[funini.com] -> [kei@sodan] -> Kernel Reading

root/sound/pci/rme32.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. snd_rme32_pcm_byteptr
  2. snd_rme32_playback_silence
  3. snd_rme32_playback_copy
  4. snd_rme32_capture_copy
  5. snd_rme32_reset_dac
  6. snd_rme32_playback_getrate
  7. snd_rme32_capture_getrate
  8. snd_rme32_playback_setrate
  9. snd_rme32_setclockmode
  10. snd_rme32_getclockmode
  11. snd_rme32_setinputtype
  12. snd_rme32_getinputtype
  13. snd_rme32_setframelog
  14. snd_rme32_setformat
  15. snd_rme32_playback_hw_params
  16. snd_rme32_capture_hw_params
  17. snd_rme32_pcm_hw_free
  18. snd_rme32_pcm_start
  19. snd_rme32_pcm_stop
  20. snd_rme32_interrupt
  21. snd_rme32_set_buffer_constraint
  22. snd_rme32_playback_spdif_open
  23. snd_rme32_capture_spdif_open
  24. snd_rme32_playback_adat_open
  25. snd_rme32_capture_adat_open
  26. snd_rme32_playback_close
  27. snd_rme32_capture_close
  28. snd_rme32_playback_prepare
  29. snd_rme32_capture_prepare
  30. snd_rme32_pcm_trigger
  31. snd_rme32_playback_pointer
  32. snd_rme32_capture_pointer
  33. snd_rme32_pb_trans_copy
  34. snd_rme32_playback_fd_ack
  35. snd_rme32_cp_trans_copy
  36. snd_rme32_capture_fd_ack
  37. snd_rme32_playback_fd_pointer
  38. snd_rme32_capture_fd_pointer
  39. snd_rme32_free
  40. snd_rme32_free_spdif_pcm
  41. snd_rme32_free_adat_pcm
  42. snd_rme32_create
  43. snd_rme32_proc_read
  44. snd_rme32_proc_init
  45. snd_rme32_get_loopback_control
  46. snd_rme32_put_loopback_control
  47. snd_rme32_info_inputtype_control
  48. snd_rme32_get_inputtype_control
  49. snd_rme32_put_inputtype_control
  50. snd_rme32_info_clockmode_control
  51. snd_rme32_get_clockmode_control
  52. snd_rme32_put_clockmode_control
  53. snd_rme32_convert_from_aes
  54. snd_rme32_convert_to_aes
  55. snd_rme32_control_spdif_info
  56. snd_rme32_control_spdif_get
  57. snd_rme32_control_spdif_put
  58. snd_rme32_control_spdif_stream_info
  59. snd_rme32_control_spdif_stream_get
  60. snd_rme32_control_spdif_stream_put
  61. snd_rme32_control_spdif_mask_info
  62. snd_rme32_control_spdif_mask_get
  63. snd_rme32_create_switches
  64. snd_rme32_card_free
  65. snd_rme32_probe
  66. snd_rme32_remove
  67. alsa_card_rme32_init
  68. alsa_card_rme32_exit

/*
 *   ALSA driver for RME Digi32, Digi32/8 and Digi32 PRO audio interfaces
 *
 *      Copyright (c) 2002-2004 Martin Langer <martin-langer@gmx.de>,
 *                              Pilo Chambert <pilo.c@wanadoo.fr>
 *
 *      Thanks to :        Anders Torger <torger@ludd.luth.se>,
 *                         Henk Hesselink <henk@anda.nl>
 *                         for writing the digi96-driver 
 *                         and RME for all informations.
 *
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, write to the Free Software
 *   Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 * 
 * 
 * ****************************************************************************
 * 
 * Note #1 "Sek'd models" ................................... martin 2002-12-07
 * 
 * Identical soundcards by Sek'd were labeled:
 * RME Digi 32     = Sek'd Prodif 32
 * RME Digi 32 Pro = Sek'd Prodif 96
 * RME Digi 32/8   = Sek'd Prodif Gold
 * 
 * ****************************************************************************
 * 
 * Note #2 "full duplex mode" ............................... martin 2002-12-07
 * 
 * Full duplex doesn't work. All cards (32, 32/8, 32Pro) are working identical
 * in this mode. Rec data and play data are using the same buffer therefore. At
 * first you have got the playing bits in the buffer and then (after playing
 * them) they were overwitten by the captured sound of the CS8412/14. Both 
 * modes (play/record) are running harmonically hand in hand in the same buffer
 * and you have only one start bit plus one interrupt bit to control this 
 * paired action.
 * This is opposite to the latter rme96 where playing and capturing is totally
 * separated and so their full duplex mode is supported by alsa (using two 
 * start bits and two interrupts for two different buffers). 
 * But due to the wrong sequence of playing and capturing ALSA shows no solved
 * full duplex support for the rme32 at the moment. That's bad, but I'm not
 * able to solve it. Are you motivated enough to solve this problem now? Your
 * patch would be welcome!
 * 
 * ****************************************************************************
 *
 * "The story after the long seeking" -- tiwai
 *
 * Ok, the situation regarding the full duplex is now improved a bit.
 * In the fullduplex mode (given by the module parameter), the hardware buffer
 * is split to halves for read and write directions at the DMA pointer.
 * That is, the half above the current DMA pointer is used for write, and
 * the half below is used for read.  To mangle this strange behavior, an
 * software intermediate buffer is introduced.  This is, of course, not good
 * from the viewpoint of the data transfer efficiency.  However, this allows
 * you to use arbitrary buffer sizes, instead of the fixed I/O buffer size.
 *
 * ****************************************************************************
 */


#include <linux/delay.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/moduleparam.h>

#include <sound/core.h>
#include <sound/info.h>
#include <sound/control.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/pcm-indirect.h>
#include <sound/asoundef.h>
#include <sound/initval.h>

#include <asm/io.h>

static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;      /* Index 0-MAX */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;       /* ID for this card */
static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;      /* Enable this card */
static int fullduplex[SNDRV_CARDS]; // = {[0 ... (SNDRV_CARDS - 1)] = 1};

module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for RME Digi32 soundcard.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for RME Digi32 soundcard.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable RME Digi32 soundcard.");
module_param_array(fullduplex, bool, NULL, 0444);
MODULE_PARM_DESC(fullduplex, "Support full-duplex mode.");
MODULE_AUTHOR("Martin Langer <martin-langer@gmx.de>, Pilo Chambert <pilo.c@wanadoo.fr>");
MODULE_DESCRIPTION("RME Digi32, Digi32/8, Digi32 PRO");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{RME,Digi32}," "{RME,Digi32/8}," "{RME,Digi32 PRO}}");

/* Defines for RME Digi32 series */
#define RME32_SPDIF_NCHANNELS 2

/* Playback and capture buffer size */
#define RME32_BUFFER_SIZE 0x20000

/* IO area size */
#define RME32_IO_SIZE 0x30000

/* IO area offsets */
#define RME32_IO_DATA_BUFFER        0x0
#define RME32_IO_CONTROL_REGISTER   0x20000
#define RME32_IO_GET_POS            0x20000
#define RME32_IO_CONFIRM_ACTION_IRQ 0x20004
#define RME32_IO_RESET_POS          0x20100

/* Write control register bits */
#define RME32_WCR_START     (1 << 0)    /* startbit */
#define RME32_WCR_MONO      (1 << 1)    /* 0=stereo, 1=mono
                                           Setting the whole card to mono
                                           doesn't seem to be very useful.
                                           A software-solution can handle 
                                           full-duplex with one direction in
                                           stereo and the other way in mono. 
                                           So, the hardware should work all 
                                           the time in stereo! */
#define RME32_WCR_MODE24    (1 << 2)    /* 0=16bit, 1=32bit */
#define RME32_WCR_SEL       (1 << 3)    /* 0=input on output, 1=normal playback/capture */
#define RME32_WCR_FREQ_0    (1 << 4)    /* frequency (play) */
#define RME32_WCR_FREQ_1    (1 << 5)
#define RME32_WCR_INP_0     (1 << 6)    /* input switch */
#define RME32_WCR_INP_1     (1 << 7)
#define RME32_WCR_RESET     (1 << 8)    /* Reset address */
#define RME32_WCR_MUTE      (1 << 9)    /* digital mute for output */
#define RME32_WCR_PRO       (1 << 10)   /* 1=professional, 0=consumer */
#define RME32_WCR_DS_BM     (1 << 11)   /* 1=DoubleSpeed (only PRO-Version); 1=BlockMode (only Adat-Version) */
#define RME32_WCR_ADAT      (1 << 12)   /* Adat Mode (only Adat-Version) */
#define RME32_WCR_AUTOSYNC  (1 << 13)   /* AutoSync */
#define RME32_WCR_PD        (1 << 14)   /* DAC Reset (only PRO-Version) */
#define RME32_WCR_EMP       (1 << 15)   /* 1=Emphasis on (only PRO-Version) */

#define RME32_WCR_BITPOS_FREQ_0 4
#define RME32_WCR_BITPOS_FREQ_1 5
#define RME32_WCR_BITPOS_INP_0 6
#define RME32_WCR_BITPOS_INP_1 7

/* Read control register bits */
#define RME32_RCR_AUDIO_ADDR_MASK 0x1ffff
#define RME32_RCR_LOCK      (1 << 23)   /* 1=locked, 0=not locked */
#define RME32_RCR_ERF       (1 << 26)   /* 1=Error, 0=no Error */
#define RME32_RCR_FREQ_0    (1 << 27)   /* CS841x frequency (record) */
#define RME32_RCR_FREQ_1    (1 << 28)
#define RME32_RCR_FREQ_2    (1 << 29)
#define RME32_RCR_KMODE     (1 << 30)   /* card mode: 1=PLL, 0=quartz */
#define RME32_RCR_IRQ       (1 << 31)   /* interrupt */

#define RME32_RCR_BITPOS_F0 27
#define RME32_RCR_BITPOS_F1 28
#define RME32_RCR_BITPOS_F2 29

/* Input types */
#define RME32_INPUT_OPTICAL 0
#define RME32_INPUT_COAXIAL 1
#define RME32_INPUT_INTERNAL 2
#define RME32_INPUT_XLR 3

/* Clock modes */
#define RME32_CLOCKMODE_SLAVE 0
#define RME32_CLOCKMODE_MASTER_32 1
#define RME32_CLOCKMODE_MASTER_44 2
#define RME32_CLOCKMODE_MASTER_48 3

/* Block sizes in bytes */
#define RME32_BLOCK_SIZE 8192

/* Software intermediate buffer (max) size */
#define RME32_MID_BUFFER_SIZE (1024*1024)

/* Hardware revisions */
#define RME32_32_REVISION 192
#define RME32_328_REVISION_OLD 100
#define RME32_328_REVISION_NEW 101
#define RME32_PRO_REVISION_WITH_8412 192
#define RME32_PRO_REVISION_WITH_8414 150


struct rme32 {
        spinlock_t lock;
        int irq;
        unsigned long port;
        void __iomem *iobase;

        u32 wcreg;              /* cached write control register value */
        u32 wcreg_spdif;        /* S/PDIF setup */
        u32 wcreg_spdif_stream; /* S/PDIF setup (temporary) */
        u32 rcreg;              /* cached read control register value */

        u8 rev;                 /* card revision number */

        struct snd_pcm_substream *playback_substream;
        struct snd_pcm_substream *capture_substream;

        int playback_frlog;     /* log2 of framesize */
        int capture_frlog;

        size_t playback_periodsize;     /* in bytes, zero if not used */
        size_t capture_periodsize;      /* in bytes, zero if not used */

        unsigned int fullduplex_mode;
        int running;

        struct snd_pcm_indirect playback_pcm;
        struct snd_pcm_indirect capture_pcm;

        struct snd_card *card;
        struct snd_pcm *spdif_pcm;
        struct snd_pcm *adat_pcm;
        struct pci_dev *pci;
        struct snd_kcontrol *spdif_ctl;
};

static struct pci_device_id snd_rme32_ids[] = {
        {PCI_VENDOR_ID_XILINX_RME, PCI_DEVICE_ID_RME_DIGI32,
         PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0,},
        {PCI_VENDOR_ID_XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_8,
         PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0,},
        {PCI_VENDOR_ID_XILINX_RME, PCI_DEVICE_ID_RME_DIGI32_PRO,
         PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0,},
        {0,}
};

MODULE_DEVICE_TABLE(pci, snd_rme32_ids);

#define RME32_ISWORKING(rme32) ((rme32)->wcreg & RME32_WCR_START)
#define RME32_PRO_WITH_8414(rme32) ((rme32)->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO && (rme32)->rev == RME32_PRO_REVISION_WITH_8414)

static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream);

static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream);

static int snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd);

static void snd_rme32_proc_init(struct rme32 * rme32);

static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32);

static inline unsigned int snd_rme32_pcm_byteptr(struct rme32 * rme32)
{
        return (readl(rme32->iobase + RME32_IO_GET_POS)
                & RME32_RCR_AUDIO_ADDR_MASK);
}

/* silence callback for halfduplex mode */
static int snd_rme32_playback_silence(struct snd_pcm_substream *substream, int channel, /* not used (interleaved data) */
                                      snd_pcm_uframes_t pos,
                                      snd_pcm_uframes_t count)
{
        struct rme32 *rme32 = snd_pcm_substream_chip(substream);
        count <<= rme32->playback_frlog;
        pos <<= rme32->playback_frlog;
        memset_io(rme32->iobase + RME32_IO_DATA_BUFFER + pos, 0, count);
        return 0;
}

/* copy callback for halfduplex mode */
static int snd_rme32_playback_copy(struct snd_pcm_substream *substream, int channel,    /* not used (interleaved data) */
                                   snd_pcm_uframes_t pos,
                                   void __user *src, snd_pcm_uframes_t count)
{
        struct rme32 *rme32 = snd_pcm_substream_chip(substream);
        count <<= rme32->playback_frlog;
        pos <<= rme32->playback_frlog;
        if (copy_from_user_toio(rme32->iobase + RME32_IO_DATA_BUFFER + pos,
                            src, count))
                return -EFAULT;
        return 0;
}

/* copy callback for halfduplex mode */
static int snd_rme32_capture_copy(struct snd_pcm_substream *substream, int channel,     /* not used (interleaved data) */
                                  snd_pcm_uframes_t pos,
                                  void __user *dst, snd_pcm_uframes_t count)
{
        struct rme32 *rme32 = snd_pcm_substream_chip(substream);
        count <<= rme32->capture_frlog;
        pos <<= rme32->capture_frlog;
        if (copy_to_user_fromio(dst,
                            rme32->iobase + RME32_IO_DATA_BUFFER + pos,
                            count))
                return -EFAULT;
        return 0;
}

/*
 * SPDIF I/O capabilities (half-duplex mode)
 */
static struct snd_pcm_hardware snd_rme32_spdif_info = {
        .info =         (SNDRV_PCM_INFO_MMAP_IOMEM |
                         SNDRV_PCM_INFO_MMAP_VALID |
                         SNDRV_PCM_INFO_INTERLEAVED | 
                         SNDRV_PCM_INFO_PAUSE |
                         SNDRV_PCM_INFO_SYNC_START),
        .formats =      (SNDRV_PCM_FMTBIT_S16_LE | 
                         SNDRV_PCM_FMTBIT_S32_LE),
        .rates =        (SNDRV_PCM_RATE_32000 |
                         SNDRV_PCM_RATE_44100 | 
                         SNDRV_PCM_RATE_48000),
        .rate_min =     32000,
        .rate_max =     48000,
        .channels_min = 2,
        .channels_max = 2,
        .buffer_bytes_max = RME32_BUFFER_SIZE,
        .period_bytes_min = RME32_BLOCK_SIZE,
        .period_bytes_max = RME32_BLOCK_SIZE,
        .periods_min =  RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
        .periods_max =  RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
        .fifo_size =    0,
};

/*
 * ADAT I/O capabilities (half-duplex mode)
 */
static struct snd_pcm_hardware snd_rme32_adat_info =
{
        .info =              (SNDRV_PCM_INFO_MMAP_IOMEM |
                              SNDRV_PCM_INFO_MMAP_VALID |
                              SNDRV_PCM_INFO_INTERLEAVED |
                              SNDRV_PCM_INFO_PAUSE |
                              SNDRV_PCM_INFO_SYNC_START),
        .formats=            SNDRV_PCM_FMTBIT_S16_LE,
        .rates =             (SNDRV_PCM_RATE_44100 | 
                              SNDRV_PCM_RATE_48000),
        .rate_min =          44100,
        .rate_max =          48000,
        .channels_min =      8,
        .channels_max =      8,
        .buffer_bytes_max =  RME32_BUFFER_SIZE,
        .period_bytes_min =  RME32_BLOCK_SIZE,
        .period_bytes_max =  RME32_BLOCK_SIZE,
        .periods_min =      RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
        .periods_max =      RME32_BUFFER_SIZE / RME32_BLOCK_SIZE,
        .fifo_size =        0,
};

/*
 * SPDIF I/O capabilities (full-duplex mode)
 */
static struct snd_pcm_hardware snd_rme32_spdif_fd_info = {
        .info =         (SNDRV_PCM_INFO_MMAP |
                         SNDRV_PCM_INFO_MMAP_VALID |
                         SNDRV_PCM_INFO_INTERLEAVED | 
                         SNDRV_PCM_INFO_PAUSE |
                         SNDRV_PCM_INFO_SYNC_START),
        .formats =      (SNDRV_PCM_FMTBIT_S16_LE | 
                         SNDRV_PCM_FMTBIT_S32_LE),
        .rates =        (SNDRV_PCM_RATE_32000 |
                         SNDRV_PCM_RATE_44100 | 
                         SNDRV_PCM_RATE_48000),
        .rate_min =     32000,
        .rate_max =     48000,
        .channels_min = 2,
        .channels_max = 2,
        .buffer_bytes_max = RME32_MID_BUFFER_SIZE,
        .period_bytes_min = RME32_BLOCK_SIZE,
        .period_bytes_max = RME32_BLOCK_SIZE,
        .periods_min =  2,
        .periods_max =  RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE,
        .fifo_size =    0,
};

/*
 * ADAT I/O capabilities (full-duplex mode)
 */
static struct snd_pcm_hardware snd_rme32_adat_fd_info =
{
        .info =              (SNDRV_PCM_INFO_MMAP |
                              SNDRV_PCM_INFO_MMAP_VALID |
                              SNDRV_PCM_INFO_INTERLEAVED |
                              SNDRV_PCM_INFO_PAUSE |
                              SNDRV_PCM_INFO_SYNC_START),
        .formats=            SNDRV_PCM_FMTBIT_S16_LE,
        .rates =             (SNDRV_PCM_RATE_44100 | 
                              SNDRV_PCM_RATE_48000),
        .rate_min =          44100,
        .rate_max =          48000,
        .channels_min =      8,
        .channels_max =      8,
        .buffer_bytes_max =  RME32_MID_BUFFER_SIZE,
        .period_bytes_min =  RME32_BLOCK_SIZE,
        .period_bytes_max =  RME32_BLOCK_SIZE,
        .periods_min =      2,
        .periods_max =      RME32_MID_BUFFER_SIZE / RME32_BLOCK_SIZE,
        .fifo_size =        0,
};

static void snd_rme32_reset_dac(struct rme32 *rme32)
{
        writel(rme32->wcreg | RME32_WCR_PD,
               rme32->iobase + RME32_IO_CONTROL_REGISTER);
        writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
}

static int snd_rme32_playback_getrate(struct rme32 * rme32)
{
        int rate;

        rate = ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) +
               (((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1);
        switch (rate) {
        case 1:
                rate = 32000;
                break;
        case 2:
                rate = 44100;
                break;
        case 3:
                rate = 48000;
                break;
        default:
                return -1;
        }
        return (rme32->wcreg & RME32_WCR_DS_BM) ? rate << 1 : rate;
}

static int snd_rme32_capture_getrate(struct rme32 * rme32, int *is_adat)
{
        int n;

        *is_adat = 0;
        if (rme32->rcreg & RME32_RCR_LOCK) { 
                /* ADAT rate */
                *is_adat = 1;
        }
        if (rme32->rcreg & RME32_RCR_ERF) {
                return -1;
        }

        /* S/PDIF rate */
        n = ((rme32->rcreg >> RME32_RCR_BITPOS_F0) & 1) +
                (((rme32->rcreg >> RME32_RCR_BITPOS_F1) & 1) << 1) +
                (((rme32->rcreg >> RME32_RCR_BITPOS_F2) & 1) << 2);

        if (RME32_PRO_WITH_8414(rme32))
                switch (n) {    /* supporting the CS8414 */
                case 0:
                case 1:
                case 2:
                        return -1;
                case 3:
                        return 96000;
                case 4:
                        return 88200;
                case 5:
                        return 48000;
                case 6:
                        return 44100;
                case 7:
                        return 32000;
                default:
                        return -1;
                        break;
                } 
        else
                switch (n) {    /* supporting the CS8412 */
                case 0:
                        return -1;
                case 1:
                        return 48000;
                case 2:
                        return 44100;
                case 3:
                        return 32000;
                case 4:
                        return 48000;
                case 5:
                        return 44100;
                case 6:
                        return 44056;
                case 7:
                        return 32000;
                default:
                        break;
                }
        return -1;
}

static int snd_rme32_playback_setrate(struct rme32 * rme32, int rate)
{
        int ds;

        ds = rme32->wcreg & RME32_WCR_DS_BM;
        switch (rate) {
        case 32000:
                rme32->wcreg &= ~RME32_WCR_DS_BM;
                rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) & 
                        ~RME32_WCR_FREQ_1;
                break;
        case 44100:
                rme32->wcreg &= ~RME32_WCR_DS_BM;
                rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) & 
                        ~RME32_WCR_FREQ_0;
                break;
        case 48000:
                rme32->wcreg &= ~RME32_WCR_DS_BM;
                rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) | 
                        RME32_WCR_FREQ_1;
                break;
        case 64000:
                if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
                        return -EINVAL;
                rme32->wcreg |= RME32_WCR_DS_BM;
                rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) & 
                        ~RME32_WCR_FREQ_1;
                break;
        case 88200:
                if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
                        return -EINVAL;
                rme32->wcreg |= RME32_WCR_DS_BM;
                rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_1) & 
                        ~RME32_WCR_FREQ_0;
                break;
        case 96000:
                if (rme32->pci->device != PCI_DEVICE_ID_RME_DIGI32_PRO)
                        return -EINVAL;
                rme32->wcreg |= RME32_WCR_DS_BM;
                rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) | 
                        RME32_WCR_FREQ_1;
                break;
        default:
                return -EINVAL;
        }
        if ((!ds && rme32->wcreg & RME32_WCR_DS_BM) ||
            (ds && !(rme32->wcreg & RME32_WCR_DS_BM)))
        {
                /* change to/from double-speed: reset the DAC (if available) */
                snd_rme32_reset_dac(rme32);
        } else {
                writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
        }
        return 0;
}

static int snd_rme32_setclockmode(struct rme32 * rme32, int mode)
{
        switch (mode) {
        case RME32_CLOCKMODE_SLAVE:
                /* AutoSync */
                rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) & 
                        ~RME32_WCR_FREQ_1;
                break;
        case RME32_CLOCKMODE_MASTER_32:
                /* Internal 32.0kHz */
                rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) & 
                        ~RME32_WCR_FREQ_1;
                break;
        case RME32_CLOCKMODE_MASTER_44:
                /* Internal 44.1kHz */
                rme32->wcreg = (rme32->wcreg & ~RME32_WCR_FREQ_0) | 
                        RME32_WCR_FREQ_1;
                break;
        case RME32_CLOCKMODE_MASTER_48:
                /* Internal 48.0kHz */
                rme32->wcreg = (rme32->wcreg | RME32_WCR_FREQ_0) | 
                        RME32_WCR_FREQ_1;
                break;
        default:
                return -EINVAL;
        }
        writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
        return 0;
}

static int snd_rme32_getclockmode(struct rme32 * rme32)
{
        return ((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_0) & 1) +
            (((rme32->wcreg >> RME32_WCR_BITPOS_FREQ_1) & 1) << 1);
}

static int snd_rme32_setinputtype(struct rme32 * rme32, int type)
{
        switch (type) {
        case RME32_INPUT_OPTICAL:
                rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) & 
                        ~RME32_WCR_INP_1;
                break;
        case RME32_INPUT_COAXIAL:
                rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) & 
                        ~RME32_WCR_INP_1;
                break;
        case RME32_INPUT_INTERNAL:
                rme32->wcreg = (rme32->wcreg & ~RME32_WCR_INP_0) | 
                        RME32_WCR_INP_1;
                break;
        case RME32_INPUT_XLR:
                rme32->wcreg = (rme32->wcreg | RME32_WCR_INP_0) | 
                        RME32_WCR_INP_1;
                break;
        default:
                return -EINVAL;
        }
        writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
        return 0;
}

static int snd_rme32_getinputtype(struct rme32 * rme32)
{
        return ((rme32->wcreg >> RME32_WCR_BITPOS_INP_0) & 1) +
            (((rme32->wcreg >> RME32_WCR_BITPOS_INP_1) & 1) << 1);
}

static void
snd_rme32_setframelog(struct rme32 * rme32, int n_channels, int is_playback)
{
        int frlog;

        if (n_channels == 2) {
                frlog = 1;
        } else {
                /* assume 8 channels */
                frlog = 3;
        }
        if (is_playback) {
                frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1;
                rme32->playback_frlog = frlog;
        } else {
                frlog += (rme32->wcreg & RME32_WCR_MODE24) ? 2 : 1;
                rme32->capture_frlog = frlog;
        }
}

static int snd_rme32_setformat(struct rme32 * rme32, int format)
{
        switch (format) {
        case SNDRV_PCM_FORMAT_S16_LE:
                rme32->wcreg &= ~RME32_WCR_MODE24;
                break;
        case SNDRV_PCM_FORMAT_S32_LE:
                rme32->wcreg |= RME32_WCR_MODE24;
                break;
        default:
                return -EINVAL;
        }
        writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
        return 0;
}

static int
snd_rme32_playback_hw_params(struct snd_pcm_substream *substream,
                             struct snd_pcm_hw_params *params)
{
        int err, rate, dummy;
        struct rme32 *rme32 = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;

        if (rme32->fullduplex_mode) {
                err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params));
                if (err < 0)
                        return err;
        } else {
                runtime->dma_area = (void __force *)(rme32->iobase +
                                                     RME32_IO_DATA_BUFFER);
                runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER;
                runtime->dma_bytes = RME32_BUFFER_SIZE;
        }

        spin_lock_irq(&rme32->lock);
        if ((rme32->rcreg & RME32_RCR_KMODE) &&
            (rate = snd_rme32_capture_getrate(rme32, &dummy)) > 0) {
                /* AutoSync */
                if ((int)params_rate(params) != rate) {
                        spin_unlock_irq(&rme32->lock);
                        return -EIO;
                }
        } else if ((err = snd_rme32_playback_setrate(rme32, params_rate(params))) < 0) {
                spin_unlock_irq(&rme32->lock);
                return err;
        }
        if ((err = snd_rme32_setformat(rme32, params_format(params))) < 0) {
                spin_unlock_irq(&rme32->lock);
                return err;
        }

        snd_rme32_setframelog(rme32, params_channels(params), 1);
        if (rme32->capture_periodsize != 0) {
                if (params_period_size(params) << rme32->playback_frlog != rme32->capture_periodsize) {
                        spin_unlock_irq(&rme32->lock);
                        return -EBUSY;
                }
        }
        rme32->playback_periodsize = params_period_size(params) << rme32->playback_frlog;
        /* S/PDIF setup */
        if ((rme32->wcreg & RME32_WCR_ADAT) == 0) {
                rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP);
                rme32->wcreg |= rme32->wcreg_spdif_stream;
                writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
        }
        spin_unlock_irq(&rme32->lock);

        return 0;
}

static int
snd_rme32_capture_hw_params(struct snd_pcm_substream *substream,
                            struct snd_pcm_hw_params *params)
{
        int err, isadat, rate;
        struct rme32 *rme32 = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;

        if (rme32->fullduplex_mode) {
                err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params));
                if (err < 0)
                        return err;
        } else {
                runtime->dma_area = (void __force *)rme32->iobase +
                                        RME32_IO_DATA_BUFFER;
                runtime->dma_addr = rme32->port + RME32_IO_DATA_BUFFER;
                runtime->dma_bytes = RME32_BUFFER_SIZE;
        }

        spin_lock_irq(&rme32->lock);
        /* enable AutoSync for record-preparing */
        rme32->wcreg |= RME32_WCR_AUTOSYNC;
        writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);

        if ((err = snd_rme32_setformat(rme32, params_format(params))) < 0) {
                spin_unlock_irq(&rme32->lock);
                return err;
        }
        if ((err = snd_rme32_playback_setrate(rme32, params_rate(params))) < 0) {
                spin_unlock_irq(&rme32->lock);
                return err;
        }
        if ((rate = snd_rme32_capture_getrate(rme32, &isadat)) > 0) {
                if ((int)params_rate(params) != rate) {
                        spin_unlock_irq(&rme32->lock);
                        return -EIO;                    
                }
                if ((isadat && runtime->hw.channels_min == 2) ||
                    (!isadat && runtime->hw.channels_min == 8)) {
                        spin_unlock_irq(&rme32->lock);
                        return -EIO;
                }
        }
        /* AutoSync off for recording */
        rme32->wcreg &= ~RME32_WCR_AUTOSYNC;
        writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);

        snd_rme32_setframelog(rme32, params_channels(params), 0);
        if (rme32->playback_periodsize != 0) {
                if (params_period_size(params) << rme32->capture_frlog !=
                    rme32->playback_periodsize) {
                        spin_unlock_irq(&rme32->lock);
                        return -EBUSY;
                }
        }
        rme32->capture_periodsize =
            params_period_size(params) << rme32->capture_frlog;
        spin_unlock_irq(&rme32->lock);

        return 0;
}

static int snd_rme32_pcm_hw_free(struct snd_pcm_substream *substream)
{
        struct rme32 *rme32 = snd_pcm_substream_chip(substream);
        if (! rme32->fullduplex_mode)
                return 0;
        return snd_pcm_lib_free_pages(substream);
}

static void snd_rme32_pcm_start(struct rme32 * rme32, int from_pause)
{
        if (!from_pause) {
                writel(0, rme32->iobase + RME32_IO_RESET_POS);
        }

        rme32->wcreg |= RME32_WCR_START;
        writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
}

static void snd_rme32_pcm_stop(struct rme32 * rme32, int to_pause)
{
        /*
         * Check if there is an unconfirmed IRQ, if so confirm it, or else
         * the hardware will not stop generating interrupts
         */
        rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
        if (rme32->rcreg & RME32_RCR_IRQ) {
                writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ);
        }
        rme32->wcreg &= ~RME32_WCR_START;
        if (rme32->wcreg & RME32_WCR_SEL)
                rme32->wcreg |= RME32_WCR_MUTE;
        writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
        if (! to_pause)
                writel(0, rme32->iobase + RME32_IO_RESET_POS);
}

static irqreturn_t snd_rme32_interrupt(int irq, void *dev_id)
{
        struct rme32 *rme32 = (struct rme32 *) dev_id;

        rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);
        if (!(rme32->rcreg & RME32_RCR_IRQ)) {
                return IRQ_NONE;
        } else {
                if (rme32->capture_substream) {
                        snd_pcm_period_elapsed(rme32->capture_substream);
                }
                if (rme32->playback_substream) {
                        snd_pcm_period_elapsed(rme32->playback_substream);
                }
                writel(0, rme32->iobase + RME32_IO_CONFIRM_ACTION_IRQ);
        }
        return IRQ_HANDLED;
}

static unsigned int period_bytes[] = { RME32_BLOCK_SIZE };


static struct snd_pcm_hw_constraint_list hw_constraints_period_bytes = {
        .count = ARRAY_SIZE(period_bytes),
        .list = period_bytes,
        .mask = 0
};

static void snd_rme32_set_buffer_constraint(struct rme32 *rme32, struct snd_pcm_runtime *runtime)
{
        if (! rme32->fullduplex_mode) {
                snd_pcm_hw_constraint_minmax(runtime,
                                             SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
                                             RME32_BUFFER_SIZE, RME32_BUFFER_SIZE);
                snd_pcm_hw_constraint_list(runtime, 0,
                                           SNDRV_PCM_HW_PARAM_PERIOD_BYTES,
                                           &hw_constraints_period_bytes);
        }
}

static int snd_rme32_playback_spdif_open(struct snd_pcm_substream *substream)
{
        int rate, dummy;
        struct rme32 *rme32 = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;

        snd_pcm_set_sync(substream);

        spin_lock_irq(&rme32->lock);
        if (rme32->playback_substream != NULL) {
                spin_unlock_irq(&rme32->lock);
                return -EBUSY;
        }
        rme32->wcreg &= ~RME32_WCR_ADAT;
        writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
        rme32->playback_substream = substream;
        spin_unlock_irq(&rme32->lock);

        if (rme32->fullduplex_mode)
                runtime->hw = snd_rme32_spdif_fd_info;
        else
                runtime->hw = snd_rme32_spdif_info;
        if (rme32->pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO) {
                runtime->hw.rates |= SNDRV_PCM_RATE_64000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000;
                runtime->hw.rate_max = 96000;
        }
        if ((rme32->rcreg & RME32_RCR_KMODE) &&
            (rate = snd_rme32_capture_getrate(rme32, &dummy)) > 0) {
                /* AutoSync */
                runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
                runtime->hw.rate_min = rate;
                runtime->hw.rate_max = rate;
        }       

        snd_rme32_set_buffer_constraint(rme32, runtime);

        rme32->wcreg_spdif_stream = rme32->wcreg_spdif;
        rme32->spdif_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
        snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE |
                       SNDRV_CTL_EVENT_MASK_INFO, &rme32->spdif_ctl->id);
        return 0;
}

static int snd_rme32_capture_spdif_open(struct snd_pcm_substream *substream)
{
        int isadat, rate;
        struct rme32 *rme32 = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;

        snd_pcm_set_sync(substream);

        spin_lock_irq(&rme32->lock);
        if (rme32->capture_substream != NULL) {
                spin_unlock_irq(&rme32->lock);
                return -EBUSY;
        }
        rme32->capture_substream = substream;
        spin_unlock_irq(&rme32->lock);

        if (rme32->fullduplex_mode)
                runtime->hw = snd_rme32_spdif_fd_info;
        else
                runtime->hw = snd_rme32_spdif_info;
        if (RME32_PRO_WITH_8414(rme32)) {
                runtime->hw.rates |= SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000;
                runtime->hw.rate_max = 96000;
        }
        if ((rate = snd_rme32_capture_getrate(rme32, &isadat)) > 0) {
                if (isadat) {
                        return -EIO;
                }
                runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
                runtime->hw.rate_min = rate;
                runtime->hw.rate_max = rate;
        }

        snd_rme32_set_buffer_constraint(rme32, runtime);

        return 0;
}

static int
snd_rme32_playback_adat_open(struct snd_pcm_substream *substream)
{
        int rate, dummy;
        struct rme32 *rme32 = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;
        
        snd_pcm_set_sync(substream);

        spin_lock_irq(&rme32->lock);    
        if (rme32->playback_substream != NULL) {
                spin_unlock_irq(&rme32->lock);
                return -EBUSY;
        }
        rme32->wcreg |= RME32_WCR_ADAT;
        writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
        rme32->playback_substream = substream;
        spin_unlock_irq(&rme32->lock);
        
        if (rme32->fullduplex_mode)
                runtime->hw = snd_rme32_adat_fd_info;
        else
                runtime->hw = snd_rme32_adat_info;
        if ((rme32->rcreg & RME32_RCR_KMODE) &&
            (rate = snd_rme32_capture_getrate(rme32, &dummy)) > 0) {
                /* AutoSync */
                runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
                runtime->hw.rate_min = rate;
                runtime->hw.rate_max = rate;
        }        

        snd_rme32_set_buffer_constraint(rme32, runtime);
        return 0;
}

static int
snd_rme32_capture_adat_open(struct snd_pcm_substream *substream)
{
        int isadat, rate;
        struct rme32 *rme32 = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;

        if (rme32->fullduplex_mode)
                runtime->hw = snd_rme32_adat_fd_info;
        else
                runtime->hw = snd_rme32_adat_info;
        if ((rate = snd_rme32_capture_getrate(rme32, &isadat)) > 0) {
                if (!isadat) {
                        return -EIO;
                }
                runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
                runtime->hw.rate_min = rate;
                runtime->hw.rate_max = rate;
        }

        snd_pcm_set_sync(substream);
        
        spin_lock_irq(&rme32->lock);    
        if (rme32->capture_substream != NULL) {
                spin_unlock_irq(&rme32->lock);
                return -EBUSY;
        }
        rme32->capture_substream = substream;
        spin_unlock_irq(&rme32->lock);

        snd_rme32_set_buffer_constraint(rme32, runtime);
        return 0;
}

static int snd_rme32_playback_close(struct snd_pcm_substream *substream)
{
        struct rme32 *rme32 = snd_pcm_substream_chip(substream);
        int spdif = 0;

        spin_lock_irq(&rme32->lock);
        rme32->playback_substream = NULL;
        rme32->playback_periodsize = 0;
        spdif = (rme32->wcreg & RME32_WCR_ADAT) == 0;
        spin_unlock_irq(&rme32->lock);
        if (spdif) {
                rme32->spdif_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
                snd_ctl_notify(rme32->card, SNDRV_CTL_EVENT_MASK_VALUE |
                               SNDRV_CTL_EVENT_MASK_INFO,
                               &rme32->spdif_ctl->id);
        }
        return 0;
}

static int snd_rme32_capture_close(struct snd_pcm_substream *substream)
{
        struct rme32 *rme32 = snd_pcm_substream_chip(substream);

        spin_lock_irq(&rme32->lock);
        rme32->capture_substream = NULL;
        rme32->capture_periodsize = 0;
        spin_unlock(&rme32->lock);
        return 0;
}

static int snd_rme32_playback_prepare(struct snd_pcm_substream *substream)
{
        struct rme32 *rme32 = snd_pcm_substream_chip(substream);

        spin_lock_irq(&rme32->lock);
        if (rme32->fullduplex_mode) {
                memset(&rme32->playback_pcm, 0, sizeof(rme32->playback_pcm));
                rme32->playback_pcm.hw_buffer_size = RME32_BUFFER_SIZE;
                rme32->playback_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
        } else {
                writel(0, rme32->iobase + RME32_IO_RESET_POS);
        }
        if (rme32->wcreg & RME32_WCR_SEL)
                rme32->wcreg &= ~RME32_WCR_MUTE;
        writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
        spin_unlock_irq(&rme32->lock);
        return 0;
}

static int snd_rme32_capture_prepare(struct snd_pcm_substream *substream)
{
        struct rme32 *rme32 = snd_pcm_substream_chip(substream);

        spin_lock_irq(&rme32->lock);
        if (rme32->fullduplex_mode) {
                memset(&rme32->capture_pcm, 0, sizeof(rme32->capture_pcm));
                rme32->capture_pcm.hw_buffer_size = RME32_BUFFER_SIZE;
                rme32->capture_pcm.hw_queue_size = RME32_BUFFER_SIZE / 2;
                rme32->capture_pcm.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
        } else {
                writel(0, rme32->iobase + RME32_IO_RESET_POS);
        }
        spin_unlock_irq(&rme32->lock);
        return 0;
}

static int
snd_rme32_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
        struct rme32 *rme32 = snd_pcm_substream_chip(substream);
        struct snd_pcm_substream *s;

        spin_lock(&rme32->lock);
        snd_pcm_group_for_each_entry(s, substream) {
                if (s != rme32->playback_substream &&
                    s != rme32->capture_substream)
                        continue;
                switch (cmd) {
                case SNDRV_PCM_TRIGGER_START:
                        rme32->running |= (1 << s->stream);
                        if (rme32->fullduplex_mode) {
                                /* remember the current DMA position */
                                if (s == rme32->playback_substream) {
                                        rme32->playback_pcm.hw_io =
                                        rme32->playback_pcm.hw_data = snd_rme32_pcm_byteptr(rme32);
                                } else {
                                        rme32->capture_pcm.hw_io =
                                        rme32->capture_pcm.hw_data = snd_rme32_pcm_byteptr(rme32);
                                }
                        }
                        break;
                case SNDRV_PCM_TRIGGER_STOP:
                        rme32->running &= ~(1 << s->stream);
                        break;
                }
                snd_pcm_trigger_done(s, substream);
        }
        
        /* prefill playback buffer */
        if (cmd == SNDRV_PCM_TRIGGER_START && rme32->fullduplex_mode) {
                snd_pcm_group_for_each_entry(s, substream) {
                        if (s == rme32->playback_substream) {
                                s->ops->ack(s);
                                break;
                        }
                }
        }

        switch (cmd) {
        case SNDRV_PCM_TRIGGER_START:
                if (rme32->running && ! RME32_ISWORKING(rme32))
                        snd_rme32_pcm_start(rme32, 0);
                break;
        case SNDRV_PCM_TRIGGER_STOP:
                if (! rme32->running && RME32_ISWORKING(rme32))
                        snd_rme32_pcm_stop(rme32, 0);
                break;
        case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
                if (rme32->running && RME32_ISWORKING(rme32))
                        snd_rme32_pcm_stop(rme32, 1);
                break;
        case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
                if (rme32->running && ! RME32_ISWORKING(rme32))
                        snd_rme32_pcm_start(rme32, 1);
                break;
        }
        spin_unlock(&rme32->lock);
        return 0;
}

/* pointer callback for halfduplex mode */
static snd_pcm_uframes_t
snd_rme32_playback_pointer(struct snd_pcm_substream *substream)
{
        struct rme32 *rme32 = snd_pcm_substream_chip(substream);
        return snd_rme32_pcm_byteptr(rme32) >> rme32->playback_frlog;
}

static snd_pcm_uframes_t
snd_rme32_capture_pointer(struct snd_pcm_substream *substream)
{
        struct rme32 *rme32 = snd_pcm_substream_chip(substream);
        return snd_rme32_pcm_byteptr(rme32) >> rme32->capture_frlog;
}


/* ack and pointer callbacks for fullduplex mode */
static void snd_rme32_pb_trans_copy(struct snd_pcm_substream *substream,
                                    struct snd_pcm_indirect *rec, size_t bytes)
{
        struct rme32 *rme32 = snd_pcm_substream_chip(substream);
        memcpy_toio(rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data,
                    substream->runtime->dma_area + rec->sw_data, bytes);
}

static int snd_rme32_playback_fd_ack(struct snd_pcm_substream *substream)
{
        struct rme32 *rme32 = snd_pcm_substream_chip(substream);
        struct snd_pcm_indirect *rec, *cprec;

        rec = &rme32->playback_pcm;
        cprec = &rme32->capture_pcm;
        spin_lock(&rme32->lock);
        rec->hw_queue_size = RME32_BUFFER_SIZE;
        if (rme32->running & (1 << SNDRV_PCM_STREAM_CAPTURE))
                rec->hw_queue_size -= cprec->hw_ready;
        spin_unlock(&rme32->lock);
        snd_pcm_indirect_playback_transfer(substream, rec,
                                           snd_rme32_pb_trans_copy);
        return 0;
}

static void snd_rme32_cp_trans_copy(struct snd_pcm_substream *substream,
                                    struct snd_pcm_indirect *rec, size_t bytes)
{
        struct rme32 *rme32 = snd_pcm_substream_chip(substream);
        memcpy_fromio(substream->runtime->dma_area + rec->sw_data,
                      rme32->iobase + RME32_IO_DATA_BUFFER + rec->hw_data,
                      bytes);
}

static int snd_rme32_capture_fd_ack(struct snd_pcm_substream *substream)
{
        struct rme32 *rme32 = snd_pcm_substream_chip(substream);
        snd_pcm_indirect_capture_transfer(substream, &rme32->capture_pcm,
                                          snd_rme32_cp_trans_copy);
        return 0;
}

static snd_pcm_uframes_t
snd_rme32_playback_fd_pointer(struct snd_pcm_substream *substream)
{
        struct rme32 *rme32 = snd_pcm_substream_chip(substream);
        return snd_pcm_indirect_playback_pointer(substream, &rme32->playback_pcm,
                                                 snd_rme32_pcm_byteptr(rme32));
}

static snd_pcm_uframes_t
snd_rme32_capture_fd_pointer(struct snd_pcm_substream *substream)
{
        struct rme32 *rme32 = snd_pcm_substream_chip(substream);
        return snd_pcm_indirect_capture_pointer(substream, &rme32->capture_pcm,
                                                snd_rme32_pcm_byteptr(rme32));
}

/* for halfduplex mode */
static struct snd_pcm_ops snd_rme32_playback_spdif_ops = {
        .open =         snd_rme32_playback_spdif_open,
        .close =        snd_rme32_playback_close,
        .ioctl =        snd_pcm_lib_ioctl,
        .hw_params =    snd_rme32_playback_hw_params,
        .hw_free =      snd_rme32_pcm_hw_free,
        .prepare =      snd_rme32_playback_prepare,
        .trigger =      snd_rme32_pcm_trigger,
        .pointer =      snd_rme32_playback_pointer,
        .copy =         snd_rme32_playback_copy,
        .silence =      snd_rme32_playback_silence,
        .mmap =         snd_pcm_lib_mmap_iomem,
};

static struct snd_pcm_ops snd_rme32_capture_spdif_ops = {
        .open =         snd_rme32_capture_spdif_open,
        .close =        snd_rme32_capture_close,
        .ioctl =        snd_pcm_lib_ioctl,
        .hw_params =    snd_rme32_capture_hw_params,
        .hw_free =      snd_rme32_pcm_hw_free,
        .prepare =      snd_rme32_capture_prepare,
        .trigger =      snd_rme32_pcm_trigger,
        .pointer =      snd_rme32_capture_pointer,
        .copy =         snd_rme32_capture_copy,
        .mmap =         snd_pcm_lib_mmap_iomem,
};

static struct snd_pcm_ops snd_rme32_playback_adat_ops = {
        .open =         snd_rme32_playback_adat_open,
        .close =        snd_rme32_playback_close,
        .ioctl =        snd_pcm_lib_ioctl,
        .hw_params =    snd_rme32_playback_hw_params,
        .prepare =      snd_rme32_playback_prepare,
        .trigger =      snd_rme32_pcm_trigger,
        .pointer =      snd_rme32_playback_pointer,
        .copy =         snd_rme32_playback_copy,
        .silence =      snd_rme32_playback_silence,
        .mmap =         snd_pcm_lib_mmap_iomem,
};

static struct snd_pcm_ops snd_rme32_capture_adat_ops = {
        .open =         snd_rme32_capture_adat_open,
        .close =        snd_rme32_capture_close,
        .ioctl =        snd_pcm_lib_ioctl,
        .hw_params =    snd_rme32_capture_hw_params,
        .prepare =      snd_rme32_capture_prepare,
        .trigger =      snd_rme32_pcm_trigger,
        .pointer =      snd_rme32_capture_pointer,
        .copy =         snd_rme32_capture_copy,
        .mmap =         snd_pcm_lib_mmap_iomem,
};

/* for fullduplex mode */
static struct snd_pcm_ops snd_rme32_playback_spdif_fd_ops = {
        .open =         snd_rme32_playback_spdif_open,
        .close =        snd_rme32_playback_close,
        .ioctl =        snd_pcm_lib_ioctl,
        .hw_params =    snd_rme32_playback_hw_params,
        .hw_free =      snd_rme32_pcm_hw_free,
        .prepare =      snd_rme32_playback_prepare,
        .trigger =      snd_rme32_pcm_trigger,
        .pointer =      snd_rme32_playback_fd_pointer,
        .ack =          snd_rme32_playback_fd_ack,
};

static struct snd_pcm_ops snd_rme32_capture_spdif_fd_ops = {
        .open =         snd_rme32_capture_spdif_open,
        .close =        snd_rme32_capture_close,
        .ioctl =        snd_pcm_lib_ioctl,
        .hw_params =    snd_rme32_capture_hw_params,
        .hw_free =      snd_rme32_pcm_hw_free,
        .prepare =      snd_rme32_capture_prepare,
        .trigger =      snd_rme32_pcm_trigger,
        .pointer =      snd_rme32_capture_fd_pointer,
        .ack =          snd_rme32_capture_fd_ack,
};

static struct snd_pcm_ops snd_rme32_playback_adat_fd_ops = {
        .open =         snd_rme32_playback_adat_open,
        .close =        snd_rme32_playback_close,
        .ioctl =        snd_pcm_lib_ioctl,
        .hw_params =    snd_rme32_playback_hw_params,
        .prepare =      snd_rme32_playback_prepare,
        .trigger =      snd_rme32_pcm_trigger,
        .pointer =      snd_rme32_playback_fd_pointer,
        .ack =          snd_rme32_playback_fd_ack,
};

static struct snd_pcm_ops snd_rme32_capture_adat_fd_ops = {
        .open =         snd_rme32_capture_adat_open,
        .close =        snd_rme32_capture_close,
        .ioctl =        snd_pcm_lib_ioctl,
        .hw_params =    snd_rme32_capture_hw_params,
        .prepare =      snd_rme32_capture_prepare,
        .trigger =      snd_rme32_pcm_trigger,
        .pointer =      snd_rme32_capture_fd_pointer,
        .ack =          snd_rme32_capture_fd_ack,
};

static void snd_rme32_free(void *private_data)
{
        struct rme32 *rme32 = (struct rme32 *) private_data;

        if (rme32 == NULL) {
                return;
        }
        if (rme32->irq >= 0) {
                snd_rme32_pcm_stop(rme32, 0);
                free_irq(rme32->irq, (void *) rme32);
                rme32->irq = -1;
        }
        if (rme32->iobase) {
                iounmap(rme32->iobase);
                rme32->iobase = NULL;
        }
        if (rme32->port) {
                pci_release_regions(rme32->pci);
                rme32->port = 0;
        }
        pci_disable_device(rme32->pci);
}

static void snd_rme32_free_spdif_pcm(struct snd_pcm *pcm)
{
        struct rme32 *rme32 = (struct rme32 *) pcm->private_data;
        rme32->spdif_pcm = NULL;
}

static void
snd_rme32_free_adat_pcm(struct snd_pcm *pcm)
{
        struct rme32 *rme32 = (struct rme32 *) pcm->private_data;
        rme32->adat_pcm = NULL;
}

static int __devinit snd_rme32_create(struct rme32 * rme32)
{
        struct pci_dev *pci = rme32->pci;
        int err;

        rme32->irq = -1;
        spin_lock_init(&rme32->lock);

        if ((err = pci_enable_device(pci)) < 0)
                return err;

        if ((err = pci_request_regions(pci, "RME32")) < 0)
                return err;
        rme32->port = pci_resource_start(rme32->pci, 0);

        rme32->iobase = ioremap_nocache(rme32->port, RME32_IO_SIZE);
        if (!rme32->iobase) {
                snd_printk(KERN_ERR "unable to remap memory region 0x%lx-0x%lx\n",
                           rme32->port, rme32->port + RME32_IO_SIZE - 1);
                return -ENOMEM;
        }

        if (request_irq(pci->irq, snd_rme32_interrupt, IRQF_SHARED,
                        "RME32", rme32)) {
                snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
                return -EBUSY;
        }
        rme32->irq = pci->irq;

        /* read the card's revision number */
        pci_read_config_byte(pci, 8, &rme32->rev);

        /* set up ALSA pcm device for S/PDIF */
        if ((err = snd_pcm_new(rme32->card, "Digi32 IEC958", 0, 1, 1, &rme32->spdif_pcm)) < 0) {
                return err;
        }
        rme32->spdif_pcm->private_data = rme32;
        rme32->spdif_pcm->private_free = snd_rme32_free_spdif_pcm;
        strcpy(rme32->spdif_pcm->name, "Digi32 IEC958");
        if (rme32->fullduplex_mode) {
                snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK,
                                &snd_rme32_playback_spdif_fd_ops);
                snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE,
                                &snd_rme32_capture_spdif_fd_ops);
                snd_pcm_lib_preallocate_pages_for_all(rme32->spdif_pcm, SNDRV_DMA_TYPE_CONTINUOUS,
                                                      snd_dma_continuous_data(GFP_KERNEL),
                                                      0, RME32_MID_BUFFER_SIZE);
                rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
        } else {
                snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK,
                                &snd_rme32_playback_spdif_ops);
                snd_pcm_set_ops(rme32->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE,
                                &snd_rme32_capture_spdif_ops);
                rme32->spdif_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
        }

        /* set up ALSA pcm device for ADAT */
        if ((pci->device == PCI_DEVICE_ID_RME_DIGI32) ||
            (pci->device == PCI_DEVICE_ID_RME_DIGI32_PRO)) {
                /* ADAT is not available on DIGI32 and DIGI32 Pro */
                rme32->adat_pcm = NULL;
        }
        else {
                if ((err = snd_pcm_new(rme32->card, "Digi32 ADAT", 1,
                                       1, 1, &rme32->adat_pcm)) < 0)
                {
                        return err;
                }               
                rme32->adat_pcm->private_data = rme32;
                rme32->adat_pcm->private_free = snd_rme32_free_adat_pcm;
                strcpy(rme32->adat_pcm->name, "Digi32 ADAT");
                if (rme32->fullduplex_mode) {
                        snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK, 
                                        &snd_rme32_playback_adat_fd_ops);
                        snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE, 
                                        &snd_rme32_capture_adat_fd_ops);
                        snd_pcm_lib_preallocate_pages_for_all(rme32->adat_pcm, SNDRV_DMA_TYPE_CONTINUOUS,
                                                              snd_dma_continuous_data(GFP_KERNEL),
                                                              0, RME32_MID_BUFFER_SIZE);
                        rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_JOINT_DUPLEX;
                } else {
                        snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK, 
                                        &snd_rme32_playback_adat_ops);
                        snd_pcm_set_ops(rme32->adat_pcm, SNDRV_PCM_STREAM_CAPTURE, 
                                        &snd_rme32_capture_adat_ops);
                        rme32->adat_pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
                }
        }


        rme32->playback_periodsize = 0;
        rme32->capture_periodsize = 0;

        /* make sure playback/capture is stopped, if by some reason active */
        snd_rme32_pcm_stop(rme32, 0);

        /* reset DAC */
        snd_rme32_reset_dac(rme32);

        /* reset buffer pointer */
        writel(0, rme32->iobase + RME32_IO_RESET_POS);

        /* set default values in registers */
        rme32->wcreg = RME32_WCR_SEL |   /* normal playback */
                RME32_WCR_INP_0 | /* input select */
                RME32_WCR_MUTE;  /* muting on */
        writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);


        /* init switch interface */
        if ((err = snd_rme32_create_switches(rme32->card, rme32)) < 0) {
                return err;
        }

        /* init proc interface */
        snd_rme32_proc_init(rme32);

        rme32->capture_substream = NULL;
        rme32->playback_substream = NULL;

        return 0;
}

/*
 * proc interface
 */

static void
snd_rme32_proc_read(struct snd_info_entry * entry, struct snd_info_buffer *buffer)
{
        int n;
        struct rme32 *rme32 = (struct rme32 *) entry->private_data;

        rme32->rcreg = readl(rme32->iobase + RME32_IO_CONTROL_REGISTER);

        snd_iprintf(buffer, rme32->card->longname);
        snd_iprintf(buffer, " (index #%d)\n", rme32->card->number + 1);

        snd_iprintf(buffer, "\nGeneral settings\n");
        if (rme32->fullduplex_mode)
                snd_iprintf(buffer, "  Full-duplex mode\n");
        else
                snd_iprintf(buffer, "  Half-duplex mode\n");
        if (RME32_PRO_WITH_8414(rme32)) {
                snd_iprintf(buffer, "  receiver: CS8414\n");
        } else {
                snd_iprintf(buffer, "  receiver: CS8412\n");
        }
        if (rme32->wcreg & RME32_WCR_MODE24) {
                snd_iprintf(buffer, "  format: 24 bit");
        } else {
                snd_iprintf(buffer, "  format: 16 bit");
        }
        if (rme32->wcreg & RME32_WCR_MONO) {
                snd_iprintf(buffer, ", Mono\n");
        } else {
                snd_iprintf(buffer, ", Stereo\n");
        }

        snd_iprintf(buffer, "\nInput settings\n");
        switch (snd_rme32_getinputtype(rme32)) {
        case RME32_INPUT_OPTICAL:
                snd_iprintf(buffer, "  input: optical");
                break;
        case RME32_INPUT_COAXIAL:
                snd_iprintf(buffer, "  input: coaxial");
                break;
        case RME32_INPUT_INTERNAL:
                snd_iprintf(buffer, "  input: internal");
                break;
        case RME32_INPUT_XLR:
                snd_iprintf(buffer, "  input: XLR");
                break;
        }
        if (snd_rme32_capture_getrate(rme32, &n) < 0) {
                snd_iprintf(buffer, "\n  sample rate: no valid signal\n");
        } else {
                if (n) {
                        snd_iprintf(buffer, " (8 channels)\n");
                } else {
                        snd_iprintf(buffer, " (2 channels)\n");
                }
                snd_iprintf(buffer, "  sample rate: %d Hz\n",
                            snd_rme32_capture_getrate(rme32, &n));
        }

        snd_iprintf(buffer, "\nOutput settings\n");
        if (rme32->wcreg & RME32_WCR_SEL) {
                snd_iprintf(buffer, "  output signal: normal playback");
        } else {
                snd_iprintf(buffer, "  output signal: same as input");
        }
        if (rme32->wcreg & RME32_WCR_MUTE) {
                snd_iprintf(buffer, " (muted)\n");
        } else {
                snd_iprintf(buffer, "\n");
        }

        /* master output frequency */
        if (!
            ((!(rme32->wcreg & RME32_WCR_FREQ_0))
             && (!(rme32->wcreg & RME32_WCR_FREQ_1)))) {
                snd_iprintf(buffer, "  sample rate: %d Hz\n",
                            snd_rme32_playback_getrate(rme32));
        }
        if (rme32->rcreg & RME32_RCR_KMODE) {
                snd_iprintf(buffer, "  sample clock source: AutoSync\n");
        } else {
                snd_iprintf(buffer, "  sample clock source: Internal\n");
        }
        if (rme32->wcreg & RME32_WCR_PRO) {
                snd_iprintf(buffer, "  format: AES/EBU (professional)\n");
        } else {
                snd_iprintf(buffer, "  format: IEC958 (consumer)\n");
        }
        if (rme32->wcreg & RME32_WCR_EMP) {
                snd_iprintf(buffer, "  emphasis: on\n");
        } else {
                snd_iprintf(buffer, "  emphasis: off\n");
        }
}

static void __devinit snd_rme32_proc_init(struct rme32 * rme32)
{
        struct snd_info_entry *entry;

        if (! snd_card_proc_new(rme32->card, "rme32", &entry))
                snd_info_set_text_ops(entry, rme32, snd_rme32_proc_read);
}

/*
 * control interface
 */

#define snd_rme32_info_loopback_control         snd_ctl_boolean_mono_info

static int
snd_rme32_get_loopback_control(struct snd_kcontrol *kcontrol,
                               struct snd_ctl_elem_value *ucontrol)
{
        struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);

        spin_lock_irq(&rme32->lock);
        ucontrol->value.integer.value[0] =
            rme32->wcreg & RME32_WCR_SEL ? 0 : 1;
        spin_unlock_irq(&rme32->lock);
        return 0;
}
static int
snd_rme32_put_loopback_control(struct snd_kcontrol *kcontrol,
                               struct snd_ctl_elem_value *ucontrol)
{
        struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
        unsigned int val;
        int change;

        val = ucontrol->value.integer.value[0] ? 0 : RME32_WCR_SEL;
        spin_lock_irq(&rme32->lock);
        val = (rme32->wcreg & ~RME32_WCR_SEL) | val;
        change = val != rme32->wcreg;
        if (ucontrol->value.integer.value[0])
                val &= ~RME32_WCR_MUTE;
        else
                val |= RME32_WCR_MUTE;
        rme32->wcreg = val;
        writel(val, rme32->iobase + RME32_IO_CONTROL_REGISTER);
        spin_unlock_irq(&rme32->lock);
        return change;
}

static int
snd_rme32_info_inputtype_control(struct snd_kcontrol *kcontrol,
                                 struct snd_ctl_elem_info *uinfo)
{
        struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
        static char *texts[4] = { "Optical", "Coaxial", "Internal", "XLR" };

        uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
        uinfo->count = 1;
        switch (rme32->pci->device) {
        case PCI_DEVICE_ID_RME_DIGI32:
        case PCI_DEVICE_ID_RME_DIGI32_8:
                uinfo->value.enumerated.items = 3;
                break;
        case PCI_DEVICE_ID_RME_DIGI32_PRO:
                uinfo->value.enumerated.items = 4;
                break;
        default:
                snd_BUG();
                break;
        }
        if (uinfo->value.enumerated.item >
            uinfo->value.enumerated.items - 1) {
                uinfo->value.enumerated.item =
                    uinfo->value.enumerated.items - 1;
        }
        strcpy(uinfo->value.enumerated.name,
               texts[uinfo->value.enumerated.item]);
        return 0;
}
static int
snd_rme32_get_inputtype_control(struct snd_kcontrol *kcontrol,
                                struct snd_ctl_elem_value *ucontrol)
{
        struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
        unsigned int items = 3;

        spin_lock_irq(&rme32->lock);
        ucontrol->value.enumerated.item[0] = snd_rme32_getinputtype(rme32);

        switch (rme32->pci->device) {
        case PCI_DEVICE_ID_RME_DIGI32:
        case PCI_DEVICE_ID_RME_DIGI32_8:
                items = 3;
                break;
        case PCI_DEVICE_ID_RME_DIGI32_PRO:
                items = 4;
                break;
        default:
                snd_BUG();
                break;
        }
        if (ucontrol->value.enumerated.item[0] >= items) {
                ucontrol->value.enumerated.item[0] = items - 1;
        }

        spin_unlock_irq(&rme32->lock);
        return 0;
}
static int
snd_rme32_put_inputtype_control(struct snd_kcontrol *kcontrol,
                                struct snd_ctl_elem_value *ucontrol)
{
        struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
        unsigned int val;
        int change, items = 3;

        switch (rme32->pci->device) {
        case PCI_DEVICE_ID_RME_DIGI32:
        case PCI_DEVICE_ID_RME_DIGI32_8:
                items = 3;
                break;
        case PCI_DEVICE_ID_RME_DIGI32_PRO:
                items = 4;
                break;
        default:
                snd_BUG();
                break;
        }
        val = ucontrol->value.enumerated.item[0] % items;

        spin_lock_irq(&rme32->lock);
        change = val != (unsigned int)snd_rme32_getinputtype(rme32);
        snd_rme32_setinputtype(rme32, val);
        spin_unlock_irq(&rme32->lock);
        return change;
}

static int
snd_rme32_info_clockmode_control(struct snd_kcontrol *kcontrol,
                                 struct snd_ctl_elem_info *uinfo)
{
        static char *texts[4] = { "AutoSync", 
                                  "Internal 32.0kHz", 
                                  "Internal 44.1kHz", 
                                  "Internal 48.0kHz" };

        uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
        uinfo->count = 1;
        uinfo->value.enumerated.items = 4;
        if (uinfo->value.enumerated.item > 3) {
                uinfo->value.enumerated.item = 3;
        }
        strcpy(uinfo->value.enumerated.name,
               texts[uinfo->value.enumerated.item]);
        return 0;
}
static int
snd_rme32_get_clockmode_control(struct snd_kcontrol *kcontrol,
                                struct snd_ctl_elem_value *ucontrol)
{
        struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);

        spin_lock_irq(&rme32->lock);
        ucontrol->value.enumerated.item[0] = snd_rme32_getclockmode(rme32);
        spin_unlock_irq(&rme32->lock);
        return 0;
}
static int
snd_rme32_put_clockmode_control(struct snd_kcontrol *kcontrol,
                                struct snd_ctl_elem_value *ucontrol)
{
        struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
        unsigned int val;
        int change;

        val = ucontrol->value.enumerated.item[0] % 3;
        spin_lock_irq(&rme32->lock);
        change = val != (unsigned int)snd_rme32_getclockmode(rme32);
        snd_rme32_setclockmode(rme32, val);
        spin_unlock_irq(&rme32->lock);
        return change;
}

static u32 snd_rme32_convert_from_aes(struct snd_aes_iec958 * aes)
{
        u32 val = 0;
        val |= (aes->status[0] & IEC958_AES0_PROFESSIONAL) ? RME32_WCR_PRO : 0;
        if (val & RME32_WCR_PRO)
                val |= (aes->status[0] & IEC958_AES0_PRO_EMPHASIS_5015) ? RME32_WCR_EMP : 0;
        else
                val |= (aes->status[0] & IEC958_AES0_CON_EMPHASIS_5015) ? RME32_WCR_EMP : 0;
        return val;
}

static void snd_rme32_convert_to_aes(struct snd_aes_iec958 * aes, u32 val)
{
        aes->status[0] = ((val & RME32_WCR_PRO) ? IEC958_AES0_PROFESSIONAL : 0);
        if (val & RME32_WCR_PRO)
                aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_PRO_EMPHASIS_5015 : 0;
        else
                aes->status[0] |= (val & RME32_WCR_EMP) ? IEC958_AES0_CON_EMPHASIS_5015 : 0;
}

static int snd_rme32_control_spdif_info(struct snd_kcontrol *kcontrol,
                                        struct snd_ctl_elem_info *uinfo)
{
        uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
        uinfo->count = 1;
        return 0;
}

static int snd_rme32_control_spdif_get(struct snd_kcontrol *kcontrol,
                                       struct snd_ctl_elem_value *ucontrol)
{
        struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);

        snd_rme32_convert_to_aes(&ucontrol->value.iec958,
                                 rme32->wcreg_spdif);
        return 0;
}

static int snd_rme32_control_spdif_put(struct snd_kcontrol *kcontrol,
                                       struct snd_ctl_elem_value *ucontrol)
{
        struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
        int change;
        u32 val;

        val = snd_rme32_convert_from_aes(&ucontrol->value.iec958);
        spin_lock_irq(&rme32->lock);
        change = val != rme32->wcreg_spdif;
        rme32->wcreg_spdif = val;
        spin_unlock_irq(&rme32->lock);
        return change;
}

static int snd_rme32_control_spdif_stream_info(struct snd_kcontrol *kcontrol,
                                               struct snd_ctl_elem_info *uinfo)
{
        uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
        uinfo->count = 1;
        return 0;
}

static int snd_rme32_control_spdif_stream_get(struct snd_kcontrol *kcontrol,
                                              struct snd_ctl_elem_value *
                                              ucontrol)
{
        struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);

        snd_rme32_convert_to_aes(&ucontrol->value.iec958,
                                 rme32->wcreg_spdif_stream);
        return 0;
}

static int snd_rme32_control_spdif_stream_put(struct snd_kcontrol *kcontrol,
                                              struct snd_ctl_elem_value *
                                              ucontrol)
{
        struct rme32 *rme32 = snd_kcontrol_chip(kcontrol);
        int change;
        u32 val;

        val = snd_rme32_convert_from_aes(&ucontrol->value.iec958);
        spin_lock_irq(&rme32->lock);
        change = val != rme32->wcreg_spdif_stream;
        rme32->wcreg_spdif_stream = val;
        rme32->wcreg &= ~(RME32_WCR_PRO | RME32_WCR_EMP);
        rme32->wcreg |= val;
        writel(rme32->wcreg, rme32->iobase + RME32_IO_CONTROL_REGISTER);
        spin_unlock_irq(&rme32->lock);
        return change;
}

static int snd_rme32_control_spdif_mask_info(struct snd_kcontrol *kcontrol,
                                             struct snd_ctl_elem_info *uinfo)
{
        uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
        uinfo->count = 1;
        return 0;
}

static int snd_rme32_control_spdif_mask_get(struct snd_kcontrol *kcontrol,
                                            struct snd_ctl_elem_value *
                                            ucontrol)
{
        ucontrol->value.iec958.status[0] = kcontrol->private_value;
        return 0;
}

static struct snd_kcontrol_new snd_rme32_controls[] = {
        {
                .iface = SNDRV_CTL_ELEM_IFACE_PCM,
                .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
                .info = snd_rme32_control_spdif_info,
                .get =  snd_rme32_control_spdif_get,
                .put =  snd_rme32_control_spdif_put
        },
        {
                .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
                .iface = SNDRV_CTL_ELEM_IFACE_PCM,
                .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PCM_STREAM),
                .info = snd_rme32_control_spdif_stream_info,
                .get =  snd_rme32_control_spdif_stream_get,
                .put =  snd_rme32_control_spdif_stream_put
        },
        {
                .access = SNDRV_CTL_ELEM_ACCESS_READ,
                .iface = SNDRV_CTL_ELEM_IFACE_PCM,
                .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, CON_MASK),
                .info = snd_rme32_control_spdif_mask_info,
                .get =  snd_rme32_control_spdif_mask_get,
                .private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_CON_EMPHASIS
        },
        {
                .access = SNDRV_CTL_ELEM_ACCESS_READ,
                .iface = SNDRV_CTL_ELEM_IFACE_PCM,
                .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, PRO_MASK),
                .info = snd_rme32_control_spdif_mask_info,
                .get =  snd_rme32_control_spdif_mask_get,
                .private_value = IEC958_AES0_PROFESSIONAL | IEC958_AES0_PRO_EMPHASIS
        },
        {
                .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
                .name = "Input Connector",
                .info = snd_rme32_info_inputtype_control,
                .get =  snd_rme32_get_inputtype_control,
                .put =  snd_rme32_put_inputtype_control
        },
        {
                .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
                .name = "Loopback Input",
                .info = snd_rme32_info_loopback_control,
                .get =  snd_rme32_get_loopback_control,
                .put =  snd_rme32_put_loopback_control
        },
        {
                .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
                .name = "Sample Clock Source",
                .info = snd_rme32_info_clockmode_control,
                .get =  snd_rme32_get_clockmode_control,
                .put =  snd_rme32_put_clockmode_control
        }
};

static int snd_rme32_create_switches(struct snd_card *card, struct rme32 * rme32)
{
        int idx, err;
        struct snd_kcontrol *kctl;

        for (idx = 0; idx < (int)ARRAY_SIZE(snd_rme32_controls); idx++) {
                if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_rme32_controls[idx], rme32))) < 0)
                        return err;
                if (idx == 1)   /* IEC958 (S/PDIF) Stream */
                        rme32->spdif_ctl = kctl;
        }

        return 0;
}

/*
 * Card initialisation
 */

static void snd_rme32_card_free(struct snd_card *card)
{
        snd_rme32_free(card->private_data);
}

static int __devinit
snd_rme32_probe(struct pci_dev *pci, const struct pci_device_id *pci_id)
{
        static int dev;
        struct rme32 *rme32;
        struct snd_card *card;
        int err;

        if (dev >= SNDRV_CARDS) {
                return -ENODEV;
        }
        if (!enable[dev]) {
                dev++;
                return -ENOENT;
        }

        if ((card = snd_card_new(index[dev], id[dev], THIS_MODULE,
                                 sizeof(struct rme32))) == NULL)
                return -ENOMEM;
        card->private_free = snd_rme32_card_free;
        rme32 = (struct rme32 *) card->private_data;
        rme32->card = card;
        rme32->pci = pci;
        snd_card_set_dev(card, &pci->dev);
        if (fullduplex[dev])
                rme32->fullduplex_mode = 1;
        if ((err = snd_rme32_create(rme32)) < 0) {
                snd_card_free(card);
                return err;
        }

        strcpy(card->driver, "Digi32");
        switch (rme32->pci->device) {
        case PCI_DEVICE_ID_RME_DIGI32:
                strcpy(card->shortname, "RME Digi32");
                break;
        case PCI_DEVICE_ID_RME_DIGI32_8:
                strcpy(card->shortname, "RME Digi32/8");
                break;
        case PCI_DEVICE_ID_RME_DIGI32_PRO:
                strcpy(card->shortname, "RME Digi32 PRO");
                break;
        }
        sprintf(card->longname, "%s (Rev. %d) at 0x%lx, irq %d",
                card->shortname, rme32->rev, rme32->port, rme32->irq);

        if ((err = snd_card_register(card)) < 0) {
                snd_card_free(card);
                return err;
        }
        pci_set_drvdata(pci, card);
        dev++;
        return 0;
}

static void __devexit snd_rme32_remove(struct pci_dev *pci)
{
        snd_card_free(pci_get_drvdata(pci));
        pci_set_drvdata(pci, NULL);
}

static struct pci_driver driver = {
        .name =         "RME Digi32",
        .id_table =     snd_rme32_ids,
        .probe =        snd_rme32_probe,
        .remove =       __devexit_p(snd_rme32_remove),
};

static int __init alsa_card_rme32_init(void)
{
        return pci_register_driver(&driver);
}

static void __exit alsa_card_rme32_exit(void)
{
        pci_unregister_driver(&driver);
}

module_init(alsa_card_rme32_init)
module_exit(alsa_card_rme32_exit)

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading