream_num;
        struct snd_pcxhr *chip;
        struct pcxhr_rmh rmh;
        unsigned int header;

        switch (stream->format) {
        case SNDRV_PCM_FORMAT_U8:
                header = HEADER_FMT_BASE_LIN;
                break;
        case SNDRV_PCM_FORMAT_S16_LE:
                header = HEADER_FMT_BASE_LIN | HEADER_FMT_16BITS | HEADER_FMT_INTEL;
                break;
        case SNDRV_PCM_FORMAT_S16_BE:
                header = HEADER_FMT_BASE_LIN | HEADER_FMT_16BITS;
                break;
        case SNDRV_PCM_FORMAT_S24_3LE:
                header = HEADER_FMT_BASE_LIN | HEADER_FMT_24BITS | HEADER_FMT_INTEL;
                break;
        case SNDRV_PCM_FORMAT_S24_3BE:
                header = HEADER_FMT_BASE_LIN | HEADER_FMT_24BITS;
                break;
        case SNDRV_PCM_FORMAT_FLOAT_LE:
                header = HEADER_FMT_BASE_FLOAT | HEADER_FMT_INTEL;
                break;
        default:
                snd_printk(KERN_ERR "error pcxhr_set_format() : unknown format\n");
                return -EINVAL;
        }
        chip = snd_pcm_substream_chip(stream->substream);

        sample_rate = chip->mgr->sample_rate;
        if (sample_rate <= 32000 && sample_rate !=0) {
                if (sample_rate <= 11025)
                        header |= HEADER_FMT_UPTO11;
                else
                        header |= HEADER_FMT_UPTO32;
        }
        if (stream->channels == 1)
                header |= HEADER_FMT_MONO;

        is_capture = stream->pipe->is_capture;
        stream_num = is_capture ? 0 : stream->substream->number;

        pcxhr_init_rmh(&rmh, is_capture ? CMD_FORMAT_STREAM_IN : CMD_FORMAT_STREAM_OUT);
        pcxhr_set_pipe_cmd_params(&rmh, is_capture, stream->pipe->first_audio, stream_num, 0);
        if (is_capture)
                rmh.cmd[0] |= 1<<12;
        rmh.cmd[1] = 0;
        rmh.cmd[2] = header >> 8;
        rmh.cmd[3] = (header & 0xff) << 16;
        rmh.cmd_len = 4;
        err = pcxhr_send_msg(chip->mgr, &rmh);
        if (err)
                snd_printk(KERN_ERR "ERROR pcxhr_set_format err=%x;\n", err);
        return err;
}

static int pcxhr_update_r_buffer(struct pcxhr_stream *stream)
{
        int err, is_capture, stream_num;
        struct pcxhr_rmh rmh;
        struct snd_pcm_substream *subs = stream->substream;
        struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);

        is_capture = (subs->stream == SNDRV_PCM_STREAM_CAPTURE);
        stream_num = is_capture ? 0 : subs->number;

        snd_printdd("pcxhr_update_r_buffer(pcm%c%d) : addr(%p) bytes(%zx) subs(%d)\n",
                    is_capture ? 'c' : 'p',
                    chip->chip_idx, (void *)(long)subs->runtime->dma_addr,
                    subs->runtime->dma_bytes, subs->number);

        pcxhr_init_rmh(&rmh, CMD_UPDATE_R_BUFFERS);
        pcxhr_set_pipe_cmd_params(&rmh, is_capture, stream->pipe->first_audio, stream_num, 0);

        /* max buffer size is 2 MByte */
        snd_BUG_ON(subs->runtime->dma_bytes >= 0x200000);
        rmh.cmd[1] = subs->runtime->dma_bytes * 8;              /* size in bits */
        rmh.cmd[2] = subs->runtime->dma_addr >> 24;             /* most significant byte */
        rmh.cmd[2] |= 1<<19;                                    /* this is a circular buffer */
        rmh.cmd[3] = subs->runtime->dma_addr & MASK_DSP_WORD;   /* least 3 significant bytes */
        rmh.cmd_len = 4;
        err = pcxhr_send_msg(chip->mgr, &rmh);
        if (err)
                snd_printk(KERN_ERR "ERROR CMD_UPDATE_R_BUFFERS err=%x;\n", err);
        return err;
}


#if 0
static int pcxhr_pipe_sample_count(struct pcxhr_stream *stream, snd_pcm_uframes_t *sample_count)
{
        struct pcxhr_rmh rmh;
        int err;
        pcxhr_t *chip = snd_pcm_substream_chip(stream->substream);
        pcxhr_init_rmh(&rmh, CMD_PIPE_SAMPLE_COUNT);
        pcxhr_set_pipe_cmd_params(&rmh, stream->pipe->is_capture, 0, 0,
                                  1<<stream->pipe->first_audio);
        err = pcxhr_send_msg(chip->mgr, &rmh);
        if (err == 0) {
                *sample_count = ((snd_pcm_uframes_t)rmh.stat[0]) << 24;
                *sample_count += (snd_pcm_uframes_t)rmh.stat[1];
        }
        snd_printdd("PIPE_SAMPLE_COUNT = %lx\n", *sample_count);
        return err;
}
#endif

static inline int pcxhr_stream_scheduled_get_pipe(struct pcxhr_stream *stream,
                                                  struct pcxhr_pipe **pipe)
{
        if (stream->status == PCXHR_STREAM_STATUS_SCHEDULE_RUN) {
                *pipe = stream->pipe;
                return 1;
        }
        return 0;
}

static void pcxhr_trigger_tasklet(unsigned long arg)
{
        unsigned long flags;
        int i, j, err;
        struct pcxhr_pipe *pipe;
        struct snd_pcxhr *chip;
        struct pcxhr_mgr *mgr = (struct pcxhr_mgr*)(arg);
        int capture_mask = 0;
        int playback_mask = 0;

#ifdef CONFIG_SND_DEBUG_VERBOSE
        struct timeval my_tv1, my_tv2;
        do_gettimeofday(&my_tv1);
#endif
        mutex_lock(&mgr->setup_mutex);

        /* check the pipes concerned and build pipe_array */
        for (i = 0; i < mgr->num_cards; i++) {
                chip = mgr->chip[i];
                for (j = 0; j < chip->nb_streams_capt; j++) {
                        if (pcxhr_stream_scheduled_get_pipe(&chip->capture_stream[j], &pipe))
                                capture_mask |= (1 << pipe->first_audio);
                }
                for (j = 0; j < chip->nb_streams_play; j++) {
                        if (pcxhr_stream_scheduled_get_pipe(&chip->playback_stream[j], &pipe)) {
                                playback_mask |= (1 << pipe->first_audio);
                                break;  /* add only once, as all playback streams of
                                         * one chip use the same pipe
                                         */
                        }
                }
        }
        if (capture_mask == 0 && playback_mask == 0) {
                mutex_unlock(&mgr->setup_mutex);
                snd_printk(KERN_ERR "pcxhr_trigger_tasklet : no pipes\n");
                return;
        }

        snd_printdd("pcxhr_trigger_tasklet : playback_mask=%x capture_mask=%x\n",
                    playback_mask, capture_mask);

        /* synchronous stop of all the pipes concerned */
        err = pcxhr_set_pipe_state(mgr,  playback_mask, capture_mask, 0);
        if (err) {
                mutex_unlock(&mgr->setup_mutex);
                snd_printk(KERN_ERR "pcxhr_trigger_tasklet : error stop pipes (P%x C%x)\n",
                           playback_mask, capture_mask);
                return;
        }

        /* unfortunately the dsp lost format and buffer info with the stop pipe */
        for (i = 0; i < mgr->num_cards; i++) {
                struct pcxhr_stream *stream;
                chip = mgr->chip[i];
                for (j = 0; j < chip->nb_streams_capt; j++) {
                        stream = &chip->capture_stream[j];
                        if (pcxhr_stream_scheduled_get_pipe(stream, &pipe)) {
                                err = pcxhr_set_format(stream);
                                err = pcxhr_update_r_buffer(stream);
                        }
                }
                for (j = 0; j < chip->nb_streams_play; j++) {
                        stream = &chip->playback_stream[j];
                        if (pcxhr_stream_scheduled_get_pipe(stream, &pipe)) {
                                err = pcxhr_set_format(stream);
                                err = pcxhr_update_r_buffer(stream);
                        }
                }
        }
        /* start all the streams */
        for (i = 0; i < mgr->num_cards; i++) {
                struct pcxhr_stream *stream;
                chip = mgr->chip[i];
                for (j = 0; j < chip->nb_streams_capt; j++) {
                        stream = &chip->capture_stream[j];
                        if (pcxhr_stream_scheduled_get_pipe(stream, &pipe))
                                err = pcxhr_set_stream_state(stream);
                }
                for (j = 0; j < chip->nb_streams_play; j++) {
                        stream = &chip->playback_stream[j];
                        if (pcxhr_stream_scheduled_get_pipe(stream, &pipe))
                                err = pcxhr_set_stream_state(stream);
                }
        }

        /* synchronous start of all the pipes concerned */
        err = pcxhr_set_pipe_state(mgr, playback_mask, capture_mask, 1);
        if (err) {
                mutex_unlock(&mgr->setup_mutex);
                snd_printk(KERN_ERR "pcxhr_trigger_tasklet : error start pipes (P%x C%x)\n",
                           playback_mask, capture_mask);
                return;
        }

        /* put the streams into the running state now (increment pointer by interrupt) */
        spin_lock_irqsave(&mgr->lock, flags);
        for ( i =0; i < mgr->num_cards; i++) {
                struct pcxhr_stream *stream;
                chip = mgr->chip[i];
                for(j = 0; j < chip->nb_streams_capt; j++) {
                        stream = &chip->capture_stream[j];
                        if(stream->status == PCXHR_STREAM_STATUS_STARTED)
                                stream->status = PCXHR_STREAM_STATUS_RUNNING;
                }
                for (j = 0; j < chip->nb_streams_play; j++) {
                        stream = &chip->playback_stream[j];
                        if (stream->status == PCXHR_STREAM_STATUS_STARTED) {
                                /* playback will already have advanced ! */
                                stream->timer_period_frag += PCXHR_GRANULARITY;
                                stream->status = PCXHR_STREAM_STATUS_RUNNING;
                        }
                }
        }
        spin_unlock_irqrestore(&mgr->lock, flags);

        mutex_unlock(&mgr->setup_mutex);

#ifdef CONFIG_SND_DEBUG_VERBOSE
        do_gettimeofday(&my_tv2);
        snd_printdd("***TRIGGER TASKLET*** TIME = %ld (err = %x)\n",
                    (long)(my_tv2.tv_usec - my_tv1.tv_usec), err);
#endif
}


/*
 *  trigger callback
 */
static int pcxhr_trigger(struct snd_pcm_substream *subs, int cmd)
{
        struct pcxhr_stream *stream;
        struct snd_pcm_substream *s;

        switch (cmd) {
        case SNDRV_PCM_TRIGGER_START:
                snd_printdd("SNDRV_PCM_TRIGGER_START\n");
                if (snd_pcm_stream_linked(subs)) {
                        struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
                        snd_pcm_group_for_each_entry(s, subs) {
                                if (snd_pcm_substream_chip(s) != chip)
                                        continue;
                                stream = s->runtime->private_data;
                                stream->status =
                                        PCXHR_STREAM_STATUS_SCHEDULE_RUN;
                                snd_pcm_trigger_done(s, subs);
                        }
                        tasklet_hi_schedule(&chip->mgr->trigger_taskq);
                } else {
                        stream = subs->runtime->private_data;
                        snd_printdd("Only one Substream %c %d\n",
                                    stream->pipe->is_capture ? 'C' : 'P',
                                    stream->pipe->first_audio);
                        if (pcxhr_set_format(stream))
                                return -EINVAL;
                        if (pcxhr_update_r_buffer(stream))
                                return -EINVAL;

                        stream->status = PCXHR_STREAM_STATUS_SCHEDULE_RUN;
                        if (pcxhr_set_stream_state(stream))
                                return -EINVAL;
                        stream->status = PCXHR_STREAM_STATUS_RUNNING;
                }
                break;
        case SNDRV_PCM_TRIGGER_STOP:
                snd_printdd("SNDRV_PCM_TRIGGER_STOP\n");
                snd_pcm_group_for_each_entry(s, subs) {
                        stream = s->runtime->private_data;
                        stream->status = PCXHR_STREAM_STATUS_SCHEDULE_STOP;
                        if (pcxhr_set_stream_state(stream))
                                return -EINVAL;
                        snd_pcm_trigger_done(s, subs);
                }
                break;
        case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
        case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
                /* TODO */
        default:
                return -EINVAL;
        }
        return 0;
}


static int pcxhr_hardware_timer(struct pcxhr_mgr *mgr, int start)
{
        struct pcxhr_rmh rmh;
        int err;

        pcxhr_init_rmh(&rmh, CMD_SET_TIMER_INTERRUPT);
        if (start) {
                mgr->dsp_time_last = PCXHR_DSP_TIME_INVALID;    /* last dsp time invalid */
                rmh.cmd[0] |= PCXHR_GRANULARITY;
        }
        err = pcxhr_send_msg(mgr, &rmh);
        if (err < 0)
                snd_printk(KERN_ERR "error pcxhr_hardware_timer err(%x)\n", err);
        return err;
}

/*
 *  prepare callback for all pcms
 */
static int pcxhr_prepare(struct snd_pcm_substream *subs)
{
        struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
        struct pcxhr_mgr *mgr = chip->mgr;
        /*
        struct pcxhr_stream *stream = (pcxhr_stream_t*)subs->runtime->private_data;
        */
        int err = 0;

        snd_printdd("pcxhr_prepare : period_size(%lx) periods(%x) buffer_size(%lx)\n",
                    subs->runtime->period_size, subs->runtime->periods,
                    subs->runtime->buffer_size);

        /*
        if(subs->runtime->period_size <= PCXHR_GRANULARITY) {
                snd_printk(KERN_ERR "pcxhr_prepare : error period_size too small (%x)\n",
                           (unsigned int)subs->runtime->period_size);
                return -EINVAL;
        }
        */

        mutex_lock(&mgr->setup_mutex);

        do {
                /* if the stream was stopped before, format and buffer were reset */
                /*
                if(stream->status == PCXHR_STREAM_STATUS_STOPPED) {
                        err = pcxhr_set_format(stream);
                        if(err) break;
                        err = pcxhr_update_r_buffer(stream);
                        if(err) break;
                }
                */

                /* only the first stream can choose the sample rate */
                /* the further opened streams will be limited to its frequency (see open) */
                /* set the clock only once (first stream) */
                if (mgr->sample_rate != subs->runtime->rate) {
                        err = pcxhr_set_clock(mgr, subs->runtime->rate);
                        if (err)
                                break;
                        if (mgr->sample_rate == 0)
                                /* start the DSP-timer */
                                err = pcxhr_hardware_timer(mgr, 1);
                        mgr->sample_rate = subs->runtime->rate;
                }
        } while(0);     /* do only once (so we can use break instead of goto) */

        mutex_unlock(&mgr->setup_mutex);

        return err;
}


/*
 *  HW_PARAMS callback for all pcms
 */
static int pcxhr_hw_params(struct snd_pcm_substream *subs,
                           struct snd_pcm_hw_params *hw)
{
        struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
        struct pcxhr_mgr *mgr = chip->mgr;
        struct pcxhr_stream *stream = subs->runtime->private_data;
        snd_pcm_format_t format;
        int err;
        int channels;

        /* set up channels */
        channels = params_channels(hw);

        /*  set up format for the stream */
        format = params_format(hw);

        mutex_lock(&mgr->setup_mutex);

        stream->channels = channels;
        stream->format = format;

        /* set the format to the board */
        /*
        err = pcxhr_set_format(stream);
        if(err) {
                mutex_unlock(&mgr->setup_mutex);
                return err;
        }
        */
        /* allocate buffer */
        err = snd_pcm_lib_malloc_pages(subs, params_buffer_bytes(hw));

        /*
        if (err > 0) {
                err = pcxhr_update_r_buffer(stream);
        }
        */
        mutex_unlock(&mgr->setup_mutex);

        return err;
}

static int pcxhr_hw_free(struct snd_pcm_substream *subs)
{
        snd_pcm_lib_free_pages(subs);
        return 0;
}


/*
 *  CONFIGURATION SPACE for all pcms, mono pcm must update channels_max
 */
static struct snd_pcm_hardware pcxhr_caps =
{
        .info             = ( SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
                              SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_SYNC_START |
                              0 /*SNDRV_PCM_INFO_PAUSE*/),
        .formats          = ( SNDRV_PCM_FMTBIT_U8 |
                              SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE |
                              SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S24_3BE |
                              SNDRV_PCM_FMTBIT_FLOAT_LE ),
        .rates            = SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000_192000,
        .rate_min         = 8000,
        .rate_max         = 192000,
        .channels_min     = 1,
        .channels_max     = 2,
        .buffer_bytes_max = (32*1024),
        /* 1 byte == 1 frame U8 mono (PCXHR_GRANULARITY is frames!) */
        .period_bytes_min = (2*PCXHR_GRANULARITY),
        .period_bytes_max = (16*1024),
        .periods_min      = 2,
        .periods_max      = (32*1024/PCXHR_GRANULARITY),
};


static int pcxhr_open(struct snd_pcm_substream *subs)
{
        struct snd_pcxhr       *chip = snd_pcm_substream_chip(subs);
        struct pcxhr_mgr       *mgr = chip->mgr;
        struct snd_pcm_runtime *runtime = subs->runtime;
        struct pcxhr_stream    *stream;

        mutex_lock(&mgr->setup_mutex);

        /* copy the struct snd_pcm_hardware struct */
        runtime->hw = pcxhr_caps;

        if( subs->stream == SNDRV_PCM_STREAM_PLAYBACK ) {
                snd_printdd("pcxhr_open playback chip%d subs%d\n",
                            chip->chip_idx, subs->number);
                stream = &chip->playback_stream[subs->number];
        } else {
                snd_printdd("pcxhr_open capture chip%d subs%d\n",
                            chip->chip_idx, subs->number);
                if (mgr->mono_capture)
                        runtime->hw.channels_max = 1;
                else
                        runtime->hw.channels_min = 2;
                stream = &chip->capture_stream[subs->number];
        }
        if (stream->status != PCXHR_STREAM_STATUS_FREE){
                /* streams in use */
                snd_printk(KERN_ERR "pcxhr_open chip%d subs%d in use\n",
                           chip->chip_idx, subs->number);
                mutex_unlock(&mgr->setup_mutex);
                return -EBUSY;
        }

        /* if a sample rate is already used or fixed by external clock,
         * the stream cannot change
         */
        if (mgr->sample_rate)
                runtime->hw.rate_min = runtime->hw.rate_max = mgr->sample_rate;
        else {
                if (mgr->use_clock_type != PCXHR_CLOCK_TYPE_INTERNAL) {
                        int external_rate;
                        if (pcxhr_get_external_clock(mgr, mgr->use_clock_type,
                                                     &external_rate) ||
                            external_rate == 0) {
                                /* cannot detect the external clock rate */
                                mutex_unlock(&mgr->setup_mutex);
                                return -EBUSY;
                        }
                        runtime->hw.rate_min = runtime->hw.rate_max = external_rate;
                }
        }

        stream->status      = PCXHR_STREAM_STATUS_OPEN;
        stream->substream   = subs;
        stream->channels    = 0; /* not configured yet */

        runtime->private_data = stream;

        snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 4);
        snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 4);

        snd_pcm_set_sync(subs);

        mgr->ref_count_rate++;

        mutex_unlock(&mgr->setup_mutex);
        return 0;
}


static int pcxhr_close(struct snd_pcm_substream *subs)
{
        struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
        struct pcxhr_mgr *mgr = chip->mgr;
        struct pcxhr_stream *stream = subs->runtime->private_data;

        mutex_lock(&mgr->setup_mutex);

        snd_printdd("pcxhr_close chip%d subs%d\n", chip->chip_idx, subs->number);

        /* sample rate released */
        if (--mgr->ref_count_rate == 0) {
                mgr->sample_rate = 0;           /* the sample rate is no more locked */
                pcxhr_hardware_timer(mgr, 0);   /* stop the DSP-timer */
        }

        stream->status    = PCXHR_STREAM_STATUS_FREE;
        stream->substream = NULL;

        mutex_unlock(&mgr->setup_mutex);

        return 0;
}


static snd_pcm_uframes_t pcxhr_stream_pointer(struct snd_pcm_substream *subs)
{
        unsigned long flags;
        u_int32_t timer_period_frag;
        int timer_buf_periods;
        struct snd_pcxhr *chip = snd_pcm_substream_chip(subs);
        struct snd_pcm_runtime *runtime = subs->runtime;
        struct pcxhr_stream *stream  = runtime->private_data;

        spin_lock_irqsave(&chip->mgr->lock, flags);

        /* get the period fragment and the nb of periods in the buffer */
        timer_period_frag = stream->timer_period_frag;
        timer_buf_periods = stream->timer_buf_periods;

        spin_unlock_irqrestore(&chip->mgr->lock, flags);

        return (snd_pcm_uframes_t)((timer_buf_periods * runtime->period_size) +
                                   timer_period_frag);
}


static struct snd_pcm_ops pcxhr_ops = {
        .open      = pcxhr_open,
        .close     = pcxhr_close,
        .ioctl     = snd_pcm_lib_ioctl,
        .prepare   = pcxhr_prepare,
        .hw_params = pcxhr_hw_params,
        .hw_free   = pcxhr_hw_free,
        .trigger   = pcxhr_trigger,
        .pointer   = pcxhr_stream_pointer,
};

/*
 */
int pcxhr_create_pcm(struct snd_pcxhr *chip)
{
        int err;
        struct snd_pcm *pcm;
        char name[32];

        sprintf(name, "pcxhr %d", chip->chip_idx);
        if ((err = snd_pcm_new(chip->card, name, 0,
                               chip->nb_streams_play,
                               chip->nb_streams_capt, &pcm)) < 0) {
                snd_printk(KERN_ERR "cannot create pcm %s\n", name);
                return err;
        }
        pcm->private_data = chip;

        if (chip->nb_streams_play)
                snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &pcxhr_ops);
        if (chip->nb_streams_capt)
                snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &pcxhr_ops);

        pcm->info_flags = 0;
        strcpy(pcm->name, name);

        snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
                                              snd_dma_pci_data(chip->mgr->pci),
                                              32*1024, 32*1024);
        chip->pcm = pcm;
        return 0;
}

static int pcxhr_chip_free(struct snd_pcxhr *chip)
{
        kfree(chip);
        return 0;
}

static int pcxhr_chip_dev_free(struct snd_device *device)
{
        struct snd_pcxhr *chip = device->device_data;
        return pcxhr_chip_free(chip);
}


/*
 */
static int __devinit pcxhr_create(struct pcxhr_mgr *mgr, struct snd_card *card, int idx)
{
        int err;
        struct snd_pcxhr *chip;
        static struct snd_device_ops ops = {
                .dev_free = pcxhr_chip_dev_free,
        };

        mgr->chip[idx] = chip = kzalloc(sizeof(*chip), GFP_KERNEL);
        if (! chip) {
                snd_printk(KERN_ERR "cannot allocate chip\n");
                return -ENOMEM;
        }

        chip->card = card;
        chip->chip_idx = idx;
        chip->mgr = mgr;

        if (idx < mgr->playback_chips)
                /* stereo or mono streams */
                chip->nb_streams_play = PCXHR_PLAYBACK_STREAMS;

        if (idx < mgr->capture_chips) {
                if (mgr->mono_capture)
                        chip->nb_streams_capt = 2;      /* 2 mono streams (left+right) */
                else
                        chip->nb_streams_capt = 1;      /* or 1 stereo stream */
        }

        if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops)) < 0) {
                pcxhr_chip_free(chip);
                return err;
        }

        snd_card_set_dev(card, &mgr->pci->dev);

        return 0;
}

/* proc interface */
static void pcxhr_proc_info(struct snd_info_entry *entry, struct snd_info_buffer *buffer)
{
        struct snd_pcxhr *chip = entry->private_data;
        struct pcxhr_mgr *mgr = chip->mgr;

        snd_iprintf(buffer, "\n%s\n", mgr->longname);

        /* stats available when embedded DSP is running */
        if (mgr->dsp_loaded & (1 << PCXHR_FIRMWARE_DSP_MAIN_INDEX)) {
                struct pcxhr_rmh rmh;
                short ver_maj = (mgr->dsp_version >> 16) & 0xff;
                short ver_min = (mgr->dsp_version >> 8) & 0xff;
                short ver_build = mgr->dsp_version & 0xff;
                snd_iprintf(buffer, "module version %s\n", PCXHR_DRIVER_VERSION_STRING);
                snd_iprintf(buffer, "dsp version %d.%d.%d\n", ver_maj, ver_min, ver_build);
                if (mgr->board_has_analog)
                        snd_iprintf(buffer, "analog io available\n");
                else
                        snd_iprintf(buffer, "digital only board\n");

                /* calc cpu load of the dsp */
                pcxhr_init_rmh(&rmh, CMD_GET_DSP_RESOURCES);
                if( ! pcxhr_send_msg(mgr, &rmh) ) {
                        int cur = rmh.stat[0];
                        int ref = rmh.stat[1];
                        if (ref > 0) {
                                if (mgr->sample_rate_real != 0 &&
                                    mgr->sample_rate_real != 48000) {
                                        ref = (ref * 48000) / mgr->sample_rate_real;
                                        if (mgr->sample_rate_real >= PCXHR_IRQ_TIMER_FREQ)
                                                ref *= 2;
                                }
                                cur = 100 - (100 * cur) / ref;
                                snd_iprintf(buffer, "cpu load    %d%%\n", cur);
                                snd_iprintf(buffer, "buffer pool %d/%d kWords\n",
                                            rmh.stat[2], rmh.stat[3]);
                        }
                }
                snd_iprintf(buffer, "dma granularity : %d\n", PCXHR_GRANULARITY);
                snd_iprintf(buffer, "dsp time errors : %d\n", mgr->dsp_time_err);
                snd_iprintf(buffer, "dsp async pipe xrun errors : %d\n",
                            mgr->async_err_pipe_xrun);
                snd_iprintf(buffer, "dsp async stream xrun errors : %d\n",
                            mgr->async_err_stream_xrun);
                snd_iprintf(buffer, "dsp async last other error : %x\n",
                            mgr->async_err_other_last);
                /* debug zone dsp */
                rmh.cmd[0] = 0x4200 + PCXHR_SIZE_MAX_STATUS;
                rmh.cmd_len = 1;
                rmh.stat_len = PCXHR_SIZE_MAX_STATUS;
                rmh.dsp_stat = 0;
                rmh.cmd_idx = CMD_LAST_INDEX;
                if( ! pcxhr_send_msg(mgr, &rmh) ) {
                        int i;
                        for (i = 0; i < rmh.stat_len; i++)
                                snd_iprintf(buffer, "debug[%02d] = %06x\n", i,  rmh.stat[i]);
                }
        } else
                snd_iprintf(buffer, "no firmware loaded\n");
        snd_iprintf(buffer, "\n");
}
static void pcxhr_proc_sync(struct snd_info_entry *entry, struct snd_info_buffer *buffer)
{
        struct snd_pcxhr *chip = entry->private_data;
        struct pcxhr_mgr *mgr = chip->mgr;
        static char *texts[7] = {
                "Internal", "Word", "AES Sync", "AES 1", "AES 2", "AES 3", "AES 4"
        };

        snd_iprintf(buffer, "\n%s\n", mgr->longname);
        snd_iprintf(buffer, "Current Sample Clock\t: %s\n", texts[mgr->cur_clock_type]);
        snd_iprintf(buffer, "Current Sample Rate\t= %d\n", mgr->sample_rate_real);

        /* commands available when embedded DSP is running */
        if (mgr->dsp_loaded & (1 << PCXHR_FIRMWARE_DSP_MAIN_INDEX)) {
                int i, err, sample_rate;
                for (i = PCXHR_CLOCK_TYPE_WORD_CLOCK; i< (3 + mgr->capture_chips); i++) {
                        err = pcxhr_get_external_clock(mgr, i, &sample_rate);
                        if (err)
                                break;
                        snd_iprintf(buffer, "%s Clock\t\t= %d\n", texts[i], sample_rate);
                }
        } else
                snd_iprintf(buffer, "no firmware loaded\n");
        snd_iprintf(buffer, "\n");
}

static void __devinit pcxhr_proc_init(struct snd_pcxhr *chip)
{
        struct snd_info_entry *entry;

        if (! snd_card_proc_new(chip->card, "info", &entry))
                snd_info_set_text_ops(entry, chip, pcxhr_proc_info);
        if (! snd_card_proc_new(chip->card, "sync", &entry))
                snd_info_set_text_ops(entry, chip, pcxhr_proc_sync);
}
/* end of proc interface */

/*
 * release all the cards assigned to a manager instance
 */
static int pcxhr_free(struct pcxhr_mgr *mgr)
{
        unsigned int i;

        for (i = 0; i < mgr->num_cards; i++) {
                if (mgr->chip[i])
                        snd_card_free(mgr->chip[i]->card);
        }

        /* reset board if some firmware was loaded */
        if(mgr->dsp_loaded) {
                pcxhr_reset_board(mgr);
                snd_printdd("reset pcxhr !\n");
        }

        /* release irq  */
        if (mgr->irq >= 0)
                free_irq(mgr->irq, mgr);

        pci_release_regions(mgr->pci);

        /* free hostport purgebuffer */
        if (mgr->hostport.area) {
                snd_dma_free_pages(&mgr->hostport);
                mgr->hostport.area = NULL;
        }

        kfree(mgr->prmh);

        pci_disable_device(mgr->pci);
        kfree(mgr);
        return 0;
}

/*
 *    probe function - creates the card manager
 */
static int __devinit pcxhr_probe(struct pci_dev *pci, const struct pci_device_id *pci_id)
{
        static int dev;
        struct pcxhr_mgr *mgr;
        unsigned int i;
        int err;
        size_t size;
        char *card_name;

        if (dev >= SNDRV_CARDS)
                return -ENODEV;
        if (! enable[dev]) {
                dev++;
                return -ENOENT;
        }

        /* enable PCI device */
        if ((err = pci_enable_device(pci)) < 0)
                return err;
        pci_set_master(pci);

        /* check if we can restrict PCI DMA transfers to 32 bits */
        if (pci_set_dma_mask(pci, DMA_32BIT_MASK) < 0) {
                snd_printk(KERN_ERR "architecture does not support 32bit PCI busmaster DMA\n");
                pci_disable_device(pci);
                return -ENXIO;
        }

        /* alloc card manager */
        mgr = kzalloc(sizeof(*mgr), GFP_KERNEL);
        if (! mgr) {
                pci_disable_device(pci);
                return -ENOMEM;
        }

        if (snd_BUG_ON(pci_id->driver_data >= PCI_ID_LAST))
                return -ENODEV;
        card_name = pcxhr_board_params[pci_id->driver_data].board_name;
        mgr->playback_chips = pcxhr_board_params[pci_id->driver_data].playback_chips;
        mgr->capture_chips  = pcxhr_board_params[pci_id->driver_data].capture_chips;
        mgr->firmware_num  = pcxhr_board_params[pci_id->driver_data].firmware_num;
        mgr->mono_capture = mono[dev];

        /* resource assignment */
        if ((err = pci_request_regions(pci, card_name)) < 0) {
                kfree(mgr);
                pci_disable_device(pci);
                return err;
        }
        for (i = 0; i < 3; i++)
                mgr->port[i] = pci_resource_start(pci, i);

        mgr->pci = pci;
        mgr->irq = -1;

        if (request_irq(pci->irq, pcxhr_interrupt, IRQF_SHARED,
                        card_name, mgr)) {
                snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
                pcxhr_free(mgr);
                return -EBUSY;
        }
        mgr->irq = pci->irq;

        sprintf(mgr->shortname, "Digigram %s", card_name);
        sprintf(mgr->longname, "%s at 0x%lx & 0x%lx, 0x%lx irq %i", mgr->shortname,
                mgr->port[0], mgr->port[1], mgr->port[2], mgr->irq);

        /* ISR spinlock  */
        spin_lock_init(&mgr->lock);
        spin_lock_init(&mgr->msg_lock);

        /* init setup mutex*/
        mutex_init(&mgr->setup_mutex);

        /* init taslket */
        tasklet_init(&mgr->msg_taskq, pcxhr_msg_tasklet, (unsigned long) mgr);
        tasklet_init(&mgr->trigger_taskq, pcxhr_trigger_tasklet, (unsigned long) mgr);
        mgr->prmh = kmalloc(sizeof(*mgr->prmh) + 
                            sizeof(u32) * (PCXHR_SIZE_MAX_LONG_STATUS - PCXHR_SIZE_MAX_STATUS),
                            GFP_KERNEL);
        if (! mgr->prmh) {
                pcxhr_free(mgr);
                return -ENOMEM;
        }

        for (i=0; i < PCXHR_MAX_CARDS; i++) {
                struct snd_card *card;
                char tmpid[16];
                int idx;

                if (i >= max(mgr->playback_chips, mgr->capture_chips))
                        break;
                mgr->num_cards++;

                if (index[dev] < 0)
                        idx = index[dev];
                else
                        idx = index[dev] + i;

                snprintf(tmpid, sizeof(tmpid), "%s-%d", id[dev] ? id[dev] : card_name, i);
                card = snd_card_new(idx, tmpid, THIS_MODULE, 0);

                if (! card) {
                        snd_printk(KERN_ERR "cannot allocate the card %d\n", i);
                        pcxhr_free(mgr);
                        return -ENOMEM;
                }

                strcpy(card->driver, DRIVER_NAME);
                sprintf(card->shortname, "%s [PCM #%d]", mgr->shortname, i);
                sprintf(card->longname, "%s [PCM #%d]", mgr->longname, i);

                if ((err = pcxhr_create(mgr, card, i)) < 0) {
                        pcxhr_free(mgr);
                        return err;
                }

                if (i == 0)
                        /* init proc interface only for chip0 */
                        pcxhr_proc_init(mgr->chip[i]);

                if ((err = snd_card_register(card)) < 0) {
                        pcxhr_free(mgr);
                        return err;
                }
        }

        /* create hostport purgebuffer */
        size = PAGE_ALIGN(sizeof(struct pcxhr_hostport));
        if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(pci),
                                size, &mgr->hostport) < 0) {
                pcxhr_free(mgr);
                return -ENOMEM;
        }
        /* init purgebuffer */
        memset(mgr->hostport.area, 0, size);

        /* create a DSP loader */
        err = pcxhr_setup_firmware(mgr);
        if (err < 0) {
                pcxhr_free(mgr);
                return err;
        }

        pci_set_drvdata(pci, mgr);
        dev++;
        return 0;
}

static void __devexit pcxhr_remove(struct pci_dev *pci)
{
        pcxhr_free(pci_get_drvdata(pci));
        pci_set_drvdata(pci, NULL);
}

static struct pci_driver driver = {
        .name = "Digigram pcxhr",
        .id_table = pcxhr_ids,
        .probe = pcxhr_probe,
        .remove = __devexit_p(pcxhr_remove),
};

static int __init pcxhr_module_init(void)
{
        return pci_register_driver(&driver);
}

static void __exit pcxhr_module_exit(void)
{
        pci_unregister_driver(&driver);
}

module_init(pcxhr_module_init)
module_exit(pcxhr_module_exit)

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading