[funini.com] -> [kei@sodan] -> Kernel Reading

root/sound/pci/hda/hda_intel.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. azx_alloc_cmd_io
  2. azx_init_cmd_io
  3. azx_free_cmd_io
  4. azx_corb_send_cmd
  5. azx_update_rirb
  6. azx_rirb_get_response
  7. azx_single_send_cmd
  8. azx_single_get_response
  9. azx_send_cmd
  10. azx_get_response
  11. azx_reset
  12. azx_int_enable
  13. azx_int_disable
  14. azx_int_clear
  15. azx_stream_start
  16. azx_stream_stop
  17. azx_init_chip
  18. update_pci_byte
  19. azx_init_pci
  20. azx_interrupt
  21. setup_bdle
  22. azx_setup_periods
  23. azx_setup_controller
  24. azx_codec_create
  25. azx_assign_device
  26. azx_release_device
  27. azx_pcm_open
  28. azx_pcm_close
  29. azx_pcm_hw_params
  30. azx_pcm_hw_free
  31. azx_pcm_prepare
  32. azx_pcm_trigger
  33. azx_via_get_position
  34. azx_get_position
  35. azx_pcm_pointer
  36. azx_position_ok
  37. azx_irq_pending_work
  38. azx_clear_irq_pending
  39. azx_pcm_free
  40. create_codec_pcm
  41. azx_pcm_create
  42. azx_mixer_create
  43. azx_init_stream
  44. azx_acquire_irq
  45. azx_stop_chip
  46. azx_power_notify
  47. azx_suspend
  48. azx_resume
  49. azx_free
  50. azx_dev_free
  51. check_position_fix
  52. check_probe_mask
  53. azx_create
  54. power_down_all_codecs
  55. azx_probe
  56. azx_remove
  57. alsa_card_azx_init
  58. alsa_card_azx_exit

/*
 *
 *  hda_intel.c - Implementation of primary alsa driver code base
 *                for Intel HD Audio.
 *
 *  Copyright(c) 2004 Intel Corporation. All rights reserved.
 *
 *  Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
 *                     PeiSen Hou <pshou@realtek.com.tw>
 *
 *  This program is free software; you can redistribute it and/or modify it
 *  under the terms of the GNU General Public License as published by the Free
 *  Software Foundation; either version 2 of the License, or (at your option)
 *  any later version.
 *
 *  This program is distributed in the hope that it will be useful, but WITHOUT
 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 *  more details.
 *
 *  You should have received a copy of the GNU General Public License along with
 *  this program; if not, write to the Free Software Foundation, Inc., 59
 *  Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 *
 *  CONTACTS:
 *
 *  Matt Jared          matt.jared@intel.com
 *  Andy Kopp           andy.kopp@intel.com
 *  Dan Kogan           dan.d.kogan@intel.com
 *
 *  CHANGES:
 *
 *  2004.12.01  Major rewrite by tiwai, merged the work of pshou
 * 
 */

#include <asm/io.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/mutex.h>
#include <sound/core.h>
#include <sound/initval.h>
#include "hda_codec.h"


static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;
static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;
static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
static char *model[SNDRV_CARDS];
static int position_fix[SNDRV_CARDS];
static int bdl_pos_adj[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)] = -1};
static int probe_mask[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)] = -1};
static int single_cmd;
static int enable_msi;

module_param_array(index, int, NULL, 0444);
MODULE_PARM_DESC(index, "Index value for Intel HD audio interface.");
module_param_array(id, charp, NULL, 0444);
MODULE_PARM_DESC(id, "ID string for Intel HD audio interface.");
module_param_array(enable, bool, NULL, 0444);
MODULE_PARM_DESC(enable, "Enable Intel HD audio interface.");
module_param_array(model, charp, NULL, 0444);
MODULE_PARM_DESC(model, "Use the given board model.");
module_param_array(position_fix, int, NULL, 0444);
MODULE_PARM_DESC(position_fix, "Fix DMA pointer "
                 "(0 = auto, 1 = none, 2 = POSBUF).");
module_param_array(bdl_pos_adj, int, NULL, 0644);
MODULE_PARM_DESC(bdl_pos_adj, "BDL position adjustment offset.");
module_param_array(probe_mask, int, NULL, 0444);
MODULE_PARM_DESC(probe_mask, "Bitmask to probe codecs (default = -1).");
module_param(single_cmd, bool, 0444);
MODULE_PARM_DESC(single_cmd, "Use single command to communicate with codecs "
                 "(for debugging only).");
module_param(enable_msi, int, 0444);
MODULE_PARM_DESC(enable_msi, "Enable Message Signaled Interrupt (MSI)");

#ifdef CONFIG_SND_HDA_POWER_SAVE
/* power_save option is defined in hda_codec.c */

/* reset the HD-audio controller in power save mode.
 * this may give more power-saving, but will take longer time to
 * wake up.
 */
static int power_save_controller = 1;
module_param(power_save_controller, bool, 0644);
MODULE_PARM_DESC(power_save_controller, "Reset controller in power save mode.");
#endif

MODULE_LICENSE("GPL");
MODULE_SUPPORTED_DEVICE("{{Intel, ICH6},"
                         "{Intel, ICH6M},"
                         "{Intel, ICH7},"
                         "{Intel, ESB2},"
                         "{Intel, ICH8},"
                         "{Intel, ICH9},"
                         "{Intel, ICH10},"
                         "{Intel, PCH},"
                         "{Intel, SCH},"
                         "{ATI, SB450},"
                         "{ATI, SB600},"
                         "{ATI, RS600},"
                         "{ATI, RS690},"
                         "{ATI, RS780},"
                         "{ATI, R600},"
                         "{ATI, RV630},"
                         "{ATI, RV610},"
                         "{ATI, RV670},"
                         "{ATI, RV635},"
                         "{ATI, RV620},"
                         "{ATI, RV770},"
                         "{VIA, VT8251},"
                         "{VIA, VT8237A},"
                         "{SiS, SIS966},"
                         "{ULI, M5461}}");
MODULE_DESCRIPTION("Intel HDA driver");

#define SFX     "hda-intel: "


/*
 * registers
 */
#define ICH6_REG_GCAP                   0x00
#define ICH6_REG_VMIN                   0x02
#define ICH6_REG_VMAJ                   0x03
#define ICH6_REG_OUTPAY                 0x04
#define ICH6_REG_INPAY                  0x06
#define ICH6_REG_GCTL                   0x08
#define ICH6_REG_WAKEEN                 0x0c
#define ICH6_REG_STATESTS               0x0e
#define ICH6_REG_GSTS                   0x10
#define ICH6_REG_INTCTL                 0x20
#define ICH6_REG_INTSTS                 0x24
#define ICH6_REG_WALCLK                 0x30
#define ICH6_REG_SYNC                   0x34    
#define ICH6_REG_CORBLBASE              0x40
#define ICH6_REG_CORBUBASE              0x44
#define ICH6_REG_CORBWP                 0x48
#define ICH6_REG_CORBRP                 0x4A
#define ICH6_REG_CORBCTL                0x4c
#define ICH6_REG_CORBSTS                0x4d
#define ICH6_REG_CORBSIZE               0x4e

#define ICH6_REG_RIRBLBASE              0x50
#define ICH6_REG_RIRBUBASE              0x54
#define ICH6_REG_RIRBWP                 0x58
#define ICH6_REG_RINTCNT                0x5a
#define ICH6_REG_RIRBCTL                0x5c
#define ICH6_REG_RIRBSTS                0x5d
#define ICH6_REG_RIRBSIZE               0x5e

#define ICH6_REG_IC                     0x60
#define ICH6_REG_IR                     0x64
#define ICH6_REG_IRS                    0x68
#define   ICH6_IRS_VALID        (1<<1)
#define   ICH6_IRS_BUSY         (1<<0)

#define ICH6_REG_DPLBASE                0x70
#define ICH6_REG_DPUBASE                0x74
#define   ICH6_DPLBASE_ENABLE   0x1     /* Enable position buffer */

/* SD offset: SDI0=0x80, SDI1=0xa0, ... SDO3=0x160 */
enum { SDI0, SDI1, SDI2, SDI3, SDO0, SDO1, SDO2, SDO3 };

/* stream register offsets from stream base */
#define ICH6_REG_SD_CTL                 0x00
#define ICH6_REG_SD_STS                 0x03
#define ICH6_REG_SD_LPIB                0x04
#define ICH6_REG_SD_CBL                 0x08
#define ICH6_REG_SD_LVI                 0x0c
#define ICH6_REG_SD_FIFOW               0x0e
#define ICH6_REG_SD_FIFOSIZE            0x10
#define ICH6_REG_SD_FORMAT              0x12
#define ICH6_REG_SD_BDLPL               0x18
#define ICH6_REG_SD_BDLPU               0x1c

/* PCI space */
#define ICH6_PCIREG_TCSEL       0x44

/*
 * other constants
 */

/* max number of SDs */
/* ICH, ATI and VIA have 4 playback and 4 capture */
#define ICH6_NUM_CAPTURE        4
#define ICH6_NUM_PLAYBACK       4

/* ULI has 6 playback and 5 capture */
#define ULI_NUM_CAPTURE         5
#define ULI_NUM_PLAYBACK        6

/* ATI HDMI has 1 playback and 0 capture */
#define ATIHDMI_NUM_CAPTURE     0
#define ATIHDMI_NUM_PLAYBACK    1

/* TERA has 4 playback and 3 capture */
#define TERA_NUM_CAPTURE        3
#define TERA_NUM_PLAYBACK       4

/* this number is statically defined for simplicity */
#define MAX_AZX_DEV             16

/* max number of fragments - we may use more if allocating more pages for BDL */
#define BDL_SIZE                4096
#define AZX_MAX_BDL_ENTRIES     (BDL_SIZE / 16)
#define AZX_MAX_FRAG            32
/* max buffer size - no h/w limit, you can increase as you like */
#define AZX_MAX_BUF_SIZE        (1024*1024*1024)
/* max number of PCM devics per card */
#define AZX_MAX_PCMS            8

/* RIRB int mask: overrun[2], response[0] */
#define RIRB_INT_RESPONSE       0x01
#define RIRB_INT_OVERRUN        0x04
#define RIRB_INT_MASK           0x05

/* STATESTS int mask: S3,SD2,SD1,SD0 */
#define AZX_MAX_CODECS          4
#define STATESTS_INT_MASK       0x0f

/* SD_CTL bits */
#define SD_CTL_STREAM_RESET     0x01    /* stream reset bit */
#define SD_CTL_DMA_START        0x02    /* stream DMA start bit */
#define SD_CTL_STRIPE           (3 << 16)       /* stripe control */
#define SD_CTL_TRAFFIC_PRIO     (1 << 18)       /* traffic priority */
#define SD_CTL_DIR              (1 << 19)       /* bi-directional stream */
#define SD_CTL_STREAM_TAG_MASK  (0xf << 20)
#define SD_CTL_STREAM_TAG_SHIFT 20

/* SD_CTL and SD_STS */
#define SD_INT_DESC_ERR         0x10    /* descriptor error interrupt */
#define SD_INT_FIFO_ERR         0x08    /* FIFO error interrupt */
#define SD_INT_COMPLETE         0x04    /* completion interrupt */
#define SD_INT_MASK             (SD_INT_DESC_ERR|SD_INT_FIFO_ERR|\
                                 SD_INT_COMPLETE)

/* SD_STS */
#define SD_STS_FIFO_READY       0x20    /* FIFO ready */

/* INTCTL and INTSTS */
#define ICH6_INT_ALL_STREAM     0xff       /* all stream interrupts */
#define ICH6_INT_CTRL_EN        0x40000000 /* controller interrupt enable bit */
#define ICH6_INT_GLOBAL_EN      0x80000000 /* global interrupt enable bit */

/* GCTL unsolicited response enable bit */
#define ICH6_GCTL_UREN          (1<<8)

/* GCTL reset bit */
#define ICH6_GCTL_RESET         (1<<0)

/* CORB/RIRB control, read/write pointer */
#define ICH6_RBCTL_DMA_EN       0x02    /* enable DMA */
#define ICH6_RBCTL_IRQ_EN       0x01    /* enable IRQ */
#define ICH6_RBRWP_CLR          0x8000  /* read/write pointer clear */
/* below are so far hardcoded - should read registers in future */
#define ICH6_MAX_CORB_ENTRIES   256
#define ICH6_MAX_RIRB_ENTRIES   256

/* position fix mode */
enum {
        POS_FIX_AUTO,
        POS_FIX_LPIB,
        POS_FIX_POSBUF,
};

/* Defines for ATI HD Audio support in SB450 south bridge */
#define ATI_SB450_HDAUDIO_MISC_CNTR2_ADDR   0x42
#define ATI_SB450_HDAUDIO_ENABLE_SNOOP      0x02

/* Defines for Nvidia HDA support */
#define NVIDIA_HDA_TRANSREG_ADDR      0x4e
#define NVIDIA_HDA_ENABLE_COHBITS     0x0f
#define NVIDIA_HDA_ISTRM_COH          0x4d
#define NVIDIA_HDA_OSTRM_COH          0x4c
#define NVIDIA_HDA_ENABLE_COHBIT      0x01

/* Defines for Intel SCH HDA snoop control */
#define INTEL_SCH_HDA_DEVC      0x78
#define INTEL_SCH_HDA_DEVC_NOSNOOP       (0x1<<11)

/* Define IN stream 0 FIFO size offset in VIA controller */
#define VIA_IN_STREAM0_FIFO_SIZE_OFFSET 0x90
/* Define VIA HD Audio Device ID*/
#define VIA_HDAC_DEVICE_ID              0x3288


/*
 */

struct azx_dev {
        struct snd_dma_buffer bdl; /* BDL buffer */
        u32 *posbuf;            /* position buffer pointer */

        unsigned int bufsize;   /* size of the play buffer in bytes */
        unsigned int period_bytes; /* size of the period in bytes */
        unsigned int frags;     /* number for period in the play buffer */
        unsigned int fifo_size; /* FIFO size */

        void __iomem *sd_addr;  /* stream descriptor pointer */

        u32 sd_int_sta_mask;    /* stream int status mask */

        /* pcm support */
        struct snd_pcm_substream *substream;    /* assigned substream,
                                                 * set in PCM open
                                                 */
        unsigned int format_val;        /* format value to be set in the
                                         * controller and the codec
                                         */
        unsigned char stream_tag;       /* assigned stream */
        unsigned char index;            /* stream index */

        unsigned int opened :1;
        unsigned int running :1;
        unsigned int irq_pending :1;
        unsigned int irq_ignore :1;
        /*
         * For VIA:
         *  A flag to ensure DMA position is 0
         *  when link position is not greater than FIFO size
         */
        unsigned int insufficient :1;
};

/* CORB/RIRB */
struct azx_rb {
        u32 *buf;               /* CORB/RIRB buffer
                                 * Each CORB entry is 4byte, RIRB is 8byte
                                 */
        dma_addr_t addr;        /* physical address of CORB/RIRB buffer */
        /* for RIRB */
        unsigned short rp, wp;  /* read/write pointers */
        int cmds;               /* number of pending requests */
        u32 res;                /* last read value */
};

struct azx {
        struct snd_card *card;
        struct pci_dev *pci;
        int dev_index;

        /* chip type specific */
        int driver_type;
        int playback_streams;
        int playback_index_offset;
        int capture_streams;
        int capture_index_offset;
        int num_streams;

        /* pci resources */
        unsigned long addr;
        void __iomem *remap_addr;
        int irq;

        /* locks */
        spinlock_t reg_lock;
        struct mutex open_mutex;

        /* streams (x num_streams) */
        struct azx_dev *azx_dev;

        /* PCM */
        struct snd_pcm *pcm[AZX_MAX_PCMS];

        /* HD codec */
        unsigned short codec_mask;
        struct hda_bus *bus;

        /* CORB/RIRB */
        struct azx_rb corb;
        struct azx_rb rirb;

        /* CORB/RIRB and position buffers */
        struct snd_dma_buffer rb;
        struct snd_dma_buffer posbuf;

        /* flags */
        int position_fix;
        unsigned int running :1;
        unsigned int initialized :1;
        unsigned int single_cmd :1;
        unsigned int polling_mode :1;
        unsigned int msi :1;
        unsigned int irq_pending_warned :1;
        unsigned int via_dmapos_patch :1; /* enable DMA-position fix for VIA */

        /* for debugging */
        unsigned int last_cmd;  /* last issued command (to sync) */

        /* for pending irqs */
        struct work_struct irq_pending_work;
};

/* driver types */
enum {
        AZX_DRIVER_ICH,
        AZX_DRIVER_SCH,
        AZX_DRIVER_ATI,
        AZX_DRIVER_ATIHDMI,
        AZX_DRIVER_VIA,
        AZX_DRIVER_SIS,
        AZX_DRIVER_ULI,
        AZX_DRIVER_NVIDIA,
        AZX_DRIVER_TERA,
        AZX_NUM_DRIVERS, /* keep this as last entry */
};

static char *driver_short_names[] __devinitdata = {
        [AZX_DRIVER_ICH] = "HDA Intel",
        [AZX_DRIVER_SCH] = "HDA Intel MID",
        [AZX_DRIVER_ATI] = "HDA ATI SB",
        [AZX_DRIVER_ATIHDMI] = "HDA ATI HDMI",
        [AZX_DRIVER_VIA] = "HDA VIA VT82xx",
        [AZX_DRIVER_SIS] = "HDA SIS966",
        [AZX_DRIVER_ULI] = "HDA ULI M5461",
        [AZX_DRIVER_NVIDIA] = "HDA NVidia",
        [AZX_DRIVER_TERA] = "HDA Teradici", 
};

/*
 * macros for easy use
 */
#define azx_writel(chip,reg,value) \
        writel(value, (chip)->remap_addr + ICH6_REG_##reg)
#define azx_readl(chip,reg) \
        readl((chip)->remap_addr + ICH6_REG_##reg)
#define azx_writew(chip,reg,value) \
        writew(value, (chip)->remap_addr + ICH6_REG_##reg)
#define azx_readw(chip,reg) \
        readw((chip)->remap_addr + ICH6_REG_##reg)
#define azx_writeb(chip,reg,value) \
        writeb(value, (chip)->remap_addr + ICH6_REG_##reg)
#define azx_readb(chip,reg) \
        readb((chip)->remap_addr + ICH6_REG_##reg)

#define azx_sd_writel(dev,reg,value) \
        writel(value, (dev)->sd_addr + ICH6_REG_##reg)
#define azx_sd_readl(dev,reg) \
        readl((dev)->sd_addr + ICH6_REG_##reg)
#define azx_sd_writew(dev,reg,value) \
        writew(value, (dev)->sd_addr + ICH6_REG_##reg)
#define azx_sd_readw(dev,reg) \
        readw((dev)->sd_addr + ICH6_REG_##reg)
#define azx_sd_writeb(dev,reg,value) \
        writeb(value, (dev)->sd_addr + ICH6_REG_##reg)
#define azx_sd_readb(dev,reg) \
        readb((dev)->sd_addr + ICH6_REG_##reg)

/* for pcm support */
#define get_azx_dev(substream) (substream->runtime->private_data)

static int azx_acquire_irq(struct azx *chip, int do_disconnect);

/*
 * Interface for HD codec
 */

/*
 * CORB / RIRB interface
 */
static int azx_alloc_cmd_io(struct azx *chip)
{
        int err;

        /* single page (at least 4096 bytes) must suffice for both ringbuffes */
        err = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV,
                                  snd_dma_pci_data(chip->pci),
                                  PAGE_SIZE, &chip->rb);
        if (err < 0) {
                snd_printk(KERN_ERR SFX "cannot allocate CORB/RIRB\n");
                return err;
        }
        return 0;
}

static void azx_init_cmd_io(struct azx *chip)
{
        /* CORB set up */
        chip->corb.addr = chip->rb.addr;
        chip->corb.buf = (u32 *)chip->rb.area;
        azx_writel(chip, CORBLBASE, (u32)chip->corb.addr);
        azx_writel(chip, CORBUBASE, upper_32_bits(chip->corb.addr));

        /* set the corb size to 256 entries (ULI requires explicitly) */
        azx_writeb(chip, CORBSIZE, 0x02);
        /* set the corb write pointer to 0 */
        azx_writew(chip, CORBWP, 0);
        /* reset the corb hw read pointer */
        azx_writew(chip, CORBRP, ICH6_RBRWP_CLR);
        /* enable corb dma */
        azx_writeb(chip, CORBCTL, ICH6_RBCTL_DMA_EN);

        /* RIRB set up */
        chip->rirb.addr = chip->rb.addr + 2048;
        chip->rirb.buf = (u32 *)(chip->rb.area + 2048);
        azx_writel(chip, RIRBLBASE, (u32)chip->rirb.addr);
        azx_writel(chip, RIRBUBASE, upper_32_bits(chip->rirb.addr));

        /* set the rirb size to 256 entries (ULI requires explicitly) */
        azx_writeb(chip, RIRBSIZE, 0x02);
        /* reset the rirb hw write pointer */
        azx_writew(chip, RIRBWP, ICH6_RBRWP_CLR);
        /* set N=1, get RIRB response interrupt for new entry */
        azx_writew(chip, RINTCNT, 1);
        /* enable rirb dma and response irq */
        azx_writeb(chip, RIRBCTL, ICH6_RBCTL_DMA_EN | ICH6_RBCTL_IRQ_EN);
        chip->rirb.rp = chip->rirb.cmds = 0;
}

static void azx_free_cmd_io(struct azx *chip)
{
        /* disable ringbuffer DMAs */
        azx_writeb(chip, RIRBCTL, 0);
        azx_writeb(chip, CORBCTL, 0);
}

/* send a command */
static int azx_corb_send_cmd(struct hda_codec *codec, u32 val)
{
        struct azx *chip = codec->bus->private_data;
        unsigned int wp;

        /* add command to corb */
        wp = azx_readb(chip, CORBWP);
        wp++;
        wp %= ICH6_MAX_CORB_ENTRIES;

        spin_lock_irq(&chip->reg_lock);
        chip->rirb.cmds++;
        chip->corb.buf[wp] = cpu_to_le32(val);
        azx_writel(chip, CORBWP, wp);
        spin_unlock_irq(&chip->reg_lock);

        return 0;
}

#define ICH6_RIRB_EX_UNSOL_EV   (1<<4)

/* retrieve RIRB entry - called from interrupt handler */
static void azx_update_rirb(struct azx *chip)
{
        unsigned int rp, wp;
        u32 res, res_ex;

        wp = azx_readb(chip, RIRBWP);
        if (wp == chip->rirb.wp)
                return;
        chip->rirb.wp = wp;
                
        while (chip->rirb.rp != wp) {
                chip->rirb.rp++;
                chip->rirb.rp %= ICH6_MAX_RIRB_ENTRIES;

                rp = chip->rirb.rp << 1; /* an RIRB entry is 8-bytes */
                res_ex = le32_to_cpu(chip->rirb.buf[rp + 1]);
                res = le32_to_cpu(chip->rirb.buf[rp]);
                if (res_ex & ICH6_RIRB_EX_UNSOL_EV)
                        snd_hda_queue_unsol_event(chip->bus, res, res_ex);
                else if (chip->rirb.cmds) {
                        chip->rirb.res = res;
                        smp_wmb();
                        chip->rirb.cmds--;
                }
        }
}

/* receive a response */
static unsigned int azx_rirb_get_response(struct hda_codec *codec)
{
        struct azx *chip = codec->bus->private_data;
        unsigned long timeout;

 again:
        timeout = jiffies + msecs_to_jiffies(1000);
        for (;;) {
                if (chip->polling_mode) {
                        spin_lock_irq(&chip->reg_lock);
                        azx_update_rirb(chip);
                        spin_unlock_irq(&chip->reg_lock);
                }
                if (!chip->rirb.cmds) {
                        smp_rmb();
                        return chip->rirb.res; /* the last value */
                }
                if (time_after(jiffies, timeout))
                        break;
                if (codec->bus->needs_damn_long_delay)
                        msleep(2); /* temporary workaround */
                else {
                        udelay(10);
                        cond_resched();
                }
        }

        if (chip->msi) {
                snd_printk(KERN_WARNING "hda_intel: No response from codec, "
                           "disabling MSI: last cmd=0x%08x\n", chip->last_cmd);
                free_irq(chip->irq, chip);
                chip->irq = -1;
                pci_disable_msi(chip->pci);
                chip->msi = 0;
                if (azx_acquire_irq(chip, 1) < 0)
                        return -1;
                goto again;
        }

        if (!chip->polling_mode) {
                snd_printk(KERN_WARNING "hda_intel: azx_get_response timeout, "
                           "switching to polling mode: last cmd=0x%08x\n",
                           chip->last_cmd);
                chip->polling_mode = 1;
                goto again;
        }

        snd_printk(KERN_ERR "hda_intel: azx_get_response timeout, "
                   "switching to single_cmd mode: last cmd=0x%08x\n",
                   chip->last_cmd);
        chip->rirb.rp = azx_readb(chip, RIRBWP);
        chip->rirb.cmds = 0;
        /* switch to single_cmd mode */
        chip->single_cmd = 1;
        azx_free_cmd_io(chip);
        return -1;
}

/*
 * Use the single immediate command instead of CORB/RIRB for simplicity
 *
 * Note: according to Intel, this is not preferred use.  The command was
 *       intended for the BIOS only, and may get confused with unsolicited
 *       responses.  So, we shouldn't use it for normal operation from the
 *       driver.
 *       I left the codes, however, for debugging/testing purposes.
 */

/* send a command */
static int azx_single_send_cmd(struct hda_codec *codec, u32 val)
{
        struct azx *chip = codec->bus->private_data;
        int timeout = 50;

        while (timeout--) {
                /* check ICB busy bit */
                if (!((azx_readw(chip, IRS) & ICH6_IRS_BUSY))) {
                        /* Clear IRV valid bit */
                        azx_writew(chip, IRS, azx_readw(chip, IRS) |
                                   ICH6_IRS_VALID);
                        azx_writel(chip, IC, val);
                        azx_writew(chip, IRS, azx_readw(chip, IRS) |
                                   ICH6_IRS_BUSY);
                        return 0;
                }
                udelay(1);
        }
        if (printk_ratelimit())
                snd_printd(SFX "send_cmd timeout: IRS=0x%x, val=0x%x\n",
                           azx_readw(chip, IRS), val);
        return -EIO;
}

/* receive a response */
static unsigned int azx_single_get_response(struct hda_codec *codec)
{
        struct azx *chip = codec->bus->private_data;
        int timeout = 50;

        while (timeout--) {
                /* check IRV busy bit */
                if (azx_readw(chip, IRS) & ICH6_IRS_VALID)
                        return azx_readl(chip, IR);
                udelay(1);
        }
        if (printk_ratelimit())
                snd_printd(SFX "get_response timeout: IRS=0x%x\n",
                           azx_readw(chip, IRS));
        return (unsigned int)-1;
}

/*
 * The below are the main callbacks from hda_codec.
 *
 * They are just the skeleton to call sub-callbacks according to the
 * current setting of chip->single_cmd.
 */

/* send a command */
static int azx_send_cmd(struct hda_codec *codec, hda_nid_t nid,
                        int direct, unsigned int verb,
                        unsigned int para)
{
        struct azx *chip = codec->bus->private_data;
        u32 val;

        val = (u32)(codec->addr & 0x0f) << 28;
        val |= (u32)direct << 27;
        val |= (u32)nid << 20;
        val |= verb << 8;
        val |= para;
        chip->last_cmd = val;

        if (chip->single_cmd)
                return azx_single_send_cmd(codec, val);
        else
                return azx_corb_send_cmd(codec, val);
}

/* get a response */
static unsigned int azx_get_response(struct hda_codec *codec)
{
        struct azx *chip = codec->bus->private_data;
        if (chip->single_cmd)
                return azx_single_get_response(codec);
        else
                return azx_rirb_get_response(codec);
}

#ifdef CONFIG_SND_HDA_POWER_SAVE
static void azx_power_notify(struct hda_codec *codec);
#endif

/* reset codec link */
static int azx_reset(struct azx *chip)
{
        int count;

        /* clear STATESTS */
        azx_writeb(chip, STATESTS, STATESTS_INT_MASK);

        /* reset controller */
        azx_writel(chip, GCTL, azx_readl(chip, GCTL) & ~ICH6_GCTL_RESET);

        count = 50;
        while (azx_readb(chip, GCTL) && --count)
                msleep(1);

        /* delay for >= 100us for codec PLL to settle per spec
         * Rev 0.9 section 5.5.1
         */
        msleep(1);

        /* Bring controller out of reset */
        azx_writeb(chip, GCTL, azx_readb(chip, GCTL) | ICH6_GCTL_RESET);

        count = 50;
        while (!azx_readb(chip, GCTL) && --count)
                msleep(1);

        /* Brent Chartrand said to wait >= 540us for codecs to initialize */
        msleep(1);

        /* check to see if controller is ready */
        if (!azx_readb(chip, GCTL)) {
                snd_printd("azx_reset: controller not ready!\n");
                return -EBUSY;
        }

        /* Accept unsolicited responses */
        azx_writel(chip, GCTL, azx_readl(chip, GCTL) | ICH6_GCTL_UREN);

        /* detect codecs */
        if (!chip->codec_mask) {
                chip->codec_mask = azx_readw(chip, STATESTS);
                snd_printdd("codec_mask = 0x%x\n", chip->codec_mask);
        }

        return 0;
}


/*
 * Lowlevel interface
 */  

/* enable interrupts */
static void azx_int_enable(struct azx *chip)
{
        /* enable controller CIE and GIE */
        azx_writel(chip, INTCTL, azx_readl(chip, INTCTL) |
                   ICH6_INT_CTRL_EN | ICH6_INT_GLOBAL_EN);
}

/* disable interrupts */
static void azx_int_disable(struct azx *chip)
{
        int i;

        /* disable interrupts in stream descriptor */
        for (i = 0; i < chip->num_streams; i++) {
                struct azx_dev *azx_dev = &chip->azx_dev[i];
                azx_sd_writeb(azx_dev, SD_CTL,
                              azx_sd_readb(azx_dev, SD_CTL) & ~SD_INT_MASK);
        }

        /* disable SIE for all streams */
        azx_writeb(chip, INTCTL, 0);

        /* disable controller CIE and GIE */
        azx_writel(chip, INTCTL, azx_readl(chip, INTCTL) &
                   ~(ICH6_INT_CTRL_EN | ICH6_INT_GLOBAL_EN));
}

/* clear interrupts */
static void azx_int_clear(struct azx *chip)
{
        int i;

        /* clear stream status */
        for (i = 0; i < chip->num_streams; i++) {
                struct azx_dev *azx_dev = &chip->azx_dev[i];
                azx_sd_writeb(azx_dev, SD_STS, SD_INT_MASK);
        }

        /* clear STATESTS */
        azx_writeb(chip, STATESTS, STATESTS_INT_MASK);

        /* clear rirb status */
        azx_writeb(chip, RIRBSTS, RIRB_INT_MASK);

        /* clear int status */
        azx_writel(chip, INTSTS, ICH6_INT_CTRL_EN | ICH6_INT_ALL_STREAM);
}

/* start a stream */
static void azx_stream_start(struct azx *chip, struct azx_dev *azx_dev)
{
        /*
         * Before stream start, initialize parameter
         */
        azx_dev->insufficient = 1;

        /* enable SIE */
        azx_writeb(chip, INTCTL,
                   azx_readb(chip, INTCTL) | (1 << azx_dev->index));
        /* set DMA start and interrupt mask */
        azx_sd_writeb(azx_dev, SD_CTL, azx_sd_readb(azx_dev, SD_CTL) |
                      SD_CTL_DMA_START | SD_INT_MASK);
}

/* stop a stream */
static void azx_stream_stop(struct azx *chip, struct azx_dev *azx_dev)
{
        /* stop DMA */
        azx_sd_writeb(azx_dev, SD_CTL, azx_sd_readb(azx_dev, SD_CTL) &
                      ~(SD_CTL_DMA_START | SD_INT_MASK));
        azx_sd_writeb(azx_dev, SD_STS, SD_INT_MASK); /* to be sure */
        /* disable SIE */
        azx_writeb(chip, INTCTL,
                   azx_readb(chip, INTCTL) & ~(1 << azx_dev->index));
}


/*
 * reset and start the controller registers
 */
static void azx_init_chip(struct azx *chip)
{
        if (chip->initialized)
                return;

        /* reset controller */
        azx_reset(chip);

        /* initialize interrupts */
        azx_int_clear(chip);
        azx_int_enable(chip);

        /* initialize the codec command I/O */
        if (!chip->single_cmd)
                azx_init_cmd_io(chip);

        /* program the position buffer */
        azx_writel(chip, DPLBASE, (u32)chip->posbuf.addr);
        azx_writel(chip, DPUBASE, upper_32_bits(chip->posbuf.addr));

        chip->initialized = 1;
}

/*
 * initialize the PCI registers
 */
/* update bits in a PCI register byte */
static void update_pci_byte(struct pci_dev *pci, unsigned int reg,
                            unsigned char mask, unsigned char val)
{
        unsigned char data;

        pci_read_config_byte(pci, reg, &data);
        data &= ~mask;
        data |= (val & mask);
        pci_write_config_byte(pci, reg, data);
}

static void azx_init_pci(struct azx *chip)
{
        unsigned short snoop;

        /* Clear bits 0-2 of PCI register TCSEL (at offset 0x44)
         * TCSEL == Traffic Class Select Register, which sets PCI express QOS
         * Ensuring these bits are 0 clears playback static on some HD Audio
         * codecs
         */
        update_pci_byte(chip->pci, ICH6_PCIREG_TCSEL, 0x07, 0);

        switch (chip->driver_type) {
        case AZX_DRIVER_ATI:
                /* For ATI SB450 azalia HD audio, we need to enable snoop */
                update_pci_byte(chip->pci,
                                ATI_SB450_HDAUDIO_MISC_CNTR2_ADDR, 
                                0x07, ATI_SB450_HDAUDIO_ENABLE_SNOOP);
                break;
        case AZX_DRIVER_NVIDIA:
                /* For NVIDIA HDA, enable snoop */
                update_pci_byte(chip->pci,
                                NVIDIA_HDA_TRANSREG_ADDR,
                                0x0f, NVIDIA_HDA_ENABLE_COHBITS);
                update_pci_byte(chip->pci,
                                NVIDIA_HDA_ISTRM_COH,
                                0x01, NVIDIA_HDA_ENABLE_COHBIT);
                update_pci_byte(chip->pci,
                                NVIDIA_HDA_OSTRM_COH,
                                0x01, NVIDIA_HDA_ENABLE_COHBIT);
                break;
        case AZX_DRIVER_SCH:
                pci_read_config_word(chip->pci, INTEL_SCH_HDA_DEVC, &snoop);
                if (snoop & INTEL_SCH_HDA_DEVC_NOSNOOP) {
                        pci_write_config_word(chip->pci, INTEL_SCH_HDA_DEVC, \
                                snoop & (~INTEL_SCH_HDA_DEVC_NOSNOOP));
                        pci_read_config_word(chip->pci,
                                INTEL_SCH_HDA_DEVC, &snoop);
                        snd_printdd("HDA snoop disabled, enabling ... %s\n",\
                                (snoop & INTEL_SCH_HDA_DEVC_NOSNOOP) \
                                ? "Failed" : "OK");
                }
                break;

        }
}


static int azx_position_ok(struct azx *chip, struct azx_dev *azx_dev);

/*
 * interrupt handler
 */
static irqreturn_t azx_interrupt(int irq, void *dev_id)
{
        struct azx *chip = dev_id;
        struct azx_dev *azx_dev;
        u32 status;
        int i;

        spin_lock(&chip->reg_lock);

        status = azx_readl(chip, INTSTS);
        if (status == 0) {
                spin_unlock(&chip->reg_lock);
                return IRQ_NONE;
        }
        
        for (i = 0; i < chip->num_streams; i++) {
                azx_dev = &chip->azx_dev[i];
                if (status & azx_dev->sd_int_sta_mask) {
                        azx_sd_writeb(azx_dev, SD_STS, SD_INT_MASK);
                        if (!azx_dev->substream || !azx_dev->running)
                                continue;
                        /* ignore the first dummy IRQ (due to pos_adj) */
                        if (azx_dev->irq_ignore) {
                                azx_dev->irq_ignore = 0;
                                continue;
                        }
                        /* check whether this IRQ is really acceptable */
                        if (azx_position_ok(chip, azx_dev)) {
                                azx_dev->irq_pending = 0;
                                spin_unlock(&chip->reg_lock);
                                snd_pcm_period_elapsed(azx_dev->substream);
                                spin_lock(&chip->reg_lock);
                        } else {
                                /* bogus IRQ, process it later */
                                azx_dev->irq_pending = 1;
                                schedule_work(&chip->irq_pending_work);
                        }
                }
        }

        /* clear rirb int */
        status = azx_readb(chip, RIRBSTS);
        if (status & RIRB_INT_MASK) {
                if (!chip->single_cmd && (status & RIRB_INT_RESPONSE))
                        azx_update_rirb(chip);
                azx_writeb(chip, RIRBSTS, RIRB_INT_MASK);
        }

#if 0
        /* clear state status int */
        if (azx_readb(chip, STATESTS) & 0x04)
                azx_writeb(chip, STATESTS, 0x04);
#endif
        spin_unlock(&chip->reg_lock);
        
        return IRQ_HANDLED;
}


/*
 * set up a BDL entry
 */
static int setup_bdle(struct snd_pcm_substream *substream,
                      struct azx_dev *azx_dev, u32 **bdlp,
                      int ofs, int size, int with_ioc)
{
        u32 *bdl = *bdlp;

        while (size > 0) {
                dma_addr_t addr;
                int chunk;

                if (azx_dev->frags >= AZX_MAX_BDL_ENTRIES)
                        return -EINVAL;

                addr = snd_pcm_sgbuf_get_addr(substream, ofs);
                /* program the address field of the BDL entry */
                bdl[0] = cpu_to_le32((u32)addr);
                bdl[1] = cpu_to_le32(upper_32_bits(addr));
                /* program the size field of the BDL entry */
                chunk = snd_pcm_sgbuf_get_chunk_size(substream, ofs, size);
                bdl[2] = cpu_to_le32(chunk);
                /* program the IOC to enable interrupt
                 * only when the whole fragment is processed
                 */
                size -= chunk;
                bdl[3] = (size || !with_ioc) ? 0 : cpu_to_le32(0x01);
                bdl += 4;
                azx_dev->frags++;
                ofs += chunk;
        }
        *bdlp = bdl;
        return ofs;
}

/*
 * set up BDL entries
 */
static int azx_setup_periods(struct azx *chip,
                             struct snd_pcm_substream *substream,
                             struct azx_dev *azx_dev)
{
        u32 *bdl;
        int i, ofs, periods, period_bytes;
        int pos_adj;

        /* reset BDL address */
        azx_sd_writel(azx_dev, SD_BDLPL, 0);
        azx_sd_writel(azx_dev, SD_BDLPU, 0);

        period_bytes = snd_pcm_lib_period_bytes(substream);
        azx_dev->period_bytes = period_bytes;
        periods = azx_dev->bufsize / period_bytes;

        /* program the initial BDL entries */
        bdl = (u32 *)azx_dev->bdl.area;
        ofs = 0;
        azx_dev->frags = 0;
        azx_dev->irq_ignore = 0;
        pos_adj = bdl_pos_adj[chip->dev_index];
        if (pos_adj > 0) {
                struct snd_pcm_runtime *runtime = substream->runtime;
                int pos_align = pos_adj;
                pos_adj = (pos_adj * runtime->rate + 47999) / 48000;
                if (!pos_adj)
                        pos_adj = pos_align;
                else
                        pos_adj = ((pos_adj + pos_align - 1) / pos_align) *
                                pos_align;
                pos_adj = frames_to_bytes(runtime, pos_adj);
                if (pos_adj >= period_bytes) {
                        snd_printk(KERN_WARNING "Too big adjustment %d\n",
                                   bdl_pos_adj[chip->dev_index]);
                        pos_adj = 0;
                } else {
                        ofs = setup_bdle(substream, azx_dev,
                                         &bdl, ofs, pos_adj, 1);
                        if (ofs < 0)
                                goto error;
                        azx_dev->irq_ignore = 1;
                }
        } else
                pos_adj = 0;
        for (i = 0; i < periods; i++) {
                if (i == periods - 1 && pos_adj)
                        ofs = setup_bdle(substream, azx_dev, &bdl, ofs,
                                         period_bytes - pos_adj, 0);
                else
                        ofs = setup_bdle(substream, azx_dev, &bdl, ofs,
                                         period_bytes, 1);
                if (ofs < 0)
                        goto error;
        }
        return 0;

 error:
        snd_printk(KERN_ERR "Too many BDL entries: buffer=%d, period=%d\n",
                   azx_dev->bufsize, period_bytes);
        /* reset */
        azx_sd_writel(azx_dev, SD_BDLPL, 0);
        azx_sd_writel(azx_dev, SD_BDLPU, 0);
        return -EINVAL;
}

/*
 * set up the SD for streaming
 */
static int azx_setup_controller(struct azx *chip, struct azx_dev *azx_dev)
{
        unsigned char val;
        int timeout;

        /* make sure the run bit is zero for SD */
        azx_sd_writeb(azx_dev, SD_CTL, azx_sd_readb(azx_dev, SD_CTL) &
                      ~SD_CTL_DMA_START);
        /* reset stream */
        azx_sd_writeb(azx_dev, SD_CTL, azx_sd_readb(azx_dev, SD_CTL) |
                      SD_CTL_STREAM_RESET);
        udelay(3);
        timeout = 300;
        while (!((val = azx_sd_readb(azx_dev, SD_CTL)) & SD_CTL_STREAM_RESET) &&
               --timeout)
                ;
        val &= ~SD_CTL_STREAM_RESET;
        azx_sd_writeb(azx_dev, SD_CTL, val);
        udelay(3);

        timeout = 300;
        /* waiting for hardware to report that the stream is out of reset */
        while (((val = azx_sd_readb(azx_dev, SD_CTL)) & SD_CTL_STREAM_RESET) &&
               --timeout)
                ;

        /* program the stream_tag */
        azx_sd_writel(azx_dev, SD_CTL,
                      (azx_sd_readl(azx_dev, SD_CTL) & ~SD_CTL_STREAM_TAG_MASK)|
                      (azx_dev->stream_tag << SD_CTL_STREAM_TAG_SHIFT));

        /* program the length of samples in cyclic buffer */
        azx_sd_writel(azx_dev, SD_CBL, azx_dev->bufsize);

        /* program the stream format */
        /* this value needs to be the same as the one programmed */
        azx_sd_writew(azx_dev, SD_FORMAT, azx_dev->format_val);

        /* program the stream LVI (last valid index) of the BDL */
        azx_sd_writew(azx_dev, SD_LVI, azx_dev->frags - 1);

        /* program the BDL address */
        /* lower BDL address */
        azx_sd_writel(azx_dev, SD_BDLPL, (u32)azx_dev->bdl.addr);
        /* upper BDL address */
        azx_sd_writel(azx_dev, SD_BDLPU, upper_32_bits(azx_dev->bdl.addr));

        /* enable the position buffer */
        if (chip->position_fix == POS_FIX_POSBUF ||
            chip->position_fix == POS_FIX_AUTO ||
            chip->via_dmapos_patch) {
                if (!(azx_readl(chip, DPLBASE) & ICH6_DPLBASE_ENABLE))
                        azx_writel(chip, DPLBASE,
                                (u32)chip->posbuf.addr | ICH6_DPLBASE_ENABLE);
        }

        /* set the interrupt enable bits in the descriptor control register */
        azx_sd_writel(azx_dev, SD_CTL,
                      azx_sd_readl(azx_dev, SD_CTL) | SD_INT_MASK);

        return 0;
}


/*
 * Codec initialization
 */

/* number of codec slots for each chipset: 0 = default slots (i.e. 4) */
static unsigned int azx_max_codecs[AZX_NUM_DRIVERS] __devinitdata = {
        [AZX_DRIVER_TERA] = 1,
};

/* number of slots to probe as default
 * this can be different from azx_max_codecs[] -- e.g. some boards
 * report wrongly the non-existing 4th slot availability
 */
static unsigned int azx_default_codecs[AZX_NUM_DRIVERS] __devinitdata = {
        [AZX_DRIVER_ICH] = 3,
        [AZX_DRIVER_ATI] = 3,
};

static int __devinit azx_codec_create(struct azx *chip, const char *model,
                                      unsigned int codec_probe_mask)
{
        struct hda_bus_template bus_temp;
        int c, codecs, audio_codecs, err;
        int def_slots, max_slots;

        memset(&bus_temp, 0, sizeof(bus_temp));
        bus_temp.private_data = chip;
        bus_temp.modelname = model;
        bus_temp.pci = chip->pci;
        bus_temp.ops.command = azx_send_cmd;
        bus_temp.ops.get_response = azx_get_response;
#ifdef CONFIG_SND_HDA_POWER_SAVE
        bus_temp.ops.pm_notify = azx_power_notify;
#endif

        err = snd_hda_bus_new(chip->card, &bus_temp, &chip->bus);
        if (err < 0)
                return err;

        if (chip->driver_type == AZX_DRIVER_NVIDIA)
                chip->bus->needs_damn_long_delay = 1;

        codecs = audio_codecs = 0;
        max_slots = azx_max_codecs[chip->driver_type];
        if (!max_slots)
                max_slots = AZX_MAX_CODECS;
        def_slots = azx_default_codecs[chip->driver_type];
        if (!def_slots)
                def_slots = max_slots;
        for (c = 0; c < def_slots; c++) {
                if ((chip->codec_mask & (1 << c)) & codec_probe_mask) {
                        struct hda_codec *codec;
                        err = snd_hda_codec_new(chip->bus, c, &codec);
                        if (err < 0)
                                continue;
                        codecs++;
                        if (codec->afg)
                                audio_codecs++;
                }
        }
        if (!audio_codecs) {
                /* probe additional slots if no codec is found */
                for (; c < max_slots; c++) {
                        if ((chip->codec_mask & (1 << c)) & codec_probe_mask) {
                                err = snd_hda_codec_new(chip->bus, c, NULL);
                                if (err < 0)
                                        continue;
                                codecs++;
                        }
                }
        }
        if (!codecs) {
                snd_printk(KERN_ERR SFX "no codecs initialized\n");
                return -ENXIO;
        }

        return 0;
}


/*
 * PCM support
 */

/* assign a stream for the PCM */
static inline struct azx_dev *azx_assign_device(struct azx *chip, int stream)
{
        int dev, i, nums;
        if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
                dev = chip->playback_index_offset;
                nums = chip->playback_streams;
        } else {
                dev = chip->capture_index_offset;
                nums = chip->capture_streams;
        }
        for (i = 0; i < nums; i++, dev++)
                if (!chip->azx_dev[dev].opened) {
                        chip->azx_dev[dev].opened = 1;
                        return &chip->azx_dev[dev];
                }
        return NULL;
}

/* release the assigned stream */
static inline void azx_release_device(struct azx_dev *azx_dev)
{
        azx_dev->opened = 0;
}

static struct snd_pcm_hardware azx_pcm_hw = {
        .info =                 (SNDRV_PCM_INFO_MMAP |
                                 SNDRV_PCM_INFO_INTERLEAVED |
                                 SNDRV_PCM_INFO_BLOCK_TRANSFER |
                                 SNDRV_PCM_INFO_MMAP_VALID |
                                 /* No full-resume yet implemented */
                                 /* SNDRV_PCM_INFO_RESUME |*/
                                 SNDRV_PCM_INFO_PAUSE |
                                 SNDRV_PCM_INFO_SYNC_START),
        .formats =              SNDRV_PCM_FMTBIT_S16_LE,
        .rates =                SNDRV_PCM_RATE_48000,
        .rate_min =             48000,
        .rate_max =             48000,
        .channels_min =         2,
        .channels_max =         2,
        .buffer_bytes_max =     AZX_MAX_BUF_SIZE,
        .period_bytes_min =     128,
        .period_bytes_max =     AZX_MAX_BUF_SIZE / 2,
        .periods_min =          2,
        .periods_max =          AZX_MAX_FRAG,
        .fifo_size =            0,
};

struct azx_pcm {
        struct azx *chip;
        struct hda_codec *codec;
        struct hda_pcm_stream *hinfo[2];
};

static int azx_pcm_open(struct snd_pcm_substream *substream)
{
        struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
        struct hda_pcm_stream *hinfo = apcm->hinfo[substream->stream];
        struct azx *chip = apcm->chip;
        struct azx_dev *azx_dev;
        struct snd_pcm_runtime *runtime = substream->runtime;
        unsigned long flags;
        int err;

        mutex_lock(&chip->open_mutex);
        azx_dev = azx_assign_device(chip, substream->stream);
        if (azx_dev == NULL) {
                mutex_unlock(&chip->open_mutex);
                return -EBUSY;
        }
        runtime->hw = azx_pcm_hw;
        runtime->hw.channels_min = hinfo->channels_min;
        runtime->hw.channels_max = hinfo->channels_max;
        runtime->hw.formats = hinfo->formats;
        runtime->hw.rates = hinfo->rates;
        snd_pcm_limit_hw_rates(runtime);
        snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS);
        snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_BYTES,
                                   128);
        snd_pcm_hw_constraint_step(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES,
                                   128);
        snd_hda_power_up(apcm->codec);
        err = hinfo->ops.open(hinfo, apcm->codec, substream);
        if (err < 0) {
                azx_release_device(azx_dev);
                snd_hda_power_down(apcm->codec);
                mutex_unlock(&chip->open_mutex);
                return err;
        }
        spin_lock_irqsave(&chip->reg_lock, flags);
        azx_dev->substream = substream;
        azx_dev->running = 0;
        spin_unlock_irqrestore(&chip->reg_lock, flags);

        runtime->private_data = azx_dev;
        snd_pcm_set_sync(substream);
        mutex_unlock(&chip->open_mutex);
        return 0;
}

static int azx_pcm_close(struct snd_pcm_substream *substream)
{
        struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
        struct hda_pcm_stream *hinfo = apcm->hinfo[substream->stream];
        struct azx *chip = apcm->chip;
        struct azx_dev *azx_dev = get_azx_dev(substream);
        unsigned long flags;

        mutex_lock(&chip->open_mutex);
        spin_lock_irqsave(&chip->reg_lock, flags);
        azx_dev->substream = NULL;
        azx_dev->running = 0;
        spin_unlock_irqrestore(&chip->reg_lock, flags);
        azx_release_device(azx_dev);
        hinfo->ops.close(hinfo, apcm->codec, substream);
        snd_hda_power_down(apcm->codec);
        mutex_unlock(&chip->open_mutex);
        return 0;
}

static int azx_pcm_hw_params(struct snd_pcm_substream *substream,
                             struct snd_pcm_hw_params *hw_params)
{
        return snd_pcm_lib_malloc_pages(substream,
                                        params_buffer_bytes(hw_params));
}

static int azx_pcm_hw_free(struct snd_pcm_substream *substream)
{
        struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
        struct azx_dev *azx_dev = get_azx_dev(substream);
        struct hda_pcm_stream *hinfo = apcm->hinfo[substream->stream];

        /* reset BDL address */
        azx_sd_writel(azx_dev, SD_BDLPL, 0);
        azx_sd_writel(azx_dev, SD_BDLPU, 0);
        azx_sd_writel(azx_dev, SD_CTL, 0);

        hinfo->ops.cleanup(hinfo, apcm->codec, substream);

        return snd_pcm_lib_free_pages(substream);
}

static int azx_pcm_prepare(struct snd_pcm_substream *substream)
{
        struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
        struct azx *chip = apcm->chip;
        struct azx_dev *azx_dev = get_azx_dev(substream);
        struct hda_pcm_stream *hinfo = apcm->hinfo[substream->stream];
        struct snd_pcm_runtime *runtime = substream->runtime;

        azx_dev->bufsize = snd_pcm_lib_buffer_bytes(substream);
        azx_dev->format_val = snd_hda_calc_stream_format(runtime->rate,
                                                         runtime->channels,
                                                         runtime->format,
                                                         hinfo->maxbps);
        if (!azx_dev->format_val) {
                snd_printk(KERN_ERR SFX
                           "invalid format_val, rate=%d, ch=%d, format=%d\n",
                           runtime->rate, runtime->channels, runtime->format);
                return -EINVAL;
        }

        snd_printdd("azx_pcm_prepare: bufsize=0x%x, format=0x%x\n",
                    azx_dev->bufsize, azx_dev->format_val);
        if (azx_setup_periods(chip, substream, azx_dev) < 0)
                return -EINVAL;
        azx_setup_controller(chip, azx_dev);
        if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
                azx_dev->fifo_size = azx_sd_readw(azx_dev, SD_FIFOSIZE) + 1;
        else
                azx_dev->fifo_size = 0;

        return hinfo->ops.prepare(hinfo, apcm->codec, azx_dev->stream_tag,
                                  azx_dev->format_val, substream);
}

static int azx_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
        struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
        struct azx *chip = apcm->chip;
        struct azx_dev *azx_dev;
        struct snd_pcm_substream *s;
        int start, nsync = 0, sbits = 0;
        int nwait, timeout;

        switch (cmd) {
        case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
        case SNDRV_PCM_TRIGGER_RESUME:
        case SNDRV_PCM_TRIGGER_START:
                start = 1;
                break;
        case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
        case SNDRV_PCM_TRIGGER_SUSPEND:
        case SNDRV_PCM_TRIGGER_STOP:
                start = 0;
                break;
        default:
                return -EINVAL;
        }

        snd_pcm_group_for_each_entry(s, substream) {
                if (s->pcm->card != substream->pcm->card)
                        continue;
                azx_dev = get_azx_dev(s);
                sbits |= 1 << azx_dev->index;
                nsync++;
                snd_pcm_trigger_done(s, substream);
        }

        spin_lock(&chip->reg_lock);
        if (nsync > 1) {
                /* first, set SYNC bits of corresponding streams */
                azx_writel(chip, SYNC, azx_readl(chip, SYNC) | sbits);
        }
        snd_pcm_group_for_each_entry(s, substream) {
                if (s->pcm->card != substream->pcm->card)
                        continue;
                azx_dev = get_azx_dev(s);
                if (start)
                        azx_stream_start(chip, azx_dev);
                else
                        azx_stream_stop(chip, azx_dev);
                azx_dev->running = start;
        }
        spin_unlock(&chip->reg_lock);
        if (start) {
                if (nsync == 1)
                        return 0;
                /* wait until all FIFOs get ready */
                for (timeout = 5000; timeout; timeout--) {
                        nwait = 0;
                        snd_pcm_group_for_each_entry(s, substream) {
                                if (s->pcm->card != substream->pcm->card)
                                        continue;
                                azx_dev = get_azx_dev(s);
                                if (!(azx_sd_readb(azx_dev, SD_STS) &
                                      SD_STS_FIFO_READY))
                                        nwait++;
                        }
                        if (!nwait)
                                break;
                        cpu_relax();
                }
        } else {
                /* wait until all RUN bits are cleared */
                for (timeout = 5000; timeout; timeout--) {
                        nwait = 0;
                        snd_pcm_group_for_each_entry(s, substream) {
                                if (s->pcm->card != substream->pcm->card)
                                        continue;
                                azx_dev = get_azx_dev(s);
                                if (azx_sd_readb(azx_dev, SD_CTL) &
                                    SD_CTL_DMA_START)
                                        nwait++;
                        }
                        if (!nwait)
                                break;
                        cpu_relax();
                }
        }
        if (nsync > 1) {
                spin_lock(&chip->reg_lock);
                /* reset SYNC bits */
                azx_writel(chip, SYNC, azx_readl(chip, SYNC) & ~sbits);
                spin_unlock(&chip->reg_lock);
        }
        return 0;
}

/* get the current DMA position with correction on VIA chips */
static unsigned int azx_via_get_position(struct azx *chip,
                                         struct azx_dev *azx_dev)
{
        unsigned int link_pos, mini_pos, bound_pos;
        unsigned int mod_link_pos, mod_dma_pos, mod_mini_pos;
        unsigned int fifo_size;

        link_pos = azx_sd_readl(azx_dev, SD_LPIB);
        if (azx_dev->index >= 4) {
                /* Playback, no problem using link position */
                return link_pos;
        }

        /* Capture */
        /* For new chipset,
         * use mod to get the DMA position just like old chipset
         */
        mod_dma_pos = le32_to_cpu(*azx_dev->posbuf);
        mod_dma_pos %= azx_dev->period_bytes;

        /* azx_dev->fifo_size can't get FIFO size of in stream.
         * Get from base address + offset.
         */
        fifo_size = readw(chip->remap_addr + VIA_IN_STREAM0_FIFO_SIZE_OFFSET);

        if (azx_dev->insufficient) {
                /* Link position never gather than FIFO size */
                if (link_pos <= fifo_size)
                        return 0;

                azx_dev->insufficient = 0;
        }

        if (link_pos <= fifo_size)
                mini_pos = azx_dev->bufsize + link_pos - fifo_size;
        else
                mini_pos = link_pos - fifo_size;

        /* Find nearest previous boudary */
        mod_mini_pos = mini_pos % azx_dev->period_bytes;
        mod_link_pos = link_pos % azx_dev->period_bytes;
        if (mod_link_pos >= fifo_size)
                bound_pos = link_pos - mod_link_pos;
        else if (mod_dma_pos >= mod_mini_pos)
                bound_pos = mini_pos - mod_mini_pos;
        else {
                bound_pos = mini_pos - mod_mini_pos + azx_dev->period_bytes;
                if (bound_pos >= azx_dev->bufsize)
                        bound_pos = 0;
        }

        /* Calculate real DMA position we want */
        return bound_pos + mod_dma_pos;
}

static unsigned int azx_get_position(struct azx *chip,
                                     struct azx_dev *azx_dev)
{
        unsigned int pos;

        if (chip->via_dmapos_patch)
                pos = azx_via_get_position(chip, azx_dev);
        else if (chip->position_fix == POS_FIX_POSBUF ||
                 chip->position_fix == POS_FIX_AUTO) {
                /* use the position buffer */
                pos = le32_to_cpu(*azx_dev->posbuf);
        } else {
                /* read LPIB */
                pos = azx_sd_readl(azx_dev, SD_LPIB);
        }
        if (pos >= azx_dev->bufsize)
                pos = 0;
        return pos;
}

static snd_pcm_uframes_t azx_pcm_pointer(struct snd_pcm_substream *substream)
{
        struct azx_pcm *apcm = snd_pcm_substream_chip(substream);
        struct azx *chip = apcm->chip;
        struct azx_dev *azx_dev = get_azx_dev(substream);
        return bytes_to_frames(substream->runtime,
                               azx_get_position(chip, azx_dev));
}

/*
 * Check whether the current DMA position is acceptable for updating
 * periods.  Returns non-zero if it's OK.
 *
 * Many HD-audio controllers appear pretty inaccurate about
 * the update-IRQ timing.  The IRQ is issued before actually the
 * data is processed.  So, we need to process it afterwords in a
 * workqueue.
 */
static int azx_position_ok(struct azx *chip, struct azx_dev *azx_dev)
{
        unsigned int pos;

        pos = azx_get_position(chip, azx_dev);
        if (chip->position_fix == POS_FIX_AUTO) {
                if (!pos) {
                        printk(KERN_WARNING
                               "hda-intel: Invalid position buffer, "
                               "using LPIB read method instead.\n");
                        chip->position_fix = POS_FIX_LPIB;
                        pos = azx_get_position(chip, azx_dev);
                } else
                        chip->position_fix = POS_FIX_POSBUF;
        }

        if (!bdl_pos_adj[chip->dev_index])
                return 1; /* no delayed ack */
        if (pos % azx_dev->period_bytes > azx_dev->period_bytes / 2)
                return 0; /* NG - it's below the period boundary */
        return 1; /* OK, it's fine */
}

/*
 * The work for pending PCM period updates.
 */
static void azx_irq_pending_work(struct work_struct *work)
{
        struct azx *chip = container_of(work, struct azx, irq_pending_work);
        int i, pending;

        if (!chip->irq_pending_warned) {
                printk(KERN_WARNING
                       "hda-intel: IRQ timing workaround is activated "
                       "for card #%d. Suggest a bigger bdl_pos_adj.\n",
                       chip->card->number);
                chip->irq_pending_warned = 1;
        }

        for (;;) {
                pending = 0;
                spin_lock_irq(&chip->reg_lock);
                for (i = 0; i < chip->num_streams; i++) {
                        struct azx_dev *azx_dev = &chip->azx_dev[i];
                        if (!azx_dev->irq_pending ||
                            !azx_dev->substream ||
                            !azx_dev->running)
                                continue;
                        if (azx_position_ok(chip, azx_dev)) {
                                azx_dev->irq_pending = 0;
                                spin_unlock(&chip->reg_lock);
                                snd_pcm_period_elapsed(azx_dev->substream);
                                spin_lock(&chip->reg_lock);
                        } else
                                pending++;
                }
                spin_unlock_irq(&chip->reg_lock);
                if (!pending)
                        return;
                cond_resched();
        }
}

/* clear irq_pending flags and assure no on-going workq */
static void azx_clear_irq_pending(struct azx *chip)
{
        int i;

        spin_lock_irq(&chip->reg_lock);
        for (i = 0; i < chip->num_streams; i++)
                chip->azx_dev[i].irq_pending = 0;
        spin_unlock_irq(&chip->reg_lock);
        flush_scheduled_work();
}

static struct snd_pcm_ops azx_pcm_ops = {
        .open = azx_pcm_open,
        .close = azx_pcm_close,
        .ioctl = snd_pcm_lib_ioctl,
        .hw_params = azx_pcm_hw_params,
        .hw_free = azx_pcm_hw_free,
        .prepare = azx_pcm_prepare,
        .trigger = azx_pcm_trigger,
        .pointer = azx_pcm_pointer,
        .page = snd_pcm_sgbuf_ops_page,
};

static void azx_pcm_free(struct snd_pcm *pcm)
{
        kfree(pcm->private_data);
}

static int __devinit create_codec_pcm(struct azx *chip, struct hda_codec *codec,
                                      struct hda_pcm *cpcm)
{
        int err;
        struct snd_pcm *pcm;
        struct azx_pcm *apcm;

        /* if no substreams are defined for both playback and capture,
         * it's just a placeholder.  ignore it.
         */
        if (!cpcm->stream[0].substreams && !cpcm->stream[1].substreams)
                return 0;

        if (snd_BUG_ON(!cpcm->name))
                return -EINVAL;

        err = snd_pcm_new(chip->card, cpcm->name, cpcm->device,
                          cpcm->stream[0].substreams,
                          cpcm->stream[1].substreams,
                          &pcm);
        if (err < 0)
                return err;
        strcpy(pcm->name, cpcm->name);
        apcm = kmalloc(sizeof(*apcm), GFP_KERNEL);
        if (apcm == NULL)
                return -ENOMEM;
        apcm->chip = chip;
        apcm->codec = codec;
        apcm->hinfo[0] = &cpcm->stream[0];
        apcm->hinfo[1] = &cpcm->stream[1];
        pcm->private_data = apcm;
        pcm->private_free = azx_pcm_free;
        if (cpcm->stream[0].substreams)
                snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &azx_pcm_ops);
        if (cpcm->stream[1].substreams)
                snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &azx_pcm_ops);
        snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV_SG,
                                              snd_dma_pci_data(chip->pci),
                                              1024 * 64, 32 * 1024 * 1024);
        chip->pcm[cpcm->device] = pcm;
        return 0;
}

static int __devinit azx_pcm_create(struct azx *chip)
{
        static const char *dev_name[HDA_PCM_NTYPES] = {
                "Audio", "SPDIF", "HDMI", "Modem"
        };
        /* starting device index for each PCM type */
        static int dev_idx[HDA_PCM_NTYPES] = {
                [HDA_PCM_TYPE_AUDIO] = 0,
                [HDA_PCM_TYPE_SPDIF] = 1,
                [HDA_PCM_TYPE_HDMI] = 3,
                [HDA_PCM_TYPE_MODEM] = 6
        };
        /* normal audio device indices; not linear to keep compatibility */
        static int audio_idx[4] = { 0, 2, 4, 5 };
        struct hda_codec *codec;
        int c, err;
        int num_devs[HDA_PCM_NTYPES];

        err = snd_hda_build_pcms(chip->bus);
        if (err < 0)
                return err;

        /* create audio PCMs */
        memset(num_devs, 0, sizeof(num_devs));
        list_for_each_entry(codec, &chip->bus->codec_list, list) {
                for (c = 0; c < codec->num_pcms; c++) {
                        struct hda_pcm *cpcm = &codec->pcm_info[c];
                        int type = cpcm->pcm_type;
                        switch (type) {
                        case HDA_PCM_TYPE_AUDIO:
                                if (num_devs[type] >= ARRAY_SIZE(audio_idx)) {
                                        snd_printk(KERN_WARNING
                                                   "Too many audio devices\n");
                                        continue;
                                }
                                cpcm->device = audio_idx[num_devs[type]];
                                break;
                        case HDA_PCM_TYPE_SPDIF:
                        case HDA_PCM_TYPE_HDMI:
                        case HDA_PCM_TYPE_MODEM:
                                if (num_devs[type]) {
                                        snd_printk(KERN_WARNING
                                                   "%s already defined\n",
                                                   dev_name[type]);
                                        continue;
                                }
                                cpcm->device = dev_idx[type];
                                break;
                        default:
                                snd_printk(KERN_WARNING
                                           "Invalid PCM type %d\n", type);
                                continue;
                        }
                        num_devs[type]++;
                        err = create_codec_pcm(chip, codec, cpcm);
                        if (err < 0)
                                return err;
                }
        }
        return 0;
}

/*
 * mixer creation - all stuff is implemented in hda module
 */
static int __devinit azx_mixer_create(struct azx *chip)
{
        return snd_hda_build_controls(chip->bus);
}


/*
 * initialize SD streams
 */
static int __devinit azx_init_stream(struct azx *chip)
{
        int i;

        /* initialize each stream (aka device)
         * assign the starting bdl address to each stream (device)
         * and initialize
         */
        for (i = 0; i < chip->num_streams; i++) {
                struct azx_dev *azx_dev = &chip->azx_dev[i];
                azx_dev->posbuf = (u32 __iomem *)(chip->posbuf.area + i * 8);
                /* offset: SDI0=0x80, SDI1=0xa0, ... SDO3=0x160 */
                azx_dev->sd_addr = chip->remap_addr + (0x20 * i + 0x80);
                /* int mask: SDI0=0x01, SDI1=0x02, ... SDO3=0x80 */
                azx_dev->sd_int_sta_mask = 1 << i;
                /* stream tag: must be non-zero and unique */
                azx_dev->index = i;
                azx_dev->stream_tag = i + 1;
        }

        return 0;
}

static int azx_acquire_irq(struct azx *chip, int do_disconnect)
{
        if (request_irq(chip->pci->irq, azx_interrupt,
                        chip->msi ? 0 : IRQF_SHARED,
                        "HDA Intel", chip)) {
                printk(KERN_ERR "hda-intel: unable to grab IRQ %d, "
                       "disabling device\n", chip->pci->irq);
                if (do_disconnect)
                        snd_card_disconnect(chip->card);
                return -1;
        }
        chip->irq = chip->pci->irq;
        pci_intx(chip->pci, !chip->msi);
        return 0;
}


static void azx_stop_chip(struct azx *chip)
{
        if (!chip->initialized)
                return;

        /* disable interrupts */
        azx_int_disable(chip);
        azx_int_clear(chip);

        /* disable CORB/RIRB */
        azx_free_cmd_io(chip);

        /* disable position buffer */
        azx_writel(chip, DPLBASE, 0);
        azx_writel(chip, DPUBASE, 0);

        chip->initialized = 0;
}

#ifdef CONFIG_SND_HDA_POWER_SAVE
/* power-up/down the controller */
static void azx_power_notify(struct hda_codec *codec)
{
        struct azx *chip = codec->bus->private_data;
        struct hda_codec *c;
        int power_on = 0;

        list_for_each_entry(c, &codec->bus->codec_list, list) {
                if (c->power_on) {
                        power_on = 1;
                        break;
                }
        }
        if (power_on)
                azx_init_chip(chip);
        else if (chip->running && power_save_controller)
                azx_stop_chip(chip);
}
#endif /* CONFIG_SND_HDA_POWER_SAVE */

#ifdef CONFIG_PM
/*
 * power management
 */
static int azx_suspend(struct pci_dev *pci, pm_message_t state)
{
        struct snd_card *card = pci_get_drvdata(pci);
        struct azx *chip = card->private_data;
        int i;

        snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
        azx_clear_irq_pending(chip);
        for (i = 0; i < AZX_MAX_PCMS; i++)
                snd_pcm_suspend_all(chip->pcm[i]);
        if (chip->initialized)
                snd_hda_suspend(chip->bus, state);
        azx_stop_chip(chip);
        if (chip->irq >= 0) {
                free_irq(chip->irq, chip);
                chip->irq = -1;
        }
        if (chip->msi)
                pci_disable_msi(chip->pci);
        pci_disable_device(pci);
        pci_save_state(pci);
        pci_set_power_state(pci, pci_choose_state(pci, state));
        return 0;
}

static int azx_resume(struct pci_dev *pci)
{
        struct snd_card *card = pci_get_drvdata(pci);
        struct azx *chip = card->private_data;

        pci_set_power_state(pci, PCI_D0);
        pci_restore_state(pci);
        if (pci_enable_device(pci) < 0) {
                printk(KERN_ERR "hda-intel: pci_enable_device failed, "
                       "disabling device\n");
                snd_card_disconnect(card);
                return -EIO;
        }
        pci_set_master(pci);
        if (chip->msi)
                if (pci_enable_msi(pci) < 0)
                        chip->msi = 0;
        if (azx_acquire_irq(chip, 1) < 0)
                return -EIO;
        azx_init_pci(chip);

        if (snd_hda_codecs_inuse(chip->bus))
                azx_init_chip(chip);

        snd_hda_resume(chip->bus);
        snd_power_change_state(card, SNDRV_CTL_POWER_D0);
        return 0;
}
#endif /* CONFIG_PM */


/*
 * destructor
 */
static int azx_free(struct azx *chip)
{
        int i;

        if (chip->initialized) {
                azx_clear_irq_pending(chip);
                for (i = 0; i < chip->num_streams; i++)
                        azx_stream_stop(chip, &chip->azx_dev[i]);
                azx_stop_chip(chip);
        }

        if (chip->irq >= 0)
                free_irq(chip->irq, (void*)chip);
        if (chip->msi)
                pci_disable_msi(chip->pci);
        if (chip->remap_addr)
                iounmap(chip->remap_addr);

        if (chip->azx_dev) {
                for (i = 0; i < chip->num_streams; i++)
                        if (chip->azx_dev[i].bdl.area)
                                snd_dma_free_pages(&chip->azx_dev[i].bdl);
        }
        if (chip->rb.area)
                snd_dma_free_pages(&chip->rb);
        if (chip->posbuf.area)
                snd_dma_free_pages(&chip->posbuf);
        pci_release_regions(chip->pci);
        pci_disable_device(chip->pci);
        kfree(chip->azx_dev);
        kfree(chip);

        return 0;
}

static int azx_dev_free(struct snd_device *device)
{
        return azx_free(device->device_data);
}

/*
 * white/black-listing for position_fix
 */
static struct snd_pci_quirk position_fix_list[] __devinitdata = {
        SND_PCI_QUIRK(0x1028, 0x01cc, "Dell D820", POS_FIX_LPIB),
        SND_PCI_QUIRK(0x1028, 0x01de, "Dell Precision 390", POS_FIX_LPIB),
        SND_PCI_QUIRK(0x1043, 0x813d, "ASUS P5AD2", POS_FIX_LPIB),
        {}
};

static int __devinit check_position_fix(struct azx *chip, int fix)
{
        const struct snd_pci_quirk *q;

        /* Check VIA HD Audio Controller exist */
        if (chip->pci->vendor == PCI_VENDOR_ID_VIA &&
            chip->pci->device == VIA_HDAC_DEVICE_ID) {
                chip->via_dmapos_patch = 1;
                /* Use link position directly, avoid any transfer problem. */
                return POS_FIX_LPIB;
        }
        chip->via_dmapos_patch = 0;

        if (fix == POS_FIX_AUTO) {
                q = snd_pci_quirk_lookup(chip->pci, position_fix_list);
                if (q) {
                        printk(KERN_INFO
                                    "hda_intel: position_fix set to %d "
                                    "for device %04x:%04x\n",
                                    q->value, q->subvendor, q->subdevice);
                        return q->value;
                }
        }
        return fix;
}

/*
 * black-lists for probe_mask
 */
static struct snd_pci_quirk probe_mask_list[] __devinitdata = {
        /* Thinkpad often breaks the controller communication when accessing
         * to the non-working (or non-existing) modem codec slot.
         */
        SND_PCI_QUIRK(0x1014, 0x05b7, "Thinkpad Z60", 0x01),
        SND_PCI_QUIRK(0x17aa, 0x2010, "Thinkpad X/T/R60", 0x01),
        SND_PCI_QUIRK(0x17aa, 0x20ac, "Thinkpad X/T/R61", 0x01),
        {}
};

static void __devinit check_probe_mask(struct azx *chip, int dev)
{
        const struct snd_pci_quirk *q;

        if (probe_mask[dev] == -1) {
                q = snd_pci_quirk_lookup(chip->pci, probe_mask_list);
                if (q) {
                        printk(KERN_INFO
                               "hda_intel: probe_mask set to 0x%x "
                               "for device %04x:%04x\n",
                               q->value, q->subvendor, q->subdevice);
                        probe_mask[dev] = q->value;
                }
        }
}


/*
 * constructor
 */
static int __devinit azx_create(struct snd_card *card, struct pci_dev *pci,
                                int dev, int driver_type,
                                struct azx **rchip)
{
        struct azx *chip;
        int i, err;
        unsigned short gcap;
        static struct snd_device_ops ops = {
                .dev_free = azx_dev_free,
        };

        *rchip = NULL;

        err = pci_enable_device(pci);
        if (err < 0)
                return err;

        chip = kzalloc(sizeof(*chip), GFP_KERNEL);
        if (!chip) {
                snd_printk(KERN_ERR SFX "cannot allocate chip\n");
                pci_disable_device(pci);
                return -ENOMEM;
        }

        spin_lock_init(&chip->reg_lock);
        mutex_init(&chip->open_mutex);
        chip->card = card;
        chip->pci = pci;
        chip->irq = -1;
        chip->driver_type = driver_type;
        chip->msi = enable_msi;
        chip->dev_index = dev;
        INIT_WORK(&chip->irq_pending_work, azx_irq_pending_work);

        chip->position_fix = check_position_fix(chip, position_fix[dev]);
        check_probe_mask(chip, dev);

        chip->single_cmd = single_cmd;

        if (bdl_pos_adj[dev] < 0) {
                switch (chip->driver_type) {
                case AZX_DRIVER_ICH:
                        bdl_pos_adj[dev] = 1;
                        break;
                default:
                        bdl_pos_adj[dev] = 32;
                        break;
                }
        }

#if BITS_PER_LONG != 64
        /* Fix up base address on ULI M5461 */
        if (chip->driver_type == AZX_DRIVER_ULI) {
                u16 tmp3;
                pci_read_config_word(pci, 0x40, &tmp3);
                pci_write_config_word(pci, 0x40, tmp3 | 0x10);
                pci_write_config_dword(pci, PCI_BASE_ADDRESS_1, 0);
        }
#endif

        err = pci_request_regions(pci, "ICH HD audio");
        if (err < 0) {
                kfree(chip);
                pci_disable_device(pci);
                return err;
        }

        chip->addr = pci_resource_start(pci, 0);
        chip->remap_addr = ioremap_nocache(chip->addr, pci_resource_len(pci,0));
        if (chip->remap_addr == NULL) {
                snd_printk(KERN_ERR SFX "ioremap error\n");
                err = -ENXIO;
                goto errout;
        }

        if (chip->msi)
                if (pci_enable_msi(pci) < 0)
                        chip->msi = 0;

        if (azx_acquire_irq(chip, 0) < 0) {
                err = -EBUSY;
                goto errout;
        }

        pci_set_master(pci);
        synchronize_irq(chip->irq);

        gcap = azx_readw(chip, GCAP);
        snd_printdd("chipset global capabilities = 0x%x\n", gcap);

        /* allow 64bit DMA address if supported by H/W */
        if ((gcap & 0x01) && !pci_set_dma_mask(pci, DMA_64BIT_MASK))
                pci_set_consistent_dma_mask(pci, DMA_64BIT_MASK);

        /* read number of streams from GCAP register instead of using
         * hardcoded value
         */
        chip->capture_streams = (gcap >> 8) & 0x0f;
        chip->playback_streams = (gcap >> 12) & 0x0f;
        if (!chip->playback_streams && !chip->capture_streams) {
                /* gcap didn't give any info, switching to old method */

                switch (chip->driver_type) {
                case AZX_DRIVER_ULI:
                        chip->playback_streams = ULI_NUM_PLAYBACK;
                        chip->capture_streams = ULI_NUM_CAPTURE;
                        break;
                case AZX_DRIVER_ATIHDMI:
                        chip->playback_streams = ATIHDMI_NUM_PLAYBACK;
                        chip->capture_streams = ATIHDMI_NUM_CAPTURE;
                        break;
                default:
                        chip->playback_streams = ICH6_NUM_PLAYBACK;
                        chip->capture_streams = ICH6_NUM_CAPTURE;
                        break;
                }
        }
        chip->capture_index_offset = 0;
        chip->playback_index_offset = chip->capture_streams;
        chip->num_streams = chip->playback_streams + chip->capture_streams;
        chip->azx_dev = kcalloc(chip->num_streams, sizeof(*chip->azx_dev),
                                GFP_KERNEL);
        if (!chip->azx_dev) {
                snd_printk(KERN_ERR "cannot malloc azx_dev\n");
                goto errout;
        }

        for (i = 0; i < chip->num_streams; i++) {
                /* allocate memory for the BDL for each stream */
                err = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV,
                                          snd_dma_pci_data(chip->pci),
                                          BDL_SIZE, &chip->azx_dev[i].bdl);
                if (err < 0) {
                        snd_printk(KERN_ERR SFX "cannot allocate BDL\n");
                        goto errout;
                }
        }
        /* allocate memory for the position buffer */
        err = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV,
                                  snd_dma_pci_data(chip->pci),
                                  chip->num_streams * 8, &chip->posbuf);
        if (err < 0) {
                snd_printk(KERN_ERR SFX "cannot allocate posbuf\n");
                goto errout;
        }
        /* allocate CORB/RIRB */
        if (!chip->single_cmd) {
                err = azx_alloc_cmd_io(chip);
                if (err < 0)
                        goto errout;
        }

        /* initialize streams */
        azx_init_stream(chip);

        /* initialize chip */
        azx_init_pci(chip);
        azx_init_chip(chip);

        /* codec detection */
        if (!chip->codec_mask) {
                snd_printk(KERN_ERR SFX "no codecs found!\n");
                err = -ENODEV;
                goto errout;
        }

        err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops);
        if (err <0) {
                snd_printk(KERN_ERR SFX "Error creating device [card]!\n");
                goto errout;
        }

        strcpy(card->driver, "HDA-Intel");
        strcpy(card->shortname, driver_short_names[chip->driver_type]);
        sprintf(card->longname, "%s at 0x%lx irq %i",
                card->shortname, chip->addr, chip->irq);

        *rchip = chip;
        return 0;

 errout:
        azx_free(chip);
        return err;
}

static void power_down_all_codecs(struct azx *chip)
{
#ifdef CONFIG_SND_HDA_POWER_SAVE
        /* The codecs were powered up in snd_hda_codec_new().
         * Now all initialization done, so turn them down if possible
         */
        struct hda_codec *codec;
        list_for_each_entry(codec, &chip->bus->codec_list, list) {
                snd_hda_power_down(codec);
        }
#endif
}

static int __devinit azx_probe(struct pci_dev *pci,
                               const struct pci_device_id *pci_id)
{
        static int dev;
        struct snd_card *card;
        struct azx *chip;
        int err;

        if (dev >= SNDRV_CARDS)
                return -ENODEV;
        if (!enable[dev]) {
                dev++;
                return -ENOENT;
        }

        card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0);
        if (!card) {
                snd_printk(KERN_ERR SFX "Error creating card!\n");
                return -ENOMEM;
        }

        err = azx_create(card, pci, dev, pci_id->driver_data, &chip);
        if (err < 0) {
                snd_card_free(card);
                return err;
        }
        card->private_data = chip;

        /* create codec instances */
        err = azx_codec_create(chip, model[dev], probe_mask[dev]);
        if (err < 0) {
                snd_card_free(card);
                return err;
        }

        /* create PCM streams */
        err = azx_pcm_create(chip);
        if (err < 0) {
                snd_card_free(card);
                return err;
        }

        /* create mixer controls */
        err = azx_mixer_create(chip);
        if (err < 0) {
                snd_card_free(card);
                return err;
        }

        snd_card_set_dev(card, &pci->dev);

        err = snd_card_register(card);
        if (err < 0) {
                snd_card_free(card);
                return err;
        }

        pci_set_drvdata(pci, card);
        chip->running = 1;
        power_down_all_codecs(chip);

        dev++;
        return err;
}

static void __devexit azx_remove(struct pci_dev *pci)
{
        snd_card_free(pci_get_drvdata(pci));
        pci_set_drvdata(pci, NULL);
}

/* PCI IDs */
static struct pci_device_id azx_ids[] = {
        /* ICH 6..10 */
        { PCI_DEVICE(0x8086, 0x2668), .driver_data = AZX_DRIVER_ICH },
        { PCI_DEVICE(0x8086, 0x27d8), .driver_data = AZX_DRIVER_ICH },
        { PCI_DEVICE(0x8086, 0x269a), .driver_data = AZX_DRIVER_ICH },
        { PCI_DEVICE(0x8086, 0x284b), .driver_data = AZX_DRIVER_ICH },
        { PCI_DEVICE(0x8086, 0x2911), .driver_data = AZX_DRIVER_ICH },
        { PCI_DEVICE(0x8086, 0x293e), .driver_data = AZX_DRIVER_ICH },
        { PCI_DEVICE(0x8086, 0x293f), .driver_data = AZX_DRIVER_ICH },
        { PCI_DEVICE(0x8086, 0x3a3e), .driver_data = AZX_DRIVER_ICH },
        { PCI_DEVICE(0x8086, 0x3a6e), .driver_data = AZX_DRIVER_ICH },
        /* PCH */
        { PCI_DEVICE(0x8086, 0x3b56), .driver_data = AZX_DRIVER_ICH },
        /* SCH */
        { PCI_DEVICE(0x8086, 0x811b), .driver_data = AZX_DRIVER_SCH },
        /* ATI SB 450/600 */
        { PCI_DEVICE(0x1002, 0x437b), .driver_data = AZX_DRIVER_ATI },
        { PCI_DEVICE(0x1002, 0x4383), .driver_data = AZX_DRIVER_ATI },
        /* ATI HDMI */
        { PCI_DEVICE(0x1002, 0x793b), .driver_data = AZX_DRIVER_ATIHDMI },
        { PCI_DEVICE(0x1002, 0x7919), .driver_data = AZX_DRIVER_ATIHDMI },
        { PCI_DEVICE(0x1002, 0x960f), .driver_data = AZX_DRIVER_ATIHDMI },
        { PCI_DEVICE(0x1002, 0x970f), .driver_data = AZX_DRIVER_ATIHDMI },
        { PCI_DEVICE(0x1002, 0xaa00), .driver_data = AZX_DRIVER_ATIHDMI },
        { PCI_DEVICE(0x1002, 0xaa08), .driver_data = AZX_DRIVER_ATIHDMI },
        { PCI_DEVICE(0x1002, 0xaa10), .driver_data = AZX_DRIVER_ATIHDMI },
        { PCI_DEVICE(0x1002, 0xaa18), .driver_data = AZX_DRIVER_ATIHDMI },
        { PCI_DEVICE(0x1002, 0xaa20), .driver_data = AZX_DRIVER_ATIHDMI },
        { PCI_DEVICE(0x1002, 0xaa28), .driver_data = AZX_DRIVER_ATIHDMI },
        { PCI_DEVICE(0x1002, 0xaa30), .driver_data = AZX_DRIVER_ATIHDMI },
        { PCI_DEVICE(0x1002, 0xaa38), .driver_data = AZX_DRIVER_ATIHDMI },
        { PCI_DEVICE(0x1002, 0xaa40), .driver_data = AZX_DRIVER_ATIHDMI },
        { PCI_DEVICE(0x1002, 0xaa48), .driver_data = AZX_DRIVER_ATIHDMI },
        /* VIA VT8251/VT8237A */
        { PCI_DEVICE(0x1106, 0x3288), .driver_data = AZX_DRIVER_VIA },
        /* SIS966 */
        { PCI_DEVICE(0x1039, 0x7502), .driver_data = AZX_DRIVER_SIS },
        /* ULI M5461 */
        { PCI_DEVICE(0x10b9, 0x5461), .driver_data = AZX_DRIVER_ULI },
        /* NVIDIA MCP */
        { PCI_DEVICE(0x10de, 0x026c), .driver_data = AZX_DRIVER_NVIDIA },
        { PCI_DEVICE(0x10de, 0x0371), .driver_data = AZX_DRIVER_NVIDIA },
        { PCI_DEVICE(0x10de, 0x03e4), .driver_data = AZX_DRIVER_NVIDIA },
        { PCI_DEVICE(0x10de, 0x03f0), .driver_data = AZX_DRIVER_NVIDIA },
        { PCI_DEVICE(0x10de, 0x044a), .driver_data = AZX_DRIVER_NVIDIA },
        { PCI_DEVICE(0x10de, 0x044b), .driver_data = AZX_DRIVER_NVIDIA },
        { PCI_DEVICE(0x10de, 0x055c), .driver_data = AZX_DRIVER_NVIDIA },
        { PCI_DEVICE(0x10de, 0x055d), .driver_data = AZX_DRIVER_NVIDIA },
        { PCI_DEVICE(0x10de, 0x0774), .driver_data = AZX_DRIVER_NVIDIA },
        { PCI_DEVICE(0x10de, 0x0775), .driver_data = AZX_DRIVER_NVIDIA },
        { PCI_DEVICE(0x10de, 0x0776), .driver_data = AZX_DRIVER_NVIDIA },
        { PCI_DEVICE(0x10de, 0x0777), .driver_data = AZX_DRIVER_NVIDIA },
        { PCI_DEVICE(0x10de, 0x07fc), .driver_data = AZX_DRIVER_NVIDIA },
        { PCI_DEVICE(0x10de, 0x07fd), .driver_data = AZX_DRIVER_NVIDIA },
        { PCI_DEVICE(0x10de, 0x0ac0), .driver_data = AZX_DRIVER_NVIDIA },
        { PCI_DEVICE(0x10de, 0x0ac1), .driver_data = AZX_DRIVER_NVIDIA },
        { PCI_DEVICE(0x10de, 0x0ac2), .driver_data = AZX_DRIVER_NVIDIA },
        { PCI_DEVICE(0x10de, 0x0ac3), .driver_data = AZX_DRIVER_NVIDIA },
        { PCI_DEVICE(0x10de, 0x0bd4), .driver_data = AZX_DRIVER_NVIDIA },
        { PCI_DEVICE(0x10de, 0x0bd5), .driver_data = AZX_DRIVER_NVIDIA },
        { PCI_DEVICE(0x10de, 0x0bd6), .driver_data = AZX_DRIVER_NVIDIA },
        { PCI_DEVICE(0x10de, 0x0bd7), .driver_data = AZX_DRIVER_NVIDIA },
        /* Teradici */
        { PCI_DEVICE(0x6549, 0x1200), .driver_data = AZX_DRIVER_TERA },
        { 0, }
};
MODULE_DEVICE_TABLE(pci, azx_ids);

/* pci_driver definition */
static struct pci_driver driver = {
        .name = "HDA Intel",
        .id_table = azx_ids,
        .probe = azx_probe,
        .remove = __devexit_p(azx_remove),
#ifdef CONFIG_PM
        .suspend = azx_suspend,
        .resume = azx_resume,
#endif
};

static int __init alsa_card_azx_init(void)
{
        return pci_register_driver(&driver);
}

static void __exit alsa_card_azx_exit(void)
{
        pci_unregister_driver(&driver);
}

module_init(alsa_card_azx_init)
module_exit(alsa_card_azx_exit)

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading