[funini.com] -> [kei@sodan] -> Kernel Reading

root/sound/pci/rme96.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. snd_rme96_playback_ptr
  2. snd_rme96_capture_ptr
  3. snd_rme96_playback_silence
  4. snd_rme96_playback_copy
  5. snd_rme96_capture_copy
  6. snd_rme96_write_SPI
  7. snd_rme96_apply_dac_volume
  8. snd_rme96_reset_dac
  9. snd_rme96_getmontracks
  10. snd_rme96_setmontracks
  11. snd_rme96_getattenuation
  12. snd_rme96_setattenuation
  13. snd_rme96_capture_getrate
  14. snd_rme96_playback_getrate
  15. snd_rme96_playback_setrate
  16. snd_rme96_capture_analog_setrate
  17. snd_rme96_setclockmode
  18. snd_rme96_getclockmode
  19. snd_rme96_setinputtype
  20. snd_rme96_getinputtype
  21. snd_rme96_setframelog
  22. snd_rme96_playback_setformat
  23. snd_rme96_capture_setformat
  24. snd_rme96_set_period_properties
  25. snd_rme96_playback_hw_params
  26. snd_rme96_capture_hw_params
  27. snd_rme96_playback_start
  28. snd_rme96_capture_start
  29. snd_rme96_playback_stop
  30. snd_rme96_capture_stop
  31. snd_rme96_interrupt
  32. rme96_set_buffer_size_constraint
  33. snd_rme96_playback_spdif_open
  34. snd_rme96_capture_spdif_open
  35. snd_rme96_playback_adat_open
  36. snd_rme96_capture_adat_open
  37. snd_rme96_playback_close
  38. snd_rme96_capture_close
  39. snd_rme96_playback_prepare
  40. snd_rme96_capture_prepare
  41. snd_rme96_playback_trigger
  42. snd_rme96_capture_trigger
  43. snd_rme96_playback_pointer
  44. snd_rme96_capture_pointer
  45. snd_rme96_free
  46. snd_rme96_free_spdif_pcm
  47. snd_rme96_free_adat_pcm
  48. snd_rme96_create
  49. snd_rme96_proc_read
  50. snd_rme96_proc_init
  51. snd_rme96_get_loopback_control
  52. snd_rme96_put_loopback_control
  53. snd_rme96_info_inputtype_control
  54. snd_rme96_get_inputtype_control
  55. snd_rme96_put_inputtype_control
  56. snd_rme96_info_clockmode_control
  57. snd_rme96_get_clockmode_control
  58. snd_rme96_put_clockmode_control
  59. snd_rme96_info_attenuation_control
  60. snd_rme96_get_attenuation_control
  61. snd_rme96_put_attenuation_control
  62. snd_rme96_info_montracks_control
  63. snd_rme96_get_montracks_control
  64. snd_rme96_put_montracks_control
  65. snd_rme96_convert_from_aes
  66. snd_rme96_convert_to_aes
  67. snd_rme96_control_spdif_info
  68. snd_rme96_control_spdif_get
  69. snd_rme96_control_spdif_put
  70. snd_rme96_control_spdif_stream_info
  71. snd_rme96_control_spdif_stream_get
  72. snd_rme96_control_spdif_stream_put
  73. snd_rme96_control_spdif_mask_info
  74. snd_rme96_control_spdif_mask_get
  75. snd_rme96_dac_volume_info
  76. snd_rme96_dac_volume_get
  77. snd_rme96_dac_volume_put
  78. snd_rme96_create_switches
  79. snd_rme96_card_free
  80. snd_rme96_probe
  81. snd_rme96_remove
  82. alsa_card_rme96_init
  83. alsa_card_rme96_exit

/*
 *   ALSA driver for RME Digi96, Digi96/8 and Digi96/8 PRO/PAD/PST audio
 *   interfaces 
 *
 *      Copyright (c) 2000, 2001 Anders Torger <torger@ludd.luth.se>
 *    
 *      Thanks to Henk Hesselink <henk@anda.nl> for the analog volume control
 *      code.
 *
 *   This program is free software; you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation; either version 2 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program; if not, write to the Free Software
 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
 *
 */      

#include <linux/delay.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/moduleparam.h>

#include <sound/core.h>
#include <sound/info.h>
#include <sound/control.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/asoundef.h>
#include <sound/initval.h>

#include <asm/io.h>

/* note, two last pcis should be equal, it is not a bug */

MODULE_AUTHOR("Anders Torger <torger@ludd.luth.se>");
MODULE_DESCRIPTION("RME Digi96, Digi96/8, Digi96/8 PRO, Digi96/8 PST, "
                   "Digi96/8 PAD");
MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{RME,Digi96},"
                "{RME,Digi96/8},"
                "{RME,Digi96/8 PRO},"
                "{RME,Digi96/8 PST},"
                "{RME,Digi96/8 PAD}}");

static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;      /* Index 0-MAX */
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;       /* ID for this card */
static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;      /* Enable this card */

module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for RME Digi96 soundcard.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for RME Digi96 soundcard.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable RME Digi96 soundcard.");

/*
 * Defines for RME Digi96 series, from internal RME reference documents
 * dated 12.01.00
 */

#define RME96_SPDIF_NCHANNELS 2

/* Playback and capture buffer size */
#define RME96_BUFFER_SIZE 0x10000

/* IO area size */
#define RME96_IO_SIZE 0x60000

/* IO area offsets */
#define RME96_IO_PLAY_BUFFER      0x0
#define RME96_IO_REC_BUFFER       0x10000
#define RME96_IO_CONTROL_REGISTER 0x20000
#define RME96_IO_ADDITIONAL_REG   0x20004
#define RME96_IO_CONFIRM_PLAY_IRQ 0x20008
#define RME96_IO_CONFIRM_REC_IRQ  0x2000C
#define RME96_IO_SET_PLAY_POS     0x40000
#define RME96_IO_RESET_PLAY_POS   0x4FFFC
#define RME96_IO_SET_REC_POS      0x50000
#define RME96_IO_RESET_REC_POS    0x5FFFC
#define RME96_IO_GET_PLAY_POS     0x20000
#define RME96_IO_GET_REC_POS      0x30000

/* Write control register bits */
#define RME96_WCR_START     (1 << 0)
#define RME96_WCR_START_2   (1 << 1)
#define RME96_WCR_GAIN_0    (1 << 2)
#define RME96_WCR_GAIN_1    (1 << 3)
#define RME96_WCR_MODE24    (1 << 4)
#define RME96_WCR_MODE24_2  (1 << 5)
#define RME96_WCR_BM        (1 << 6)
#define RME96_WCR_BM_2      (1 << 7)
#define RME96_WCR_ADAT      (1 << 8)
#define RME96_WCR_FREQ_0    (1 << 9)
#define RME96_WCR_FREQ_1    (1 << 10)
#define RME96_WCR_DS        (1 << 11)
#define RME96_WCR_PRO       (1 << 12)
#define RME96_WCR_EMP       (1 << 13)
#define RME96_WCR_SEL       (1 << 14)
#define RME96_WCR_MASTER    (1 << 15)
#define RME96_WCR_PD        (1 << 16)
#define RME96_WCR_INP_0     (1 << 17)
#define RME96_WCR_INP_1     (1 << 18)
#define RME96_WCR_THRU_0    (1 << 19)
#define RME96_WCR_THRU_1    (1 << 20)
#define RME96_WCR_THRU_2    (1 << 21)
#define RME96_WCR_THRU_3    (1 << 22)
#define RME96_WCR_THRU_4    (1 << 23)
#define RME96_WCR_THRU_5    (1 << 24)
#define RME96_WCR_THRU_6    (1 << 25)
#define RME96_WCR_THRU_7    (1 << 26)
#define RME96_WCR_DOLBY     (1 << 27)
#define RME96_WCR_MONITOR_0 (1 << 28)
#define RME96_WCR_MONITOR_1 (1 << 29)
#define RME96_WCR_ISEL      (1 << 30)
#define RME96_WCR_IDIS      (1 << 31)

#define RME96_WCR_BITPOS_GAIN_0 2
#define RME96_WCR_BITPOS_GAIN_1 3
#define RME96_WCR_BITPOS_FREQ_0 9
#define RME96_WCR_BITPOS_FREQ_1 10
#define RME96_WCR_BITPOS_INP_0 17
#define RME96_WCR_BITPOS_INP_1 18
#define RME96_WCR_BITPOS_MONITOR_0 28
#define RME96_WCR_BITPOS_MONITOR_1 29

/* Read control register bits */
#define RME96_RCR_AUDIO_ADDR_MASK 0xFFFF
#define RME96_RCR_IRQ_2     (1 << 16)
#define RME96_RCR_T_OUT     (1 << 17)
#define RME96_RCR_DEV_ID_0  (1 << 21)
#define RME96_RCR_DEV_ID_1  (1 << 22)
#define RME96_RCR_LOCK      (1 << 23)
#define RME96_RCR_VERF      (1 << 26)
#define RME96_RCR_F0        (1 << 27)
#define RME96_RCR_F1        (1 << 28)
#define RME96_RCR_F2        (1 << 29)
#define RME96_RCR_AUTOSYNC  (1 << 30)
#define RME96_RCR_IRQ       (1 << 31)

#define RME96_RCR_BITPOS_F0 27
#define RME96_RCR_BITPOS_F1 28
#define RME96_RCR_BITPOS_F2 29

/* Additonal register bits */
#define RME96_AR_WSEL       (1 << 0)
#define RME96_AR_ANALOG     (1 << 1)
#define RME96_AR_FREQPAD_0  (1 << 2)
#define RME96_AR_FREQPAD_1  (1 << 3)
#define RME96_AR_FREQPAD_2  (1 << 4)
#define RME96_AR_PD2        (1 << 5)
#define RME96_AR_DAC_EN     (1 << 6)
#define RME96_AR_CLATCH     (1 << 7)
#define RME96_AR_CCLK       (1 << 8)
#define RME96_AR_CDATA      (1 << 9)

#define RME96_AR_BITPOS_F0 2
#define RME96_AR_BITPOS_F1 3
#define RME96_AR_BITPOS_F2 4

/* Monitor tracks */
#define RME96_MONITOR_TRACKS_1_2 0
#define RME96_MONITOR_TRACKS_3_4 1
#define RME96_MONITOR_TRACKS_5_6 2
#define RME96_MONITOR_TRACKS_7_8 3

/* Attenuation */
#define RME96_ATTENUATION_0 0
#define RME96_ATTENUATION_6 1
#define RME96_ATTENUATION_12 2
#define RME96_ATTENUATION_18 3

/* Input types */
#define RME96_INPUT_OPTICAL 0
#define RME96_INPUT_COAXIAL 1
#define RME96_INPUT_INTERNAL 2
#define RME96_INPUT_XLR 3
#define RME96_INPUT_ANALOG 4

/* Clock modes */
#define RME96_CLOCKMODE_SLAVE 0
#define RME96_CLOCKMODE_MASTER 1
#define RME96_CLOCKMODE_WORDCLOCK 2

/* Block sizes in bytes */
#define RME96_SMALL_BLOCK_SIZE 2048
#define RME96_LARGE_BLOCK_SIZE 8192

/* Volume control */
#define RME96_AD1852_VOL_BITS 14
#define RME96_AD1855_VOL_BITS 10


struct rme96 {
        spinlock_t    lock;
        int irq;
        unsigned long port;
        void __iomem *iobase;
        
        u32 wcreg;    /* cached write control register value */
        u32 wcreg_spdif;                /* S/PDIF setup */
        u32 wcreg_spdif_stream;         /* S/PDIF setup (temporary) */
        u32 rcreg;    /* cached read control register value */
        u32 areg;     /* cached additional register value */
        u16 vol[2]; /* cached volume of analog output */

        u8 rev; /* card revision number */

        struct snd_pcm_substream *playback_substream;
        struct snd_pcm_substream *capture_substream;

        int playback_frlog; /* log2 of framesize */
        int capture_frlog;
        
        size_t playback_periodsize; /* in bytes, zero if not used */
        size_t capture_periodsize; /* in bytes, zero if not used */

        struct snd_card *card;
        struct snd_pcm *spdif_pcm;
        struct snd_pcm *adat_pcm; 
        struct pci_dev     *pci;
        struct snd_kcontrol   *spdif_ctl;
};

static struct pci_device_id snd_rme96_ids[] = {
        { PCI_VENDOR_ID_XILINX, PCI_DEVICE_ID_RME_DIGI96,
          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
        { PCI_VENDOR_ID_XILINX, PCI_DEVICE_ID_RME_DIGI96_8,
          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
        { PCI_VENDOR_ID_XILINX, PCI_DEVICE_ID_RME_DIGI96_8_PRO,
          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, },
        { PCI_VENDOR_ID_XILINX, PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST,
          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, }, 
        { 0, }
};

MODULE_DEVICE_TABLE(pci, snd_rme96_ids);

#define RME96_ISPLAYING(rme96) ((rme96)->wcreg & RME96_WCR_START)
#define RME96_ISRECORDING(rme96) ((rme96)->wcreg & RME96_WCR_START_2)
#define RME96_HAS_ANALOG_IN(rme96) ((rme96)->pci->device == PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST)
#define RME96_HAS_ANALOG_OUT(rme96) ((rme96)->pci->device == PCI_DEVICE_ID_RME_DIGI96_8_PRO || \
                                     (rme96)->pci->device == PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST)
#define RME96_DAC_IS_1852(rme96) (RME96_HAS_ANALOG_OUT(rme96) && (rme96)->rev >= 4)
#define RME96_DAC_IS_1855(rme96) (((rme96)->pci->device == PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST && (rme96)->rev < 4) || \
                                  ((rme96)->pci->device == PCI_DEVICE_ID_RME_DIGI96_8_PRO && (rme96)->rev == 2))
#define RME96_185X_MAX_OUT(rme96) ((1 << (RME96_DAC_IS_1852(rme96) ? RME96_AD1852_VOL_BITS : RME96_AD1855_VOL_BITS)) - 1)

static int
snd_rme96_playback_prepare(struct snd_pcm_substream *substream);

static int
snd_rme96_capture_prepare(struct snd_pcm_substream *substream);

static int
snd_rme96_playback_trigger(struct snd_pcm_substream *substream, 
                           int cmd);

static int
snd_rme96_capture_trigger(struct snd_pcm_substream *substream, 
                          int cmd);

static snd_pcm_uframes_t
snd_rme96_playback_pointer(struct snd_pcm_substream *substream);

static snd_pcm_uframes_t
snd_rme96_capture_pointer(struct snd_pcm_substream *substream);

static void __devinit 
snd_rme96_proc_init(struct rme96 *rme96);

static int
snd_rme96_create_switches(struct snd_card *card,
                          struct rme96 *rme96);

static int
snd_rme96_getinputtype(struct rme96 *rme96);

static inline unsigned int
snd_rme96_playback_ptr(struct rme96 *rme96)
{
        return (readl(rme96->iobase + RME96_IO_GET_PLAY_POS)
                & RME96_RCR_AUDIO_ADDR_MASK) >> rme96->playback_frlog;
}

static inline unsigned int
snd_rme96_capture_ptr(struct rme96 *rme96)
{
        return (readl(rme96->iobase + RME96_IO_GET_REC_POS)
                & RME96_RCR_AUDIO_ADDR_MASK) >> rme96->capture_frlog;
}

static int
snd_rme96_playback_silence(struct snd_pcm_substream *substream,
                           int channel, /* not used (interleaved data) */
                           snd_pcm_uframes_t pos,
                           snd_pcm_uframes_t count)
{
        struct rme96 *rme96 = snd_pcm_substream_chip(substream);
        count <<= rme96->playback_frlog;
        pos <<= rme96->playback_frlog;
        memset_io(rme96->iobase + RME96_IO_PLAY_BUFFER + pos,
                  0, count);
        return 0;
}

static int
snd_rme96_playback_copy(struct snd_pcm_substream *substream,
                        int channel, /* not used (interleaved data) */
                        snd_pcm_uframes_t pos,
                        void __user *src,
                        snd_pcm_uframes_t count)
{
        struct rme96 *rme96 = snd_pcm_substream_chip(substream);
        count <<= rme96->playback_frlog;
        pos <<= rme96->playback_frlog;
        copy_from_user_toio(rme96->iobase + RME96_IO_PLAY_BUFFER + pos, src,
                            count);
        return 0;
}

static int
snd_rme96_capture_copy(struct snd_pcm_substream *substream,
                       int channel, /* not used (interleaved data) */
                       snd_pcm_uframes_t pos,
                       void __user *dst,
                       snd_pcm_uframes_t count)
{
        struct rme96 *rme96 = snd_pcm_substream_chip(substream);
        count <<= rme96->capture_frlog;
        pos <<= rme96->capture_frlog;
        copy_to_user_fromio(dst, rme96->iobase + RME96_IO_REC_BUFFER + pos,
                            count);
        return 0;
}

/*
 * Digital output capabilities (S/PDIF)
 */
static struct snd_pcm_hardware snd_rme96_playback_spdif_info =
{
        .info =              (SNDRV_PCM_INFO_MMAP_IOMEM |
                              SNDRV_PCM_INFO_MMAP_VALID |
                              SNDRV_PCM_INFO_INTERLEAVED |
                              SNDRV_PCM_INFO_PAUSE),
        .formats =           (SNDRV_PCM_FMTBIT_S16_LE |
                              SNDRV_PCM_FMTBIT_S32_LE),
        .rates =             (SNDRV_PCM_RATE_32000 |
                              SNDRV_PCM_RATE_44100 | 
                              SNDRV_PCM_RATE_48000 | 
                              SNDRV_PCM_RATE_64000 |
                              SNDRV_PCM_RATE_88200 | 
                              SNDRV_PCM_RATE_96000),
        .rate_min =          32000,
        .rate_max =          96000,
        .channels_min =      2,
        .channels_max =      2,
        .buffer_bytes_max =  RME96_BUFFER_SIZE,
        .period_bytes_min =  RME96_SMALL_BLOCK_SIZE,
        .period_bytes_max =  RME96_LARGE_BLOCK_SIZE,
        .periods_min =       RME96_BUFFER_SIZE / RME96_LARGE_BLOCK_SIZE,
        .periods_max =       RME96_BUFFER_SIZE / RME96_SMALL_BLOCK_SIZE,
        .fifo_size =         0,
};

/*
 * Digital input capabilities (S/PDIF)
 */
static struct snd_pcm_hardware snd_rme96_capture_spdif_info =
{
        .info =              (SNDRV_PCM_INFO_MMAP_IOMEM |
                              SNDRV_PCM_INFO_MMAP_VALID |
                              SNDRV_PCM_INFO_INTERLEAVED |
                              SNDRV_PCM_INFO_PAUSE),
        .formats =           (SNDRV_PCM_FMTBIT_S16_LE |
                              SNDRV_PCM_FMTBIT_S32_LE),
        .rates =             (SNDRV_PCM_RATE_32000 |
                              SNDRV_PCM_RATE_44100 | 
                              SNDRV_PCM_RATE_48000 | 
                              SNDRV_PCM_RATE_64000 |
                              SNDRV_PCM_RATE_88200 | 
                              SNDRV_PCM_RATE_96000),
        .rate_min =          32000,
        .rate_max =          96000,
        .channels_min =      2,
        .channels_max =      2,
        .buffer_bytes_max =  RME96_BUFFER_SIZE,
        .period_bytes_min =  RME96_SMALL_BLOCK_SIZE,
        .period_bytes_max =  RME96_LARGE_BLOCK_SIZE,
        .periods_min =       RME96_BUFFER_SIZE / RME96_LARGE_BLOCK_SIZE,
        .periods_max =       RME96_BUFFER_SIZE / RME96_SMALL_BLOCK_SIZE,
        .fifo_size =         0,
};

/*
 * Digital output capabilities (ADAT)
 */
static struct snd_pcm_hardware snd_rme96_playback_adat_info =
{
        .info =              (SNDRV_PCM_INFO_MMAP_IOMEM |
                              SNDRV_PCM_INFO_MMAP_VALID |
                              SNDRV_PCM_INFO_INTERLEAVED |
                              SNDRV_PCM_INFO_PAUSE),
        .formats =           (SNDRV_PCM_FMTBIT_S16_LE |
                              SNDRV_PCM_FMTBIT_S32_LE),
        .rates =             (SNDRV_PCM_RATE_44100 | 
                              SNDRV_PCM_RATE_48000),
        .rate_min =          44100,
        .rate_max =          48000,
        .channels_min =      8,
        .channels_max =      8,
        .buffer_bytes_max =  RME96_BUFFER_SIZE,
        .period_bytes_min =  RME96_SMALL_BLOCK_SIZE,
        .period_bytes_max =  RME96_LARGE_BLOCK_SIZE,
        .periods_min =       RME96_BUFFER_SIZE / RME96_LARGE_BLOCK_SIZE,
        .periods_max =       RME96_BUFFER_SIZE / RME96_SMALL_BLOCK_SIZE,
        .fifo_size =         0,
};

/*
 * Digital input capabilities (ADAT)
 */
static struct snd_pcm_hardware snd_rme96_capture_adat_info =
{
        .info =              (SNDRV_PCM_INFO_MMAP_IOMEM |
                              SNDRV_PCM_INFO_MMAP_VALID |
                              SNDRV_PCM_INFO_INTERLEAVED |
                              SNDRV_PCM_INFO_PAUSE),
        .formats =           (SNDRV_PCM_FMTBIT_S16_LE |
                              SNDRV_PCM_FMTBIT_S32_LE),
        .rates =             (SNDRV_PCM_RATE_44100 | 
                              SNDRV_PCM_RATE_48000),
        .rate_min =          44100,
        .rate_max =          48000,
        .channels_min =      8,
        .channels_max =      8,
        .buffer_bytes_max =  RME96_BUFFER_SIZE,
        .period_bytes_min =  RME96_SMALL_BLOCK_SIZE,
        .period_bytes_max =  RME96_LARGE_BLOCK_SIZE,
        .periods_min =       RME96_BUFFER_SIZE / RME96_LARGE_BLOCK_SIZE,
        .periods_max =       RME96_BUFFER_SIZE / RME96_SMALL_BLOCK_SIZE,
        .fifo_size =         0,
};

/*
 * The CDATA, CCLK and CLATCH bits can be used to write to the SPI interface
 * of the AD1852 or AD1852 D/A converter on the board.  CDATA must be set up
 * on the falling edge of CCLK and be stable on the rising edge.  The rising
 * edge of CLATCH after the last data bit clocks in the whole data word.
 * A fast processor could probably drive the SPI interface faster than the
 * DAC can handle (3MHz for the 1855, unknown for the 1852).  The udelay(1)
 * limits the data rate to 500KHz and only causes a delay of 33 microsecs.
 *
 * NOTE: increased delay from 1 to 10, since there where problems setting
 * the volume.
 */
static void
snd_rme96_write_SPI(struct rme96 *rme96, u16 val)
{
        int i;

        for (i = 0; i < 16; i++) {
                if (val & 0x8000) {
                        rme96->areg |= RME96_AR_CDATA;
                } else {
                        rme96->areg &= ~RME96_AR_CDATA;
                }
                rme96->areg &= ~(RME96_AR_CCLK | RME96_AR_CLATCH);
                writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
                udelay(10);
                rme96->areg |= RME96_AR_CCLK;
                writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
                udelay(10);
                val <<= 1;
        }
        rme96->areg &= ~(RME96_AR_CCLK | RME96_AR_CDATA);
        rme96->areg |= RME96_AR_CLATCH;
        writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
        udelay(10);
        rme96->areg &= ~RME96_AR_CLATCH;
        writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
}

static void
snd_rme96_apply_dac_volume(struct rme96 *rme96)
{
        if (RME96_DAC_IS_1852(rme96)) {
                snd_rme96_write_SPI(rme96, (rme96->vol[0] << 2) | 0x0);
                snd_rme96_write_SPI(rme96, (rme96->vol[1] << 2) | 0x2);
        } else if (RME96_DAC_IS_1855(rme96)) {
                snd_rme96_write_SPI(rme96, (rme96->vol[0] & 0x3FF) | 0x000);
                snd_rme96_write_SPI(rme96, (rme96->vol[1] & 0x3FF) | 0x400);
        }
}

static void
snd_rme96_reset_dac(struct rme96 *rme96)
{
        writel(rme96->wcreg | RME96_WCR_PD,
               rme96->iobase + RME96_IO_CONTROL_REGISTER);
        writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
}

static int
snd_rme96_getmontracks(struct rme96 *rme96)
{
        return ((rme96->wcreg >> RME96_WCR_BITPOS_MONITOR_0) & 1) +
                (((rme96->wcreg >> RME96_WCR_BITPOS_MONITOR_1) & 1) << 1);
}

static int
snd_rme96_setmontracks(struct rme96 *rme96,
                       int montracks)
{
        if (montracks & 1) {
                rme96->wcreg |= RME96_WCR_MONITOR_0;
        } else {
                rme96->wcreg &= ~RME96_WCR_MONITOR_0;
        }
        if (montracks & 2) {
                rme96->wcreg |= RME96_WCR_MONITOR_1;
        } else {
                rme96->wcreg &= ~RME96_WCR_MONITOR_1;
        }
        writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
        return 0;
}

static int
snd_rme96_getattenuation(struct rme96 *rme96)
{
        return ((rme96->wcreg >> RME96_WCR_BITPOS_GAIN_0) & 1) +
                (((rme96->wcreg >> RME96_WCR_BITPOS_GAIN_1) & 1) << 1);
}

static int
snd_rme96_setattenuation(struct rme96 *rme96,
                         int attenuation)
{
        switch (attenuation) {
        case 0:
                rme96->wcreg = (rme96->wcreg & ~RME96_WCR_GAIN_0) &
                        ~RME96_WCR_GAIN_1;
                break;
        case 1:
                rme96->wcreg = (rme96->wcreg | RME96_WCR_GAIN_0) &
                        ~RME96_WCR_GAIN_1;
                break;
        case 2:
                rme96->wcreg = (rme96->wcreg & ~RME96_WCR_GAIN_0) |
                        RME96_WCR_GAIN_1;
                break;
        case 3:
                rme96->wcreg = (rme96->wcreg | RME96_WCR_GAIN_0) |
                        RME96_WCR_GAIN_1;
                break;
        default:
                return -EINVAL;
        }
        writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
        return 0;
}

static int
snd_rme96_capture_getrate(struct rme96 *rme96,
                          int *is_adat)
{       
        int n, rate;

        *is_adat = 0;
        if (rme96->areg & RME96_AR_ANALOG) {
                /* Analog input, overrides S/PDIF setting */
                n = ((rme96->areg >> RME96_AR_BITPOS_F0) & 1) +
                        (((rme96->areg >> RME96_AR_BITPOS_F1) & 1) << 1);
                switch (n) {
                case 1:
                        rate = 32000;
                        break;
                case 2:
                        rate = 44100;
                        break;
                case 3:
                        rate = 48000;
                        break;
                default:
                        return -1;
                }
                return (rme96->areg & RME96_AR_BITPOS_F2) ? rate << 1 : rate;
        }

        rme96->rcreg = readl(rme96->iobase + RME96_IO_CONTROL_REGISTER);
        if (rme96->rcreg & RME96_RCR_LOCK) {
                /* ADAT rate */
                *is_adat = 1;
                if (rme96->rcreg & RME96_RCR_T_OUT) {
                        return 48000;
                }
                return 44100;
        }

        if (rme96->rcreg & RME96_RCR_VERF) {
                return -1;
        }
        
        /* S/PDIF rate */
        n = ((rme96->rcreg >> RME96_RCR_BITPOS_F0) & 1) +
                (((rme96->rcreg >> RME96_RCR_BITPOS_F1) & 1) << 1) +
                (((rme96->rcreg >> RME96_RCR_BITPOS_F2) & 1) << 2);
        
        switch (n) {
        case 0:         
                if (rme96->rcreg & RME96_RCR_T_OUT) {
                        return 64000;
                }
                return -1;
        case 3: return 96000;
        case 4: return 88200;
        case 5: return 48000;
        case 6: return 44100;
        case 7: return 32000;
        default:
                break;
        }
        return -1;
}

static int
snd_rme96_playback_getrate(struct rme96 *rme96)
{
        int rate, dummy;

        if (!(rme96->wcreg & RME96_WCR_MASTER) &&
            snd_rme96_getinputtype(rme96) != RME96_INPUT_ANALOG &&
            (rate = snd_rme96_capture_getrate(rme96, &dummy)) > 0)
        {
                /* slave clock */
                return rate;
        }
        rate = ((rme96->wcreg >> RME96_WCR_BITPOS_FREQ_0) & 1) +
                (((rme96->wcreg >> RME96_WCR_BITPOS_FREQ_1) & 1) << 1);
        switch (rate) {
        case 1:
                rate = 32000;
                break;
        case 2:
                rate = 44100;
                break;
        case 3:
                rate = 48000;
                break;
        default:
                return -1;
        }
        return (rme96->wcreg & RME96_WCR_DS) ? rate << 1 : rate;
}

static int
snd_rme96_playback_setrate(struct rme96 *rme96,
                           int rate)
{
        int ds;

        ds = rme96->wcreg & RME96_WCR_DS;
        switch (rate) {
        case 32000:
                rme96->wcreg &= ~RME96_WCR_DS;
                rme96->wcreg = (rme96->wcreg | RME96_WCR_FREQ_0) &
                        ~RME96_WCR_FREQ_1;
                break;
        case 44100:
                rme96->wcreg &= ~RME96_WCR_DS;
                rme96->wcreg = (rme96->wcreg | RME96_WCR_FREQ_1) &
                        ~RME96_WCR_FREQ_0;
                break;
        case 48000:
                rme96->wcreg &= ~RME96_WCR_DS;
                rme96->wcreg = (rme96->wcreg | RME96_WCR_FREQ_0) |
                        RME96_WCR_FREQ_1;
                break;
        case 64000:
                rme96->wcreg |= RME96_WCR_DS;
                rme96->wcreg = (rme96->wcreg | RME96_WCR_FREQ_0) &
                        ~RME96_WCR_FREQ_1;
                break;
        case 88200:
                rme96->wcreg |= RME96_WCR_DS;
                rme96->wcreg = (rme96->wcreg | RME96_WCR_FREQ_1) &
                        ~RME96_WCR_FREQ_0;
                break;
        case 96000:
                rme96->wcreg |= RME96_WCR_DS;
                rme96->wcreg = (rme96->wcreg | RME96_WCR_FREQ_0) |
                        RME96_WCR_FREQ_1;
                break;
        default:
                return -EINVAL;
        }
        if ((!ds && rme96->wcreg & RME96_WCR_DS) ||
            (ds && !(rme96->wcreg & RME96_WCR_DS)))
        {
                /* change to/from double-speed: reset the DAC (if available) */
                snd_rme96_reset_dac(rme96);
        } else {
                writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
        }
        return 0;
}

static int
snd_rme96_capture_analog_setrate(struct rme96 *rme96,
                                 int rate)
{
        switch (rate) {
        case 32000:
                rme96->areg = ((rme96->areg | RME96_AR_FREQPAD_0) &
                               ~RME96_AR_FREQPAD_1) & ~RME96_AR_FREQPAD_2;
                break;
        case 44100:
                rme96->areg = ((rme96->areg & ~RME96_AR_FREQPAD_0) |
                               RME96_AR_FREQPAD_1) & ~RME96_AR_FREQPAD_2;
                break;
        case 48000:
                rme96->areg = ((rme96->areg | RME96_AR_FREQPAD_0) |
                               RME96_AR_FREQPAD_1) & ~RME96_AR_FREQPAD_2;
                break;
        case 64000:
                if (rme96->rev < 4) {
                        return -EINVAL;
                }
                rme96->areg = ((rme96->areg | RME96_AR_FREQPAD_0) &
                               ~RME96_AR_FREQPAD_1) | RME96_AR_FREQPAD_2;
                break;
        case 88200:
                if (rme96->rev < 4) {
                        return -EINVAL;
                }
                rme96->areg = ((rme96->areg & ~RME96_AR_FREQPAD_0) |
                               RME96_AR_FREQPAD_1) | RME96_AR_FREQPAD_2;
                break;
        case 96000:
                rme96->areg = ((rme96->areg | RME96_AR_FREQPAD_0) |
                               RME96_AR_FREQPAD_1) | RME96_AR_FREQPAD_2;
                break;
        default:
                return -EINVAL;
        }
        writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
        return 0;
}

static int
snd_rme96_setclockmode(struct rme96 *rme96,
                       int mode)
{
        switch (mode) {
        case RME96_CLOCKMODE_SLAVE:
                /* AutoSync */ 
                rme96->wcreg &= ~RME96_WCR_MASTER;
                rme96->areg &= ~RME96_AR_WSEL;
                break;
        case RME96_CLOCKMODE_MASTER:
                /* Internal */
                rme96->wcreg |= RME96_WCR_MASTER;
                rme96->areg &= ~RME96_AR_WSEL;
                break;
        case RME96_CLOCKMODE_WORDCLOCK:
                /* Word clock is a master mode */
                rme96->wcreg |= RME96_WCR_MASTER; 
                rme96->areg |= RME96_AR_WSEL;
                break;
        default:
                return -EINVAL;
        }
        writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
        writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
        return 0;
}

static int
snd_rme96_getclockmode(struct rme96 *rme96)
{
        if (rme96->areg & RME96_AR_WSEL) {
                return RME96_CLOCKMODE_WORDCLOCK;
        }
        return (rme96->wcreg & RME96_WCR_MASTER) ? RME96_CLOCKMODE_MASTER :
                RME96_CLOCKMODE_SLAVE;
}

static int
snd_rme96_setinputtype(struct rme96 *rme96,
                       int type)
{
        int n;

        switch (type) {
        case RME96_INPUT_OPTICAL:
                rme96->wcreg = (rme96->wcreg & ~RME96_WCR_INP_0) &
                        ~RME96_WCR_INP_1;
                break;
        case RME96_INPUT_COAXIAL:
                rme96->wcreg = (rme96->wcreg | RME96_WCR_INP_0) &
                        ~RME96_WCR_INP_1;
                break;
        case RME96_INPUT_INTERNAL:
                rme96->wcreg = (rme96->wcreg & ~RME96_WCR_INP_0) |
                        RME96_WCR_INP_1;
                break;
        case RME96_INPUT_XLR:
                if ((rme96->pci->device != PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST &&
                     rme96->pci->device != PCI_DEVICE_ID_RME_DIGI96_8_PRO) ||
                    (rme96->pci->device == PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST &&
                     rme96->rev > 4))
                {
                        /* Only Digi96/8 PRO and Digi96/8 PAD supports XLR */
                        return -EINVAL;
                }
                rme96->wcreg = (rme96->wcreg | RME96_WCR_INP_0) |
                        RME96_WCR_INP_1;
                break;
        case RME96_INPUT_ANALOG:
                if (!RME96_HAS_ANALOG_IN(rme96)) {
                        return -EINVAL;
                }
                rme96->areg |= RME96_AR_ANALOG;
                writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
                if (rme96->rev < 4) {
                        /*
                         * Revision less than 004 does not support 64 and
                         * 88.2 kHz
                         */
                        if (snd_rme96_capture_getrate(rme96, &n) == 88200) {
                                snd_rme96_capture_analog_setrate(rme96, 44100);
                        }
                        if (snd_rme96_capture_getrate(rme96, &n) == 64000) {
                                snd_rme96_capture_analog_setrate(rme96, 32000);
                        }
                }
                return 0;
        default:
                return -EINVAL;
        }
        if (type != RME96_INPUT_ANALOG && RME96_HAS_ANALOG_IN(rme96)) {
                rme96->areg &= ~RME96_AR_ANALOG;
                writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
        }
        writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
        return 0;
}

static int
snd_rme96_getinputtype(struct rme96 *rme96)
{
        if (rme96->areg & RME96_AR_ANALOG) {
                return RME96_INPUT_ANALOG;
        }
        return ((rme96->wcreg >> RME96_WCR_BITPOS_INP_0) & 1) +
                (((rme96->wcreg >> RME96_WCR_BITPOS_INP_1) & 1) << 1);
}

static void
snd_rme96_setframelog(struct rme96 *rme96,
                      int n_channels,
                      int is_playback)
{
        int frlog;
        
        if (n_channels == 2) {
                frlog = 1;
        } else {
                /* assume 8 channels */
                frlog = 3;
        }
        if (is_playback) {
                frlog += (rme96->wcreg & RME96_WCR_MODE24) ? 2 : 1;
                rme96->playback_frlog = frlog;
        } else {
                frlog += (rme96->wcreg & RME96_WCR_MODE24_2) ? 2 : 1;
                rme96->capture_frlog = frlog;
        }
}

static int
snd_rme96_playback_setformat(struct rme96 *rme96,
                             int format)
{
        switch (format) {
        case SNDRV_PCM_FORMAT_S16_LE:
                rme96->wcreg &= ~RME96_WCR_MODE24;
                break;
        case SNDRV_PCM_FORMAT_S32_LE:
                rme96->wcreg |= RME96_WCR_MODE24;
                break;
        default:
                return -EINVAL;
        }
        writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
        return 0;
}

static int
snd_rme96_capture_setformat(struct rme96 *rme96,
                            int format)
{
        switch (format) {
        case SNDRV_PCM_FORMAT_S16_LE:
                rme96->wcreg &= ~RME96_WCR_MODE24_2;
                break;
        case SNDRV_PCM_FORMAT_S32_LE:
                rme96->wcreg |= RME96_WCR_MODE24_2;
                break;
        default:
                return -EINVAL;
        }
        writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
        return 0;
}

static void
snd_rme96_set_period_properties(struct rme96 *rme96,
                                size_t period_bytes)
{
        switch (period_bytes) {
        case RME96_LARGE_BLOCK_SIZE:
                rme96->wcreg &= ~RME96_WCR_ISEL;
                break;
        case RME96_SMALL_BLOCK_SIZE:
                rme96->wcreg |= RME96_WCR_ISEL;
                break;
        default:
                snd_BUG();
                break;
        }
        rme96->wcreg &= ~RME96_WCR_IDIS;
        writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
}

static int
snd_rme96_playback_hw_params(struct snd_pcm_substream *substream,
                             struct snd_pcm_hw_params *params)
{
        struct rme96 *rme96 = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;
        int err, rate, dummy;

        runtime->dma_area = (void __force *)(rme96->iobase +
                                             RME96_IO_PLAY_BUFFER);
        runtime->dma_addr = rme96->port + RME96_IO_PLAY_BUFFER;
        runtime->dma_bytes = RME96_BUFFER_SIZE;

        spin_lock_irq(&rme96->lock);
        if (!(rme96->wcreg & RME96_WCR_MASTER) &&
            snd_rme96_getinputtype(rme96) != RME96_INPUT_ANALOG &&
            (rate = snd_rme96_capture_getrate(rme96, &dummy)) > 0)
        {
                /* slave clock */
                if ((int)params_rate(params) != rate) {
                        spin_unlock_irq(&rme96->lock);
                        return -EIO;                    
                }
        } else if ((err = snd_rme96_playback_setrate(rme96, params_rate(params))) < 0) {
                spin_unlock_irq(&rme96->lock);
                return err;
        }
        if ((err = snd_rme96_playback_setformat(rme96, params_format(params))) < 0) {
                spin_unlock_irq(&rme96->lock);
                return err;
        }
        snd_rme96_setframelog(rme96, params_channels(params), 1);
        if (rme96->capture_periodsize != 0) {
                if (params_period_size(params) << rme96->playback_frlog !=
                    rme96->capture_periodsize)
                {
                        spin_unlock_irq(&rme96->lock);
                        return -EBUSY;
                }
        }
        rme96->playback_periodsize =
                params_period_size(params) << rme96->playback_frlog;
        snd_rme96_set_period_properties(rme96, rme96->playback_periodsize);
        /* S/PDIF setup */
        if ((rme96->wcreg & RME96_WCR_ADAT) == 0) {
                rme96->wcreg &= ~(RME96_WCR_PRO | RME96_WCR_DOLBY | RME96_WCR_EMP);
                writel(rme96->wcreg |= rme96->wcreg_spdif_stream, rme96->iobase + RME96_IO_CONTROL_REGISTER);
        }
        spin_unlock_irq(&rme96->lock);
                
        return 0;
}

static int
snd_rme96_capture_hw_params(struct snd_pcm_substream *substream,
                            struct snd_pcm_hw_params *params)
{
        struct rme96 *rme96 = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;
        int err, isadat, rate;
        
        runtime->dma_area = (void __force *)(rme96->iobase +
                                             RME96_IO_REC_BUFFER);
        runtime->dma_addr = rme96->port + RME96_IO_REC_BUFFER;
        runtime->dma_bytes = RME96_BUFFER_SIZE;

        spin_lock_irq(&rme96->lock);
        if ((err = snd_rme96_capture_setformat(rme96, params_format(params))) < 0) {
                spin_unlock_irq(&rme96->lock);
                return err;
        }
        if (snd_rme96_getinputtype(rme96) == RME96_INPUT_ANALOG) {
                if ((err = snd_rme96_capture_analog_setrate(rme96,
                                                            params_rate(params))) < 0)
                {
                        spin_unlock_irq(&rme96->lock);
                        return err;
                }
        } else if ((rate = snd_rme96_capture_getrate(rme96, &isadat)) > 0) {
                if ((int)params_rate(params) != rate) {
                        spin_unlock_irq(&rme96->lock);
                        return -EIO;                    
                }
                if ((isadat && runtime->hw.channels_min == 2) ||
                    (!isadat && runtime->hw.channels_min == 8))
                {
                        spin_unlock_irq(&rme96->lock);
                        return -EIO;
                }
        }
        snd_rme96_setframelog(rme96, params_channels(params), 0);
        if (rme96->playback_periodsize != 0) {
                if (params_period_size(params) << rme96->capture_frlog !=
                    rme96->playback_periodsize)
                {
                        spin_unlock_irq(&rme96->lock);
                        return -EBUSY;
                }
        }
        rme96->capture_periodsize =
                params_period_size(params) << rme96->capture_frlog;
        snd_rme96_set_period_properties(rme96, rme96->capture_periodsize);
        spin_unlock_irq(&rme96->lock);

        return 0;
}

static void
snd_rme96_playback_start(struct rme96 *rme96,
                         int from_pause)
{
        if (!from_pause) {
                writel(0, rme96->iobase + RME96_IO_RESET_PLAY_POS);
        }

        rme96->wcreg |= RME96_WCR_START;
        writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
}

static void
snd_rme96_capture_start(struct rme96 *rme96,
                        int from_pause)
{
        if (!from_pause) {
                writel(0, rme96->iobase + RME96_IO_RESET_REC_POS);
        }

        rme96->wcreg |= RME96_WCR_START_2;
        writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
}

static void
snd_rme96_playback_stop(struct rme96 *rme96)
{
        /*
         * Check if there is an unconfirmed IRQ, if so confirm it, or else
         * the hardware will not stop generating interrupts
         */
        rme96->rcreg = readl(rme96->iobase + RME96_IO_CONTROL_REGISTER);
        if (rme96->rcreg & RME96_RCR_IRQ) {
                writel(0, rme96->iobase + RME96_IO_CONFIRM_PLAY_IRQ);
        }       
        rme96->wcreg &= ~RME96_WCR_START;
        writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
}

static void
snd_rme96_capture_stop(struct rme96 *rme96)
{
        rme96->rcreg = readl(rme96->iobase + RME96_IO_CONTROL_REGISTER);
        if (rme96->rcreg & RME96_RCR_IRQ_2) {
                writel(0, rme96->iobase + RME96_IO_CONFIRM_REC_IRQ);
        }       
        rme96->wcreg &= ~RME96_WCR_START_2;
        writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
}

static irqreturn_t
snd_rme96_interrupt(int irq,
                    void *dev_id)
{
        struct rme96 *rme96 = (struct rme96 *)dev_id;

        rme96->rcreg = readl(rme96->iobase + RME96_IO_CONTROL_REGISTER);
        /* fastpath out, to ease interrupt sharing */
        if (!((rme96->rcreg & RME96_RCR_IRQ) ||
              (rme96->rcreg & RME96_RCR_IRQ_2)))
        {
                return IRQ_NONE;
        }
        
        if (rme96->rcreg & RME96_RCR_IRQ) {
                /* playback */
                snd_pcm_period_elapsed(rme96->playback_substream);
                writel(0, rme96->iobase + RME96_IO_CONFIRM_PLAY_IRQ);
        }
        if (rme96->rcreg & RME96_RCR_IRQ_2) {
                /* capture */
                snd_pcm_period_elapsed(rme96->capture_substream);               
                writel(0, rme96->iobase + RME96_IO_CONFIRM_REC_IRQ);
        }
        return IRQ_HANDLED;
}

static unsigned int period_bytes[] = { RME96_SMALL_BLOCK_SIZE, RME96_LARGE_BLOCK_SIZE };

static struct snd_pcm_hw_constraint_list hw_constraints_period_bytes = {
        .count = ARRAY_SIZE(period_bytes),
        .list = period_bytes,
        .mask = 0
};

static void
rme96_set_buffer_size_constraint(struct rme96 *rme96,
                                 struct snd_pcm_runtime *runtime)
{
        unsigned int size;

        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
                                     RME96_BUFFER_SIZE, RME96_BUFFER_SIZE);
        if ((size = rme96->playback_periodsize) != 0 ||
            (size = rme96->capture_periodsize) != 0)
                snd_pcm_hw_constraint_minmax(runtime,
                                             SNDRV_PCM_HW_PARAM_PERIOD_BYTES,
                                             size, size);
        else
                snd_pcm_hw_constraint_list(runtime, 0,
                                           SNDRV_PCM_HW_PARAM_PERIOD_BYTES,
                                           &hw_constraints_period_bytes);
}

static int
snd_rme96_playback_spdif_open(struct snd_pcm_substream *substream)
{
        int rate, dummy;
        struct rme96 *rme96 = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;

        spin_lock_irq(&rme96->lock);    
        if (rme96->playback_substream != NULL) {
                spin_unlock_irq(&rme96->lock);
                return -EBUSY;
        }
        rme96->wcreg &= ~RME96_WCR_ADAT;
        writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
        rme96->playback_substream = substream;
        spin_unlock_irq(&rme96->lock);

        runtime->hw = snd_rme96_playback_spdif_info;
        if (!(rme96->wcreg & RME96_WCR_MASTER) &&
            snd_rme96_getinputtype(rme96) != RME96_INPUT_ANALOG &&
            (rate = snd_rme96_capture_getrate(rme96, &dummy)) > 0)
        {
                /* slave clock */
                runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
                runtime->hw.rate_min = rate;
                runtime->hw.rate_max = rate;
        }        
        rme96_set_buffer_size_constraint(rme96, runtime);

        rme96->wcreg_spdif_stream = rme96->wcreg_spdif;
        rme96->spdif_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
        snd_ctl_notify(rme96->card, SNDRV_CTL_EVENT_MASK_VALUE |
                       SNDRV_CTL_EVENT_MASK_INFO, &rme96->spdif_ctl->id);
        return 0;
}

static int
snd_rme96_capture_spdif_open(struct snd_pcm_substream *substream)
{
        int isadat, rate;
        struct rme96 *rme96 = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;

        runtime->hw = snd_rme96_capture_spdif_info;
        if (snd_rme96_getinputtype(rme96) != RME96_INPUT_ANALOG &&
            (rate = snd_rme96_capture_getrate(rme96, &isadat)) > 0)
        {
                if (isadat) {
                        return -EIO;
                }
                runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
                runtime->hw.rate_min = rate;
                runtime->hw.rate_max = rate;
        }
        
        spin_lock_irq(&rme96->lock);
        if (rme96->capture_substream != NULL) {
                spin_unlock_irq(&rme96->lock);
                return -EBUSY;
        }
        rme96->capture_substream = substream;
        spin_unlock_irq(&rme96->lock);
        
        rme96_set_buffer_size_constraint(rme96, runtime);
        return 0;
}

static int
snd_rme96_playback_adat_open(struct snd_pcm_substream *substream)
{
        int rate, dummy;
        struct rme96 *rme96 = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;        
        
        spin_lock_irq(&rme96->lock);    
        if (rme96->playback_substream != NULL) {
                spin_unlock_irq(&rme96->lock);
                return -EBUSY;
        }
        rme96->wcreg |= RME96_WCR_ADAT;
        writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
        rme96->playback_substream = substream;
        spin_unlock_irq(&rme96->lock);
        
        runtime->hw = snd_rme96_playback_adat_info;
        if (!(rme96->wcreg & RME96_WCR_MASTER) &&
            snd_rme96_getinputtype(rme96) != RME96_INPUT_ANALOG &&
            (rate = snd_rme96_capture_getrate(rme96, &dummy)) > 0)
        {
                /* slave clock */
                runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
                runtime->hw.rate_min = rate;
                runtime->hw.rate_max = rate;
        }        
        rme96_set_buffer_size_constraint(rme96, runtime);
        return 0;
}

static int
snd_rme96_capture_adat_open(struct snd_pcm_substream *substream)
{
        int isadat, rate;
        struct rme96 *rme96 = snd_pcm_substream_chip(substream);
        struct snd_pcm_runtime *runtime = substream->runtime;

        runtime->hw = snd_rme96_capture_adat_info;
        if (snd_rme96_getinputtype(rme96) == RME96_INPUT_ANALOG) {
                /* makes no sense to use analog input. Note that analog
                   expension cards AEB4/8-I are RME96_INPUT_INTERNAL */
                return -EIO;
        }
        if ((rate = snd_rme96_capture_getrate(rme96, &isadat)) > 0) {
                if (!isadat) {
                        return -EIO;
                }
                runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate);
                runtime->hw.rate_min = rate;
                runtime->hw.rate_max = rate;
        }
        
        spin_lock_irq(&rme96->lock);    
        if (rme96->capture_substream != NULL) {
                spin_unlock_irq(&rme96->lock);
                return -EBUSY;
        }
        rme96->capture_substream = substream;
        spin_unlock_irq(&rme96->lock);

        rme96_set_buffer_size_constraint(rme96, runtime);
        return 0;
}

static int
snd_rme96_playback_close(struct snd_pcm_substream *substream)
{
        struct rme96 *rme96 = snd_pcm_substream_chip(substream);
        int spdif = 0;

        spin_lock_irq(&rme96->lock);    
        if (RME96_ISPLAYING(rme96)) {
                snd_rme96_playback_stop(rme96);
        }
        rme96->playback_substream = NULL;
        rme96->playback_periodsize = 0;
        spdif = (rme96->wcreg & RME96_WCR_ADAT) == 0;
        spin_unlock_irq(&rme96->lock);
        if (spdif) {
                rme96->spdif_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
                snd_ctl_notify(rme96->card, SNDRV_CTL_EVENT_MASK_VALUE |
                               SNDRV_CTL_EVENT_MASK_INFO, &rme96->spdif_ctl->id);
        }
        return 0;
}

static int
snd_rme96_capture_close(struct snd_pcm_substream *substream)
{
        struct rme96 *rme96 = snd_pcm_substream_chip(substream);
        
        spin_lock_irq(&rme96->lock);    
        if (RME96_ISRECORDING(rme96)) {
                snd_rme96_capture_stop(rme96);
        }
        rme96->capture_substream = NULL;
        rme96->capture_periodsize = 0;
        spin_unlock_irq(&rme96->lock);
        return 0;
}

static int
snd_rme96_playback_prepare(struct snd_pcm_substream *substream)
{
        struct rme96 *rme96 = snd_pcm_substream_chip(substream);
        
        spin_lock_irq(&rme96->lock);    
        if (RME96_ISPLAYING(rme96)) {
                snd_rme96_playback_stop(rme96);
        }
        writel(0, rme96->iobase + RME96_IO_RESET_PLAY_POS);
        spin_unlock_irq(&rme96->lock);
        return 0;
}

static int
snd_rme96_capture_prepare(struct snd_pcm_substream *substream)
{
        struct rme96 *rme96 = snd_pcm_substream_chip(substream);
        
        spin_lock_irq(&rme96->lock);    
        if (RME96_ISRECORDING(rme96)) {
                snd_rme96_capture_stop(rme96);
        }
        writel(0, rme96->iobase + RME96_IO_RESET_REC_POS);
        spin_unlock_irq(&rme96->lock);
        return 0;
}

static int
snd_rme96_playback_trigger(struct snd_pcm_substream *substream, 
                           int cmd)
{
        struct rme96 *rme96 = snd_pcm_substream_chip(substream);

        switch (cmd) {
        case SNDRV_PCM_TRIGGER_START:
                if (!RME96_ISPLAYING(rme96)) {
                        if (substream != rme96->playback_substream) {
                                return -EBUSY;
                        }
                        snd_rme96_playback_start(rme96, 0);
                }
                break;

        case SNDRV_PCM_TRIGGER_STOP:
                if (RME96_ISPLAYING(rme96)) {
                        if (substream != rme96->playback_substream) {
                                return -EBUSY;
                        }
                        snd_rme96_playback_stop(rme96);
                }
                break;

        case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
                if (RME96_ISPLAYING(rme96)) {
                        snd_rme96_playback_stop(rme96);
                }
                break;

        case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
                if (!RME96_ISPLAYING(rme96)) {
                        snd_rme96_playback_start(rme96, 1);
                }
                break;
                
        default:
                return -EINVAL;
        }
        return 0;
}

static int
snd_rme96_capture_trigger(struct snd_pcm_substream *substream, 
                          int cmd)
{
        struct rme96 *rme96 = snd_pcm_substream_chip(substream);

        switch (cmd) {
        case SNDRV_PCM_TRIGGER_START:
                if (!RME96_ISRECORDING(rme96)) {
                        if (substream != rme96->capture_substream) {
                                return -EBUSY;
                        }
                        snd_rme96_capture_start(rme96, 0);
                }
                break;

        case SNDRV_PCM_TRIGGER_STOP:
                if (RME96_ISRECORDING(rme96)) {
                        if (substream != rme96->capture_substream) {
                                return -EBUSY;
                        }
                        snd_rme96_capture_stop(rme96);
                }
                break;

        case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
                if (RME96_ISRECORDING(rme96)) {
                        snd_rme96_capture_stop(rme96);
                }
                break;

        case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
                if (!RME96_ISRECORDING(rme96)) {
                        snd_rme96_capture_start(rme96, 1);
                }
                break;
                
        default:
                return -EINVAL;
        }

        return 0;
}

static snd_pcm_uframes_t
snd_rme96_playback_pointer(struct snd_pcm_substream *substream)
{
        struct rme96 *rme96 = snd_pcm_substream_chip(substream);
        return snd_rme96_playback_ptr(rme96);
}

static snd_pcm_uframes_t
snd_rme96_capture_pointer(struct snd_pcm_substream *substream)
{
        struct rme96 *rme96 = snd_pcm_substream_chip(substream);
        return snd_rme96_capture_ptr(rme96);
}

static struct snd_pcm_ops snd_rme96_playback_spdif_ops = {
        .open =         snd_rme96_playback_spdif_open,
        .close =        snd_rme96_playback_close,
        .ioctl =        snd_pcm_lib_ioctl,
        .hw_params =    snd_rme96_playback_hw_params,
        .prepare =      snd_rme96_playback_prepare,
        .trigger =      snd_rme96_playback_trigger,
        .pointer =      snd_rme96_playback_pointer,
        .copy =         snd_rme96_playback_copy,
        .silence =      snd_rme96_playback_silence,
        .mmap =         snd_pcm_lib_mmap_iomem,
};

static struct snd_pcm_ops snd_rme96_capture_spdif_ops = {
        .open =         snd_rme96_capture_spdif_open,
        .close =        snd_rme96_capture_close,
        .ioctl =        snd_pcm_lib_ioctl,
        .hw_params =    snd_rme96_capture_hw_params,
        .prepare =      snd_rme96_capture_prepare,
        .trigger =      snd_rme96_capture_trigger,
        .pointer =      snd_rme96_capture_pointer,
        .copy =         snd_rme96_capture_copy,
        .mmap =         snd_pcm_lib_mmap_iomem,
};

static struct snd_pcm_ops snd_rme96_playback_adat_ops = {
        .open =         snd_rme96_playback_adat_open,
        .close =        snd_rme96_playback_close,
        .ioctl =        snd_pcm_lib_ioctl,
        .hw_params =    snd_rme96_playback_hw_params,
        .prepare =      snd_rme96_playback_prepare,
        .trigger =      snd_rme96_playback_trigger,
        .pointer =      snd_rme96_playback_pointer,
        .copy =         snd_rme96_playback_copy,
        .silence =      snd_rme96_playback_silence,
        .mmap =         snd_pcm_lib_mmap_iomem,
};

static struct snd_pcm_ops snd_rme96_capture_adat_ops = {
        .open =         snd_rme96_capture_adat_open,
        .close =        snd_rme96_capture_close,
        .ioctl =        snd_pcm_lib_ioctl,
        .hw_params =    snd_rme96_capture_hw_params,
        .prepare =      snd_rme96_capture_prepare,
        .trigger =      snd_rme96_capture_trigger,
        .pointer =      snd_rme96_capture_pointer,
        .copy =         snd_rme96_capture_copy,
        .mmap =         snd_pcm_lib_mmap_iomem,
};

static void
snd_rme96_free(void *private_data)
{
        struct rme96 *rme96 = (struct rme96 *)private_data;

        if (rme96 == NULL) {
                return;
        }
        if (rme96->irq >= 0) {
                snd_rme96_playback_stop(rme96);
                snd_rme96_capture_stop(rme96);
                rme96->areg &= ~RME96_AR_DAC_EN;
                writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
                free_irq(rme96->irq, (void *)rme96);
                rme96->irq = -1;
        }
        if (rme96->iobase) {
                iounmap(rme96->iobase);
                rme96->iobase = NULL;
        }
        if (rme96->port) {
                pci_release_regions(rme96->pci);
                rme96->port = 0;
        }
        pci_disable_device(rme96->pci);
}

static void
snd_rme96_free_spdif_pcm(struct snd_pcm *pcm)
{
        struct rme96 *rme96 = (struct rme96 *) pcm->private_data;
        rme96->spdif_pcm = NULL;
}

static void
snd_rme96_free_adat_pcm(struct snd_pcm *pcm)
{
        struct rme96 *rme96 = (struct rme96 *) pcm->private_data;
        rme96->adat_pcm = NULL;
}

static int __devinit
snd_rme96_create(struct rme96 *rme96)
{
        struct pci_dev *pci = rme96->pci;
        int err;

        rme96->irq = -1;
        spin_lock_init(&rme96->lock);

        if ((err = pci_enable_device(pci)) < 0)
                return err;

        if ((err = pci_request_regions(pci, "RME96")) < 0)
                return err;
        rme96->port = pci_resource_start(rme96->pci, 0);

        rme96->iobase = ioremap_nocache(rme96->port, RME96_IO_SIZE);
        if (!rme96->iobase) {
                snd_printk(KERN_ERR "unable to remap memory region 0x%lx-0x%lx\n", rme96->port, rme96->port + RME96_IO_SIZE - 1);
                return -ENOMEM;
        }

        if (request_irq(pci->irq, snd_rme96_interrupt, IRQF_SHARED,
                        "RME96", rme96)) {
                snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
                return -EBUSY;
        }
        rme96->irq = pci->irq;

        /* read the card's revision number */
        pci_read_config_byte(pci, 8, &rme96->rev);      
        
        /* set up ALSA pcm device for S/PDIF */
        if ((err = snd_pcm_new(rme96->card, "Digi96 IEC958", 0,
                               1, 1, &rme96->spdif_pcm)) < 0)
        {
                return err;
        }
        rme96->spdif_pcm->private_data = rme96;
        rme96->spdif_pcm->private_free = snd_rme96_free_spdif_pcm;
        strcpy(rme96->spdif_pcm->name, "Digi96 IEC958");
        snd_pcm_set_ops(rme96->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_rme96_playback_spdif_ops);
        snd_pcm_set_ops(rme96->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_rme96_capture_spdif_ops);

        rme96->spdif_pcm->info_flags = 0;

        /* set up ALSA pcm device for ADAT */
        if (pci->device == PCI_DEVICE_ID_RME_DIGI96) {
                /* ADAT is not available on the base model */
                rme96->adat_pcm = NULL;
        } else {
                if ((err = snd_pcm_new(rme96->card, "Digi96 ADAT", 1,
                                       1, 1, &rme96->adat_pcm)) < 0)
                {
                        return err;
                }               
                rme96->adat_pcm->private_data = rme96;
                rme96->adat_pcm->private_free = snd_rme96_free_adat_pcm;
                strcpy(rme96->adat_pcm->name, "Digi96 ADAT");
                snd_pcm_set_ops(rme96->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_rme96_playback_adat_ops);
                snd_pcm_set_ops(rme96->adat_pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_rme96_capture_adat_ops);
                
                rme96->adat_pcm->info_flags = 0;
        }

        rme96->playback_periodsize = 0;
        rme96->capture_periodsize = 0;
        
        /* make sure playback/capture is stopped, if by some reason active */
        snd_rme96_playback_stop(rme96);
        snd_rme96_capture_stop(rme96);
        
        /* set default values in registers */
        rme96->wcreg =
                RME96_WCR_FREQ_1 | /* set 44.1 kHz playback */
                RME96_WCR_SEL |    /* normal playback */
                RME96_WCR_MASTER | /* set to master clock mode */
                RME96_WCR_INP_0;   /* set coaxial input */

        rme96->areg = RME96_AR_FREQPAD_1; /* set 44.1 kHz analog capture */

        writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
        writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);
        
        /* reset the ADC */
        writel(rme96->areg | RME96_AR_PD2,
               rme96->iobase + RME96_IO_ADDITIONAL_REG);
        writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);   

        /* reset and enable the DAC (order is important). */
        snd_rme96_reset_dac(rme96);
        rme96->areg |= RME96_AR_DAC_EN;
        writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG);

        /* reset playback and record buffer pointers */
        writel(0, rme96->iobase + RME96_IO_RESET_PLAY_POS);
        writel(0, rme96->iobase + RME96_IO_RESET_REC_POS);

        /* reset volume */
        rme96->vol[0] = rme96->vol[1] = 0;
        if (RME96_HAS_ANALOG_OUT(rme96)) {
                snd_rme96_apply_dac_volume(rme96);
        }
        
        /* init switch interface */
        if ((err = snd_rme96_create_switches(rme96->card, rme96)) < 0) {
                return err;
        }

        /* init proc interface */
        snd_rme96_proc_init(rme96);
        
        return 0;
}

/*
 * proc interface
 */

static void 
snd_rme96_proc_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer)
{
        int n;
        struct rme96 *rme96 = (struct rme96 *)entry->private_data;
        
        rme96->rcreg = readl(rme96->iobase + RME96_IO_CONTROL_REGISTER);

        snd_iprintf(buffer, rme96->card->longname);
        snd_iprintf(buffer, " (index #%d)\n", rme96->card->number + 1);

        snd_iprintf(buffer, "\nGeneral settings\n");
        if (rme96->wcreg & RME96_WCR_IDIS) {
                snd_iprintf(buffer, "  period size: N/A (interrupts "
                            "disabled)\n");
        } else if (rme96->wcreg & RME96_WCR_ISEL) {
                snd_iprintf(buffer, "  period size: 2048 bytes\n");
        } else {
                snd_iprintf(buffer, "  period size: 8192 bytes\n");
        }       
        snd_iprintf(buffer, "\nInput settings\n");
        switch (snd_rme96_getinputtype(rme96)) {
        case RME96_INPUT_OPTICAL:
                snd_iprintf(buffer, "  input: optical");
                break;
        case RME96_INPUT_COAXIAL:
                snd_iprintf(buffer, "  input: coaxial");
                break;
        case RME96_INPUT_INTERNAL:
                snd_iprintf(buffer, "  input: internal");
                break;
        case RME96_INPUT_XLR:
                snd_iprintf(buffer, "  input: XLR");
                break;
        case RME96_INPUT_ANALOG:
                snd_iprintf(buffer, "  input: analog");
                break;
        }
        if (snd_rme96_capture_getrate(rme96, &n) < 0) {
                snd_iprintf(buffer, "\n  sample rate: no valid signal\n");
        } else {
                if (n) {
                        snd_iprintf(buffer, " (8 channels)\n");
                } else {
                        snd_iprintf(buffer, " (2 channels)\n");
                }
                snd_iprintf(buffer, "  sample rate: %d Hz\n",
                            snd_rme96_capture_getrate(rme96, &n));
        }
        if (rme96->wcreg & RME96_WCR_MODE24_2) {
                snd_iprintf(buffer, "  sample format: 24 bit\n");
        } else {
                snd_iprintf(buffer, "  sample format: 16 bit\n");
        }
        
        snd_iprintf(buffer, "\nOutput settings\n");
        if (rme96->wcreg & RME96_WCR_SEL) {
                snd_iprintf(buffer, "  output signal: normal playback\n");
        } else {
                snd_iprintf(buffer, "  output signal: same as input\n");
        }
        snd_iprintf(buffer, "  sample rate: %d Hz\n",
                    snd_rme96_playback_getrate(rme96));
        if (rme96->wcreg & RME96_WCR_MODE24) {
                snd_iprintf(buffer, "  sample format: 24 bit\n");
        } else {
                snd_iprintf(buffer, "  sample format: 16 bit\n");
        }
        if (rme96->areg & RME96_AR_WSEL) {
                snd_iprintf(buffer, "  sample clock source: word clock\n");
        } else if (rme96->wcreg & RME96_WCR_MASTER) {
                snd_iprintf(buffer, "  sample clock source: internal\n");
        } else if (snd_rme96_getinputtype(rme96) == RME96_INPUT_ANALOG) {
                snd_iprintf(buffer, "  sample clock source: autosync (internal anyway due to analog input setting)\n");
        } else if (snd_rme96_capture_getrate(rme96, &n) < 0) {
                snd_iprintf(buffer, "  sample clock source: autosync (internal anyway due to no valid signal)\n");
        } else {
                snd_iprintf(buffer, "  sample clock source: autosync\n");
        }
        if (rme96->wcreg & RME96_WCR_PRO) {
                snd_iprintf(buffer, "  format: AES/EBU (professional)\n");
        } else {
                snd_iprintf(buffer, "  format: IEC958 (consumer)\n");
        }
        if (rme96->wcreg & RME96_WCR_EMP) {
                snd_iprintf(buffer, "  emphasis: on\n");
        } else {
                snd_iprintf(buffer, "  emphasis: off\n");
        }
        if (rme96->wcreg & RME96_WCR_DOLBY) {
                snd_iprintf(buffer, "  non-audio (dolby): on\n");
        } else {
                snd_iprintf(buffer, "  non-audio (dolby): off\n");
        }
        if (RME96_HAS_ANALOG_IN(rme96)) {
                snd_iprintf(buffer, "\nAnalog output settings\n");
                switch (snd_rme96_getmontracks(rme96)) {
                case RME96_MONITOR_TRACKS_1_2:
                        snd_iprintf(buffer, "  monitored ADAT tracks: 1+2\n");
                        break;
                case RME96_MONITOR_TRACKS_3_4:
                        snd_iprintf(buffer, "  monitored ADAT tracks: 3+4\n");
                        break;
                case RME96_MONITOR_TRACKS_5_6:
                        snd_iprintf(buffer, "  monitored ADAT tracks: 5+6\n");
                        break;
                case RME96_MONITOR_TRACKS_7_8:
                        snd_iprintf(buffer, "  monitored ADAT tracks: 7+8\n");
                        break;
                }
                switch (snd_rme96_getattenuation(rme96)) {
                case RME96_ATTENUATION_0:
                        snd_iprintf(buffer, "  attenuation: 0 dB\n");
                        break;
                case RME96_ATTENUATION_6:
                        snd_iprintf(buffer, "  attenuation: -6 dB\n");
                        break;
                case RME96_ATTENUATION_12:
                        snd_iprintf(buffer, "  attenuation: -12 dB\n");
                        break;
                case RME96_ATTENUATION_18:
                        snd_iprintf(buffer, "  attenuation: -18 dB\n");
                        break;
                }
                snd_iprintf(buffer, "  volume left: %u\n", rme96->vol[0]);
                snd_iprintf(buffer, "  volume right: %u\n", rme96->vol[1]);
        }
}

static void __devinit 
snd_rme96_proc_init(struct rme96 *rme96)
{
        struct snd_info_entry *entry;

        if (! snd_card_proc_new(rme96->card, "rme96", &entry))
                snd_info_set_text_ops(entry, rme96, snd_rme96_proc_read);
}

/*
 * control interface
 */

#define snd_rme96_info_loopback_control         snd_ctl_boolean_mono_info

static int
snd_rme96_get_loopback_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
        struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
        
        spin_lock_irq(&rme96->lock);
        ucontrol->value.integer.value[0] = rme96->wcreg & RME96_WCR_SEL ? 0 : 1;
        spin_unlock_irq(&rme96->lock);
        return 0;
}
static int
snd_rme96_put_loopback_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
        struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
        unsigned int val;
        int change;
        
        val = ucontrol->value.integer.value[0] ? 0 : RME96_WCR_SEL;
        spin_lock_irq(&rme96->lock);
        val = (rme96->wcreg & ~RME96_WCR_SEL) | val;
        change = val != rme96->wcreg;
        rme96->wcreg = val;
        writel(val, rme96->iobase + RME96_IO_CONTROL_REGISTER);
        spin_unlock_irq(&rme96->lock);
        return change;
}

static int
snd_rme96_info_inputtype_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
        static char *_texts[5] = { "Optical", "Coaxial", "Internal", "XLR", "Analog" };
        struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
        char *texts[5] = { _texts[0], _texts[1], _texts[2], _texts[3], _texts[4] };
        
        uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
        uinfo->count = 1;
        switch (rme96->pci->device) {
        case PCI_DEVICE_ID_RME_DIGI96:
        case PCI_DEVICE_ID_RME_DIGI96_8:
                uinfo->value.enumerated.items = 3;
                break;
        case PCI_DEVICE_ID_RME_DIGI96_8_PRO:
                uinfo->value.enumerated.items = 4;
                break;
        case PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST:
                if (rme96->rev > 4) {
                        /* PST */
                        uinfo->value.enumerated.items = 4;
                        texts[3] = _texts[4]; /* Analog instead of XLR */
                } else {
                        /* PAD */
                        uinfo->value.enumerated.items = 5;
                }
                break;
        default:
                snd_BUG();
                break;
        }
        if (uinfo->value.enumerated.item > uinfo->value.enumerated.items - 1) {
                uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
        }
        strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
        return 0;
}
static int
snd_rme96_get_inputtype_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
        struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
        unsigned int items = 3;
        
        spin_lock_irq(&rme96->lock);
        ucontrol->value.enumerated.item[0] = snd_rme96_getinputtype(rme96);
        
        switch (rme96->pci->device) {
        case PCI_DEVICE_ID_RME_DIGI96:
        case PCI_DEVICE_ID_RME_DIGI96_8:
                items = 3;
                break;
        case PCI_DEVICE_ID_RME_DIGI96_8_PRO:
                items = 4;
                break;
        case PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST:
                if (rme96->rev > 4) {
                        /* for handling PST case, (INPUT_ANALOG is moved to INPUT_XLR */
                        if (ucontrol->value.enumerated.item[0] == RME96_INPUT_ANALOG) {
                                ucontrol->value.enumerated.item[0] = RME96_INPUT_XLR;
                        }
                        items = 4;
                } else {
                        items = 5;
                }
                break;
        default:
                snd_BUG();
                break;
        }
        if (ucontrol->value.enumerated.item[0] >= items) {
                ucontrol->value.enumerated.item[0] = items - 1;
        }
        
        spin_unlock_irq(&rme96->lock);
        return 0;
}
static int
snd_rme96_put_inputtype_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
        struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
        unsigned int val;
        int change, items = 3;
        
        switch (rme96->pci->device) {
        case PCI_DEVICE_ID_RME_DIGI96:
        case PCI_DEVICE_ID_RME_DIGI96_8:
                items = 3;
                break;
        case PCI_DEVICE_ID_RME_DIGI96_8_PRO:
                items = 4;
                break;
        case PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST:
                if (rme96->rev > 4) {
                        items = 4;
                } else {
                        items = 5;
                }
                break;
        default:
                snd_BUG();
                break;
        }
        val = ucontrol->value.enumerated.item[0] % items;
        
        /* special case for PST */
        if (rme96->pci->device == PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST && rme96->rev > 4) {
                if (val == RME96_INPUT_XLR) {
                        val = RME96_INPUT_ANALOG;
                }
        }
        
        spin_lock_irq(&rme96->lock);
        change = (int)val != snd_rme96_getinputtype(rme96);
        snd_rme96_setinputtype(rme96, val);
        spin_unlock_irq(&rme96->lock);
        return change;
}

static int
snd_rme96_info_clockmode_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
        static char *texts[3] = { "AutoSync", "Internal", "Word" };
        
        uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
        uinfo->count = 1;
        uinfo->value.enumerated.items = 3;
        if (uinfo->value.enumerated.item > 2) {
                uinfo->value.enumerated.item = 2;
        }
        strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
        return 0;
}
static int
snd_rme96_get_clockmode_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
        struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
        
        spin_lock_irq(&rme96->lock);
        ucontrol->value.enumerated.item[0] = snd_rme96_getclockmode(rme96);
        spin_unlock_irq(&rme96->lock);
        return 0;
}
static int
snd_rme96_put_clockmode_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
        struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
        unsigned int val;
        int change;
        
        val = ucontrol->value.enumerated.item[0] % 3;
        spin_lock_irq(&rme96->lock);
        change = (int)val != snd_rme96_getclockmode(rme96);
        snd_rme96_setclockmode(rme96, val);
        spin_unlock_irq(&rme96->lock);
        return change;
}

static int
snd_rme96_info_attenuation_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
        static char *texts[4] = { "0 dB", "-6 dB", "-12 dB", "-18 dB" };
        
        uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
        uinfo->count = 1;
        uinfo->value.enumerated.items = 4;
        if (uinfo->value.enumerated.item > 3) {
                uinfo->value.enumerated.item = 3;
        }
        strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
        return 0;
}
static int
snd_rme96_get_attenuation_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
        struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
        
        spin_lock_irq(&rme96->lock);
        ucontrol->value.enumerated.item[0] = snd_rme96_getattenuation(rme96);
        spin_unlock_irq(&rme96->lock);
        return 0;
}
static int
snd_rme96_put_attenuation_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
        struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
        unsigned int val;
        int change;
        
        val = ucontrol->value.enumerated.item[0] % 4;
        spin_lock_irq(&rme96->lock);

        change = (int)val != snd_rme96_getattenuation(rme96);
        snd_rme96_setattenuation(rme96, val);
        spin_unlock_irq(&rme96->lock);
        return change;
}

static int
snd_rme96_info_montracks_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
        static char *texts[4] = { "1+2", "3+4", "5+6", "7+8" };
        
        uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
        uinfo->count = 1;
        uinfo->value.enumerated.items = 4;
        if (uinfo->value.enumerated.item > 3) {
                uinfo->value.enumerated.item = 3;
        }
        strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
        return 0;
}
static int
snd_rme96_get_montracks_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
        struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
        
        spin_lock_irq(&rme96->lock);
        ucontrol->value.enumerated.item[0] = snd_rme96_getmontracks(rme96);
        spin_unlock_irq(&rme96->lock);
        return 0;
}
static int
snd_rme96_put_montracks_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
        struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
        unsigned int val;
        int change;
        
        val = ucontrol->value.enumerated.item[0] % 4;
        spin_lock_irq(&rme96->lock);
        change = (int)val != snd_rme96_getmontracks(rme96);
        snd_rme96_setmontracks(rme96, val);
        spin_unlock_irq(&rme96->lock);
        return change;
}

static u32 snd_rme96_convert_from_aes(struct snd_aes_iec958 *aes)
{
        u32 val = 0;
        val |= (aes->status[0] & IEC958_AES0_PROFESSIONAL) ? RME96_WCR_PRO : 0;
        val |= (aes->status[0] & IEC958_AES0_NONAUDIO) ? RME96_WCR_DOLBY : 0;
        if (val & RME96_WCR_PRO)
                val |= (aes->status[0] & IEC958_AES0_PRO_EMPHASIS_5015) ? RME96_WCR_EMP : 0;
        else
                val |= (aes->status[0] & IEC958_AES0_CON_EMPHASIS_5015) ? RME96_WCR_EMP : 0;
        return val;
}

static void snd_rme96_convert_to_aes(struct snd_aes_iec958 *aes, u32 val)
{
        aes->status[0] = ((val & RME96_WCR_PRO) ? IEC958_AES0_PROFESSIONAL : 0) |
                         ((val & RME96_WCR_DOLBY) ? IEC958_AES0_NONAUDIO : 0);
        if (val & RME96_WCR_PRO)
                aes->status[0] |= (val & RME96_WCR_EMP) ? IEC958_AES0_PRO_EMPHASIS_5015 : 0;
        else
                aes->status[0] |= (val & RME96_WCR_EMP) ? IEC958_AES0_CON_EMPHASIS_5015 : 0;
}

static int snd_rme96_control_spdif_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
        uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
        uinfo->count = 1;
        return 0;
}

static int snd_rme96_control_spdif_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
        struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
        
        snd_rme96_convert_to_aes(&ucontrol->value.iec958, rme96->wcreg_spdif);
        return 0;
}

static int snd_rme96_control_spdif_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
        struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
        int change;
        u32 val;
        
        val = snd_rme96_convert_from_aes(&ucontrol->value.iec958);
        spin_lock_irq(&rme96->lock);
        change = val != rme96->wcreg_spdif;
        rme96->wcreg_spdif = val;
        spin_unlock_irq(&rme96->lock);
        return change;
}

static int snd_rme96_control_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
        uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
        uinfo->count = 1;
        return 0;
}

static int snd_rme96_control_spdif_stream_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
        struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
        
        snd_rme96_convert_to_aes(&ucontrol->value.iec958, rme96->wcreg_spdif_stream);
        return 0;
}

static int snd_rme96_control_spdif_stream_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
        struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
        int change;
        u32 val;
        
        val = snd_rme96_convert_from_aes(&ucontrol->value.iec958);
        spin_lock_irq(&rme96->lock);
        change = val != rme96->wcreg_spdif_stream;
        rme96->wcreg_spdif_stream = val;
        rme96->wcreg &= ~(RME96_WCR_PRO | RME96_WCR_DOLBY | RME96_WCR_EMP);
        rme96->wcreg |= val;
        writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER);
        spin_unlock_irq(&rme96->lock);
        return change;
}

static int snd_rme96_control_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
        uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
        uinfo->count = 1;
        return 0;
}

static int snd_rme96_control_spdif_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
{
        ucontrol->value.iec958.status[0] = kcontrol->private_value;
        return 0;
}

static int
snd_rme96_dac_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
{
        struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
        
        uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
        uinfo->count = 2;
        uinfo->value.integer.min = 0;
        uinfo->value.integer.max = RME96_185X_MAX_OUT(rme96);
        return 0;
}

static int
snd_rme96_dac_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *u)
{
        struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);

        spin_lock_irq(&rme96->lock);
        u->value.integer.value[0] = rme96->vol[0];
        u->value.integer.value[1] = rme96->vol[1];
        spin_unlock_irq(&rme96->lock);

        return 0;
}

static int
snd_rme96_dac_volume_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *u)
{
        struct rme96 *rme96 = snd_kcontrol_chip(kcontrol);
        int change = 0;
        unsigned int vol, maxvol;


        if (!RME96_HAS_ANALOG_OUT(rme96))
                return -EINVAL;
        maxvol = RME96_185X_MAX_OUT(rme96);
        spin_lock_irq(&rme96->lock);
        vol = u->value.integer.value[0];
        if (vol != rme96->vol[0] && vol <= maxvol) {
                rme96->vol[0] = vol;
                change = 1;
        }
        vol = u->value.integer.value[1];
        if (vol != rme96->vol[1] && vol <= maxvol) {
                rme96->vol[1] = vol;
                change = 1;
        }
        if (change)
                snd_rme96_apply_dac_volume(rme96);
        spin_unlock_irq(&rme96->lock);

        return change;
}

static struct snd_kcontrol_new snd_rme96_controls[] = {
{
        .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
        .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
        .info =         snd_rme96_control_spdif_info,
        .get =          snd_rme96_control_spdif_get,
        .put =          snd_rme96_control_spdif_put
},
{
        .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
        .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
        .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
        .info =         snd_rme96_control_spdif_stream_info,
        .get =          snd_rme96_control_spdif_stream_get,
        .put =          snd_rme96_control_spdif_stream_put
},
{
        .access =       SNDRV_CTL_ELEM_ACCESS_READ,
        .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
        .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
        .info =         snd_rme96_control_spdif_mask_info,
        .get =          snd_rme96_control_spdif_mask_get,
        .private_value = IEC958_AES0_NONAUDIO |
                        IEC958_AES0_PROFESSIONAL |
                        IEC958_AES0_CON_EMPHASIS
},
{
        .access =       SNDRV_CTL_ELEM_ACCESS_READ,
        .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
        .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK),
        .info =         snd_rme96_control_spdif_mask_info,
        .get =          snd_rme96_control_spdif_mask_get,
        .private_value = IEC958_AES0_NONAUDIO |
                        IEC958_AES0_PROFESSIONAL |
                        IEC958_AES0_PRO_EMPHASIS
},
{
        .iface =        SNDRV_CTL_ELEM_IFACE_MIXER,
        .name =         "Input Connector",
        .info =         snd_rme96_info_inputtype_control, 
        .get =          snd_rme96_get_inputtype_control,
        .put =          snd_rme96_put_inputtype_control 
},
{
        .iface =        SNDRV_CTL_ELEM_IFACE_MIXER,
        .name =         "Loopback Input",
        .info =         snd_rme96_info_loopback_control,
        .get =          snd_rme96_get_loopback_control,
        .put =          snd_rme96_put_loopback_control
},
{
        .iface =        SNDRV_CTL_ELEM_IFACE_MIXER,
        .name =         "Sample Clock Source",
        .info =         snd_rme96_info_clockmode_control, 
        .get =          snd_rme96_get_clockmode_control,
        .put =          snd_rme96_put_clockmode_control
},
{
        .iface =        SNDRV_CTL_ELEM_IFACE_MIXER,
        .name =         "Monitor Tracks",
        .info =         snd_rme96_info_montracks_control, 
        .get =          snd_rme96_get_montracks_control,
        .put =          snd_rme96_put_montracks_control
},
{
        .iface =        SNDRV_CTL_ELEM_IFACE_MIXER,
        .name =         "Attenuation",
        .info =         snd_rme96_info_attenuation_control, 
        .get =          snd_rme96_get_attenuation_control,
        .put =          snd_rme96_put_attenuation_control
},
{
        .iface =        SNDRV_CTL_ELEM_IFACE_MIXER,
        .name =         "DAC Playback Volume",
        .info =         snd_rme96_dac_volume_info,
        .get =          snd_rme96_dac_volume_get,
        .put =          snd_rme96_dac_volume_put
}
};

static int
snd_rme96_create_switches(struct snd_card *card,
                          struct rme96 *rme96)
{
        int idx, err;
        struct snd_kcontrol *kctl;

        for (idx = 0; idx < 7; idx++) {
                if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_rme96_controls[idx], rme96))) < 0)
                        return err;
                if (idx == 1)   /* IEC958 (S/PDIF) Stream */
                        rme96->spdif_ctl = kctl;
        }

        if (RME96_HAS_ANALOG_OUT(rme96)) {
                for (idx = 7; idx < 10; idx++)
                        if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_rme96_controls[idx], rme96))) < 0)
                                return err;
        }
        
        return 0;
}

/*
 * Card initialisation
 */

static void snd_rme96_card_free(struct snd_card *card)
{
        snd_rme96_free(card->private_data);
}

static int __devinit
snd_rme96_probe(struct pci_dev *pci,
                const struct pci_device_id *pci_id)
{
        static int dev;
        struct rme96 *rme96;
        struct snd_card *card;
        int err;
        u8 val;

        if (dev >= SNDRV_CARDS) {
                return -ENODEV;
        }
        if (!enable[dev]) {
                dev++;
                return -ENOENT;
        }
        if ((card = snd_card_new(index[dev], id[dev], THIS_MODULE,
                                 sizeof(struct rme96))) == NULL)
                return -ENOMEM;
        card->private_free = snd_rme96_card_free;
        rme96 = (struct rme96 *)card->private_data;     
        rme96->card = card;
        rme96->pci = pci;
        snd_card_set_dev(card, &pci->dev);
        if ((err = snd_rme96_create(rme96)) < 0) {
                snd_card_free(card);
                return err;
        }
        
        strcpy(card->driver, "Digi96");
        switch (rme96->pci->device) {
        case PCI_DEVICE_ID_RME_DIGI96:
                strcpy(card->shortname, "RME Digi96");
                break;
        case PCI_DEVICE_ID_RME_DIGI96_8:
                strcpy(card->shortname, "RME Digi96/8");
                break;
        case PCI_DEVICE_ID_RME_DIGI96_8_PRO:
                strcpy(card->shortname, "RME Digi96/8 PRO");
                break;
        case PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST:
                pci_read_config_byte(rme96->pci, 8, &val);
                if (val < 5) {
                        strcpy(card->shortname, "RME Digi96/8 PAD");
                } else {
                        strcpy(card->shortname, "RME Digi96/8 PST");
                }
                break;
        }
        sprintf(card->longname, "%s at 0x%lx, irq %d", card->shortname,
                rme96->port, rme96->irq);
        
        if ((err = snd_card_register(card)) < 0) {
                snd_card_free(card);
                return err;     
        }
        pci_set_drvdata(pci, card);
        dev++;
        return 0;
}

static void __devexit snd_rme96_remove(struct pci_dev *pci)
{
        snd_card_free(pci_get_drvdata(pci));
        pci_set_drvdata(pci, NULL);
}

static struct pci_driver driver = {
        .name = "RME Digi96",
        .id_table = snd_rme96_ids,
        .probe = snd_rme96_probe,
        .remove = __devexit_p(snd_rme96_remove),
};

static int __init alsa_card_rme96_init(void)
{
        return pci_register_driver(&driver);
}

static void __exit alsa_card_rme96_exit(void)
{
        pci_unregister_driver(&driver);
}

module_init(alsa_card_rme96_init)
module_exit(alsa_card_rme96_exit)

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading