[funini.com] -> [kei@sodan] -> Kernel Reading

root/net/ipv4/tcp_cubic.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. bictcp_reset
  2. bictcp_init
  3. cubic_root
  4. bictcp_update
  5. bictcp_cong_avoid
  6. bictcp_recalc_ssthresh
  7. bictcp_undo_cwnd
  8. bictcp_state
  9. bictcp_acked
  10. cubictcp_register
  11. cubictcp_unregister

/*
 * TCP CUBIC: Binary Increase Congestion control for TCP v2.2
 * Home page:
 *      http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC
 * This is from the implementation of CUBIC TCP in
 * Injong Rhee, Lisong Xu.
 *  "CUBIC: A New TCP-Friendly High-Speed TCP Variant
 *  in PFLDnet 2005
 * Available from:
 *  http://netsrv.csc.ncsu.edu/export/cubic-paper.pdf
 *
 * Unless CUBIC is enabled and congestion window is large
 * this behaves the same as the original Reno.
 */

#include <linux/mm.h>
#include <linux/module.h>
#include <linux/math64.h>
#include <net/tcp.h>

#define BICTCP_BETA_SCALE    1024       /* Scale factor beta calculation
                                         * max_cwnd = snd_cwnd * beta
                                         */
#define BICTCP_HZ               10      /* BIC HZ 2^10 = 1024 */

static int fast_convergence __read_mostly = 1;
static int beta __read_mostly = 717;    /* = 717/1024 (BICTCP_BETA_SCALE) */
static int initial_ssthresh __read_mostly;
static int bic_scale __read_mostly = 41;
static int tcp_friendliness __read_mostly = 1;

static u32 cube_rtt_scale __read_mostly;
static u32 beta_scale __read_mostly;
static u64 cube_factor __read_mostly;

/* Note parameters that are used for precomputing scale factors are read-only */
module_param(fast_convergence, int, 0644);
MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");
module_param(beta, int, 0644);
MODULE_PARM_DESC(beta, "beta for multiplicative increase");
module_param(initial_ssthresh, int, 0644);
MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");
module_param(bic_scale, int, 0444);
MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
module_param(tcp_friendliness, int, 0644);
MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");

/* BIC TCP Parameters */
struct bictcp {
        u32     cnt;            /* increase cwnd by 1 after ACKs */
        u32     last_max_cwnd;  /* last maximum snd_cwnd */
        u32     loss_cwnd;      /* congestion window at last loss */
        u32     last_cwnd;      /* the last snd_cwnd */
        u32     last_time;      /* time when updated last_cwnd */
        u32     bic_origin_point;/* origin point of bic function */
        u32     bic_K;          /* time to origin point from the beginning of the current epoch */
        u32     delay_min;      /* min delay */
        u32     epoch_start;    /* beginning of an epoch */
        u32     ack_cnt;        /* number of acks */
        u32     tcp_cwnd;       /* estimated tcp cwnd */
#define ACK_RATIO_SHIFT 4
        u32     delayed_ack;    /* estimate the ratio of Packets/ACKs << 4 */
};

static inline void bictcp_reset(struct bictcp *ca)
{
        ca->cnt = 0;
        ca->last_max_cwnd = 0;
        ca->loss_cwnd = 0;
        ca->last_cwnd = 0;
        ca->last_time = 0;
        ca->bic_origin_point = 0;
        ca->bic_K = 0;
        ca->delay_min = 0;
        ca->epoch_start = 0;
        ca->delayed_ack = 2 << ACK_RATIO_SHIFT;
        ca->ack_cnt = 0;
        ca->tcp_cwnd = 0;
}

static void bictcp_init(struct sock *sk)
{
        bictcp_reset(inet_csk_ca(sk));
        if (initial_ssthresh)
                tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
}

/* calculate the cubic root of x using a table lookup followed by one
 * Newton-Raphson iteration.
 * Avg err ~= 0.195%
 */
static u32 cubic_root(u64 a)
{
        u32 x, b, shift;
        /*
         * cbrt(x) MSB values for x MSB values in [0..63].
         * Precomputed then refined by hand - Willy Tarreau
         *
         * For x in [0..63],
         *   v = cbrt(x << 18) - 1
         *   cbrt(x) = (v[x] + 10) >> 6
         */
        static const u8 v[] = {
                /* 0x00 */    0,   54,   54,   54,  118,  118,  118,  118,
                /* 0x08 */  123,  129,  134,  138,  143,  147,  151,  156,
                /* 0x10 */  157,  161,  164,  168,  170,  173,  176,  179,
                /* 0x18 */  181,  185,  187,  190,  192,  194,  197,  199,
                /* 0x20 */  200,  202,  204,  206,  209,  211,  213,  215,
                /* 0x28 */  217,  219,  221,  222,  224,  225,  227,  229,
                /* 0x30 */  231,  232,  234,  236,  237,  239,  240,  242,
                /* 0x38 */  244,  245,  246,  248,  250,  251,  252,  254,
        };

        b = fls64(a);
        if (b < 7) {
                /* a in [0..63] */
                return ((u32)v[(u32)a] + 35) >> 6;
        }

        b = ((b * 84) >> 8) - 1;
        shift = (a >> (b * 3));

        x = ((u32)(((u32)v[shift] + 10) << b)) >> 6;

        /*
         * Newton-Raphson iteration
         *                         2
         * x    = ( 2 * x  +  a / x  ) / 3
         *  k+1          k         k
         */
        x = (2 * x + (u32)div64_u64(a, (u64)x * (u64)(x - 1)));
        x = ((x * 341) >> 10);
        return x;
}

/*
 * Compute congestion window to use.
 */
static inline void bictcp_update(struct bictcp *ca, u32 cwnd)
{
        u64 offs;
        u32 delta, t, bic_target, max_cnt;

        ca->ack_cnt++;  /* count the number of ACKs */

        if (ca->last_cwnd == cwnd &&
            (s32)(tcp_time_stamp - ca->last_time) <= HZ / 32)
                return;

        ca->last_cwnd = cwnd;
        ca->last_time = tcp_time_stamp;

        if (ca->epoch_start == 0) {
                ca->epoch_start = tcp_time_stamp;       /* record the beginning of an epoch */
                ca->ack_cnt = 1;                        /* start counting */
                ca->tcp_cwnd = cwnd;                    /* syn with cubic */

                if (ca->last_max_cwnd <= cwnd) {
                        ca->bic_K = 0;
                        ca->bic_origin_point = cwnd;
                } else {
                        /* Compute new K based on
                         * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
                         */
                        ca->bic_K = cubic_root(cube_factor
                                               * (ca->last_max_cwnd - cwnd));
                        ca->bic_origin_point = ca->last_max_cwnd;
                }
        }

        /* cubic function - calc*/
        /* calculate c * time^3 / rtt,
         *  while considering overflow in calculation of time^3
         * (so time^3 is done by using 64 bit)
         * and without the support of division of 64bit numbers
         * (so all divisions are done by using 32 bit)
         *  also NOTE the unit of those veriables
         *        time  = (t - K) / 2^bictcp_HZ
         *        c = bic_scale >> 10
         * rtt  = (srtt >> 3) / HZ
         * !!! The following code does not have overflow problems,
         * if the cwnd < 1 million packets !!!
         */

        /* change the unit from HZ to bictcp_HZ */
        t = ((tcp_time_stamp + (ca->delay_min>>3) - ca->epoch_start)
             << BICTCP_HZ) / HZ;

        if (t < ca->bic_K)              /* t - K */
                offs = ca->bic_K - t;
        else
                offs = t - ca->bic_K;

        /* c/rtt * (t-K)^3 */
        delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ);
        if (t < ca->bic_K)                                      /* below origin*/
                bic_target = ca->bic_origin_point - delta;
        else                                                    /* above origin*/
                bic_target = ca->bic_origin_point + delta;

        /* cubic function - calc bictcp_cnt*/
        if (bic_target > cwnd) {
                ca->cnt = cwnd / (bic_target - cwnd);
        } else {
                ca->cnt = 100 * cwnd;              /* very small increment*/
        }

        /* TCP Friendly */
        if (tcp_friendliness) {
                u32 scale = beta_scale;
                delta = (cwnd * scale) >> 3;
                while (ca->ack_cnt > delta) {           /* update tcp cwnd */
                        ca->ack_cnt -= delta;
                        ca->tcp_cwnd++;
                }

                if (ca->tcp_cwnd > cwnd){       /* if bic is slower than tcp */
                        delta = ca->tcp_cwnd - cwnd;
                        max_cnt = cwnd / delta;
                        if (ca->cnt > max_cnt)
                                ca->cnt = max_cnt;
                }
        }

        ca->cnt = (ca->cnt << ACK_RATIO_SHIFT) / ca->delayed_ack;
        if (ca->cnt == 0)                       /* cannot be zero */
                ca->cnt = 1;
}

static void bictcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
{
        struct tcp_sock *tp = tcp_sk(sk);
        struct bictcp *ca = inet_csk_ca(sk);

        if (!tcp_is_cwnd_limited(sk, in_flight))
                return;

        if (tp->snd_cwnd <= tp->snd_ssthresh)
                tcp_slow_start(tp);
        else {
                bictcp_update(ca, tp->snd_cwnd);

                /* In dangerous area, increase slowly.
                 * In theory this is tp->snd_cwnd += 1 / tp->snd_cwnd
                 */
                if (tp->snd_cwnd_cnt >= ca->cnt) {
                        if (tp->snd_cwnd < tp->snd_cwnd_clamp)
                                tp->snd_cwnd++;
                        tp->snd_cwnd_cnt = 0;
                } else
                        tp->snd_cwnd_cnt++;
        }

}

static u32 bictcp_recalc_ssthresh(struct sock *sk)
{
        const struct tcp_sock *tp = tcp_sk(sk);
        struct bictcp *ca = inet_csk_ca(sk);

        ca->epoch_start = 0;    /* end of epoch */

        /* Wmax and fast convergence */
        if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence)
                ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta))
                        / (2 * BICTCP_BETA_SCALE);
        else
                ca->last_max_cwnd = tp->snd_cwnd;

        ca->loss_cwnd = tp->snd_cwnd;

        return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U);
}

static u32 bictcp_undo_cwnd(struct sock *sk)
{
        struct bictcp *ca = inet_csk_ca(sk);

        return max(tcp_sk(sk)->snd_cwnd, ca->last_max_cwnd);
}

static void bictcp_state(struct sock *sk, u8 new_state)
{
        if (new_state == TCP_CA_Loss)
                bictcp_reset(inet_csk_ca(sk));
}

/* Track delayed acknowledgment ratio using sliding window
 * ratio = (15*ratio + sample) / 16
 */
static void bictcp_acked(struct sock *sk, u32 cnt, s32 rtt_us)
{
        const struct inet_connection_sock *icsk = inet_csk(sk);
        struct bictcp *ca = inet_csk_ca(sk);
        u32 delay;

        if (icsk->icsk_ca_state == TCP_CA_Open) {
                cnt -= ca->delayed_ack >> ACK_RATIO_SHIFT;
                ca->delayed_ack += cnt;
        }

        /* Some calls are for duplicates without timetamps */
        if (rtt_us < 0)
                return;

        /* Discard delay samples right after fast recovery */
        if ((s32)(tcp_time_stamp - ca->epoch_start) < HZ)
                return;

        delay = usecs_to_jiffies(rtt_us) << 3;
        if (delay == 0)
                delay = 1;

        /* first time call or link delay decreases */
        if (ca->delay_min == 0 || ca->delay_min > delay)
                ca->delay_min = delay;
}

static struct tcp_congestion_ops cubictcp = {
        .init           = bictcp_init,
        .ssthresh       = bictcp_recalc_ssthresh,
        .cong_avoid     = bictcp_cong_avoid,
        .set_state      = bictcp_state,
        .undo_cwnd      = bictcp_undo_cwnd,
        .pkts_acked     = bictcp_acked,
        .owner          = THIS_MODULE,
        .name           = "cubic",
};

static int __init cubictcp_register(void)
{
        BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE);

        /* Precompute a bunch of the scaling factors that are used per-packet
         * based on SRTT of 100ms
         */

        beta_scale = 8*(BICTCP_BETA_SCALE+beta)/ 3 / (BICTCP_BETA_SCALE - beta);

        cube_rtt_scale = (bic_scale * 10);      /* 1024*c/rtt */

        /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
         *  so K = cubic_root( (wmax-cwnd)*rtt/c )
         * the unit of K is bictcp_HZ=2^10, not HZ
         *
         *  c = bic_scale >> 10
         *  rtt = 100ms
         *
         * the following code has been designed and tested for
         * cwnd < 1 million packets
         * RTT < 100 seconds
         * HZ < 1,000,00  (corresponding to 10 nano-second)
         */

        /* 1/c * 2^2*bictcp_HZ * srtt */
        cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */

        /* divide by bic_scale and by constant Srtt (100ms) */
        do_div(cube_factor, bic_scale * 10);

        return tcp_register_congestion_control(&cubictcp);
}

static void __exit cubictcp_unregister(void)
{
        tcp_unregister_congestion_control(&cubictcp);
}

module_init(cubictcp_register);
module_exit(cubictcp_unregister);

MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("CUBIC TCP");
MODULE_VERSION("2.2");

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading