[funini.com] -> [kei@sodan] -> Kernel Reading

root/security/selinux/ss/policydb.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. policydb_lookup_compat
  2. roles_init
  3. policydb_init
  4. common_index
  5. class_index
  6. role_index
  7. type_index
  8. user_index
  9. sens_index
  10. cat_index
  11. policydb_index_classes
  12. symtab_hash_eval
  13. policydb_index_others
  14. perm_destroy
  15. common_destroy
  16. cls_destroy
  17. role_destroy
  18. type_destroy
  19. user_destroy
  20. sens_destroy
  21. cat_destroy
  22. ocontext_destroy
  23. policydb_destroy
  24. policydb_load_isids
  25. policydb_class_isvalid
  26. policydb_role_isvalid
  27. policydb_type_isvalid
  28. policydb_context_isvalid
  29. mls_read_range_helper
  30. context_read_and_validate
  31. perm_read
  32. common_read
  33. read_cons_helper
  34. class_read
  35. role_read
  36. type_read
  37. mls_read_level
  38. user_read
  39. sens_read
  40. cat_read
  41. user_bounds_sanity_check
  42. role_bounds_sanity_check
  43. type_bounds_sanity_check
  44. policydb_bounds_sanity_check
  45. policydb_read

/*
 * Implementation of the policy database.
 *
 * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
 */

/*
 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
 *
 *      Support for enhanced MLS infrastructure.
 *
 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
 *
 *      Added conditional policy language extensions
 *
 * Updated: Hewlett-Packard <paul.moore@hp.com>
 *
 *      Added support for the policy capability bitmap
 *
 * Copyright (C) 2007 Hewlett-Packard Development Company, L.P.
 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
 * Copyright (C) 2003 - 2004 Tresys Technology, LLC
 *      This program is free software; you can redistribute it and/or modify
 *      it under the terms of the GNU General Public License as published by
 *      the Free Software Foundation, version 2.
 */

#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/errno.h>
#include <linux/audit.h>
#include "security.h"

#include "policydb.h"
#include "conditional.h"
#include "mls.h"

#define _DEBUG_HASHES

#ifdef DEBUG_HASHES
static char *symtab_name[SYM_NUM] = {
        "common prefixes",
        "classes",
        "roles",
        "types",
        "users",
        "bools",
        "levels",
        "categories",
};
#endif

int selinux_mls_enabled;

static unsigned int symtab_sizes[SYM_NUM] = {
        2,
        32,
        16,
        512,
        128,
        16,
        16,
        16,
};

struct policydb_compat_info {
        int version;
        int sym_num;
        int ocon_num;
};

/* These need to be updated if SYM_NUM or OCON_NUM changes */
static struct policydb_compat_info policydb_compat[] = {
        {
                .version        = POLICYDB_VERSION_BASE,
                .sym_num        = SYM_NUM - 3,
                .ocon_num       = OCON_NUM - 1,
        },
        {
                .version        = POLICYDB_VERSION_BOOL,
                .sym_num        = SYM_NUM - 2,
                .ocon_num       = OCON_NUM - 1,
        },
        {
                .version        = POLICYDB_VERSION_IPV6,
                .sym_num        = SYM_NUM - 2,
                .ocon_num       = OCON_NUM,
        },
        {
                .version        = POLICYDB_VERSION_NLCLASS,
                .sym_num        = SYM_NUM - 2,
                .ocon_num       = OCON_NUM,
        },
        {
                .version        = POLICYDB_VERSION_MLS,
                .sym_num        = SYM_NUM,
                .ocon_num       = OCON_NUM,
        },
        {
                .version        = POLICYDB_VERSION_AVTAB,
                .sym_num        = SYM_NUM,
                .ocon_num       = OCON_NUM,
        },
        {
                .version        = POLICYDB_VERSION_RANGETRANS,
                .sym_num        = SYM_NUM,
                .ocon_num       = OCON_NUM,
        },
        {
                .version        = POLICYDB_VERSION_POLCAP,
                .sym_num        = SYM_NUM,
                .ocon_num       = OCON_NUM,
        },
        {
                .version        = POLICYDB_VERSION_PERMISSIVE,
                .sym_num        = SYM_NUM,
                .ocon_num       = OCON_NUM,
        },
        {
                .version        = POLICYDB_VERSION_BOUNDARY,
                .sym_num        = SYM_NUM,
                .ocon_num       = OCON_NUM,
        },
};

static struct policydb_compat_info *policydb_lookup_compat(int version)
{
        int i;
        struct policydb_compat_info *info = NULL;

        for (i = 0; i < ARRAY_SIZE(policydb_compat); i++) {
                if (policydb_compat[i].version == version) {
                        info = &policydb_compat[i];
                        break;
                }
        }
        return info;
}

/*
 * Initialize the role table.
 */
static int roles_init(struct policydb *p)
{
        char *key = NULL;
        int rc;
        struct role_datum *role;

        role = kzalloc(sizeof(*role), GFP_KERNEL);
        if (!role) {
                rc = -ENOMEM;
                goto out;
        }
        role->value = ++p->p_roles.nprim;
        if (role->value != OBJECT_R_VAL) {
                rc = -EINVAL;
                goto out_free_role;
        }
        key = kmalloc(strlen(OBJECT_R)+1, GFP_KERNEL);
        if (!key) {
                rc = -ENOMEM;
                goto out_free_role;
        }
        strcpy(key, OBJECT_R);
        rc = hashtab_insert(p->p_roles.table, key, role);
        if (rc)
                goto out_free_key;
out:
        return rc;

out_free_key:
        kfree(key);
out_free_role:
        kfree(role);
        goto out;
}

/*
 * Initialize a policy database structure.
 */
static int policydb_init(struct policydb *p)
{
        int i, rc;

        memset(p, 0, sizeof(*p));

        for (i = 0; i < SYM_NUM; i++) {
                rc = symtab_init(&p->symtab[i], symtab_sizes[i]);
                if (rc)
                        goto out_free_symtab;
        }

        rc = avtab_init(&p->te_avtab);
        if (rc)
                goto out_free_symtab;

        rc = roles_init(p);
        if (rc)
                goto out_free_symtab;

        rc = cond_policydb_init(p);
        if (rc)
                goto out_free_symtab;

        ebitmap_init(&p->policycaps);
        ebitmap_init(&p->permissive_map);

out:
        return rc;

out_free_symtab:
        for (i = 0; i < SYM_NUM; i++)
                hashtab_destroy(p->symtab[i].table);
        goto out;
}

/*
 * The following *_index functions are used to
 * define the val_to_name and val_to_struct arrays
 * in a policy database structure.  The val_to_name
 * arrays are used when converting security context
 * structures into string representations.  The
 * val_to_struct arrays are used when the attributes
 * of a class, role, or user are needed.
 */

static int common_index(void *key, void *datum, void *datap)
{
        struct policydb *p;
        struct common_datum *comdatum;

        comdatum = datum;
        p = datap;
        if (!comdatum->value || comdatum->value > p->p_commons.nprim)
                return -EINVAL;
        p->p_common_val_to_name[comdatum->value - 1] = key;
        return 0;
}

static int class_index(void *key, void *datum, void *datap)
{
        struct policydb *p;
        struct class_datum *cladatum;

        cladatum = datum;
        p = datap;
        if (!cladatum->value || cladatum->value > p->p_classes.nprim)
                return -EINVAL;
        p->p_class_val_to_name[cladatum->value - 1] = key;
        p->class_val_to_struct[cladatum->value - 1] = cladatum;
        return 0;
}

static int role_index(void *key, void *datum, void *datap)
{
        struct policydb *p;
        struct role_datum *role;

        role = datum;
        p = datap;
        if (!role->value
            || role->value > p->p_roles.nprim
            || role->bounds > p->p_roles.nprim)
                return -EINVAL;
        p->p_role_val_to_name[role->value - 1] = key;
        p->role_val_to_struct[role->value - 1] = role;
        return 0;
}

static int type_index(void *key, void *datum, void *datap)
{
        struct policydb *p;
        struct type_datum *typdatum;

        typdatum = datum;
        p = datap;

        if (typdatum->primary) {
                if (!typdatum->value
                    || typdatum->value > p->p_types.nprim
                    || typdatum->bounds > p->p_types.nprim)
                        return -EINVAL;
                p->p_type_val_to_name[typdatum->value - 1] = key;
                p->type_val_to_struct[typdatum->value - 1] = typdatum;
        }

        return 0;
}

static int user_index(void *key, void *datum, void *datap)
{
        struct policydb *p;
        struct user_datum *usrdatum;

        usrdatum = datum;
        p = datap;
        if (!usrdatum->value
            || usrdatum->value > p->p_users.nprim
            || usrdatum->bounds > p->p_users.nprim)
                return -EINVAL;
        p->p_user_val_to_name[usrdatum->value - 1] = key;
        p->user_val_to_struct[usrdatum->value - 1] = usrdatum;
        return 0;
}

static int sens_index(void *key, void *datum, void *datap)
{
        struct policydb *p;
        struct level_datum *levdatum;

        levdatum = datum;
        p = datap;

        if (!levdatum->isalias) {
                if (!levdatum->level->sens ||
                    levdatum->level->sens > p->p_levels.nprim)
                        return -EINVAL;
                p->p_sens_val_to_name[levdatum->level->sens - 1] = key;
        }

        return 0;
}

static int cat_index(void *key, void *datum, void *datap)
{
        struct policydb *p;
        struct cat_datum *catdatum;

        catdatum = datum;
        p = datap;

        if (!catdatum->isalias) {
                if (!catdatum->value || catdatum->value > p->p_cats.nprim)
                        return -EINVAL;
                p->p_cat_val_to_name[catdatum->value - 1] = key;
        }

        return 0;
}

static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) =
{
        common_index,
        class_index,
        role_index,
        type_index,
        user_index,
        cond_index_bool,
        sens_index,
        cat_index,
};

/*
 * Define the common val_to_name array and the class
 * val_to_name and val_to_struct arrays in a policy
 * database structure.
 *
 * Caller must clean up upon failure.
 */
static int policydb_index_classes(struct policydb *p)
{
        int rc;

        p->p_common_val_to_name =
                kmalloc(p->p_commons.nprim * sizeof(char *), GFP_KERNEL);
        if (!p->p_common_val_to_name) {
                rc = -ENOMEM;
                goto out;
        }

        rc = hashtab_map(p->p_commons.table, common_index, p);
        if (rc)
                goto out;

        p->class_val_to_struct =
                kmalloc(p->p_classes.nprim * sizeof(*(p->class_val_to_struct)), GFP_KERNEL);
        if (!p->class_val_to_struct) {
                rc = -ENOMEM;
                goto out;
        }

        p->p_class_val_to_name =
                kmalloc(p->p_classes.nprim * sizeof(char *), GFP_KERNEL);
        if (!p->p_class_val_to_name) {
                rc = -ENOMEM;
                goto out;
        }

        rc = hashtab_map(p->p_classes.table, class_index, p);
out:
        return rc;
}

#ifdef DEBUG_HASHES
static void symtab_hash_eval(struct symtab *s)
{
        int i;

        for (i = 0; i < SYM_NUM; i++) {
                struct hashtab *h = s[i].table;
                struct hashtab_info info;

                hashtab_stat(h, &info);
                printk(KERN_DEBUG "SELinux: %s:  %d entries and %d/%d buckets used, "
                       "longest chain length %d\n", symtab_name[i], h->nel,
                       info.slots_used, h->size, info.max_chain_len);
        }
}
#endif

/*
 * Define the other val_to_name and val_to_struct arrays
 * in a policy database structure.
 *
 * Caller must clean up on failure.
 */
static int policydb_index_others(struct policydb *p)
{
        int i, rc = 0;

        printk(KERN_DEBUG "SELinux:  %d users, %d roles, %d types, %d bools",
               p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim);
        if (selinux_mls_enabled)
                printk(", %d sens, %d cats", p->p_levels.nprim,
                       p->p_cats.nprim);
        printk("\n");

        printk(KERN_DEBUG "SELinux:  %d classes, %d rules\n",
               p->p_classes.nprim, p->te_avtab.nel);

#ifdef DEBUG_HASHES
        avtab_hash_eval(&p->te_avtab, "rules");
        symtab_hash_eval(p->symtab);
#endif

        p->role_val_to_struct =
                kmalloc(p->p_roles.nprim * sizeof(*(p->role_val_to_struct)),
                        GFP_KERNEL);
        if (!p->role_val_to_struct) {
                rc = -ENOMEM;
                goto out;
        }

        p->user_val_to_struct =
                kmalloc(p->p_users.nprim * sizeof(*(p->user_val_to_struct)),
                        GFP_KERNEL);
        if (!p->user_val_to_struct) {
                rc = -ENOMEM;
                goto out;
        }

        p->type_val_to_struct =
                kmalloc(p->p_types.nprim * sizeof(*(p->type_val_to_struct)),
                        GFP_KERNEL);
        if (!p->type_val_to_struct) {
                rc = -ENOMEM;
                goto out;
        }

        if (cond_init_bool_indexes(p)) {
                rc = -ENOMEM;
                goto out;
        }

        for (i = SYM_ROLES; i < SYM_NUM; i++) {
                p->sym_val_to_name[i] =
                        kmalloc(p->symtab[i].nprim * sizeof(char *), GFP_KERNEL);
                if (!p->sym_val_to_name[i]) {
                        rc = -ENOMEM;
                        goto out;
                }
                rc = hashtab_map(p->symtab[i].table, index_f[i], p);
                if (rc)
                        goto out;
        }

out:
        return rc;
}

/*
 * The following *_destroy functions are used to
 * free any memory allocated for each kind of
 * symbol data in the policy database.
 */

static int perm_destroy(void *key, void *datum, void *p)
{
        kfree(key);
        kfree(datum);
        return 0;
}

static int common_destroy(void *key, void *datum, void *p)
{
        struct common_datum *comdatum;

        kfree(key);
        comdatum = datum;
        hashtab_map(comdatum->permissions.table, perm_destroy, NULL);
        hashtab_destroy(comdatum->permissions.table);
        kfree(datum);
        return 0;
}

static int cls_destroy(void *key, void *datum, void *p)
{
        struct class_datum *cladatum;
        struct constraint_node *constraint, *ctemp;
        struct constraint_expr *e, *etmp;

        kfree(key);
        cladatum = datum;
        hashtab_map(cladatum->permissions.table, perm_destroy, NULL);
        hashtab_destroy(cladatum->permissions.table);
        constraint = cladatum->constraints;
        while (constraint) {
                e = constraint->expr;
                while (e) {
                        ebitmap_destroy(&e->names);
                        etmp = e;
                        e = e->next;
                        kfree(etmp);
                }
                ctemp = constraint;
                constraint = constraint->next;
                kfree(ctemp);
        }

        constraint = cladatum->validatetrans;
        while (constraint) {
                e = constraint->expr;
                while (e) {
                        ebitmap_destroy(&e->names);
                        etmp = e;
                        e = e->next;
                        kfree(etmp);
                }
                ctemp = constraint;
                constraint = constraint->next;
                kfree(ctemp);
        }

        kfree(cladatum->comkey);
        kfree(datum);
        return 0;
}

static int role_destroy(void *key, void *datum, void *p)
{
        struct role_datum *role;

        kfree(key);
        role = datum;
        ebitmap_destroy(&role->dominates);
        ebitmap_destroy(&role->types);
        kfree(datum);
        return 0;
}

static int type_destroy(void *key, void *datum, void *p)
{
        kfree(key);
        kfree(datum);
        return 0;
}

static int user_destroy(void *key, void *datum, void *p)
{
        struct user_datum *usrdatum;

        kfree(key);
        usrdatum = datum;
        ebitmap_destroy(&usrdatum->roles);
        ebitmap_destroy(&usrdatum->range.level[0].cat);
        ebitmap_destroy(&usrdatum->range.level[1].cat);
        ebitmap_destroy(&usrdatum->dfltlevel.cat);
        kfree(datum);
        return 0;
}

static int sens_destroy(void *key, void *datum, void *p)
{
        struct level_datum *levdatum;

        kfree(key);
        levdatum = datum;
        ebitmap_destroy(&levdatum->level->cat);
        kfree(levdatum->level);
        kfree(datum);
        return 0;
}

static int cat_destroy(void *key, void *datum, void *p)
{
        kfree(key);
        kfree(datum);
        return 0;
}

static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) =
{
        common_destroy,
        cls_destroy,
        role_destroy,
        type_destroy,
        user_destroy,
        cond_destroy_bool,
        sens_destroy,
        cat_destroy,
};

static void ocontext_destroy(struct ocontext *c, int i)
{
        context_destroy(&c->context[0]);
        context_destroy(&c->context[1]);
        if (i == OCON_ISID || i == OCON_FS ||
            i == OCON_NETIF || i == OCON_FSUSE)
                kfree(c->u.name);
        kfree(c);
}

/*
 * Free any memory allocated by a policy database structure.
 */
void policydb_destroy(struct policydb *p)
{
        struct ocontext *c, *ctmp;
        struct genfs *g, *gtmp;
        int i;
        struct role_allow *ra, *lra = NULL;
        struct role_trans *tr, *ltr = NULL;
        struct range_trans *rt, *lrt = NULL;

        for (i = 0; i < SYM_NUM; i++) {
                cond_resched();
                hashtab_map(p->symtab[i].table, destroy_f[i], NULL);
                hashtab_destroy(p->symtab[i].table);
        }

        for (i = 0; i < SYM_NUM; i++)
                kfree(p->sym_val_to_name[i]);

        kfree(p->class_val_to_struct);
        kfree(p->role_val_to_struct);
        kfree(p->user_val_to_struct);
        kfree(p->type_val_to_struct);

        avtab_destroy(&p->te_avtab);

        for (i = 0; i < OCON_NUM; i++) {
                cond_resched();
                c = p->ocontexts[i];
                while (c) {
                        ctmp = c;
                        c = c->next;
                        ocontext_destroy(ctmp, i);
                }
                p->ocontexts[i] = NULL;
        }

        g = p->genfs;
        while (g) {
                cond_resched();
                kfree(g->fstype);
                c = g->head;
                while (c) {
                        ctmp = c;
                        c = c->next;
                        ocontext_destroy(ctmp, OCON_FSUSE);
                }
                gtmp = g;
                g = g->next;
                kfree(gtmp);
        }
        p->genfs = NULL;

        cond_policydb_destroy(p);

        for (tr = p->role_tr; tr; tr = tr->next) {
                cond_resched();
                kfree(ltr);
                ltr = tr;
        }
        kfree(ltr);

        for (ra = p->role_allow; ra; ra = ra->next) {
                cond_resched();
                kfree(lra);
                lra = ra;
        }
        kfree(lra);

        for (rt = p->range_tr; rt; rt = rt->next) {
                cond_resched();
                if (lrt) {
                        ebitmap_destroy(&lrt->target_range.level[0].cat);
                        ebitmap_destroy(&lrt->target_range.level[1].cat);
                        kfree(lrt);
                }
                lrt = rt;
        }
        if (lrt) {
                ebitmap_destroy(&lrt->target_range.level[0].cat);
                ebitmap_destroy(&lrt->target_range.level[1].cat);
                kfree(lrt);
        }

        if (p->type_attr_map) {
                for (i = 0; i < p->p_types.nprim; i++)
                        ebitmap_destroy(&p->type_attr_map[i]);
        }
        kfree(p->type_attr_map);
        kfree(p->undefined_perms);
        ebitmap_destroy(&p->policycaps);
        ebitmap_destroy(&p->permissive_map);

        return;
}

/*
 * Load the initial SIDs specified in a policy database
 * structure into a SID table.
 */
int policydb_load_isids(struct policydb *p, struct sidtab *s)
{
        struct ocontext *head, *c;
        int rc;

        rc = sidtab_init(s);
        if (rc) {
                printk(KERN_ERR "SELinux:  out of memory on SID table init\n");
                goto out;
        }

        head = p->ocontexts[OCON_ISID];
        for (c = head; c; c = c->next) {
                if (!c->context[0].user) {
                        printk(KERN_ERR "SELinux:  SID %s was never "
                               "defined.\n", c->u.name);
                        rc = -EINVAL;
                        goto out;
                }
                if (sidtab_insert(s, c->sid[0], &c->context[0])) {
                        printk(KERN_ERR "SELinux:  unable to load initial "
                               "SID %s.\n", c->u.name);
                        rc = -EINVAL;
                        goto out;
                }
        }
out:
        return rc;
}

int policydb_class_isvalid(struct policydb *p, unsigned int class)
{
        if (!class || class > p->p_classes.nprim)
                return 0;
        return 1;
}

int policydb_role_isvalid(struct policydb *p, unsigned int role)
{
        if (!role || role > p->p_roles.nprim)
                return 0;
        return 1;
}

int policydb_type_isvalid(struct policydb *p, unsigned int type)
{
        if (!type || type > p->p_types.nprim)
                return 0;
        return 1;
}

/*
 * Return 1 if the fields in the security context
 * structure `c' are valid.  Return 0 otherwise.
 */
int policydb_context_isvalid(struct policydb *p, struct context *c)
{
        struct role_datum *role;
        struct user_datum *usrdatum;

        if (!c->role || c->role > p->p_roles.nprim)
                return 0;

        if (!c->user || c->user > p->p_users.nprim)
                return 0;

        if (!c->type || c->type > p->p_types.nprim)
                return 0;

        if (c->role != OBJECT_R_VAL) {
                /*
                 * Role must be authorized for the type.
                 */
                role = p->role_val_to_struct[c->role - 1];
                if (!ebitmap_get_bit(&role->types,
                                     c->type - 1))
                        /* role may not be associated with type */
                        return 0;

                /*
                 * User must be authorized for the role.
                 */
                usrdatum = p->user_val_to_struct[c->user - 1];
                if (!usrdatum)
                        return 0;

                if (!ebitmap_get_bit(&usrdatum->roles,
                                     c->role - 1))
                        /* user may not be associated with role */
                        return 0;
        }

        if (!mls_context_isvalid(p, c))
                return 0;

        return 1;
}

/*
 * Read a MLS range structure from a policydb binary
 * representation file.
 */
static int mls_read_range_helper(struct mls_range *r, void *fp)
{
        __le32 buf[2];
        u32 items;
        int rc;

        rc = next_entry(buf, fp, sizeof(u32));
        if (rc < 0)
                goto out;

        items = le32_to_cpu(buf[0]);
        if (items > ARRAY_SIZE(buf)) {
                printk(KERN_ERR "SELinux: mls:  range overflow\n");
                rc = -EINVAL;
                goto out;
        }
        rc = next_entry(buf, fp, sizeof(u32) * items);
        if (rc < 0) {
                printk(KERN_ERR "SELinux: mls:  truncated range\n");
                goto out;
        }
        r->level[0].sens = le32_to_cpu(buf[0]);
        if (items > 1)
                r->level[1].sens = le32_to_cpu(buf[1]);
        else
                r->level[1].sens = r->level[0].sens;

        rc = ebitmap_read(&r->level[0].cat, fp);
        if (rc) {
                printk(KERN_ERR "SELinux: mls:  error reading low "
                       "categories\n");
                goto out;
        }
        if (items > 1) {
                rc = ebitmap_read(&r->level[1].cat, fp);
                if (rc) {
                        printk(KERN_ERR "SELinux: mls:  error reading high "
                               "categories\n");
                        goto bad_high;
                }
        } else {
                rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat);
                if (rc) {
                        printk(KERN_ERR "SELinux: mls:  out of memory\n");
                        goto bad_high;
                }
        }

        rc = 0;
out:
        return rc;
bad_high:
        ebitmap_destroy(&r->level[0].cat);
        goto out;
}

/*
 * Read and validate a security context structure
 * from a policydb binary representation file.
 */
static int context_read_and_validate(struct context *c,
                                     struct policydb *p,
                                     void *fp)
{
        __le32 buf[3];
        int rc;

        rc = next_entry(buf, fp, sizeof buf);
        if (rc < 0) {
                printk(KERN_ERR "SELinux: context truncated\n");
                goto out;
        }
        c->user = le32_to_cpu(buf[0]);
        c->role = le32_to_cpu(buf[1]);
        c->type = le32_to_cpu(buf[2]);
        if (p->policyvers >= POLICYDB_VERSION_MLS) {
                if (mls_read_range_helper(&c->range, fp)) {
                        printk(KERN_ERR "SELinux: error reading MLS range of "
                               "context\n");
                        rc = -EINVAL;
                        goto out;
                }
        }

        if (!policydb_context_isvalid(p, c)) {
                printk(KERN_ERR "SELinux:  invalid security context\n");
                context_destroy(c);
                rc = -EINVAL;
        }
out:
        return rc;
}

/*
 * The following *_read functions are used to
 * read the symbol data from a policy database
 * binary representation file.
 */

static int perm_read(struct policydb *p, struct hashtab *h, void *fp)
{
        char *key = NULL;
        struct perm_datum *perdatum;
        int rc;
        __le32 buf[2];
        u32 len;

        perdatum = kzalloc(sizeof(*perdatum), GFP_KERNEL);
        if (!perdatum) {
                rc = -ENOMEM;
                goto out;
        }

        rc = next_entry(buf, fp, sizeof buf);
        if (rc < 0)
                goto bad;

        len = le32_to_cpu(buf[0]);
        perdatum->value = le32_to_cpu(buf[1]);

        key = kmalloc(len + 1, GFP_KERNEL);
        if (!key) {
                rc = -ENOMEM;
                goto bad;
        }
        rc = next_entry(key, fp, len);
        if (rc < 0)
                goto bad;
        key[len] = '\0';

        rc = hashtab_insert(h, key, perdatum);
        if (rc)
                goto bad;
out:
        return rc;
bad:
        perm_destroy(key, perdatum, NULL);
        goto out;
}

static int common_read(struct policydb *p, struct hashtab *h, void *fp)
{
        char *key = NULL;
        struct common_datum *comdatum;
        __le32 buf[4];
        u32 len, nel;
        int i, rc;

        comdatum = kzalloc(sizeof(*comdatum), GFP_KERNEL);
        if (!comdatum) {
                rc = -ENOMEM;
                goto out;
        }

        rc = next_entry(buf, fp, sizeof buf);
        if (rc < 0)
                goto bad;

        len = le32_to_cpu(buf[0]);
        comdatum->value = le32_to_cpu(buf[1]);

        rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE);
        if (rc)
                goto bad;
        comdatum->permissions.nprim = le32_to_cpu(buf[2]);
        nel = le32_to_cpu(buf[3]);

        key = kmalloc(len + 1, GFP_KERNEL);
        if (!key) {
                rc = -ENOMEM;
                goto bad;
        }
        rc = next_entry(key, fp, len);
        if (rc < 0)
                goto bad;
        key[len] = '\0';

        for (i = 0; i < nel; i++) {
                rc = perm_read(p, comdatum->permissions.table, fp);
                if (rc)
                        goto bad;
        }

        rc = hashtab_insert(h, key, comdatum);
        if (rc)
                goto bad;
out:
        return rc;
bad:
        common_destroy(key, comdatum, NULL);
        goto out;
}

static int read_cons_helper(struct constraint_node **nodep, int ncons,
                            int allowxtarget, void *fp)
{
        struct constraint_node *c, *lc;
        struct constraint_expr *e, *le;
        __le32 buf[3];
        u32 nexpr;
        int rc, i, j, depth;

        lc = NULL;
        for (i = 0; i < ncons; i++) {
                c = kzalloc(sizeof(*c), GFP_KERNEL);
                if (!c)
                        return -ENOMEM;

                if (lc)
                        lc->next = c;
                else
                        *nodep = c;

                rc = next_entry(buf, fp, (sizeof(u32) * 2));
                if (rc < 0)
                        return rc;
                c->permissions = le32_to_cpu(buf[0]);
                nexpr = le32_to_cpu(buf[1]);
                le = NULL;
                depth = -1;
                for (j = 0; j < nexpr; j++) {
                        e = kzalloc(sizeof(*e), GFP_KERNEL);
                        if (!e)
                                return -ENOMEM;

                        if (le)
                                le->next = e;
                        else
                                c->expr = e;

                        rc = next_entry(buf, fp, (sizeof(u32) * 3));
                        if (rc < 0)
                                return rc;
                        e->expr_type = le32_to_cpu(buf[0]);
                        e->attr = le32_to_cpu(buf[1]);
                        e->op = le32_to_cpu(buf[2]);

                        switch (e->expr_type) {
                        case CEXPR_NOT:
                                if (depth < 0)
                                        return -EINVAL;
                                break;
                        case CEXPR_AND:
                        case CEXPR_OR:
                                if (depth < 1)
                                        return -EINVAL;
                                depth--;
                                break;
                        case CEXPR_ATTR:
                                if (depth == (CEXPR_MAXDEPTH - 1))
                                        return -EINVAL;
                                depth++;
                                break;
                        case CEXPR_NAMES:
                                if (!allowxtarget && (e->attr & CEXPR_XTARGET))
                                        return -EINVAL;
                                if (depth == (CEXPR_MAXDEPTH - 1))
                                        return -EINVAL;
                                depth++;
                                if (ebitmap_read(&e->names, fp))
                                        return -EINVAL;
                                break;
                        default:
                                return -EINVAL;
                        }
                        le = e;
                }
                if (depth != 0)
                        return -EINVAL;
                lc = c;
        }

        return 0;
}

static int class_read(struct policydb *p, struct hashtab *h, void *fp)
{
        char *key = NULL;
        struct class_datum *cladatum;
        __le32 buf[6];
        u32 len, len2, ncons, nel;
        int i, rc;

        cladatum = kzalloc(sizeof(*cladatum), GFP_KERNEL);
        if (!cladatum) {
                rc = -ENOMEM;
                goto out;
        }

        rc = next_entry(buf, fp, sizeof(u32)*6);
        if (rc < 0)
                goto bad;

        len = le32_to_cpu(buf[0]);
        len2 = le32_to_cpu(buf[1]);
        cladatum->value = le32_to_cpu(buf[2]);

        rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE);
        if (rc)
                goto bad;
        cladatum->permissions.nprim = le32_to_cpu(buf[3]);
        nel = le32_to_cpu(buf[4]);

        ncons = le32_to_cpu(buf[5]);

        key = kmalloc(len + 1, GFP_KERNEL);
        if (!key) {
                rc = -ENOMEM;
                goto bad;
        }
        rc = next_entry(key, fp, len);
        if (rc < 0)
                goto bad;
        key[len] = '\0';

        if (len2) {
                cladatum->comkey = kmalloc(len2 + 1, GFP_KERNEL);
                if (!cladatum->comkey) {
                        rc = -ENOMEM;
                        goto bad;
                }
                rc = next_entry(cladatum->comkey, fp, len2);
                if (rc < 0)
                        goto bad;
                cladatum->comkey[len2] = '\0';

                cladatum->comdatum = hashtab_search(p->p_commons.table,
                                                    cladatum->comkey);
                if (!cladatum->comdatum) {
                        printk(KERN_ERR "SELinux:  unknown common %s\n",
                               cladatum->comkey);
                        rc = -EINVAL;
                        goto bad;
                }
        }
        for (i = 0; i < nel; i++) {
                rc = perm_read(p, cladatum->permissions.table, fp);
                if (rc)
                        goto bad;
        }

        rc = read_cons_helper(&cladatum->constraints, ncons, 0, fp);
        if (rc)
                goto bad;

        if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) {
                /* grab the validatetrans rules */
                rc = next_entry(buf, fp, sizeof(u32));
                if (rc < 0)
                        goto bad;
                ncons = le32_to_cpu(buf[0]);
                rc = read_cons_helper(&cladatum->validatetrans, ncons, 1, fp);
                if (rc)
                        goto bad;
        }

        rc = hashtab_insert(h, key, cladatum);
        if (rc)
                goto bad;

        rc = 0;
out:
        return rc;
bad:
        cls_destroy(key, cladatum, NULL);
        goto out;
}

static int role_read(struct policydb *p, struct hashtab *h, void *fp)
{
        char *key = NULL;
        struct role_datum *role;
        int rc, to_read = 2;
        __le32 buf[3];
        u32 len;

        role = kzalloc(sizeof(*role), GFP_KERNEL);
        if (!role) {
                rc = -ENOMEM;
                goto out;
        }

        if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
                to_read = 3;

        rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
        if (rc < 0)
                goto bad;

        len = le32_to_cpu(buf[0]);
        role->value = le32_to_cpu(buf[1]);
        if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
                role->bounds = le32_to_cpu(buf[2]);

        key = kmalloc(len + 1, GFP_KERNEL);
        if (!key) {
                rc = -ENOMEM;
                goto bad;
        }
        rc = next_entry(key, fp, len);
        if (rc < 0)
                goto bad;
        key[len] = '\0';

        rc = ebitmap_read(&role->dominates, fp);
        if (rc)
                goto bad;

        rc = ebitmap_read(&role->types, fp);
        if (rc)
                goto bad;

        if (strcmp(key, OBJECT_R) == 0) {
                if (role->value != OBJECT_R_VAL) {
                        printk(KERN_ERR "SELinux: Role %s has wrong value %d\n",
                               OBJECT_R, role->value);
                        rc = -EINVAL;
                        goto bad;
                }
                rc = 0;
                goto bad;
        }

        rc = hashtab_insert(h, key, role);
        if (rc)
                goto bad;
out:
        return rc;
bad:
        role_destroy(key, role, NULL);
        goto out;
}

static int type_read(struct policydb *p, struct hashtab *h, void *fp)
{
        char *key = NULL;
        struct type_datum *typdatum;
        int rc, to_read = 3;
        __le32 buf[4];
        u32 len;

        typdatum = kzalloc(sizeof(*typdatum), GFP_KERNEL);
        if (!typdatum) {
                rc = -ENOMEM;
                return rc;
        }

        if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
                to_read = 4;

        rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
        if (rc < 0)
                goto bad;

        len = le32_to_cpu(buf[0]);
        typdatum->value = le32_to_cpu(buf[1]);
        if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) {
                u32 prop = le32_to_cpu(buf[2]);

                if (prop & TYPEDATUM_PROPERTY_PRIMARY)
                        typdatum->primary = 1;
                if (prop & TYPEDATUM_PROPERTY_ATTRIBUTE)
                        typdatum->attribute = 1;

                typdatum->bounds = le32_to_cpu(buf[3]);
        } else {
                typdatum->primary = le32_to_cpu(buf[2]);
        }

        key = kmalloc(len + 1, GFP_KERNEL);
        if (!key) {
                rc = -ENOMEM;
                goto bad;
        }
        rc = next_entry(key, fp, len);
        if (rc < 0)
                goto bad;
        key[len] = '\0';

        rc = hashtab_insert(h, key, typdatum);
        if (rc)
                goto bad;
out:
        return rc;
bad:
        type_destroy(key, typdatum, NULL);
        goto out;
}


/*
 * Read a MLS level structure from a policydb binary
 * representation file.
 */
static int mls_read_level(struct mls_level *lp, void *fp)
{
        __le32 buf[1];
        int rc;

        memset(lp, 0, sizeof(*lp));

        rc = next_entry(buf, fp, sizeof buf);
        if (rc < 0) {
                printk(KERN_ERR "SELinux: mls: truncated level\n");
                goto bad;
        }
        lp->sens = le32_to_cpu(buf[0]);

        if (ebitmap_read(&lp->cat, fp)) {
                printk(KERN_ERR "SELinux: mls:  error reading level "
                       "categories\n");
                goto bad;
        }

        return 0;

bad:
        return -EINVAL;
}

static int user_read(struct policydb *p, struct hashtab *h, void *fp)
{
        char *key = NULL;
        struct user_datum *usrdatum;
        int rc, to_read = 2;
        __le32 buf[3];
        u32 len;

        usrdatum = kzalloc(sizeof(*usrdatum), GFP_KERNEL);
        if (!usrdatum) {
                rc = -ENOMEM;
                goto out;
        }

        if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
                to_read = 3;

        rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
        if (rc < 0)
                goto bad;

        len = le32_to_cpu(buf[0]);
        usrdatum->value = le32_to_cpu(buf[1]);
        if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
                usrdatum->bounds = le32_to_cpu(buf[2]);

        key = kmalloc(len + 1, GFP_KERNEL);
        if (!key) {
                rc = -ENOMEM;
                goto bad;
        }
        rc = next_entry(key, fp, len);
        if (rc < 0)
                goto bad;
        key[len] = '\0';

        rc = ebitmap_read(&usrdatum->roles, fp);
        if (rc)
                goto bad;

        if (p->policyvers >= POLICYDB_VERSION_MLS) {
                rc = mls_read_range_helper(&usrdatum->range, fp);
                if (rc)
                        goto bad;
                rc = mls_read_level(&usrdatum->dfltlevel, fp);
                if (rc)
                        goto bad;
        }

        rc = hashtab_insert(h, key, usrdatum);
        if (rc)
                goto bad;
out:
        return rc;
bad:
        user_destroy(key, usrdatum, NULL);
        goto out;
}

static int sens_read(struct policydb *p, struct hashtab *h, void *fp)
{
        char *key = NULL;
        struct level_datum *levdatum;
        int rc;
        __le32 buf[2];
        u32 len;

        levdatum = kzalloc(sizeof(*levdatum), GFP_ATOMIC);
        if (!levdatum) {
                rc = -ENOMEM;
                goto out;
        }

        rc = next_entry(buf, fp, sizeof buf);
        if (rc < 0)
                goto bad;

        len = le32_to_cpu(buf[0]);
        levdatum->isalias = le32_to_cpu(buf[1]);

        key = kmalloc(len + 1, GFP_ATOMIC);
        if (!key) {
                rc = -ENOMEM;
                goto bad;
        }
        rc = next_entry(key, fp, len);
        if (rc < 0)
                goto bad;
        key[len] = '\0';

        levdatum->level = kmalloc(sizeof(struct mls_level), GFP_ATOMIC);
        if (!levdatum->level) {
                rc = -ENOMEM;
                goto bad;
        }
        if (mls_read_level(levdatum->level, fp)) {
                rc = -EINVAL;
                goto bad;
        }

        rc = hashtab_insert(h, key, levdatum);
        if (rc)
                goto bad;
out:
        return rc;
bad:
        sens_destroy(key, levdatum, NULL);
        goto out;
}

static int cat_read(struct policydb *p, struct hashtab *h, void *fp)
{
        char *key = NULL;
        struct cat_datum *catdatum;
        int rc;
        __le32 buf[3];
        u32 len;

        catdatum = kzalloc(sizeof(*catdatum), GFP_ATOMIC);
        if (!catdatum) {
                rc = -ENOMEM;
                goto out;
        }

        rc = next_entry(buf, fp, sizeof buf);
        if (rc < 0)
                goto bad;

        len = le32_to_cpu(buf[0]);
        catdatum->value = le32_to_cpu(buf[1]);
        catdatum->isalias = le32_to_cpu(buf[2]);

        key = kmalloc(len + 1, GFP_ATOMIC);
        if (!key) {
                rc = -ENOMEM;
                goto bad;
        }
        rc = next_entry(key, fp, len);
        if (rc < 0)
                goto bad;
        key[len] = '\0';

        rc = hashtab_insert(h, key, catdatum);
        if (rc)
                goto bad;
out:
        return rc;

bad:
        cat_destroy(key, catdatum, NULL);
        goto out;
}

static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) =
{
        common_read,
        class_read,
        role_read,
        type_read,
        user_read,
        cond_read_bool,
        sens_read,
        cat_read,
};

static int user_bounds_sanity_check(void *key, void *datum, void *datap)
{
        struct user_datum *upper, *user;
        struct policydb *p = datap;
        int depth = 0;

        upper = user = datum;
        while (upper->bounds) {
                struct ebitmap_node *node;
                unsigned long bit;

                if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
                        printk(KERN_ERR "SELinux: user %s: "
                               "too deep or looped boundary",
                               (char *) key);
                        return -EINVAL;
                }

                upper = p->user_val_to_struct[upper->bounds - 1];
                ebitmap_for_each_positive_bit(&user->roles, node, bit) {
                        if (ebitmap_get_bit(&upper->roles, bit))
                                continue;

                        printk(KERN_ERR
                               "SELinux: boundary violated policy: "
                               "user=%s role=%s bounds=%s\n",
                               p->p_user_val_to_name[user->value - 1],
                               p->p_role_val_to_name[bit],
                               p->p_user_val_to_name[upper->value - 1]);

                        return -EINVAL;
                }
        }

        return 0;
}

static int role_bounds_sanity_check(void *key, void *datum, void *datap)
{
        struct role_datum *upper, *role;
        struct policydb *p = datap;
        int depth = 0;

        upper = role = datum;
        while (upper->bounds) {
                struct ebitmap_node *node;
                unsigned long bit;

                if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
                        printk(KERN_ERR "SELinux: role %s: "
                               "too deep or looped bounds\n",
                               (char *) key);
                        return -EINVAL;
                }

                upper = p->role_val_to_struct[upper->bounds - 1];
                ebitmap_for_each_positive_bit(&role->types, node, bit) {
                        if (ebitmap_get_bit(&upper->types, bit))
                                continue;

                        printk(KERN_ERR
                               "SELinux: boundary violated policy: "
                               "role=%s type=%s bounds=%s\n",
                               p->p_role_val_to_name[role->value - 1],
                               p->p_type_val_to_name[bit],
                               p->p_role_val_to_name[upper->value - 1]);

                        return -EINVAL;
                }
        }

        return 0;
}

static int type_bounds_sanity_check(void *key, void *datum, void *datap)
{
        struct type_datum *upper, *type;
        struct policydb *p = datap;
        int depth = 0;

        upper = type = datum;
        while (upper->bounds) {
                if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
                        printk(KERN_ERR "SELinux: type %s: "
                               "too deep or looped boundary\n",
                               (char *) key);
                        return -EINVAL;
                }

                upper = p->type_val_to_struct[upper->bounds - 1];
                if (upper->attribute) {
                        printk(KERN_ERR "SELinux: type %s: "
                               "bounded by attribute %s",
                               (char *) key,
                               p->p_type_val_to_name[upper->value - 1]);
                        return -EINVAL;
                }
        }

        return 0;
}

static int policydb_bounds_sanity_check(struct policydb *p)
{
        int rc;

        if (p->policyvers < POLICYDB_VERSION_BOUNDARY)
                return 0;

        rc = hashtab_map(p->p_users.table,
                         user_bounds_sanity_check, p);
        if (rc)
                return rc;

        rc = hashtab_map(p->p_roles.table,
                         role_bounds_sanity_check, p);
        if (rc)
                return rc;

        rc = hashtab_map(p->p_types.table,
                         type_bounds_sanity_check, p);
        if (rc)
                return rc;

        return 0;
}

extern int ss_initialized;

/*
 * Read the configuration data from a policy database binary
 * representation file into a policy database structure.
 */
int policydb_read(struct policydb *p, void *fp)
{
        struct role_allow *ra, *lra;
        struct role_trans *tr, *ltr;
        struct ocontext *l, *c, *newc;
        struct genfs *genfs_p, *genfs, *newgenfs;
        int i, j, rc;
        __le32 buf[4];
        u32 nodebuf[8];
        u32 len, len2, config, nprim, nel, nel2;
        char *policydb_str;
        struct policydb_compat_info *info;
        struct range_trans *rt, *lrt;

        config = 0;

        rc = policydb_init(p);
        if (rc)
                goto out;

        /* Read the magic number and string length. */
        rc = next_entry(buf, fp, sizeof(u32) * 2);
        if (rc < 0)
                goto bad;

        if (le32_to_cpu(buf[0]) != POLICYDB_MAGIC) {
                printk(KERN_ERR "SELinux:  policydb magic number 0x%x does "
                       "not match expected magic number 0x%x\n",
                       le32_to_cpu(buf[0]), POLICYDB_MAGIC);
                goto bad;
        }

        len = le32_to_cpu(buf[1]);
        if (len != strlen(POLICYDB_STRING)) {
                printk(KERN_ERR "SELinux:  policydb string length %d does not "
                       "match expected length %Zu\n",
                       len, strlen(POLICYDB_STRING));
                goto bad;
        }
        policydb_str = kmalloc(len + 1, GFP_KERNEL);
        if (!policydb_str) {
                printk(KERN_ERR "SELinux:  unable to allocate memory for policydb "
                       "string of length %d\n", len);
                rc = -ENOMEM;
                goto bad;
        }
        rc = next_entry(policydb_str, fp, len);
        if (rc < 0) {
                printk(KERN_ERR "SELinux:  truncated policydb string identifier\n");
                kfree(policydb_str);
                goto bad;
        }
        policydb_str[len] = '\0';
        if (strcmp(policydb_str, POLICYDB_STRING)) {
                printk(KERN_ERR "SELinux:  policydb string %s does not match "
                       "my string %s\n", policydb_str, POLICYDB_STRING);
                kfree(policydb_str);
                goto bad;
        }
        /* Done with policydb_str. */
        kfree(policydb_str);
        policydb_str = NULL;

        /* Read the version, config, and table sizes. */
        rc = next_entry(buf, fp, sizeof(u32)*4);
        if (rc < 0)
                goto bad;

        p->policyvers = le32_to_cpu(buf[0]);
        if (p->policyvers < POLICYDB_VERSION_MIN ||
            p->policyvers > POLICYDB_VERSION_MAX) {
                printk(KERN_ERR "SELinux:  policydb version %d does not match "
                       "my version range %d-%d\n",
                       le32_to_cpu(buf[0]), POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX);
                goto bad;
        }

        if ((le32_to_cpu(buf[1]) & POLICYDB_CONFIG_MLS)) {
                if (ss_initialized && !selinux_mls_enabled) {
                        printk(KERN_ERR "SELinux: Cannot switch between non-MLS"
                                " and MLS policies\n");
                        goto bad;
                }
                selinux_mls_enabled = 1;
                config |= POLICYDB_CONFIG_MLS;

                if (p->policyvers < POLICYDB_VERSION_MLS) {
                        printk(KERN_ERR "SELinux: security policydb version %d "
                                "(MLS) not backwards compatible\n",
                                p->policyvers);
                        goto bad;
                }
        } else {
                if (ss_initialized && selinux_mls_enabled) {
                        printk(KERN_ERR "SELinux: Cannot switch between MLS and"
                                " non-MLS policies\n");
                        goto bad;
                }
        }
        p->reject_unknown = !!(le32_to_cpu(buf[1]) & REJECT_UNKNOWN);
        p->allow_unknown = !!(le32_to_cpu(buf[1]) & ALLOW_UNKNOWN);

        if (p->policyvers >= POLICYDB_VERSION_POLCAP &&
            ebitmap_read(&p->policycaps, fp) != 0)
                goto bad;

        if (p->policyvers >= POLICYDB_VERSION_PERMISSIVE &&
            ebitmap_read(&p->permissive_map, fp) != 0)
                goto bad;

        info = policydb_lookup_compat(p->policyvers);
        if (!info) {
                printk(KERN_ERR "SELinux:  unable to find policy compat info "
                       "for version %d\n", p->policyvers);
                goto bad;
        }

        if (le32_to_cpu(buf[2]) != info->sym_num ||
                le32_to_cpu(buf[3]) != info->ocon_num) {
                printk(KERN_ERR "SELinux:  policydb table sizes (%d,%d) do "
                       "not match mine (%d,%d)\n", le32_to_cpu(buf[2]),
                        le32_to_cpu(buf[3]),
                       info->sym_num, info->ocon_num);
                goto bad;
        }

        for (i = 0; i < info->sym_num; i++) {
                rc = next_entry(buf, fp, sizeof(u32)*2);
                if (rc < 0)
                        goto bad;
                nprim = le32_to_cpu(buf[0]);
                nel = le32_to_cpu(buf[1]);
                for (j = 0; j < nel; j++) {
                        rc = read_f[i](p, p->symtab[i].table, fp);
                        if (rc)
                                goto bad;
                }

                p->symtab[i].nprim = nprim;
        }

        rc = avtab_read(&p->te_avtab, fp, p);
        if (rc)
                goto bad;

        if (p->policyvers >= POLICYDB_VERSION_BOOL) {
                rc = cond_read_list(p, fp);
                if (rc)
                        goto bad;
        }

        rc = next_entry(buf, fp, sizeof(u32));
        if (rc < 0)
                goto bad;
        nel = le32_to_cpu(buf[0]);
        ltr = NULL;
        for (i = 0; i < nel; i++) {
                tr = kzalloc(sizeof(*tr), GFP_KERNEL);
                if (!tr) {
                        rc = -ENOMEM;
                        goto bad;
                }
                if (ltr)
                        ltr->next = tr;
                else
                        p->role_tr = tr;
                rc = next_entry(buf, fp, sizeof(u32)*3);
                if (rc < 0)
                        goto bad;
                tr->role = le32_to_cpu(buf[0]);
                tr->type = le32_to_cpu(buf[1]);
                tr->new_role = le32_to_cpu(buf[2]);
                if (!policydb_role_isvalid(p, tr->role) ||
                    !policydb_type_isvalid(p, tr->type) ||
                    !policydb_role_isvalid(p, tr->new_role)) {
                        rc = -EINVAL;
                        goto bad;
                }
                ltr = tr;
        }

        rc = next_entry(buf, fp, sizeof(u32));
        if (rc < 0)
                goto bad;
        nel = le32_to_cpu(buf[0]);
        lra = NULL;
        for (i = 0; i < nel; i++) {
                ra = kzalloc(sizeof(*ra), GFP_KERNEL);
                if (!ra) {
                        rc = -ENOMEM;
                        goto bad;
                }
                if (lra)
                        lra->next = ra;
                else
                        p->role_allow = ra;
                rc = next_entry(buf, fp, sizeof(u32)*2);
                if (rc < 0)
                        goto bad;
                ra->role = le32_to_cpu(buf[0]);
                ra->new_role = le32_to_cpu(buf[1]);
                if (!policydb_role_isvalid(p, ra->role) ||
                    !policydb_role_isvalid(p, ra->new_role)) {
                        rc = -EINVAL;
                        goto bad;
                }
                lra = ra;
        }

        rc = policydb_index_classes(p);
        if (rc)
                goto bad;

        rc = policydb_index_others(p);
        if (rc)
                goto bad;

        for (i = 0; i < info->ocon_num; i++) {
                rc = next_entry(buf, fp, sizeof(u32));
                if (rc < 0)
                        goto bad;
                nel = le32_to_cpu(buf[0]);
                l = NULL;
                for (j = 0; j < nel; j++) {
                        c = kzalloc(sizeof(*c), GFP_KERNEL);
                        if (!c) {
                                rc = -ENOMEM;
                                goto bad;
                        }
                        if (l)
                                l->next = c;
                        else
                                p->ocontexts[i] = c;
                        l = c;
                        rc = -EINVAL;
                        switch (i) {
                        case OCON_ISID:
                                rc = next_entry(buf, fp, sizeof(u32));
                                if (rc < 0)
                                        goto bad;
                                c->sid[0] = le32_to_cpu(buf[0]);
                                rc = context_read_and_validate(&c->context[0], p, fp);
                                if (rc)
                                        goto bad;
                                break;
                        case OCON_FS:
                        case OCON_NETIF:
                                rc = next_entry(buf, fp, sizeof(u32));
                                if (rc < 0)
                                        goto bad;
                                len = le32_to_cpu(buf[0]);
                                c->u.name = kmalloc(len + 1, GFP_KERNEL);
                                if (!c->u.name) {
                                        rc = -ENOMEM;
                                        goto bad;
                                }
                                rc = next_entry(c->u.name, fp, len);
                                if (rc < 0)
                                        goto bad;
                                c->u.name[len] = 0;
                                rc = context_read_and_validate(&c->context[0], p, fp);
                                if (rc)
                                        goto bad;
                                rc = context_read_and_validate(&c->context[1], p, fp);
                                if (rc)
                                        goto bad;
                                break;
                        case OCON_PORT:
                                rc = next_entry(buf, fp, sizeof(u32)*3);
                                if (rc < 0)
                                        goto bad;
                                c->u.port.protocol = le32_to_cpu(buf[0]);
                                c->u.port.low_port = le32_to_cpu(buf[1]);
                                c->u.port.high_port = le32_to_cpu(buf[2]);
                                rc = context_read_and_validate(&c->context[0], p, fp);
                                if (rc)
                                        goto bad;
                                break;
                        case OCON_NODE:
                                rc = next_entry(nodebuf, fp, sizeof(u32) * 2);
                                if (rc < 0)
                                        goto bad;
                                c->u.node.addr = nodebuf[0]; /* network order */
                                c->u.node.mask = nodebuf[1]; /* network order */
                                rc = context_read_and_validate(&c->context[0], p, fp);
                                if (rc)
                                        goto bad;
                                break;
                        case OCON_FSUSE:
                                rc = next_entry(buf, fp, sizeof(u32)*2);
                                if (rc < 0)
                                        goto bad;
                                c->v.behavior = le32_to_cpu(buf[0]);
                                if (c->v.behavior > SECURITY_FS_USE_NONE)
                                        goto bad;
                                len = le32_to_cpu(buf[1]);
                                c->u.name = kmalloc(len + 1, GFP_KERNEL);
                                if (!c->u.name) {
                                        rc = -ENOMEM;
                                        goto bad;
                                }
                                rc = next_entry(c->u.name, fp, len);
                                if (rc < 0)
                                        goto bad;
                                c->u.name[len] = 0;
                                rc = context_read_and_validate(&c->context[0], p, fp);
                                if (rc)
                                        goto bad;
                                break;
                        case OCON_NODE6: {
                                int k;

                                rc = next_entry(nodebuf, fp, sizeof(u32) * 8);
                                if (rc < 0)
                                        goto bad;
                                for (k = 0; k < 4; k++)
                                        c->u.node6.addr[k] = nodebuf[k];
                                for (k = 0; k < 4; k++)
                                        c->u.node6.mask[k] = nodebuf[k+4];
                                if (context_read_and_validate(&c->context[0], p, fp))
                                        goto bad;
                                break;
                        }
                        }
                }
        }

        rc = next_entry(buf, fp, sizeof(u32));
        if (rc < 0)
                goto bad;
        nel = le32_to_cpu(buf[0]);
        genfs_p = NULL;
        rc = -EINVAL;
        for (i = 0; i < nel; i++) {
                rc = next_entry(buf, fp, sizeof(u32));
                if (rc < 0)
                        goto bad;
                len = le32_to_cpu(buf[0]);
                newgenfs = kzalloc(sizeof(*newgenfs), GFP_KERNEL);
                if (!newgenfs) {
                        rc = -ENOMEM;
                        goto bad;
                }

                newgenfs->fstype = kmalloc(len + 1, GFP_KERNEL);
                if (!newgenfs->fstype) {
                        rc = -ENOMEM;
                        kfree(newgenfs);
                        goto bad;
                }
                rc = next_entry(newgenfs->fstype, fp, len);
                if (rc < 0) {
                        kfree(newgenfs->fstype);
                        kfree(newgenfs);
                        goto bad;
                }
                newgenfs->fstype[len] = 0;
                for (genfs_p = NULL, genfs = p->genfs; genfs;
                     genfs_p = genfs, genfs = genfs->next) {
                        if (strcmp(newgenfs->fstype, genfs->fstype) == 0) {
                                printk(KERN_ERR "SELinux:  dup genfs "
                                       "fstype %s\n", newgenfs->fstype);
                                kfree(newgenfs->fstype);
                                kfree(newgenfs);
                                goto bad;
                        }
                        if (strcmp(newgenfs->fstype, genfs->fstype) < 0)
                                break;
                }
                newgenfs->next = genfs;
                if (genfs_p)
                        genfs_p->next = newgenfs;
                else
                        p->genfs = newgenfs;
                rc = next_entry(buf, fp, sizeof(u32));
                if (rc < 0)
                        goto bad;
                nel2 = le32_to_cpu(buf[0]);
                for (j = 0; j < nel2; j++) {
                        rc = next_entry(buf, fp, sizeof(u32));
                        if (rc < 0)
                                goto bad;
                        len = le32_to_cpu(buf[0]);

                        newc = kzalloc(sizeof(*newc), GFP_KERNEL);
                        if (!newc) {
                                rc = -ENOMEM;
                                goto bad;
                        }

                        newc->u.name = kmalloc(len + 1, GFP_KERNEL);
                        if (!newc->u.name) {
                                rc = -ENOMEM;
                                goto bad_newc;
                        }
                        rc = next_entry(newc->u.name, fp, len);
                        if (rc < 0)
                                goto bad_newc;
                        newc->u.name[len] = 0;
                        rc = next_entry(buf, fp, sizeof(u32));
                        if (rc < 0)
                                goto bad_newc;
                        newc->v.sclass = le32_to_cpu(buf[0]);
                        if (context_read_and_validate(&newc->context[0], p, fp))
                                goto bad_newc;
                        for (l = NULL, c = newgenfs->head; c;
                             l = c, c = c->next) {
                                if (!strcmp(newc->u.name, c->u.name) &&
                                    (!c->v.sclass || !newc->v.sclass ||
                                     newc->v.sclass == c->v.sclass)) {
                                        printk(KERN_ERR "SELinux:  dup genfs "
                                               "entry (%s,%s)\n",
                                               newgenfs->fstype, c->u.name);
                                        goto bad_newc;
                                }
                                len = strlen(newc->u.name);
                                len2 = strlen(c->u.name);
                                if (len > len2)
                                        break;
                        }

                        newc->next = c;
                        if (l)
                                l->next = newc;
                        else
                                newgenfs->head = newc;
                }
        }

        if (p->policyvers >= POLICYDB_VERSION_MLS) {
                int new_rangetr = p->policyvers >= POLICYDB_VERSION_RANGETRANS;
                rc = next_entry(buf, fp, sizeof(u32));
                if (rc < 0)
                        goto bad;
                nel = le32_to_cpu(buf[0]);
                lrt = NULL;
                for (i = 0; i < nel; i++) {
                        rt = kzalloc(sizeof(*rt), GFP_KERNEL);
                        if (!rt) {
                                rc = -ENOMEM;
                                goto bad;
                        }
                        if (lrt)
                                lrt->next = rt;
                        else
                                p->range_tr = rt;
                        rc = next_entry(buf, fp, (sizeof(u32) * 2));
                        if (rc < 0)
                                goto bad;
                        rt->source_type = le32_to_cpu(buf[0]);
                        rt->target_type = le32_to_cpu(buf[1]);
                        if (new_rangetr) {
                                rc = next_entry(buf, fp, sizeof(u32));
                                if (rc < 0)
                                        goto bad;
                                rt->target_class = le32_to_cpu(buf[0]);
                        } else
                                rt->target_class = SECCLASS_PROCESS;
                        if (!policydb_type_isvalid(p, rt->source_type) ||
                            !policydb_type_isvalid(p, rt->target_type) ||
                            !policydb_class_isvalid(p, rt->target_class)) {
                                rc = -EINVAL;
                                goto bad;
                        }
                        rc = mls_read_range_helper(&rt->target_range, fp);
                        if (rc)
                                goto bad;
                        if (!mls_range_isvalid(p, &rt->target_range)) {
                                printk(KERN_WARNING "SELinux:  rangetrans:  invalid range\n");
                                goto bad;
                        }
                        lrt = rt;
                }
        }

        p->type_attr_map = kmalloc(p->p_types.nprim*sizeof(struct ebitmap), GFP_KERNEL);
        if (!p->type_attr_map)
                goto bad;

        for (i = 0; i < p->p_types.nprim; i++) {
                ebitmap_init(&p->type_attr_map[i]);
                if (p->policyvers >= POLICYDB_VERSION_AVTAB) {
                        if (ebitmap_read(&p->type_attr_map[i], fp))
                                goto bad;
                }
                /* add the type itself as the degenerate case */
                if (ebitmap_set_bit(&p->type_attr_map[i], i, 1))
                                goto bad;
        }

        rc = policydb_bounds_sanity_check(p);
        if (rc)
                goto bad;

        rc = 0;
out:
        return rc;
bad_newc:
        ocontext_destroy(newc, OCON_FSUSE);
bad:
        if (!rc)
                rc = -EINVAL;
        policydb_destroy(p);
        goto out;
}

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading