[funini.com] -> [kei@sodan] -> Kernel Reading

root/security/selinux/ss/services.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. constraint_expr_eval
  2. type_attribute_bounds_av
  3. context_struct_compute_av
  4. security_permissive_sid
  5. security_validtrans_handle_fail
  6. security_validate_transition
  7. security_bounded_transition
  8. security_compute_av
  9. context_struct_to_string
  10. security_get_initial_sid_context
  11. security_sid_to_context_core
  12. security_sid_to_context
  13. security_sid_to_context_force
  14. string_to_context_struct
  15. security_context_to_sid_core
  16. security_context_to_sid
  17. security_context_to_sid_default
  18. security_context_to_sid_force
  19. compute_sid_handle_invalid_context
  20. security_compute_sid
  21. security_transition_sid
  22. security_member_sid
  23. security_change_sid
  24. validate_classes
  25. clone_sid
  26. convert_context_handle_invalid_context
  27. convert_context
  28. security_load_policycaps
  29. security_load_policy
  30. security_port_sid
  31. security_netif_sid
  32. match_ipv6_addrmask
  33. security_node_sid
  34. security_get_user_sids
  35. security_genfs_sid
  36. security_fs_use
  37. security_get_bools
  38. security_set_bools
  39. security_get_bool_value
  40. security_preserve_bools
  41. security_sid_mls_copy
  42. security_net_peersid_resolve
  43. get_classes_callback
  44. security_get_classes
  45. get_permissions_callback
  46. security_get_permissions
  47. security_get_reject_unknown
  48. security_get_allow_unknown
  49. security_policycap_supported
  50. selinux_audit_rule_free
  51. selinux_audit_rule_init
  52. selinux_audit_rule_known
  53. selinux_audit_rule_match
  54. aurule_avc_callback
  55. aurule_init
  56. security_netlbl_cache_add
  57. security_netlbl_secattr_to_sid
  58. security_netlbl_sid_to_secattr

/*
 * Implementation of the security services.
 *
 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
 *           James Morris <jmorris@redhat.com>
 *
 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
 *
 *      Support for enhanced MLS infrastructure.
 *      Support for context based audit filters.
 *
 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
 *
 *      Added conditional policy language extensions
 *
 * Updated: Hewlett-Packard <paul.moore@hp.com>
 *
 *      Added support for NetLabel
 *      Added support for the policy capability bitmap
 *
 * Updated: Chad Sellers <csellers@tresys.com>
 *
 *  Added validation of kernel classes and permissions
 *
 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
 *      This program is free software; you can redistribute it and/or modify
 *      it under the terms of the GNU General Public License as published by
 *      the Free Software Foundation, version 2.
 */
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/spinlock.h>
#include <linux/rcupdate.h>
#include <linux/errno.h>
#include <linux/in.h>
#include <linux/sched.h>
#include <linux/audit.h>
#include <linux/mutex.h>
#include <linux/selinux.h>
#include <net/netlabel.h>

#include "flask.h"
#include "avc.h"
#include "avc_ss.h"
#include "security.h"
#include "context.h"
#include "policydb.h"
#include "sidtab.h"
#include "services.h"
#include "conditional.h"
#include "mls.h"
#include "objsec.h"
#include "netlabel.h"
#include "xfrm.h"
#include "ebitmap.h"
#include "audit.h"

extern void selnl_notify_policyload(u32 seqno);
unsigned int policydb_loaded_version;

int selinux_policycap_netpeer;
int selinux_policycap_openperm;

/*
 * This is declared in avc.c
 */
extern const struct selinux_class_perm selinux_class_perm;

static DEFINE_RWLOCK(policy_rwlock);

static struct sidtab sidtab;
struct policydb policydb;
int ss_initialized;

/*
 * The largest sequence number that has been used when
 * providing an access decision to the access vector cache.
 * The sequence number only changes when a policy change
 * occurs.
 */
static u32 latest_granting;

/* Forward declaration. */
static int context_struct_to_string(struct context *context, char **scontext,
                                    u32 *scontext_len);

static int context_struct_compute_av(struct context *scontext,
                                     struct context *tcontext,
                                     u16 tclass,
                                     u32 requested,
                                     struct av_decision *avd);
/*
 * Return the boolean value of a constraint expression
 * when it is applied to the specified source and target
 * security contexts.
 *
 * xcontext is a special beast...  It is used by the validatetrans rules
 * only.  For these rules, scontext is the context before the transition,
 * tcontext is the context after the transition, and xcontext is the context
 * of the process performing the transition.  All other callers of
 * constraint_expr_eval should pass in NULL for xcontext.
 */
static int constraint_expr_eval(struct context *scontext,
                                struct context *tcontext,
                                struct context *xcontext,
                                struct constraint_expr *cexpr)
{
        u32 val1, val2;
        struct context *c;
        struct role_datum *r1, *r2;
        struct mls_level *l1, *l2;
        struct constraint_expr *e;
        int s[CEXPR_MAXDEPTH];
        int sp = -1;

        for (e = cexpr; e; e = e->next) {
                switch (e->expr_type) {
                case CEXPR_NOT:
                        BUG_ON(sp < 0);
                        s[sp] = !s[sp];
                        break;
                case CEXPR_AND:
                        BUG_ON(sp < 1);
                        sp--;
                        s[sp] &= s[sp+1];
                        break;
                case CEXPR_OR:
                        BUG_ON(sp < 1);
                        sp--;
                        s[sp] |= s[sp+1];
                        break;
                case CEXPR_ATTR:
                        if (sp == (CEXPR_MAXDEPTH-1))
                                return 0;
                        switch (e->attr) {
                        case CEXPR_USER:
                                val1 = scontext->user;
                                val2 = tcontext->user;
                                break;
                        case CEXPR_TYPE:
                                val1 = scontext->type;
                                val2 = tcontext->type;
                                break;
                        case CEXPR_ROLE:
                                val1 = scontext->role;
                                val2 = tcontext->role;
                                r1 = policydb.role_val_to_struct[val1 - 1];
                                r2 = policydb.role_val_to_struct[val2 - 1];
                                switch (e->op) {
                                case CEXPR_DOM:
                                        s[++sp] = ebitmap_get_bit(&r1->dominates,
                                                                  val2 - 1);
                                        continue;
                                case CEXPR_DOMBY:
                                        s[++sp] = ebitmap_get_bit(&r2->dominates,
                                                                  val1 - 1);
                                        continue;
                                case CEXPR_INCOMP:
                                        s[++sp] = (!ebitmap_get_bit(&r1->dominates,
                                                                    val2 - 1) &&
                                                   !ebitmap_get_bit(&r2->dominates,
                                                                    val1 - 1));
                                        continue;
                                default:
                                        break;
                                }
                                break;
                        case CEXPR_L1L2:
                                l1 = &(scontext->range.level[0]);
                                l2 = &(tcontext->range.level[0]);
                                goto mls_ops;
                        case CEXPR_L1H2:
                                l1 = &(scontext->range.level[0]);
                                l2 = &(tcontext->range.level[1]);
                                goto mls_ops;
                        case CEXPR_H1L2:
                                l1 = &(scontext->range.level[1]);
                                l2 = &(tcontext->range.level[0]);
                                goto mls_ops;
                        case CEXPR_H1H2:
                                l1 = &(scontext->range.level[1]);
                                l2 = &(tcontext->range.level[1]);
                                goto mls_ops;
                        case CEXPR_L1H1:
                                l1 = &(scontext->range.level[0]);
                                l2 = &(scontext->range.level[1]);
                                goto mls_ops;
                        case CEXPR_L2H2:
                                l1 = &(tcontext->range.level[0]);
                                l2 = &(tcontext->range.level[1]);
                                goto mls_ops;
mls_ops:
                        switch (e->op) {
                        case CEXPR_EQ:
                                s[++sp] = mls_level_eq(l1, l2);
                                continue;
                        case CEXPR_NEQ:
                                s[++sp] = !mls_level_eq(l1, l2);
                                continue;
                        case CEXPR_DOM:
                                s[++sp] = mls_level_dom(l1, l2);
                                continue;
                        case CEXPR_DOMBY:
                                s[++sp] = mls_level_dom(l2, l1);
                                continue;
                        case CEXPR_INCOMP:
                                s[++sp] = mls_level_incomp(l2, l1);
                                continue;
                        default:
                                BUG();
                                return 0;
                        }
                        break;
                        default:
                                BUG();
                                return 0;
                        }

                        switch (e->op) {
                        case CEXPR_EQ:
                                s[++sp] = (val1 == val2);
                                break;
                        case CEXPR_NEQ:
                                s[++sp] = (val1 != val2);
                                break;
                        default:
                                BUG();
                                return 0;
                        }
                        break;
                case CEXPR_NAMES:
                        if (sp == (CEXPR_MAXDEPTH-1))
                                return 0;
                        c = scontext;
                        if (e->attr & CEXPR_TARGET)
                                c = tcontext;
                        else if (e->attr & CEXPR_XTARGET) {
                                c = xcontext;
                                if (!c) {
                                        BUG();
                                        return 0;
                                }
                        }
                        if (e->attr & CEXPR_USER)
                                val1 = c->user;
                        else if (e->attr & CEXPR_ROLE)
                                val1 = c->role;
                        else if (e->attr & CEXPR_TYPE)
                                val1 = c->type;
                        else {
                                BUG();
                                return 0;
                        }

                        switch (e->op) {
                        case CEXPR_EQ:
                                s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
                                break;
                        case CEXPR_NEQ:
                                s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
                                break;
                        default:
                                BUG();
                                return 0;
                        }
                        break;
                default:
                        BUG();
                        return 0;
                }
        }

        BUG_ON(sp != 0);
        return s[0];
}

/*
 * security_boundary_permission - drops violated permissions
 * on boundary constraint.
 */
static void type_attribute_bounds_av(struct context *scontext,
                                     struct context *tcontext,
                                     u16 tclass,
                                     u32 requested,
                                     struct av_decision *avd)
{
        struct context lo_scontext;
        struct context lo_tcontext;
        struct av_decision lo_avd;
        struct type_datum *source
                = policydb.type_val_to_struct[scontext->type - 1];
        struct type_datum *target
                = policydb.type_val_to_struct[tcontext->type - 1];
        u32 masked = 0;

        if (source->bounds) {
                memset(&lo_avd, 0, sizeof(lo_avd));

                memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
                lo_scontext.type = source->bounds;

                context_struct_compute_av(&lo_scontext,
                                          tcontext,
                                          tclass,
                                          requested,
                                          &lo_avd);
                if ((lo_avd.allowed & avd->allowed) == avd->allowed)
                        return;         /* no masked permission */
                masked = ~lo_avd.allowed & avd->allowed;
        }

        if (target->bounds) {
                memset(&lo_avd, 0, sizeof(lo_avd));

                memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
                lo_tcontext.type = target->bounds;

                context_struct_compute_av(scontext,
                                          &lo_tcontext,
                                          tclass,
                                          requested,
                                          &lo_avd);
                if ((lo_avd.allowed & avd->allowed) == avd->allowed)
                        return;         /* no masked permission */
                masked = ~lo_avd.allowed & avd->allowed;
        }

        if (source->bounds && target->bounds) {
                memset(&lo_avd, 0, sizeof(lo_avd));
                /*
                 * lo_scontext and lo_tcontext are already
                 * set up.
                 */

                context_struct_compute_av(&lo_scontext,
                                          &lo_tcontext,
                                          tclass,
                                          requested,
                                          &lo_avd);
                if ((lo_avd.allowed & avd->allowed) == avd->allowed)
                        return;         /* no masked permission */
                masked = ~lo_avd.allowed & avd->allowed;
        }

        if (masked) {
                struct audit_buffer *ab;
                char *stype_name
                        = policydb.p_type_val_to_name[source->value - 1];
                char *ttype_name
                        = policydb.p_type_val_to_name[target->value - 1];
                char *tclass_name
                        = policydb.p_class_val_to_name[tclass - 1];

                /* mask violated permissions */
                avd->allowed &= ~masked;

                /* notice to userspace via audit message */
                ab = audit_log_start(current->audit_context,
                                     GFP_ATOMIC, AUDIT_SELINUX_ERR);
                if (!ab)
                        return;

                audit_log_format(ab, "av boundary violation: "
                                 "source=%s target=%s tclass=%s",
                                 stype_name, ttype_name, tclass_name);
                avc_dump_av(ab, tclass, masked);
                audit_log_end(ab);
        }
}

/*
 * Compute access vectors based on a context structure pair for
 * the permissions in a particular class.
 */
static int context_struct_compute_av(struct context *scontext,
                                     struct context *tcontext,
                                     u16 tclass,
                                     u32 requested,
                                     struct av_decision *avd)
{
        struct constraint_node *constraint;
        struct role_allow *ra;
        struct avtab_key avkey;
        struct avtab_node *node;
        struct class_datum *tclass_datum;
        struct ebitmap *sattr, *tattr;
        struct ebitmap_node *snode, *tnode;
        const struct selinux_class_perm *kdefs = &selinux_class_perm;
        unsigned int i, j;

        /*
         * Remap extended Netlink classes for old policy versions.
         * Do this here rather than socket_type_to_security_class()
         * in case a newer policy version is loaded, allowing sockets
         * to remain in the correct class.
         */
        if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
                if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
                    tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
                        tclass = SECCLASS_NETLINK_SOCKET;

        /*
         * Initialize the access vectors to the default values.
         */
        avd->allowed = 0;
        avd->decided = 0xffffffff;
        avd->auditallow = 0;
        avd->auditdeny = 0xffffffff;
        avd->seqno = latest_granting;

        /*
         * Check for all the invalid cases.
         * - tclass 0
         * - tclass > policy and > kernel
         * - tclass > policy but is a userspace class
         * - tclass > policy but we do not allow unknowns
         */
        if (unlikely(!tclass))
                goto inval_class;
        if (unlikely(tclass > policydb.p_classes.nprim))
                if (tclass > kdefs->cts_len ||
                    !kdefs->class_to_string[tclass] ||
                    !policydb.allow_unknown)
                        goto inval_class;

        /*
         * Kernel class and we allow unknown so pad the allow decision
         * the pad will be all 1 for unknown classes.
         */
        if (tclass <= kdefs->cts_len && policydb.allow_unknown)
                avd->allowed = policydb.undefined_perms[tclass - 1];

        /*
         * Not in policy. Since decision is completed (all 1 or all 0) return.
         */
        if (unlikely(tclass > policydb.p_classes.nprim))
                return 0;

        tclass_datum = policydb.class_val_to_struct[tclass - 1];

        /*
         * If a specific type enforcement rule was defined for
         * this permission check, then use it.
         */
        avkey.target_class = tclass;
        avkey.specified = AVTAB_AV;
        sattr = &policydb.type_attr_map[scontext->type - 1];
        tattr = &policydb.type_attr_map[tcontext->type - 1];
        ebitmap_for_each_positive_bit(sattr, snode, i) {
                ebitmap_for_each_positive_bit(tattr, tnode, j) {
                        avkey.source_type = i + 1;
                        avkey.target_type = j + 1;
                        for (node = avtab_search_node(&policydb.te_avtab, &avkey);
                             node;
                             node = avtab_search_node_next(node, avkey.specified)) {
                                if (node->key.specified == AVTAB_ALLOWED)
                                        avd->allowed |= node->datum.data;
                                else if (node->key.specified == AVTAB_AUDITALLOW)
                                        avd->auditallow |= node->datum.data;
                                else if (node->key.specified == AVTAB_AUDITDENY)
                                        avd->auditdeny &= node->datum.data;
                        }

                        /* Check conditional av table for additional permissions */
                        cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);

                }
        }

        /*
         * Remove any permissions prohibited by a constraint (this includes
         * the MLS policy).
         */
        constraint = tclass_datum->constraints;
        while (constraint) {
                if ((constraint->permissions & (avd->allowed)) &&
                    !constraint_expr_eval(scontext, tcontext, NULL,
                                          constraint->expr)) {
                        avd->allowed = (avd->allowed) & ~(constraint->permissions);
                }
                constraint = constraint->next;
        }

        /*
         * If checking process transition permission and the
         * role is changing, then check the (current_role, new_role)
         * pair.
         */
        if (tclass == SECCLASS_PROCESS &&
            (avd->allowed & (PROCESS__TRANSITION | PROCESS__DYNTRANSITION)) &&
            scontext->role != tcontext->role) {
                for (ra = policydb.role_allow; ra; ra = ra->next) {
                        if (scontext->role == ra->role &&
                            tcontext->role == ra->new_role)
                                break;
                }
                if (!ra)
                        avd->allowed = (avd->allowed) & ~(PROCESS__TRANSITION |
                                                        PROCESS__DYNTRANSITION);
        }

        /*
         * If the given source and target types have boundary
         * constraint, lazy checks have to mask any violated
         * permission and notice it to userspace via audit.
         */
        type_attribute_bounds_av(scontext, tcontext,
                                 tclass, requested, avd);

        return 0;

inval_class:
        if (!tclass || tclass > kdefs->cts_len ||
            !kdefs->class_to_string[tclass]) {
                if (printk_ratelimit())
                        printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
                               __func__, tclass);
                return -EINVAL;
        }

        /*
         * Known to the kernel, but not to the policy.
         * Handle as a denial (allowed is 0).
         */
        return 0;
}

/*
 * Given a sid find if the type has the permissive flag set
 */
int security_permissive_sid(u32 sid)
{
        struct context *context;
        u32 type;
        int rc;

        read_lock(&policy_rwlock);

        context = sidtab_search(&sidtab, sid);
        BUG_ON(!context);

        type = context->type;
        /*
         * we are intentionally using type here, not type-1, the 0th bit may
         * someday indicate that we are globally setting permissive in policy.
         */
        rc = ebitmap_get_bit(&policydb.permissive_map, type);

        read_unlock(&policy_rwlock);
        return rc;
}

static int security_validtrans_handle_fail(struct context *ocontext,
                                           struct context *ncontext,
                                           struct context *tcontext,
                                           u16 tclass)
{
        char *o = NULL, *n = NULL, *t = NULL;
        u32 olen, nlen, tlen;

        if (context_struct_to_string(ocontext, &o, &olen) < 0)
                goto out;
        if (context_struct_to_string(ncontext, &n, &nlen) < 0)
                goto out;
        if (context_struct_to_string(tcontext, &t, &tlen) < 0)
                goto out;
        audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
                  "security_validate_transition:  denied for"
                  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
                  o, n, t, policydb.p_class_val_to_name[tclass-1]);
out:
        kfree(o);
        kfree(n);
        kfree(t);

        if (!selinux_enforcing)
                return 0;
        return -EPERM;
}

int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
                                 u16 tclass)
{
        struct context *ocontext;
        struct context *ncontext;
        struct context *tcontext;
        struct class_datum *tclass_datum;
        struct constraint_node *constraint;
        int rc = 0;

        if (!ss_initialized)
                return 0;

        read_lock(&policy_rwlock);

        /*
         * Remap extended Netlink classes for old policy versions.
         * Do this here rather than socket_type_to_security_class()
         * in case a newer policy version is loaded, allowing sockets
         * to remain in the correct class.
         */
        if (policydb_loaded_version < POLICYDB_VERSION_NLCLASS)
                if (tclass >= SECCLASS_NETLINK_ROUTE_SOCKET &&
                    tclass <= SECCLASS_NETLINK_DNRT_SOCKET)
                        tclass = SECCLASS_NETLINK_SOCKET;

        if (!tclass || tclass > policydb.p_classes.nprim) {
                printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
                        __func__, tclass);
                rc = -EINVAL;
                goto out;
        }
        tclass_datum = policydb.class_val_to_struct[tclass - 1];

        ocontext = sidtab_search(&sidtab, oldsid);
        if (!ocontext) {
                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
                        __func__, oldsid);
                rc = -EINVAL;
                goto out;
        }

        ncontext = sidtab_search(&sidtab, newsid);
        if (!ncontext) {
                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
                        __func__, newsid);
                rc = -EINVAL;
                goto out;
        }

        tcontext = sidtab_search(&sidtab, tasksid);
        if (!tcontext) {
                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
                        __func__, tasksid);
                rc = -EINVAL;
                goto out;
        }

        constraint = tclass_datum->validatetrans;
        while (constraint) {
                if (!constraint_expr_eval(ocontext, ncontext, tcontext,
                                          constraint->expr)) {
                        rc = security_validtrans_handle_fail(ocontext, ncontext,
                                                             tcontext, tclass);
                        goto out;
                }
                constraint = constraint->next;
        }

out:
        read_unlock(&policy_rwlock);
        return rc;
}

/*
 * security_bounded_transition - check whether the given
 * transition is directed to bounded, or not.
 * It returns 0, if @newsid is bounded by @oldsid.
 * Otherwise, it returns error code.
 *
 * @oldsid : current security identifier
 * @newsid : destinated security identifier
 */
int security_bounded_transition(u32 old_sid, u32 new_sid)
{
        struct context *old_context, *new_context;
        struct type_datum *type;
        int index;
        int rc = -EINVAL;

        read_lock(&policy_rwlock);

        old_context = sidtab_search(&sidtab, old_sid);
        if (!old_context) {
                printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
                       __func__, old_sid);
                goto out;
        }

        new_context = sidtab_search(&sidtab, new_sid);
        if (!new_context) {
                printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
                       __func__, new_sid);
                goto out;
        }

        /* type/domain unchaned */
        if (old_context->type == new_context->type) {
                rc = 0;
                goto out;
        }

        index = new_context->type;
        while (true) {
                type = policydb.type_val_to_struct[index - 1];
                BUG_ON(!type);

                /* not bounded anymore */
                if (!type->bounds) {
                        rc = -EPERM;
                        break;
                }

                /* @newsid is bounded by @oldsid */
                if (type->bounds == old_context->type) {
                        rc = 0;
                        break;
                }
                index = type->bounds;
        }
out:
        read_unlock(&policy_rwlock);

        return rc;
}


/**
 * security_compute_av - Compute access vector decisions.
 * @ssid: source security identifier
 * @tsid: target security identifier
 * @tclass: target security class
 * @requested: requested permissions
 * @avd: access vector decisions
 *
 * Compute a set of access vector decisions based on the
 * SID pair (@ssid, @tsid) for the permissions in @tclass.
 * Return -%EINVAL if any of the parameters are invalid or %0
 * if the access vector decisions were computed successfully.
 */
int security_compute_av(u32 ssid,
                        u32 tsid,
                        u16 tclass,
                        u32 requested,
                        struct av_decision *avd)
{
        struct context *scontext = NULL, *tcontext = NULL;
        int rc = 0;

        if (!ss_initialized) {
                avd->allowed = 0xffffffff;
                avd->decided = 0xffffffff;
                avd->auditallow = 0;
                avd->auditdeny = 0xffffffff;
                avd->seqno = latest_granting;
                return 0;
        }

        read_lock(&policy_rwlock);

        scontext = sidtab_search(&sidtab, ssid);
        if (!scontext) {
                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
                       __func__, ssid);
                rc = -EINVAL;
                goto out;
        }
        tcontext = sidtab_search(&sidtab, tsid);
        if (!tcontext) {
                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
                       __func__, tsid);
                rc = -EINVAL;
                goto out;
        }

        rc = context_struct_compute_av(scontext, tcontext, tclass,
                                       requested, avd);
out:
        read_unlock(&policy_rwlock);
        return rc;
}

/*
 * Write the security context string representation of
 * the context structure `context' into a dynamically
 * allocated string of the correct size.  Set `*scontext'
 * to point to this string and set `*scontext_len' to
 * the length of the string.
 */
static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
{
        char *scontextp;

        *scontext = NULL;
        *scontext_len = 0;

        if (context->len) {
                *scontext_len = context->len;
                *scontext = kstrdup(context->str, GFP_ATOMIC);
                if (!(*scontext))
                        return -ENOMEM;
                return 0;
        }

        /* Compute the size of the context. */
        *scontext_len += strlen(policydb.p_user_val_to_name[context->user - 1]) + 1;
        *scontext_len += strlen(policydb.p_role_val_to_name[context->role - 1]) + 1;
        *scontext_len += strlen(policydb.p_type_val_to_name[context->type - 1]) + 1;
        *scontext_len += mls_compute_context_len(context);

        /* Allocate space for the context; caller must free this space. */
        scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
        if (!scontextp)
                return -ENOMEM;
        *scontext = scontextp;

        /*
         * Copy the user name, role name and type name into the context.
         */
        sprintf(scontextp, "%s:%s:%s",
                policydb.p_user_val_to_name[context->user - 1],
                policydb.p_role_val_to_name[context->role - 1],
                policydb.p_type_val_to_name[context->type - 1]);
        scontextp += strlen(policydb.p_user_val_to_name[context->user - 1]) +
                     1 + strlen(policydb.p_role_val_to_name[context->role - 1]) +
                     1 + strlen(policydb.p_type_val_to_name[context->type - 1]);

        mls_sid_to_context(context, &scontextp);

        *scontextp = 0;

        return 0;
}

#include "initial_sid_to_string.h"

const char *security_get_initial_sid_context(u32 sid)
{
        if (unlikely(sid > SECINITSID_NUM))
                return NULL;
        return initial_sid_to_string[sid];
}

static int security_sid_to_context_core(u32 sid, char **scontext,
                                        u32 *scontext_len, int force)
{
        struct context *context;
        int rc = 0;

        *scontext = NULL;
        *scontext_len  = 0;

        if (!ss_initialized) {
                if (sid <= SECINITSID_NUM) {
                        char *scontextp;

                        *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
                        scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
                        if (!scontextp) {
                                rc = -ENOMEM;
                                goto out;
                        }
                        strcpy(scontextp, initial_sid_to_string[sid]);
                        *scontext = scontextp;
                        goto out;
                }
                printk(KERN_ERR "SELinux: %s:  called before initial "
                       "load_policy on unknown SID %d\n", __func__, sid);
                rc = -EINVAL;
                goto out;
        }
        read_lock(&policy_rwlock);
        if (force)
                context = sidtab_search_force(&sidtab, sid);
        else
                context = sidtab_search(&sidtab, sid);
        if (!context) {
                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
                        __func__, sid);
                rc = -EINVAL;
                goto out_unlock;
        }
        rc = context_struct_to_string(context, scontext, scontext_len);
out_unlock:
        read_unlock(&policy_rwlock);
out:
        return rc;

}

/**
 * security_sid_to_context - Obtain a context for a given SID.
 * @sid: security identifier, SID
 * @scontext: security context
 * @scontext_len: length in bytes
 *
 * Write the string representation of the context associated with @sid
 * into a dynamically allocated string of the correct size.  Set @scontext
 * to point to this string and set @scontext_len to the length of the string.
 */
int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
{
        return security_sid_to_context_core(sid, scontext, scontext_len, 0);
}

int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
{
        return security_sid_to_context_core(sid, scontext, scontext_len, 1);
}

/*
 * Caveat:  Mutates scontext.
 */
static int string_to_context_struct(struct policydb *pol,
                                    struct sidtab *sidtabp,
                                    char *scontext,
                                    u32 scontext_len,
                                    struct context *ctx,
                                    u32 def_sid)
{
        struct role_datum *role;
        struct type_datum *typdatum;
        struct user_datum *usrdatum;
        char *scontextp, *p, oldc;
        int rc = 0;

        context_init(ctx);

        /* Parse the security context. */

        rc = -EINVAL;
        scontextp = (char *) scontext;

        /* Extract the user. */
        p = scontextp;
        while (*p && *p != ':')
                p++;

        if (*p == 0)
                goto out;

        *p++ = 0;

        usrdatum = hashtab_search(pol->p_users.table, scontextp);
        if (!usrdatum)
                goto out;

        ctx->user = usrdatum->value;

        /* Extract role. */
        scontextp = p;
        while (*p && *p != ':')
                p++;

        if (*p == 0)
                goto out;

        *p++ = 0;

        role = hashtab_search(pol->p_roles.table, scontextp);
        if (!role)
                goto out;
        ctx->role = role->value;

        /* Extract type. */
        scontextp = p;
        while (*p && *p != ':')
                p++;
        oldc = *p;
        *p++ = 0;

        typdatum = hashtab_search(pol->p_types.table, scontextp);
        if (!typdatum || typdatum->attribute)
                goto out;

        ctx->type = typdatum->value;

        rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
        if (rc)
                goto out;

        if ((p - scontext) < scontext_len) {
                rc = -EINVAL;
                goto out;
        }

        /* Check the validity of the new context. */
        if (!policydb_context_isvalid(pol, ctx)) {
                rc = -EINVAL;
                goto out;
        }
        rc = 0;
out:
        if (rc)
                context_destroy(ctx);
        return rc;
}

static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
                                        u32 *sid, u32 def_sid, gfp_t gfp_flags,
                                        int force)
{
        char *scontext2, *str = NULL;
        struct context context;
        int rc = 0;

        if (!ss_initialized) {
                int i;

                for (i = 1; i < SECINITSID_NUM; i++) {
                        if (!strcmp(initial_sid_to_string[i], scontext)) {
                                *sid = i;
                                return 0;
                        }
                }
                *sid = SECINITSID_KERNEL;
                return 0;
        }
        *sid = SECSID_NULL;

        /* Copy the string so that we can modify the copy as we parse it. */
        scontext2 = kmalloc(scontext_len+1, gfp_flags);
        if (!scontext2)
                return -ENOMEM;
        memcpy(scontext2, scontext, scontext_len);
        scontext2[scontext_len] = 0;

        if (force) {
                /* Save another copy for storing in uninterpreted form */
                str = kstrdup(scontext2, gfp_flags);
                if (!str) {
                        kfree(scontext2);
                        return -ENOMEM;
                }
        }

        read_lock(&policy_rwlock);
        rc = string_to_context_struct(&policydb, &sidtab,
                                      scontext2, scontext_len,
                                      &context, def_sid);
        if (rc == -EINVAL && force) {
                context.str = str;
                context.len = scontext_len;
                str = NULL;
        } else if (rc)
                goto out;
        rc = sidtab_context_to_sid(&sidtab, &context, sid);
        context_destroy(&context);
out:
        read_unlock(&policy_rwlock);
        kfree(scontext2);
        kfree(str);
        return rc;
}

/**
 * security_context_to_sid - Obtain a SID for a given security context.
 * @scontext: security context
 * @scontext_len: length in bytes
 * @sid: security identifier, SID
 *
 * Obtains a SID associated with the security context that
 * has the string representation specified by @scontext.
 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
 * memory is available, or 0 on success.
 */
int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
{
        return security_context_to_sid_core(scontext, scontext_len,
                                            sid, SECSID_NULL, GFP_KERNEL, 0);
}

/**
 * security_context_to_sid_default - Obtain a SID for a given security context,
 * falling back to specified default if needed.
 *
 * @scontext: security context
 * @scontext_len: length in bytes
 * @sid: security identifier, SID
 * @def_sid: default SID to assign on error
 *
 * Obtains a SID associated with the security context that
 * has the string representation specified by @scontext.
 * The default SID is passed to the MLS layer to be used to allow
 * kernel labeling of the MLS field if the MLS field is not present
 * (for upgrading to MLS without full relabel).
 * Implicitly forces adding of the context even if it cannot be mapped yet.
 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
 * memory is available, or 0 on success.
 */
int security_context_to_sid_default(const char *scontext, u32 scontext_len,
                                    u32 *sid, u32 def_sid, gfp_t gfp_flags)
{
        return security_context_to_sid_core(scontext, scontext_len,
                                            sid, def_sid, gfp_flags, 1);
}

int security_context_to_sid_force(const char *scontext, u32 scontext_len,
                                  u32 *sid)
{
        return security_context_to_sid_core(scontext, scontext_len,
                                            sid, SECSID_NULL, GFP_KERNEL, 1);
}

static int compute_sid_handle_invalid_context(
        struct context *scontext,
        struct context *tcontext,
        u16 tclass,
        struct context *newcontext)
{
        char *s = NULL, *t = NULL, *n = NULL;
        u32 slen, tlen, nlen;

        if (context_struct_to_string(scontext, &s, &slen) < 0)
                goto out;
        if (context_struct_to_string(tcontext, &t, &tlen) < 0)
                goto out;
        if (context_struct_to_string(newcontext, &n, &nlen) < 0)
                goto out;
        audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
                  "security_compute_sid:  invalid context %s"
                  " for scontext=%s"
                  " tcontext=%s"
                  " tclass=%s",
                  n, s, t, policydb.p_class_val_to_name[tclass-1]);
out:
        kfree(s);
        kfree(t);
        kfree(n);
        if (!selinux_enforcing)
                return 0;
        return -EACCES;
}

static int security_compute_sid(u32 ssid,
                                u32 tsid,
                                u16 tclass,
                                u32 specified,
                                u32 *out_sid)
{
        struct context *scontext = NULL, *tcontext = NULL, newcontext;
        struct role_trans *roletr = NULL;
        struct avtab_key avkey;
        struct avtab_datum *avdatum;
        struct avtab_node *node;
        int rc = 0;

        if (!ss_initialized) {
                switch (tclass) {
                case SECCLASS_PROCESS:
                        *out_sid = ssid;
                        break;
                default:
                        *out_sid = tsid;
                        break;
                }
                goto out;
        }

        context_init(&newcontext);

        read_lock(&policy_rwlock);

        scontext = sidtab_search(&sidtab, ssid);
        if (!scontext) {
                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
                       __func__, ssid);
                rc = -EINVAL;
                goto out_unlock;
        }
        tcontext = sidtab_search(&sidtab, tsid);
        if (!tcontext) {
                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
                       __func__, tsid);
                rc = -EINVAL;
                goto out_unlock;
        }

        /* Set the user identity. */
        switch (specified) {
        case AVTAB_TRANSITION:
        case AVTAB_CHANGE:
                /* Use the process user identity. */
                newcontext.user = scontext->user;
                break;
        case AVTAB_MEMBER:
                /* Use the related object owner. */
                newcontext.user = tcontext->user;
                break;
        }

        /* Set the role and type to default values. */
        switch (tclass) {
        case SECCLASS_PROCESS:
                /* Use the current role and type of process. */
                newcontext.role = scontext->role;
                newcontext.type = scontext->type;
                break;
        default:
                /* Use the well-defined object role. */
                newcontext.role = OBJECT_R_VAL;
                /* Use the type of the related object. */
                newcontext.type = tcontext->type;
        }

        /* Look for a type transition/member/change rule. */
        avkey.source_type = scontext->type;
        avkey.target_type = tcontext->type;
        avkey.target_class = tclass;
        avkey.specified = specified;
        avdatum = avtab_search(&policydb.te_avtab, &avkey);

        /* If no permanent rule, also check for enabled conditional rules */
        if (!avdatum) {
                node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
                for (; node; node = avtab_search_node_next(node, specified)) {
                        if (node->key.specified & AVTAB_ENABLED) {
                                avdatum = &node->datum;
                                break;
                        }
                }
        }

        if (avdatum) {
                /* Use the type from the type transition/member/change rule. */
                newcontext.type = avdatum->data;
        }

        /* Check for class-specific changes. */
        switch (tclass) {
        case SECCLASS_PROCESS:
                if (specified & AVTAB_TRANSITION) {
                        /* Look for a role transition rule. */
                        for (roletr = policydb.role_tr; roletr;
                             roletr = roletr->next) {
                                if (roletr->role == scontext->role &&
                                    roletr->type == tcontext->type) {
                                        /* Use the role transition rule. */
                                        newcontext.role = roletr->new_role;
                                        break;
                                }
                        }
                }
                break;
        default:
                break;
        }

        /* Set the MLS attributes.
           This is done last because it may allocate memory. */
        rc = mls_compute_sid(scontext, tcontext, tclass, specified, &newcontext);
        if (rc)
                goto out_unlock;

        /* Check the validity of the context. */
        if (!policydb_context_isvalid(&policydb, &newcontext)) {
                rc = compute_sid_handle_invalid_context(scontext,
                                                        tcontext,
                                                        tclass,
                                                        &newcontext);
                if (rc)
                        goto out_unlock;
        }
        /* Obtain the sid for the context. */
        rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
out_unlock:
        read_unlock(&policy_rwlock);
        context_destroy(&newcontext);
out:
        return rc;
}

/**
 * security_transition_sid - Compute the SID for a new subject/object.
 * @ssid: source security identifier
 * @tsid: target security identifier
 * @tclass: target security class
 * @out_sid: security identifier for new subject/object
 *
 * Compute a SID to use for labeling a new subject or object in the
 * class @tclass based on a SID pair (@ssid, @tsid).
 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
 * if insufficient memory is available, or %0 if the new SID was
 * computed successfully.
 */
int security_transition_sid(u32 ssid,
                            u32 tsid,
                            u16 tclass,
                            u32 *out_sid)
{
        return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, out_sid);
}

/**
 * security_member_sid - Compute the SID for member selection.
 * @ssid: source security identifier
 * @tsid: target security identifier
 * @tclass: target security class
 * @out_sid: security identifier for selected member
 *
 * Compute a SID to use when selecting a member of a polyinstantiated
 * object of class @tclass based on a SID pair (@ssid, @tsid).
 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
 * if insufficient memory is available, or %0 if the SID was
 * computed successfully.
 */
int security_member_sid(u32 ssid,
                        u32 tsid,
                        u16 tclass,
                        u32 *out_sid)
{
        return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid);
}

/**
 * security_change_sid - Compute the SID for object relabeling.
 * @ssid: source security identifier
 * @tsid: target security identifier
 * @tclass: target security class
 * @out_sid: security identifier for selected member
 *
 * Compute a SID to use for relabeling an object of class @tclass
 * based on a SID pair (@ssid, @tsid).
 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
 * if insufficient memory is available, or %0 if the SID was
 * computed successfully.
 */
int security_change_sid(u32 ssid,
                        u32 tsid,
                        u16 tclass,
                        u32 *out_sid)
{
        return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid);
}

/*
 * Verify that each kernel class that is defined in the
 * policy is correct
 */
static int validate_classes(struct policydb *p)
{
        int i, j;
        struct class_datum *cladatum;
        struct perm_datum *perdatum;
        u32 nprim, tmp, common_pts_len, perm_val, pol_val;
        u16 class_val;
        const struct selinux_class_perm *kdefs = &selinux_class_perm;
        const char *def_class, *def_perm, *pol_class;
        struct symtab *perms;
        bool print_unknown_handle = 0;

        if (p->allow_unknown) {
                u32 num_classes = kdefs->cts_len;
                p->undefined_perms = kcalloc(num_classes, sizeof(u32), GFP_KERNEL);
                if (!p->undefined_perms)
                        return -ENOMEM;
        }

        for (i = 1; i < kdefs->cts_len; i++) {
                def_class = kdefs->class_to_string[i];
                if (!def_class)
                        continue;
                if (i > p->p_classes.nprim) {
                        printk(KERN_INFO
                               "SELinux:  class %s not defined in policy\n",
                               def_class);
                        if (p->reject_unknown)
                                return -EINVAL;
                        if (p->allow_unknown)
                                p->undefined_perms[i-1] = ~0U;
                        print_unknown_handle = 1;
                        continue;
                }
                pol_class = p->p_class_val_to_name[i-1];
                if (strcmp(pol_class, def_class)) {
                        printk(KERN_ERR
                               "SELinux:  class %d is incorrect, found %s but should be %s\n",
                               i, pol_class, def_class);
                        return -EINVAL;
                }
        }
        for (i = 0; i < kdefs->av_pts_len; i++) {
                class_val = kdefs->av_perm_to_string[i].tclass;
                perm_val = kdefs->av_perm_to_string[i].value;
                def_perm = kdefs->av_perm_to_string[i].name;
                if (class_val > p->p_classes.nprim)
                        continue;
                pol_class = p->p_class_val_to_name[class_val-1];
                cladatum = hashtab_search(p->p_classes.table, pol_class);
                BUG_ON(!cladatum);
                perms = &cladatum->permissions;
                nprim = 1 << (perms->nprim - 1);
                if (perm_val > nprim) {
                        printk(KERN_INFO
                               "SELinux:  permission %s in class %s not defined in policy\n",
                               def_perm, pol_class);
                        if (p->reject_unknown)
                                return -EINVAL;
                        if (p->allow_unknown)
                                p->undefined_perms[class_val-1] |= perm_val;
                        print_unknown_handle = 1;
                        continue;
                }
                perdatum = hashtab_search(perms->table, def_perm);
                if (perdatum == NULL) {
                        printk(KERN_ERR
                               "SELinux:  permission %s in class %s not found in policy, bad policy\n",
                               def_perm, pol_class);
                        return -EINVAL;
                }
                pol_val = 1 << (perdatum->value - 1);
                if (pol_val != perm_val) {
                        printk(KERN_ERR
                               "SELinux:  permission %s in class %s has incorrect value\n",
                               def_perm, pol_class);
                        return -EINVAL;
                }
        }
        for (i = 0; i < kdefs->av_inherit_len; i++) {
                class_val = kdefs->av_inherit[i].tclass;
                if (class_val > p->p_classes.nprim)
                        continue;
                pol_class = p->p_class_val_to_name[class_val-1];
                cladatum = hashtab_search(p->p_classes.table, pol_class);
                BUG_ON(!cladatum);
                if (!cladatum->comdatum) {
                        printk(KERN_ERR
                               "SELinux:  class %s should have an inherits clause but does not\n",
                               pol_class);
                        return -EINVAL;
                }
                tmp = kdefs->av_inherit[i].common_base;
                common_pts_len = 0;
                while (!(tmp & 0x01)) {
                        common_pts_len++;
                        tmp >>= 1;
                }
                perms = &cladatum->comdatum->permissions;
                for (j = 0; j < common_pts_len; j++) {
                        def_perm = kdefs->av_inherit[i].common_pts[j];
                        if (j >= perms->nprim) {
                                printk(KERN_INFO
                                       "SELinux:  permission %s in class %s not defined in policy\n",
                                       def_perm, pol_class);
                                if (p->reject_unknown)
                                        return -EINVAL;
                                if (p->allow_unknown)
                                        p->undefined_perms[class_val-1] |= (1 << j);
                                print_unknown_handle = 1;
                                continue;
                        }
                        perdatum = hashtab_search(perms->table, def_perm);
                        if (perdatum == NULL) {
                                printk(KERN_ERR
                                       "SELinux:  permission %s in class %s not found in policy, bad policy\n",
                                       def_perm, pol_class);
                                return -EINVAL;
                        }
                        if (perdatum->value != j + 1) {
                                printk(KERN_ERR
                                       "SELinux:  permission %s in class %s has incorrect value\n",
                                       def_perm, pol_class);
                                return -EINVAL;
                        }
                }
        }
        if (print_unknown_handle)
                printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
                        (security_get_allow_unknown() ? "allowed" : "denied"));
        return 0;
}

/* Clone the SID into the new SID table. */
static int clone_sid(u32 sid,
                     struct context *context,
                     void *arg)
{
        struct sidtab *s = arg;

        return sidtab_insert(s, sid, context);
}

static inline int convert_context_handle_invalid_context(struct context *context)
{
        int rc = 0;

        if (selinux_enforcing) {
                rc = -EINVAL;
        } else {
                char *s;
                u32 len;

                if (!context_struct_to_string(context, &s, &len)) {
                        printk(KERN_WARNING
                       "SELinux:  Context %s would be invalid if enforcing\n",
                               s);
                        kfree(s);
                }
        }
        return rc;
}

struct convert_context_args {
        struct policydb *oldp;
        struct policydb *newp;
};

/*
 * Convert the values in the security context
 * structure `c' from the values specified
 * in the policy `p->oldp' to the values specified
 * in the policy `p->newp'.  Verify that the
 * context is valid under the new policy.
 */
static int convert_context(u32 key,
                           struct context *c,
                           void *p)
{
        struct convert_context_args *args;
        struct context oldc;
        struct role_datum *role;
        struct type_datum *typdatum;
        struct user_datum *usrdatum;
        char *s;
        u32 len;
        int rc;

        args = p;

        if (c->str) {
                struct context ctx;
                s = kstrdup(c->str, GFP_KERNEL);
                if (!s) {
                        rc = -ENOMEM;
                        goto out;
                }
                rc = string_to_context_struct(args->newp, NULL, s,
                                              c->len, &ctx, SECSID_NULL);
                kfree(s);
                if (!rc) {
                        printk(KERN_INFO
                       "SELinux:  Context %s became valid (mapped).\n",
                               c->str);
                        /* Replace string with mapped representation. */
                        kfree(c->str);
                        memcpy(c, &ctx, sizeof(*c));
                        goto out;
                } else if (rc == -EINVAL) {
                        /* Retain string representation for later mapping. */
                        rc = 0;
                        goto out;
                } else {
                        /* Other error condition, e.g. ENOMEM. */
                        printk(KERN_ERR
                       "SELinux:   Unable to map context %s, rc = %d.\n",
                               c->str, -rc);
                        goto out;
                }
        }

        rc = context_cpy(&oldc, c);
        if (rc)
                goto out;

        rc = -EINVAL;

        /* Convert the user. */
        usrdatum = hashtab_search(args->newp->p_users.table,
                                  args->oldp->p_user_val_to_name[c->user - 1]);
        if (!usrdatum)
                goto bad;
        c->user = usrdatum->value;

        /* Convert the role. */
        role = hashtab_search(args->newp->p_roles.table,
                              args->oldp->p_role_val_to_name[c->role - 1]);
        if (!role)
                goto bad;
        c->role = role->value;

        /* Convert the type. */
        typdatum = hashtab_search(args->newp->p_types.table,
                                  args->oldp->p_type_val_to_name[c->type - 1]);
        if (!typdatum)
                goto bad;
        c->type = typdatum->value;

        rc = mls_convert_context(args->oldp, args->newp, c);
        if (rc)
                goto bad;

        /* Check the validity of the new context. */
        if (!policydb_context_isvalid(args->newp, c)) {
                rc = convert_context_handle_invalid_context(&oldc);
                if (rc)
                        goto bad;
        }

        context_destroy(&oldc);
        rc = 0;
out:
        return rc;
bad:
        /* Map old representation to string and save it. */
        if (context_struct_to_string(&oldc, &s, &len))
                return -ENOMEM;
        context_destroy(&oldc);
        context_destroy(c);
        c->str = s;
        c->len = len;
        printk(KERN_INFO
               "SELinux:  Context %s became invalid (unmapped).\n",
               c->str);
        rc = 0;
        goto out;
}

static void security_load_policycaps(void)
{
        selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
                                                  POLICYDB_CAPABILITY_NETPEER);
        selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
                                                  POLICYDB_CAPABILITY_OPENPERM);
}

extern void selinux_complete_init(void);
static int security_preserve_bools(struct policydb *p);

/**
 * security_load_policy - Load a security policy configuration.
 * @data: binary policy data
 * @len: length of data in bytes
 *
 * Load a new set of security policy configuration data,
 * validate it and convert the SID table as necessary.
 * This function will flush the access vector cache after
 * loading the new policy.
 */
int security_load_policy(void *data, size_t len)
{
        struct policydb oldpolicydb, newpolicydb;
        struct sidtab oldsidtab, newsidtab;
        struct convert_context_args args;
        u32 seqno;
        int rc = 0;
        struct policy_file file = { data, len }, *fp = &file;

        if (!ss_initialized) {
                avtab_cache_init();
                if (policydb_read(&policydb, fp)) {
                        avtab_cache_destroy();
                        return -EINVAL;
                }
                if (policydb_load_isids(&policydb, &sidtab)) {
                        policydb_destroy(&policydb);
                        avtab_cache_destroy();
                        return -EINVAL;
                }
                /* Verify that the kernel defined classes are correct. */
                if (validate_classes(&policydb)) {
                        printk(KERN_ERR
                               "SELinux:  the definition of a class is incorrect\n");
                        sidtab_destroy(&sidtab);
                        policydb_destroy(&policydb);
                        avtab_cache_destroy();
                        return -EINVAL;
                }
                security_load_policycaps();
                policydb_loaded_version = policydb.policyvers;
                ss_initialized = 1;
                seqno = ++latest_granting;
                selinux_complete_init();
                avc_ss_reset(seqno);
                selnl_notify_policyload(seqno);
                selinux_netlbl_cache_invalidate();
                selinux_xfrm_notify_policyload();
                return 0;
        }

#if 0
        sidtab_hash_eval(&sidtab, "sids");
#endif

        if (policydb_read(&newpolicydb, fp))
                return -EINVAL;

        if (sidtab_init(&newsidtab)) {
                policydb_destroy(&newpolicydb);
                return -ENOMEM;
        }

        /* Verify that the kernel defined classes are correct. */
        if (validate_classes(&newpolicydb)) {
                printk(KERN_ERR
                       "SELinux:  the definition of a class is incorrect\n");
                rc = -EINVAL;
                goto err;
        }

        rc = security_preserve_bools(&newpolicydb);
        if (rc) {
                printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
                goto err;
        }

        /* Clone the SID table. */
        sidtab_shutdown(&sidtab);
        if (sidtab_map(&sidtab, clone_sid, &newsidtab)) {
                rc = -ENOMEM;
                goto err;
        }

        /*
         * Convert the internal representations of contexts
         * in the new SID table.
         */
        args.oldp = &policydb;
        args.newp = &newpolicydb;
        rc = sidtab_map(&newsidtab, convert_context, &args);
        if (rc)
                goto err;

        /* Save the old policydb and SID table to free later. */
        memcpy(&oldpolicydb, &policydb, sizeof policydb);
        sidtab_set(&oldsidtab, &sidtab);

        /* Install the new policydb and SID table. */
        write_lock_irq(&policy_rwlock);
        memcpy(&policydb, &newpolicydb, sizeof policydb);
        sidtab_set(&sidtab, &newsidtab);
        security_load_policycaps();
        seqno = ++latest_granting;
        policydb_loaded_version = policydb.policyvers;
        write_unlock_irq(&policy_rwlock);

        /* Free the old policydb and SID table. */
        policydb_destroy(&oldpolicydb);
        sidtab_destroy(&oldsidtab);

        avc_ss_reset(seqno);
        selnl_notify_policyload(seqno);
        selinux_netlbl_cache_invalidate();
        selinux_xfrm_notify_policyload();

        return 0;

err:
        sidtab_destroy(&newsidtab);
        policydb_destroy(&newpolicydb);
        return rc;

}

/**
 * security_port_sid - Obtain the SID for a port.
 * @protocol: protocol number
 * @port: port number
 * @out_sid: security identifier
 */
int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
{
        struct ocontext *c;
        int rc = 0;

        read_lock(&policy_rwlock);

        c = policydb.ocontexts[OCON_PORT];
        while (c) {
                if (c->u.port.protocol == protocol &&
                    c->u.port.low_port <= port &&
                    c->u.port.high_port >= port)
                        break;
                c = c->next;
        }

        if (c) {
                if (!c->sid[0]) {
                        rc = sidtab_context_to_sid(&sidtab,
                                                   &c->context[0],
                                                   &c->sid[0]);
                        if (rc)
                                goto out;
                }
                *out_sid = c->sid[0];
        } else {
                *out_sid = SECINITSID_PORT;
        }

out:
        read_unlock(&policy_rwlock);
        return rc;
}

/**
 * security_netif_sid - Obtain the SID for a network interface.
 * @name: interface name
 * @if_sid: interface SID
 */
int security_netif_sid(char *name, u32 *if_sid)
{
        int rc = 0;
        struct ocontext *c;

        read_lock(&policy_rwlock);

        c = policydb.ocontexts[OCON_NETIF];
        while (c) {
                if (strcmp(name, c->u.name) == 0)
                        break;
                c = c->next;
        }

        if (c) {
                if (!c->sid[0] || !c->sid[1]) {
                        rc = sidtab_context_to_sid(&sidtab,
                                                  &c->context[0],
                                                  &c->sid[0]);
                        if (rc)
                                goto out;
                        rc = sidtab_context_to_sid(&sidtab,
                                                   &c->context[1],
                                                   &c->sid[1]);
                        if (rc)
                                goto out;
                }
                *if_sid = c->sid[0];
        } else
                *if_sid = SECINITSID_NETIF;

out:
        read_unlock(&policy_rwlock);
        return rc;
}

static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
{
        int i, fail = 0;

        for (i = 0; i < 4; i++)
                if (addr[i] != (input[i] & mask[i])) {
                        fail = 1;
                        break;
                }

        return !fail;
}

/**
 * security_node_sid - Obtain the SID for a node (host).
 * @domain: communication domain aka address family
 * @addrp: address
 * @addrlen: address length in bytes
 * @out_sid: security identifier
 */
int security_node_sid(u16 domain,
                      void *addrp,
                      u32 addrlen,
                      u32 *out_sid)
{
        int rc = 0;
        struct ocontext *c;

        read_lock(&policy_rwlock);

        switch (domain) {
        case AF_INET: {
                u32 addr;

                if (addrlen != sizeof(u32)) {
                        rc = -EINVAL;
                        goto out;
                }

                addr = *((u32 *)addrp);

                c = policydb.ocontexts[OCON_NODE];
                while (c) {
                        if (c->u.node.addr == (addr & c->u.node.mask))
                                break;
                        c = c->next;
                }
                break;
        }

        case AF_INET6:
                if (addrlen != sizeof(u64) * 2) {
                        rc = -EINVAL;
                        goto out;
                }
                c = policydb.ocontexts[OCON_NODE6];
                while (c) {
                        if (match_ipv6_addrmask(addrp, c->u.node6.addr,
                                                c->u.node6.mask))
                                break;
                        c = c->next;
                }
                break;

        default:
                *out_sid = SECINITSID_NODE;
                goto out;
        }

        if (c) {
                if (!c->sid[0]) {
                        rc = sidtab_context_to_sid(&sidtab,
                                                   &c->context[0],
                                                   &c->sid[0]);
                        if (rc)
                                goto out;
                }
                *out_sid = c->sid[0];
        } else {
                *out_sid = SECINITSID_NODE;
        }

out:
        read_unlock(&policy_rwlock);
        return rc;
}

#define SIDS_NEL 25

/**
 * security_get_user_sids - Obtain reachable SIDs for a user.
 * @fromsid: starting SID
 * @username: username
 * @sids: array of reachable SIDs for user
 * @nel: number of elements in @sids
 *
 * Generate the set of SIDs for legal security contexts
 * for a given user that can be reached by @fromsid.
 * Set *@sids to point to a dynamically allocated
 * array containing the set of SIDs.  Set *@nel to the
 * number of elements in the array.
 */

int security_get_user_sids(u32 fromsid,
                           char *username,
                           u32 **sids,
                           u32 *nel)
{
        struct context *fromcon, usercon;
        u32 *mysids = NULL, *mysids2, sid;
        u32 mynel = 0, maxnel = SIDS_NEL;
        struct user_datum *user;
        struct role_datum *role;
        struct ebitmap_node *rnode, *tnode;
        int rc = 0, i, j;

        *sids = NULL;
        *nel = 0;

        if (!ss_initialized)
                goto out;

        read_lock(&policy_rwlock);

        context_init(&usercon);

        fromcon = sidtab_search(&sidtab, fromsid);
        if (!fromcon) {
                rc = -EINVAL;
                goto out_unlock;
        }

        user = hashtab_search(policydb.p_users.table, username);
        if (!user) {
                rc = -EINVAL;
                goto out_unlock;
        }
        usercon.user = user->value;

        mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
        if (!mysids) {
                rc = -ENOMEM;
                goto out_unlock;
        }

        ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
                role = policydb.role_val_to_struct[i];
                usercon.role = i+1;
                ebitmap_for_each_positive_bit(&role->types, tnode, j) {
                        usercon.type = j+1;

                        if (mls_setup_user_range(fromcon, user, &usercon))
                                continue;

                        rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
                        if (rc)
                                goto out_unlock;
                        if (mynel < maxnel) {
                                mysids[mynel++] = sid;
                        } else {
                                maxnel += SIDS_NEL;
                                mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
                                if (!mysids2) {
                                        rc = -ENOMEM;
                                        goto out_unlock;
                                }
                                memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
                                kfree(mysids);
                                mysids = mysids2;
                                mysids[mynel++] = sid;
                        }
                }
        }

out_unlock:
        read_unlock(&policy_rwlock);
        if (rc || !mynel) {
                kfree(mysids);
                goto out;
        }

        mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
        if (!mysids2) {
                rc = -ENOMEM;
                kfree(mysids);
                goto out;
        }
        for (i = 0, j = 0; i < mynel; i++) {
                rc = avc_has_perm_noaudit(fromsid, mysids[i],
                                          SECCLASS_PROCESS,
                                          PROCESS__TRANSITION, AVC_STRICT,
                                          NULL);
                if (!rc)
                        mysids2[j++] = mysids[i];
                cond_resched();
        }
        rc = 0;
        kfree(mysids);
        *sids = mysids2;
        *nel = j;
out:
        return rc;
}

/**
 * security_genfs_sid - Obtain a SID for a file in a filesystem
 * @fstype: filesystem type
 * @path: path from root of mount
 * @sclass: file security class
 * @sid: SID for path
 *
 * Obtain a SID to use for a file in a filesystem that
 * cannot support xattr or use a fixed labeling behavior like
 * transition SIDs or task SIDs.
 */
int security_genfs_sid(const char *fstype,
                       char *path,
                       u16 sclass,
                       u32 *sid)
{
        int len;
        struct genfs *genfs;
        struct ocontext *c;
        int rc = 0, cmp = 0;

        while (path[0] == '/' && path[1] == '/')
                path++;

        read_lock(&policy_rwlock);

        for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
                cmp = strcmp(fstype, genfs->fstype);
                if (cmp <= 0)
                        break;
        }

        if (!genfs || cmp) {
                *sid = SECINITSID_UNLABELED;
                rc = -ENOENT;
                goto out;
        }

        for (c = genfs->head; c; c = c->next) {
                len = strlen(c->u.name);
                if ((!c->v.sclass || sclass == c->v.sclass) &&
                    (strncmp(c->u.name, path, len) == 0))
                        break;
        }

        if (!c) {
                *sid = SECINITSID_UNLABELED;
                rc = -ENOENT;
                goto out;
        }

        if (!c->sid[0]) {
                rc = sidtab_context_to_sid(&sidtab,
                                           &c->context[0],
                                           &c->sid[0]);
                if (rc)
                        goto out;
        }

        *sid = c->sid[0];
out:
        read_unlock(&policy_rwlock);
        return rc;
}

/**
 * security_fs_use - Determine how to handle labeling for a filesystem.
 * @fstype: filesystem type
 * @behavior: labeling behavior
 * @sid: SID for filesystem (superblock)
 */
int security_fs_use(
        const char *fstype,
        unsigned int *behavior,
        u32 *sid)
{
        int rc = 0;
        struct ocontext *c;

        read_lock(&policy_rwlock);

        c = policydb.ocontexts[OCON_FSUSE];
        while (c) {
                if (strcmp(fstype, c->u.name) == 0)
                        break;
                c = c->next;
        }

        if (c) {
                *behavior = c->v.behavior;
                if (!c->sid[0]) {
                        rc = sidtab_context_to_sid(&sidtab,
                                                   &c->context[0],
                                                   &c->sid[0]);
                        if (rc)
                                goto out;
                }
                *sid = c->sid[0];
        } else {
                rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
                if (rc) {
                        *behavior = SECURITY_FS_USE_NONE;
                        rc = 0;
                } else {
                        *behavior = SECURITY_FS_USE_GENFS;
                }
        }

out:
        read_unlock(&policy_rwlock);
        return rc;
}

int security_get_bools(int *len, char ***names, int **values)
{
        int i, rc = -ENOMEM;

        read_lock(&policy_rwlock);
        *names = NULL;
        *values = NULL;

        *len = policydb.p_bools.nprim;
        if (!*len) {
                rc = 0;
                goto out;
        }

       *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
        if (!*names)
                goto err;

       *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
        if (!*values)
                goto err;

        for (i = 0; i < *len; i++) {
                size_t name_len;
                (*values)[i] = policydb.bool_val_to_struct[i]->state;
                name_len = strlen(policydb.p_bool_val_to_name[i]) + 1;
               (*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
                if (!(*names)[i])
                        goto err;
                strncpy((*names)[i], policydb.p_bool_val_to_name[i], name_len);
                (*names)[i][name_len - 1] = 0;
        }
        rc = 0;
out:
        read_unlock(&policy_rwlock);
        return rc;
err:
        if (*names) {
                for (i = 0; i < *len; i++)
                        kfree((*names)[i]);
        }
        kfree(*values);
        goto out;
}


int security_set_bools(int len, int *values)
{
        int i, rc = 0;
        int lenp, seqno = 0;
        struct cond_node *cur;

        write_lock_irq(&policy_rwlock);

        lenp = policydb.p_bools.nprim;
        if (len != lenp) {
                rc = -EFAULT;
                goto out;
        }

        for (i = 0; i < len; i++) {
                if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
                        audit_log(current->audit_context, GFP_ATOMIC,
                                AUDIT_MAC_CONFIG_CHANGE,
                                "bool=%s val=%d old_val=%d auid=%u ses=%u",
                                policydb.p_bool_val_to_name[i],
                                !!values[i],
                                policydb.bool_val_to_struct[i]->state,
                                audit_get_loginuid(current),
                                audit_get_sessionid(current));
                }
                if (values[i])
                        policydb.bool_val_to_struct[i]->state = 1;
                else
                        policydb.bool_val_to_struct[i]->state = 0;
        }

        for (cur = policydb.cond_list; cur; cur = cur->next) {
                rc = evaluate_cond_node(&policydb, cur);
                if (rc)
                        goto out;
        }

        seqno = ++latest_granting;

out:
        write_unlock_irq(&policy_rwlock);
        if (!rc) {
                avc_ss_reset(seqno);
                selnl_notify_policyload(seqno);
                selinux_xfrm_notify_policyload();
        }
        return rc;
}

int security_get_bool_value(int bool)
{
        int rc = 0;
        int len;

        read_lock(&policy_rwlock);

        len = policydb.p_bools.nprim;
        if (bool >= len) {
                rc = -EFAULT;
                goto out;
        }

        rc = policydb.bool_val_to_struct[bool]->state;
out:
        read_unlock(&policy_rwlock);
        return rc;
}

static int security_preserve_bools(struct policydb *p)
{
        int rc, nbools = 0, *bvalues = NULL, i;
        char **bnames = NULL;
        struct cond_bool_datum *booldatum;
        struct cond_node *cur;

        rc = security_get_bools(&nbools, &bnames, &bvalues);
        if (rc)
                goto out;
        for (i = 0; i < nbools; i++) {
                booldatum = hashtab_search(p->p_bools.table, bnames[i]);
                if (booldatum)
                        booldatum->state = bvalues[i];
        }
        for (cur = p->cond_list; cur; cur = cur->next) {
                rc = evaluate_cond_node(p, cur);
                if (rc)
                        goto out;
        }

out:
        if (bnames) {
                for (i = 0; i < nbools; i++)
                        kfree(bnames[i]);
        }
        kfree(bnames);
        kfree(bvalues);
        return rc;
}

/*
 * security_sid_mls_copy() - computes a new sid based on the given
 * sid and the mls portion of mls_sid.
 */
int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
{
        struct context *context1;
        struct context *context2;
        struct context newcon;
        char *s;
        u32 len;
        int rc = 0;

        if (!ss_initialized || !selinux_mls_enabled) {
                *new_sid = sid;
                goto out;
        }

        context_init(&newcon);

        read_lock(&policy_rwlock);
        context1 = sidtab_search(&sidtab, sid);
        if (!context1) {
                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
                        __func__, sid);
                rc = -EINVAL;
                goto out_unlock;
        }

        context2 = sidtab_search(&sidtab, mls_sid);
        if (!context2) {
                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
                        __func__, mls_sid);
                rc = -EINVAL;
                goto out_unlock;
        }

        newcon.user = context1->user;
        newcon.role = context1->role;
        newcon.type = context1->type;
        rc = mls_context_cpy(&newcon, context2);
        if (rc)
                goto out_unlock;

        /* Check the validity of the new context. */
        if (!policydb_context_isvalid(&policydb, &newcon)) {
                rc = convert_context_handle_invalid_context(&newcon);
                if (rc)
                        goto bad;
        }

        rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
        goto out_unlock;

bad:
        if (!context_struct_to_string(&newcon, &s, &len)) {
                audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
                          "security_sid_mls_copy: invalid context %s", s);
                kfree(s);
        }

out_unlock:
        read_unlock(&policy_rwlock);
        context_destroy(&newcon);
out:
        return rc;
}

/**
 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
 * @nlbl_sid: NetLabel SID
 * @nlbl_type: NetLabel labeling protocol type
 * @xfrm_sid: XFRM SID
 *
 * Description:
 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
 * resolved into a single SID it is returned via @peer_sid and the function
 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
 * returns a negative value.  A table summarizing the behavior is below:
 *
 *                                 | function return |      @sid
 *   ------------------------------+-----------------+-----------------
 *   no peer labels                |        0        |    SECSID_NULL
 *   single peer label             |        0        |    <peer_label>
 *   multiple, consistent labels   |        0        |    <peer_label>
 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
 *
 */
int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
                                 u32 xfrm_sid,
                                 u32 *peer_sid)
{
        int rc;
        struct context *nlbl_ctx;
        struct context *xfrm_ctx;

        /* handle the common (which also happens to be the set of easy) cases
         * right away, these two if statements catch everything involving a
         * single or absent peer SID/label */
        if (xfrm_sid == SECSID_NULL) {
                *peer_sid = nlbl_sid;
                return 0;
        }
        /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
         * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
         * is present */
        if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
                *peer_sid = xfrm_sid;
                return 0;
        }

        /* we don't need to check ss_initialized here since the only way both
         * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
         * security server was initialized and ss_initialized was true */
        if (!selinux_mls_enabled) {
                *peer_sid = SECSID_NULL;
                return 0;
        }

        read_lock(&policy_rwlock);

        nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
        if (!nlbl_ctx) {
                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
                       __func__, nlbl_sid);
                rc = -EINVAL;
                goto out_slowpath;
        }
        xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
        if (!xfrm_ctx) {
                printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
                       __func__, xfrm_sid);
                rc = -EINVAL;
                goto out_slowpath;
        }
        rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);

out_slowpath:
        read_unlock(&policy_rwlock);
        if (rc == 0)
                /* at present NetLabel SIDs/labels really only carry MLS
                 * information so if the MLS portion of the NetLabel SID
                 * matches the MLS portion of the labeled XFRM SID/label
                 * then pass along the XFRM SID as it is the most
                 * expressive */
                *peer_sid = xfrm_sid;
        else
                *peer_sid = SECSID_NULL;
        return rc;
}

static int get_classes_callback(void *k, void *d, void *args)
{
        struct class_datum *datum = d;
        char *name = k, **classes = args;
        int value = datum->value - 1;

        classes[value] = kstrdup(name, GFP_ATOMIC);
        if (!classes[value])
                return -ENOMEM;

        return 0;
}

int security_get_classes(char ***classes, int *nclasses)
{
        int rc = -ENOMEM;

        read_lock(&policy_rwlock);

        *nclasses = policydb.p_classes.nprim;
        *classes = kcalloc(*nclasses, sizeof(*classes), GFP_ATOMIC);
        if (!*classes)
                goto out;

        rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
                        *classes);
        if (rc < 0) {
                int i;
                for (i = 0; i < *nclasses; i++)
                        kfree((*classes)[i]);
                kfree(*classes);
        }

out:
        read_unlock(&policy_rwlock);
        return rc;
}

static int get_permissions_callback(void *k, void *d, void *args)
{
        struct perm_datum *datum = d;
        char *name = k, **perms = args;
        int value = datum->value - 1;

        perms[value] = kstrdup(name, GFP_ATOMIC);
        if (!perms[value])
                return -ENOMEM;

        return 0;
}

int security_get_permissions(char *class, char ***perms, int *nperms)
{
        int rc = -ENOMEM, i;
        struct class_datum *match;

        read_lock(&policy_rwlock);

        match = hashtab_search(policydb.p_classes.table, class);
        if (!match) {
                printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
                        __func__, class);
                rc = -EINVAL;
                goto out;
        }

        *nperms = match->permissions.nprim;
        *perms = kcalloc(*nperms, sizeof(*perms), GFP_ATOMIC);
        if (!*perms)
                goto out;

        if (match->comdatum) {
                rc = hashtab_map(match->comdatum->permissions.table,
                                get_permissions_callback, *perms);
                if (rc < 0)
                        goto err;
        }

        rc = hashtab_map(match->permissions.table, get_permissions_callback,
                        *perms);
        if (rc < 0)
                goto err;

out:
        read_unlock(&policy_rwlock);
        return rc;

err:
        read_unlock(&policy_rwlock);
        for (i = 0; i < *nperms; i++)
                kfree((*perms)[i]);
        kfree(*perms);
        return rc;
}

int security_get_reject_unknown(void)
{
        return policydb.reject_unknown;
}

int security_get_allow_unknown(void)
{
        return policydb.allow_unknown;
}

/**
 * security_policycap_supported - Check for a specific policy capability
 * @req_cap: capability
 *
 * Description:
 * This function queries the currently loaded policy to see if it supports the
 * capability specified by @req_cap.  Returns true (1) if the capability is
 * supported, false (0) if it isn't supported.
 *
 */
int security_policycap_supported(unsigned int req_cap)
{
        int rc;

        read_lock(&policy_rwlock);
        rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
        read_unlock(&policy_rwlock);

        return rc;
}

struct selinux_audit_rule {
        u32 au_seqno;
        struct context au_ctxt;
};

void selinux_audit_rule_free(void *vrule)
{
        struct selinux_audit_rule *rule = vrule;

        if (rule) {
                context_destroy(&rule->au_ctxt);
                kfree(rule);
        }
}

int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
{
        struct selinux_audit_rule *tmprule;
        struct role_datum *roledatum;
        struct type_datum *typedatum;
        struct user_datum *userdatum;
        struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
        int rc = 0;

        *rule = NULL;

        if (!ss_initialized)
                return -EOPNOTSUPP;

        switch (field) {
        case AUDIT_SUBJ_USER:
        case AUDIT_SUBJ_ROLE:
        case AUDIT_SUBJ_TYPE:
        case AUDIT_OBJ_USER:
        case AUDIT_OBJ_ROLE:
        case AUDIT_OBJ_TYPE:
                /* only 'equals' and 'not equals' fit user, role, and type */
                if (op != AUDIT_EQUAL && op != AUDIT_NOT_EQUAL)
                        return -EINVAL;
                break;
        case AUDIT_SUBJ_SEN:
        case AUDIT_SUBJ_CLR:
        case AUDIT_OBJ_LEV_LOW:
        case AUDIT_OBJ_LEV_HIGH:
                /* we do not allow a range, indicated by the presense of '-' */
                if (strchr(rulestr, '-'))
                        return -EINVAL;
                break;
        default:
                /* only the above fields are valid */
                return -EINVAL;
        }

        tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
        if (!tmprule)
                return -ENOMEM;

        context_init(&tmprule->au_ctxt);

        read_lock(&policy_rwlock);

        tmprule->au_seqno = latest_granting;

        switch (field) {
        case AUDIT_SUBJ_USER:
        case AUDIT_OBJ_USER:
                userdatum = hashtab_search(policydb.p_users.table, rulestr);
                if (!userdatum)
                        rc = -EINVAL;
                else
                        tmprule->au_ctxt.user = userdatum->value;
                break;
        case AUDIT_SUBJ_ROLE:
        case AUDIT_OBJ_ROLE:
                roledatum = hashtab_search(policydb.p_roles.table, rulestr);
                if (!roledatum)
                        rc = -EINVAL;
                else
                        tmprule->au_ctxt.role = roledatum->value;
                break;
        case AUDIT_SUBJ_TYPE:
        case AUDIT_OBJ_TYPE:
                typedatum = hashtab_search(policydb.p_types.table, rulestr);
                if (!typedatum)
                        rc = -EINVAL;
                else
                        tmprule->au_ctxt.type = typedatum->value;
                break;
        case AUDIT_SUBJ_SEN:
        case AUDIT_SUBJ_CLR:
        case AUDIT_OBJ_LEV_LOW:
        case AUDIT_OBJ_LEV_HIGH:
                rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
                break;
        }

        read_unlock(&policy_rwlock);

        if (rc) {
                selinux_audit_rule_free(tmprule);
                tmprule = NULL;
        }

        *rule = tmprule;

        return rc;
}

/* Check to see if the rule contains any selinux fields */
int selinux_audit_rule_known(struct audit_krule *rule)
{
        int i;

        for (i = 0; i < rule->field_count; i++) {
                struct audit_field *f = &rule->fields[i];
                switch (f->type) {
                case AUDIT_SUBJ_USER:
                case AUDIT_SUBJ_ROLE:
                case AUDIT_SUBJ_TYPE:
                case AUDIT_SUBJ_SEN:
                case AUDIT_SUBJ_CLR:
                case AUDIT_OBJ_USER:
                case AUDIT_OBJ_ROLE:
                case AUDIT_OBJ_TYPE:
                case AUDIT_OBJ_LEV_LOW:
                case AUDIT_OBJ_LEV_HIGH:
                        return 1;
                }
        }

        return 0;
}

int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
                             struct audit_context *actx)
{
        struct context *ctxt;
        struct mls_level *level;
        struct selinux_audit_rule *rule = vrule;
        int match = 0;

        if (!rule) {
                audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
                          "selinux_audit_rule_match: missing rule\n");
                return -ENOENT;
        }

        read_lock(&policy_rwlock);

        if (rule->au_seqno < latest_granting) {
                audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
                          "selinux_audit_rule_match: stale rule\n");
                match = -ESTALE;
                goto out;
        }

        ctxt = sidtab_search(&sidtab, sid);
        if (!ctxt) {
                audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
                          "selinux_audit_rule_match: unrecognized SID %d\n",
                          sid);
                match = -ENOENT;
                goto out;
        }

        /* a field/op pair that is not caught here will simply fall through
           without a match */
        switch (field) {
        case AUDIT_SUBJ_USER:
        case AUDIT_OBJ_USER:
                switch (op) {
                case AUDIT_EQUAL:
                        match = (ctxt->user == rule->au_ctxt.user);
                        break;
                case AUDIT_NOT_EQUAL:
                        match = (ctxt->user != rule->au_ctxt.user);
                        break;
                }
                break;
        case AUDIT_SUBJ_ROLE:
        case AUDIT_OBJ_ROLE:
                switch (op) {
                case AUDIT_EQUAL:
                        match = (ctxt->role == rule->au_ctxt.role);
                        break;
                case AUDIT_NOT_EQUAL:
                        match = (ctxt->role != rule->au_ctxt.role);
                        break;
                }
                break;
        case AUDIT_SUBJ_TYPE:
        case AUDIT_OBJ_TYPE:
                switch (op) {
                case AUDIT_EQUAL:
                        match = (ctxt->type == rule->au_ctxt.type);
                        break;
                case AUDIT_NOT_EQUAL:
                        match = (ctxt->type != rule->au_ctxt.type);
                        break;
                }
                break;
        case AUDIT_SUBJ_SEN:
        case AUDIT_SUBJ_CLR:
        case AUDIT_OBJ_LEV_LOW:
        case AUDIT_OBJ_LEV_HIGH:
                level = ((field == AUDIT_SUBJ_SEN ||
                          field == AUDIT_OBJ_LEV_LOW) ?
                         &ctxt->range.level[0] : &ctxt->range.level[1]);
                switch (op) {
                case AUDIT_EQUAL:
                        match = mls_level_eq(&rule->au_ctxt.range.level[0],
                                             level);
                        break;
                case AUDIT_NOT_EQUAL:
                        match = !mls_level_eq(&rule->au_ctxt.range.level[0],
                                              level);
                        break;
                case AUDIT_LESS_THAN:
                        match = (mls_level_dom(&rule->au_ctxt.range.level[0],
                                               level) &&
                                 !mls_level_eq(&rule->au_ctxt.range.level[0],
                                               level));
                        break;
                case AUDIT_LESS_THAN_OR_EQUAL:
                        match = mls_level_dom(&rule->au_ctxt.range.level[0],
                                              level);
                        break;
                case AUDIT_GREATER_THAN:
                        match = (mls_level_dom(level,
                                              &rule->au_ctxt.range.level[0]) &&
                                 !mls_level_eq(level,
                                               &rule->au_ctxt.range.level[0]));
                        break;
                case AUDIT_GREATER_THAN_OR_EQUAL:
                        match = mls_level_dom(level,
                                              &rule->au_ctxt.range.level[0]);
                        break;
                }
        }

out:
        read_unlock(&policy_rwlock);
        return match;
}

static int (*aurule_callback)(void) = audit_update_lsm_rules;

static int aurule_avc_callback(u32 event, u32 ssid, u32 tsid,
                               u16 class, u32 perms, u32 *retained)
{
        int err = 0;

        if (event == AVC_CALLBACK_RESET && aurule_callback)
                err = aurule_callback();
        return err;
}

static int __init aurule_init(void)
{
        int err;

        err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET,
                               SECSID_NULL, SECSID_NULL, SECCLASS_NULL, 0);
        if (err)
                panic("avc_add_callback() failed, error %d\n", err);

        return err;
}
__initcall(aurule_init);

#ifdef CONFIG_NETLABEL
/**
 * security_netlbl_cache_add - Add an entry to the NetLabel cache
 * @secattr: the NetLabel packet security attributes
 * @sid: the SELinux SID
 *
 * Description:
 * Attempt to cache the context in @ctx, which was derived from the packet in
 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
 * already been initialized.
 *
 */
static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
                                      u32 sid)
{
        u32 *sid_cache;

        sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
        if (sid_cache == NULL)
                return;
        secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
        if (secattr->cache == NULL) {
                kfree(sid_cache);
                return;
        }

        *sid_cache = sid;
        secattr->cache->free = kfree;
        secattr->cache->data = sid_cache;
        secattr->flags |= NETLBL_SECATTR_CACHE;
}

/**
 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
 * @secattr: the NetLabel packet security attributes
 * @sid: the SELinux SID
 *
 * Description:
 * Convert the given NetLabel security attributes in @secattr into a
 * SELinux SID.  If the @secattr field does not contain a full SELinux
 * SID/context then use SECINITSID_NETMSG as the foundation.  If possibile the
 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
 * allow the @secattr to be used by NetLabel to cache the secattr to SID
 * conversion for future lookups.  Returns zero on success, negative values on
 * failure.
 *
 */
int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
                                   u32 *sid)
{
        int rc = -EIDRM;
        struct context *ctx;
        struct context ctx_new;

        if (!ss_initialized) {
                *sid = SECSID_NULL;
                return 0;
        }

        read_lock(&policy_rwlock);

        if (secattr->flags & NETLBL_SECATTR_CACHE) {
                *sid = *(u32 *)secattr->cache->data;
                rc = 0;
        } else if (secattr->flags & NETLBL_SECATTR_SECID) {
                *sid = secattr->attr.secid;
                rc = 0;
        } else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
                ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
                if (ctx == NULL)
                        goto netlbl_secattr_to_sid_return;

                context_init(&ctx_new);
                ctx_new.user = ctx->user;
                ctx_new.role = ctx->role;
                ctx_new.type = ctx->type;
                mls_import_netlbl_lvl(&ctx_new, secattr);
                if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
                        if (ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
                                                  secattr->attr.mls.cat) != 0)
                                goto netlbl_secattr_to_sid_return;
                        memcpy(&ctx_new.range.level[1].cat,
                               &ctx_new.range.level[0].cat,
                               sizeof(ctx_new.range.level[0].cat));
                }
                if (mls_context_isvalid(&policydb, &ctx_new) != 1)
                        goto netlbl_secattr_to_sid_return_cleanup;

                rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
                if (rc != 0)
                        goto netlbl_secattr_to_sid_return_cleanup;

                security_netlbl_cache_add(secattr, *sid);

                ebitmap_destroy(&ctx_new.range.level[0].cat);
        } else {
                *sid = SECSID_NULL;
                rc = 0;
        }

netlbl_secattr_to_sid_return:
        read_unlock(&policy_rwlock);
        return rc;
netlbl_secattr_to_sid_return_cleanup:
        ebitmap_destroy(&ctx_new.range.level[0].cat);
        goto netlbl_secattr_to_sid_return;
}

/**
 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
 * @sid: the SELinux SID
 * @secattr: the NetLabel packet security attributes
 *
 * Description:
 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
 * Returns zero on success, negative values on failure.
 *
 */
int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
{
        int rc;
        struct context *ctx;

        if (!ss_initialized)
                return 0;

        read_lock(&policy_rwlock);
        ctx = sidtab_search(&sidtab, sid);
        if (ctx == NULL) {
                rc = -ENOENT;
                goto netlbl_sid_to_secattr_failure;
        }
        secattr->domain = kstrdup(policydb.p_type_val_to_name[ctx->type - 1],
                                  GFP_ATOMIC);
        if (secattr->domain == NULL) {
                rc = -ENOMEM;
                goto netlbl_sid_to_secattr_failure;
        }
        secattr->attr.secid = sid;
        secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
        mls_export_netlbl_lvl(ctx, secattr);
        rc = mls_export_netlbl_cat(ctx, secattr);
        if (rc != 0)
                goto netlbl_sid_to_secattr_failure;
        read_unlock(&policy_rwlock);

        return 0;

netlbl_sid_to_secattr_failure:
        read_unlock(&policy_rwlock);
        return rc;
}
#endif /* CONFIG_NETLABEL */

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading