[funini.com] -> [kei@sodan] -> Kernel Reading

root/net/ipv4/tcp_output.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. tcp_event_new_data_sent
  2. tcp_acceptable_seq
  3. tcp_advertise_mss
  4. tcp_cwnd_restart
  5. tcp_event_data_sent
  6. tcp_event_ack_sent
  7. tcp_select_initial_window
  8. tcp_select_window
  9. TCP_ECN_send_synack
  10. TCP_ECN_send_syn
  11. TCP_ECN_make_synack
  12. TCP_ECN_send
  13. tcp_init_nondata_skb
  14. tcp_urg_mode
  15. tcp_options_write
  16. tcp_syn_options
  17. tcp_synack_options
  18. tcp_established_options
  19. tcp_transmit_skb
  20. tcp_queue_skb
  21. tcp_set_skb_tso_segs
  22. tcp_adjust_fackets_out
  23. tcp_fragment
  24. __pskb_trim_head
  25. tcp_trim_head
  26. tcp_mtu_to_mss
  27. tcp_mss_to_mtu
  28. tcp_mtup_init
  29. tcp_bound_to_half_wnd
  30. tcp_sync_mss
  31. tcp_current_mss
  32. tcp_cwnd_validate
  33. tcp_mss_split_point
  34. tcp_cwnd_test
  35. tcp_init_tso_segs
  36. tcp_minshall_check
  37. tcp_nagle_check
  38. tcp_nagle_test
  39. tcp_snd_wnd_test
  40. tcp_snd_test
  41. tcp_may_send_now
  42. tso_fragment
  43. tcp_tso_should_defer
  44. tcp_mtu_probe
  45. tcp_write_xmit
  46. __tcp_push_pending_frames
  47. tcp_push_one
  48. __tcp_select_window
  49. tcp_retrans_try_collapse
  50. tcp_simple_retransmit
  51. tcp_retransmit_skb
  52. tcp_can_forward_retransmit
  53. tcp_xmit_retransmit_queue
  54. tcp_send_fin
  55. tcp_send_active_reset
  56. tcp_send_synack
  57. tcp_make_synack
  58. tcp_connect_init
  59. tcp_connect
  60. tcp_send_delayed_ack
  61. tcp_send_ack
  62. tcp_xmit_probe_skb
  63. tcp_write_wakeup
  64. tcp_send_probe0

/*
 * INET         An implementation of the TCP/IP protocol suite for the LINUX
 *              operating system.  INET is implemented using the  BSD Socket
 *              interface as the means of communication with the user level.
 *
 *              Implementation of the Transmission Control Protocol(TCP).
 *
 * Authors:     Ross Biro
 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 *              Mark Evans, <evansmp@uhura.aston.ac.uk>
 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
 *              Florian La Roche, <flla@stud.uni-sb.de>
 *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 *              Linus Torvalds, <torvalds@cs.helsinki.fi>
 *              Alan Cox, <gw4pts@gw4pts.ampr.org>
 *              Matthew Dillon, <dillon@apollo.west.oic.com>
 *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 *              Jorge Cwik, <jorge@laser.satlink.net>
 */

/*
 * Changes:     Pedro Roque     :       Retransmit queue handled by TCP.
 *                              :       Fragmentation on mtu decrease
 *                              :       Segment collapse on retransmit
 *                              :       AF independence
 *
 *              Linus Torvalds  :       send_delayed_ack
 *              David S. Miller :       Charge memory using the right skb
 *                                      during syn/ack processing.
 *              David S. Miller :       Output engine completely rewritten.
 *              Andrea Arcangeli:       SYNACK carry ts_recent in tsecr.
 *              Cacophonix Gaul :       draft-minshall-nagle-01
 *              J Hadi Salim    :       ECN support
 *
 */

#include <net/tcp.h>

#include <linux/compiler.h>
#include <linux/module.h>

/* People can turn this off for buggy TCP's found in printers etc. */
int sysctl_tcp_retrans_collapse __read_mostly = 1;

/* People can turn this on to  work with those rare, broken TCPs that
 * interpret the window field as a signed quantity.
 */
int sysctl_tcp_workaround_signed_windows __read_mostly = 0;

/* This limits the percentage of the congestion window which we
 * will allow a single TSO frame to consume.  Building TSO frames
 * which are too large can cause TCP streams to be bursty.
 */
int sysctl_tcp_tso_win_divisor __read_mostly = 3;

int sysctl_tcp_mtu_probing __read_mostly = 0;
int sysctl_tcp_base_mss __read_mostly = 512;

/* By default, RFC2861 behavior.  */
int sysctl_tcp_slow_start_after_idle __read_mostly = 1;

static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
{
        struct tcp_sock *tp = tcp_sk(sk);
        unsigned int prior_packets = tp->packets_out;

        tcp_advance_send_head(sk, skb);
        tp->snd_nxt = TCP_SKB_CB(skb)->end_seq;

        /* Don't override Nagle indefinately with F-RTO */
        if (tp->frto_counter == 2)
                tp->frto_counter = 3;

        tp->packets_out += tcp_skb_pcount(skb);
        if (!prior_packets)
                inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
                                          inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
}

/* SND.NXT, if window was not shrunk.
 * If window has been shrunk, what should we make? It is not clear at all.
 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
 * invalid. OK, let's make this for now:
 */
static inline __u32 tcp_acceptable_seq(struct sock *sk)
{
        struct tcp_sock *tp = tcp_sk(sk);

        if (!before(tcp_wnd_end(tp), tp->snd_nxt))
                return tp->snd_nxt;
        else
                return tcp_wnd_end(tp);
}

/* Calculate mss to advertise in SYN segment.
 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
 *
 * 1. It is independent of path mtu.
 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
 *    attached devices, because some buggy hosts are confused by
 *    large MSS.
 * 4. We do not make 3, we advertise MSS, calculated from first
 *    hop device mtu, but allow to raise it to ip_rt_min_advmss.
 *    This may be overridden via information stored in routing table.
 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
 *    probably even Jumbo".
 */
static __u16 tcp_advertise_mss(struct sock *sk)
{
        struct tcp_sock *tp = tcp_sk(sk);
        struct dst_entry *dst = __sk_dst_get(sk);
        int mss = tp->advmss;

        if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) {
                mss = dst_metric(dst, RTAX_ADVMSS);
                tp->advmss = mss;
        }

        return (__u16)mss;
}

/* RFC2861. Reset CWND after idle period longer RTO to "restart window".
 * This is the first part of cwnd validation mechanism. */
static void tcp_cwnd_restart(struct sock *sk, struct dst_entry *dst)
{
        struct tcp_sock *tp = tcp_sk(sk);
        s32 delta = tcp_time_stamp - tp->lsndtime;
        u32 restart_cwnd = tcp_init_cwnd(tp, dst);
        u32 cwnd = tp->snd_cwnd;

        tcp_ca_event(sk, CA_EVENT_CWND_RESTART);

        tp->snd_ssthresh = tcp_current_ssthresh(sk);
        restart_cwnd = min(restart_cwnd, cwnd);

        while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
                cwnd >>= 1;
        tp->snd_cwnd = max(cwnd, restart_cwnd);
        tp->snd_cwnd_stamp = tcp_time_stamp;
        tp->snd_cwnd_used = 0;
}

static void tcp_event_data_sent(struct tcp_sock *tp,
                                struct sk_buff *skb, struct sock *sk)
{
        struct inet_connection_sock *icsk = inet_csk(sk);
        const u32 now = tcp_time_stamp;

        if (sysctl_tcp_slow_start_after_idle &&
            (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto))
                tcp_cwnd_restart(sk, __sk_dst_get(sk));

        tp->lsndtime = now;

        /* If it is a reply for ato after last received
         * packet, enter pingpong mode.
         */
        if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
                icsk->icsk_ack.pingpong = 1;
}

static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts)
{
        tcp_dec_quickack_mode(sk, pkts);
        inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
}

/* Determine a window scaling and initial window to offer.
 * Based on the assumption that the given amount of space
 * will be offered. Store the results in the tp structure.
 * NOTE: for smooth operation initial space offering should
 * be a multiple of mss if possible. We assume here that mss >= 1.
 * This MUST be enforced by all callers.
 */
void tcp_select_initial_window(int __space, __u32 mss,
                               __u32 *rcv_wnd, __u32 *window_clamp,
                               int wscale_ok, __u8 *rcv_wscale)
{
        unsigned int space = (__space < 0 ? 0 : __space);

        /* If no clamp set the clamp to the max possible scaled window */
        if (*window_clamp == 0)
                (*window_clamp) = (65535 << 14);
        space = min(*window_clamp, space);

        /* Quantize space offering to a multiple of mss if possible. */
        if (space > mss)
                space = (space / mss) * mss;

        /* NOTE: offering an initial window larger than 32767
         * will break some buggy TCP stacks. If the admin tells us
         * it is likely we could be speaking with such a buggy stack
         * we will truncate our initial window offering to 32K-1
         * unless the remote has sent us a window scaling option,
         * which we interpret as a sign the remote TCP is not
         * misinterpreting the window field as a signed quantity.
         */
        if (sysctl_tcp_workaround_signed_windows)
                (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
        else
                (*rcv_wnd) = space;

        (*rcv_wscale) = 0;
        if (wscale_ok) {
                /* Set window scaling on max possible window
                 * See RFC1323 for an explanation of the limit to 14
                 */
                space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max);
                space = min_t(u32, space, *window_clamp);
                while (space > 65535 && (*rcv_wscale) < 14) {
                        space >>= 1;
                        (*rcv_wscale)++;
                }
        }

        /* Set initial window to value enough for senders,
         * following RFC2414. Senders, not following this RFC,
         * will be satisfied with 2.
         */
        if (mss > (1 << *rcv_wscale)) {
                int init_cwnd = 4;
                if (mss > 1460 * 3)
                        init_cwnd = 2;
                else if (mss > 1460)
                        init_cwnd = 3;
                if (*rcv_wnd > init_cwnd * mss)
                        *rcv_wnd = init_cwnd * mss;
        }

        /* Set the clamp no higher than max representable value */
        (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp);
}

/* Chose a new window to advertise, update state in tcp_sock for the
 * socket, and return result with RFC1323 scaling applied.  The return
 * value can be stuffed directly into th->window for an outgoing
 * frame.
 */
static u16 tcp_select_window(struct sock *sk)
{
        struct tcp_sock *tp = tcp_sk(sk);
        u32 cur_win = tcp_receive_window(tp);
        u32 new_win = __tcp_select_window(sk);

        /* Never shrink the offered window */
        if (new_win < cur_win) {
                /* Danger Will Robinson!
                 * Don't update rcv_wup/rcv_wnd here or else
                 * we will not be able to advertise a zero
                 * window in time.  --DaveM
                 *
                 * Relax Will Robinson.
                 */
                new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
        }
        tp->rcv_wnd = new_win;
        tp->rcv_wup = tp->rcv_nxt;

        /* Make sure we do not exceed the maximum possible
         * scaled window.
         */
        if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows)
                new_win = min(new_win, MAX_TCP_WINDOW);
        else
                new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));

        /* RFC1323 scaling applied */
        new_win >>= tp->rx_opt.rcv_wscale;

        /* If we advertise zero window, disable fast path. */
        if (new_win == 0)
                tp->pred_flags = 0;

        return new_win;
}

static inline void TCP_ECN_send_synack(struct tcp_sock *tp, struct sk_buff *skb)
{
        TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_CWR;
        if (!(tp->ecn_flags & TCP_ECN_OK))
                TCP_SKB_CB(skb)->flags &= ~TCPCB_FLAG_ECE;
}

static inline void TCP_ECN_send_syn(struct sock *sk, struct sk_buff *skb)
{
        struct tcp_sock *tp = tcp_sk(sk);

        tp->ecn_flags = 0;
        if (sysctl_tcp_ecn) {
                TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ECE | TCPCB_FLAG_CWR;
                tp->ecn_flags = TCP_ECN_OK;
        }
}

static __inline__ void
TCP_ECN_make_synack(struct request_sock *req, struct tcphdr *th)
{
        if (inet_rsk(req)->ecn_ok)
                th->ece = 1;
}

static inline void TCP_ECN_send(struct sock *sk, struct sk_buff *skb,
                                int tcp_header_len)
{
        struct tcp_sock *tp = tcp_sk(sk);

        if (tp->ecn_flags & TCP_ECN_OK) {
                /* Not-retransmitted data segment: set ECT and inject CWR. */
                if (skb->len != tcp_header_len &&
                    !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
                        INET_ECN_xmit(sk);
                        if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
                                tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
                                tcp_hdr(skb)->cwr = 1;
                                skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
                        }
                } else {
                        /* ACK or retransmitted segment: clear ECT|CE */
                        INET_ECN_dontxmit(sk);
                }
                if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
                        tcp_hdr(skb)->ece = 1;
        }
}

/* Constructs common control bits of non-data skb. If SYN/FIN is present,
 * auto increment end seqno.
 */
static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
{
        skb->csum = 0;

        TCP_SKB_CB(skb)->flags = flags;
        TCP_SKB_CB(skb)->sacked = 0;

        skb_shinfo(skb)->gso_segs = 1;
        skb_shinfo(skb)->gso_size = 0;
        skb_shinfo(skb)->gso_type = 0;

        TCP_SKB_CB(skb)->seq = seq;
        if (flags & (TCPCB_FLAG_SYN | TCPCB_FLAG_FIN))
                seq++;
        TCP_SKB_CB(skb)->end_seq = seq;
}

static inline int tcp_urg_mode(const struct tcp_sock *tp)
{
        return tp->snd_una != tp->snd_up;
}

#define OPTION_SACK_ADVERTISE   (1 << 0)
#define OPTION_TS               (1 << 1)
#define OPTION_MD5              (1 << 2)

struct tcp_out_options {
        u8 options;             /* bit field of OPTION_* */
        u8 ws;                  /* window scale, 0 to disable */
        u8 num_sack_blocks;     /* number of SACK blocks to include */
        u16 mss;                /* 0 to disable */
        __u32 tsval, tsecr;     /* need to include OPTION_TS */
};

static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
                              const struct tcp_out_options *opts,
                              __u8 **md5_hash) {
        if (unlikely(OPTION_MD5 & opts->options)) {
                *ptr++ = htonl((TCPOPT_NOP << 24) |
                               (TCPOPT_NOP << 16) |
                               (TCPOPT_MD5SIG << 8) |
                               TCPOLEN_MD5SIG);
                *md5_hash = (__u8 *)ptr;
                ptr += 4;
        } else {
                *md5_hash = NULL;
        }

        if (likely(OPTION_TS & opts->options)) {
                if (unlikely(OPTION_SACK_ADVERTISE & opts->options)) {
                        *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
                                       (TCPOLEN_SACK_PERM << 16) |
                                       (TCPOPT_TIMESTAMP << 8) |
                                       TCPOLEN_TIMESTAMP);
                } else {
                        *ptr++ = htonl((TCPOPT_NOP << 24) |
                                       (TCPOPT_NOP << 16) |
                                       (TCPOPT_TIMESTAMP << 8) |
                                       TCPOLEN_TIMESTAMP);
                }
                *ptr++ = htonl(opts->tsval);
                *ptr++ = htonl(opts->tsecr);
        }

        if (unlikely(opts->mss)) {
                *ptr++ = htonl((TCPOPT_MSS << 24) |
                               (TCPOLEN_MSS << 16) |
                               opts->mss);
        }

        if (unlikely(OPTION_SACK_ADVERTISE & opts->options &&
                     !(OPTION_TS & opts->options))) {
                *ptr++ = htonl((TCPOPT_NOP << 24) |
                               (TCPOPT_NOP << 16) |
                               (TCPOPT_SACK_PERM << 8) |
                               TCPOLEN_SACK_PERM);
        }

        if (unlikely(opts->ws)) {
                *ptr++ = htonl((TCPOPT_NOP << 24) |
                               (TCPOPT_WINDOW << 16) |
                               (TCPOLEN_WINDOW << 8) |
                               opts->ws);
        }

        if (unlikely(opts->num_sack_blocks)) {
                struct tcp_sack_block *sp = tp->rx_opt.dsack ?
                        tp->duplicate_sack : tp->selective_acks;
                int this_sack;

                *ptr++ = htonl((TCPOPT_NOP  << 24) |
                               (TCPOPT_NOP  << 16) |
                               (TCPOPT_SACK <<  8) |
                               (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
                                                     TCPOLEN_SACK_PERBLOCK)));

                for (this_sack = 0; this_sack < opts->num_sack_blocks;
                     ++this_sack) {
                        *ptr++ = htonl(sp[this_sack].start_seq);
                        *ptr++ = htonl(sp[this_sack].end_seq);
                }

                if (tp->rx_opt.dsack) {
                        tp->rx_opt.dsack = 0;
                        tp->rx_opt.eff_sacks--;
                }
        }
}

static unsigned tcp_syn_options(struct sock *sk, struct sk_buff *skb,
                                struct tcp_out_options *opts,
                                struct tcp_md5sig_key **md5) {
        struct tcp_sock *tp = tcp_sk(sk);
        unsigned size = 0;

#ifdef CONFIG_TCP_MD5SIG
        *md5 = tp->af_specific->md5_lookup(sk, sk);
        if (*md5) {
                opts->options |= OPTION_MD5;
                size += TCPOLEN_MD5SIG_ALIGNED;
        }
#else
        *md5 = NULL;
#endif

        /* We always get an MSS option.  The option bytes which will be seen in
         * normal data packets should timestamps be used, must be in the MSS
         * advertised.  But we subtract them from tp->mss_cache so that
         * calculations in tcp_sendmsg are simpler etc.  So account for this
         * fact here if necessary.  If we don't do this correctly, as a
         * receiver we won't recognize data packets as being full sized when we
         * should, and thus we won't abide by the delayed ACK rules correctly.
         * SACKs don't matter, we never delay an ACK when we have any of those
         * going out.  */
        opts->mss = tcp_advertise_mss(sk);
        size += TCPOLEN_MSS_ALIGNED;

        if (likely(sysctl_tcp_timestamps && *md5 == NULL)) {
                opts->options |= OPTION_TS;
                opts->tsval = TCP_SKB_CB(skb)->when;
                opts->tsecr = tp->rx_opt.ts_recent;
                size += TCPOLEN_TSTAMP_ALIGNED;
        }
        if (likely(sysctl_tcp_window_scaling)) {
                opts->ws = tp->rx_opt.rcv_wscale;
                if(likely(opts->ws))
                        size += TCPOLEN_WSCALE_ALIGNED;
        }
        if (likely(sysctl_tcp_sack)) {
                opts->options |= OPTION_SACK_ADVERTISE;
                if (unlikely(!(OPTION_TS & opts->options)))
                        size += TCPOLEN_SACKPERM_ALIGNED;
        }

        return size;
}

static unsigned tcp_synack_options(struct sock *sk,
                                   struct request_sock *req,
                                   unsigned mss, struct sk_buff *skb,
                                   struct tcp_out_options *opts,
                                   struct tcp_md5sig_key **md5) {
        unsigned size = 0;
        struct inet_request_sock *ireq = inet_rsk(req);
        char doing_ts;

#ifdef CONFIG_TCP_MD5SIG
        *md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req);
        if (*md5) {
                opts->options |= OPTION_MD5;
                size += TCPOLEN_MD5SIG_ALIGNED;
        }
#else
        *md5 = NULL;
#endif

        /* we can't fit any SACK blocks in a packet with MD5 + TS
           options. There was discussion about disabling SACK rather than TS in
           order to fit in better with old, buggy kernels, but that was deemed
           to be unnecessary. */
        doing_ts = ireq->tstamp_ok && !(*md5 && ireq->sack_ok);

        opts->mss = mss;
        size += TCPOLEN_MSS_ALIGNED;

        if (likely(ireq->wscale_ok)) {
                opts->ws = ireq->rcv_wscale;
                if(likely(opts->ws))
                        size += TCPOLEN_WSCALE_ALIGNED;
        }
        if (likely(doing_ts)) {
                opts->options |= OPTION_TS;
                opts->tsval = TCP_SKB_CB(skb)->when;
                opts->tsecr = req->ts_recent;
                size += TCPOLEN_TSTAMP_ALIGNED;
        }
        if (likely(ireq->sack_ok)) {
                opts->options |= OPTION_SACK_ADVERTISE;
                if (unlikely(!doing_ts))
                        size += TCPOLEN_SACKPERM_ALIGNED;
        }

        return size;
}

static unsigned tcp_established_options(struct sock *sk, struct sk_buff *skb,
                                        struct tcp_out_options *opts,
                                        struct tcp_md5sig_key **md5) {
        struct tcp_skb_cb *tcb = skb ? TCP_SKB_CB(skb) : NULL;
        struct tcp_sock *tp = tcp_sk(sk);
        unsigned size = 0;

#ifdef CONFIG_TCP_MD5SIG
        *md5 = tp->af_specific->md5_lookup(sk, sk);
        if (unlikely(*md5)) {
                opts->options |= OPTION_MD5;
                size += TCPOLEN_MD5SIG_ALIGNED;
        }
#else
        *md5 = NULL;
#endif

        if (likely(tp->rx_opt.tstamp_ok)) {
                opts->options |= OPTION_TS;
                opts->tsval = tcb ? tcb->when : 0;
                opts->tsecr = tp->rx_opt.ts_recent;
                size += TCPOLEN_TSTAMP_ALIGNED;
        }

        if (unlikely(tp->rx_opt.eff_sacks)) {
                const unsigned remaining = MAX_TCP_OPTION_SPACE - size;
                opts->num_sack_blocks =
                        min_t(unsigned, tp->rx_opt.eff_sacks,
                              (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
                              TCPOLEN_SACK_PERBLOCK);
                size += TCPOLEN_SACK_BASE_ALIGNED +
                        opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
        }

        return size;
}

/* This routine actually transmits TCP packets queued in by
 * tcp_do_sendmsg().  This is used by both the initial
 * transmission and possible later retransmissions.
 * All SKB's seen here are completely headerless.  It is our
 * job to build the TCP header, and pass the packet down to
 * IP so it can do the same plus pass the packet off to the
 * device.
 *
 * We are working here with either a clone of the original
 * SKB, or a fresh unique copy made by the retransmit engine.
 */
static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
                            gfp_t gfp_mask)
{
        const struct inet_connection_sock *icsk = inet_csk(sk);
        struct inet_sock *inet;
        struct tcp_sock *tp;
        struct tcp_skb_cb *tcb;
        struct tcp_out_options opts;
        unsigned tcp_options_size, tcp_header_size;
        struct tcp_md5sig_key *md5;
        __u8 *md5_hash_location;
        struct tcphdr *th;
        int err;

        BUG_ON(!skb || !tcp_skb_pcount(skb));

        /* If congestion control is doing timestamping, we must
         * take such a timestamp before we potentially clone/copy.
         */
        if (icsk->icsk_ca_ops->flags & TCP_CONG_RTT_STAMP)
                __net_timestamp(skb);

        if (likely(clone_it)) {
                if (unlikely(skb_cloned(skb)))
                        skb = pskb_copy(skb, gfp_mask);
                else
                        skb = skb_clone(skb, gfp_mask);
                if (unlikely(!skb))
                        return -ENOBUFS;
        }

        inet = inet_sk(sk);
        tp = tcp_sk(sk);
        tcb = TCP_SKB_CB(skb);
        memset(&opts, 0, sizeof(opts));

        if (unlikely(tcb->flags & TCPCB_FLAG_SYN))
                tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
        else
                tcp_options_size = tcp_established_options(sk, skb, &opts,
                                                           &md5);
        tcp_header_size = tcp_options_size + sizeof(struct tcphdr);

        if (tcp_packets_in_flight(tp) == 0)
                tcp_ca_event(sk, CA_EVENT_TX_START);

        skb_push(skb, tcp_header_size);
        skb_reset_transport_header(skb);
        skb_set_owner_w(skb, sk);

        /* Build TCP header and checksum it. */
        th = tcp_hdr(skb);
        th->source              = inet->sport;
        th->dest                = inet->dport;
        th->seq                 = htonl(tcb->seq);
        th->ack_seq             = htonl(tp->rcv_nxt);
        *(((__be16 *)th) + 6)   = htons(((tcp_header_size >> 2) << 12) |
                                        tcb->flags);

        if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) {
                /* RFC1323: The window in SYN & SYN/ACK segments
                 * is never scaled.
                 */
                th->window      = htons(min(tp->rcv_wnd, 65535U));
        } else {
                th->window      = htons(tcp_select_window(sk));
        }
        th->check               = 0;
        th->urg_ptr             = 0;

        /* The urg_mode check is necessary during a below snd_una win probe */
        if (unlikely(tcp_urg_mode(tp) &&
                     between(tp->snd_up, tcb->seq + 1, tcb->seq + 0xFFFF))) {
                th->urg_ptr             = htons(tp->snd_up - tcb->seq);
                th->urg                 = 1;
        }

        tcp_options_write((__be32 *)(th + 1), tp, &opts, &md5_hash_location);
        if (likely((tcb->flags & TCPCB_FLAG_SYN) == 0))
                TCP_ECN_send(sk, skb, tcp_header_size);

#ifdef CONFIG_TCP_MD5SIG
        /* Calculate the MD5 hash, as we have all we need now */
        if (md5) {
                sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
                tp->af_specific->calc_md5_hash(md5_hash_location,
                                               md5, sk, NULL, skb);
        }
#endif

        icsk->icsk_af_ops->send_check(sk, skb->len, skb);

        if (likely(tcb->flags & TCPCB_FLAG_ACK))
                tcp_event_ack_sent(sk, tcp_skb_pcount(skb));

        if (skb->len != tcp_header_size)
                tcp_event_data_sent(tp, skb, sk);

        if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
                TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);

        err = icsk->icsk_af_ops->queue_xmit(skb, 0);
        if (likely(err <= 0))
                return err;

        tcp_enter_cwr(sk, 1);

        return net_xmit_eval(err);
}

/* This routine just queue's the buffer
 *
 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
 * otherwise socket can stall.
 */
static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
{
        struct tcp_sock *tp = tcp_sk(sk);

        /* Advance write_seq and place onto the write_queue. */
        tp->write_seq = TCP_SKB_CB(skb)->end_seq;
        skb_header_release(skb);
        tcp_add_write_queue_tail(sk, skb);
        sk->sk_wmem_queued += skb->truesize;
        sk_mem_charge(sk, skb->truesize);
}

static void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb,
                                 unsigned int mss_now)
{
        if (skb->len <= mss_now || !sk_can_gso(sk)) {
                /* Avoid the costly divide in the normal
                 * non-TSO case.
                 */
                skb_shinfo(skb)->gso_segs = 1;
                skb_shinfo(skb)->gso_size = 0;
                skb_shinfo(skb)->gso_type = 0;
        } else {
                skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss_now);
                skb_shinfo(skb)->gso_size = mss_now;
                skb_shinfo(skb)->gso_type = sk->sk_gso_type;
        }
}

/* When a modification to fackets out becomes necessary, we need to check
 * skb is counted to fackets_out or not.
 */
static void tcp_adjust_fackets_out(struct sock *sk, struct sk_buff *skb,
                                   int decr)
{
        struct tcp_sock *tp = tcp_sk(sk);

        if (!tp->sacked_out || tcp_is_reno(tp))
                return;

        if (after(tcp_highest_sack_seq(tp), TCP_SKB_CB(skb)->seq))
                tp->fackets_out -= decr;
}

/* Function to create two new TCP segments.  Shrinks the given segment
 * to the specified size and appends a new segment with the rest of the
 * packet to the list.  This won't be called frequently, I hope.
 * Remember, these are still headerless SKBs at this point.
 */
int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len,
                 unsigned int mss_now)
{
        struct tcp_sock *tp = tcp_sk(sk);
        struct sk_buff *buff;
        int nsize, old_factor;
        int nlen;
        u16 flags;

        BUG_ON(len > skb->len);

        tcp_clear_retrans_hints_partial(tp);
        nsize = skb_headlen(skb) - len;
        if (nsize < 0)
                nsize = 0;

        if (skb_cloned(skb) &&
            skb_is_nonlinear(skb) &&
            pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
                return -ENOMEM;

        /* Get a new skb... force flag on. */
        buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC);
        if (buff == NULL)
                return -ENOMEM; /* We'll just try again later. */

        sk->sk_wmem_queued += buff->truesize;
        sk_mem_charge(sk, buff->truesize);
        nlen = skb->len - len - nsize;
        buff->truesize += nlen;
        skb->truesize -= nlen;

        /* Correct the sequence numbers. */
        TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
        TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
        TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;

        /* PSH and FIN should only be set in the second packet. */
        flags = TCP_SKB_CB(skb)->flags;
        TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN | TCPCB_FLAG_PSH);
        TCP_SKB_CB(buff)->flags = flags;
        TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;

        if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) {
                /* Copy and checksum data tail into the new buffer. */
                buff->csum = csum_partial_copy_nocheck(skb->data + len,
                                                       skb_put(buff, nsize),
                                                       nsize, 0);

                skb_trim(skb, len);

                skb->csum = csum_block_sub(skb->csum, buff->csum, len);
        } else {
                skb->ip_summed = CHECKSUM_PARTIAL;
                skb_split(skb, buff, len);
        }

        buff->ip_summed = skb->ip_summed;

        /* Looks stupid, but our code really uses when of
         * skbs, which it never sent before. --ANK
         */
        TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when;
        buff->tstamp = skb->tstamp;

        old_factor = tcp_skb_pcount(skb);

        /* Fix up tso_factor for both original and new SKB.  */
        tcp_set_skb_tso_segs(sk, skb, mss_now);
        tcp_set_skb_tso_segs(sk, buff, mss_now);

        /* If this packet has been sent out already, we must
         * adjust the various packet counters.
         */
        if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
                int diff = old_factor - tcp_skb_pcount(skb) -
                        tcp_skb_pcount(buff);

                tp->packets_out -= diff;

                if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
                        tp->sacked_out -= diff;
                if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
                        tp->retrans_out -= diff;

                if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
                        tp->lost_out -= diff;

                /* Adjust Reno SACK estimate. */
                if (tcp_is_reno(tp) && diff > 0) {
                        tcp_dec_pcount_approx_int(&tp->sacked_out, diff);
                        tcp_verify_left_out(tp);
                }
                tcp_adjust_fackets_out(sk, skb, diff);
        }

        /* Link BUFF into the send queue. */
        skb_header_release(buff);
        tcp_insert_write_queue_after(skb, buff, sk);

        return 0;
}

/* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
 * eventually). The difference is that pulled data not copied, but
 * immediately discarded.
 */
static void __pskb_trim_head(struct sk_buff *skb, int len)
{
        int i, k, eat;

        eat = len;
        k = 0;
        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
                if (skb_shinfo(skb)->frags[i].size <= eat) {
                        put_page(skb_shinfo(skb)->frags[i].page);
                        eat -= skb_shinfo(skb)->frags[i].size;
                } else {
                        skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
                        if (eat) {
                                skb_shinfo(skb)->frags[k].page_offset += eat;
                                skb_shinfo(skb)->frags[k].size -= eat;
                                eat = 0;
                        }
                        k++;
                }
        }
        skb_shinfo(skb)->nr_frags = k;

        skb_reset_tail_pointer(skb);
        skb->data_len -= len;
        skb->len = skb->data_len;
}

int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
{
        if (skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
                return -ENOMEM;

        /* If len == headlen, we avoid __skb_pull to preserve alignment. */
        if (unlikely(len < skb_headlen(skb)))
                __skb_pull(skb, len);
        else
                __pskb_trim_head(skb, len - skb_headlen(skb));

        TCP_SKB_CB(skb)->seq += len;
        skb->ip_summed = CHECKSUM_PARTIAL;

        skb->truesize        -= len;
        sk->sk_wmem_queued   -= len;
        sk_mem_uncharge(sk, len);
        sock_set_flag(sk, SOCK_QUEUE_SHRUNK);

        /* Any change of skb->len requires recalculation of tso
         * factor and mss.
         */
        if (tcp_skb_pcount(skb) > 1)
                tcp_set_skb_tso_segs(sk, skb, tcp_current_mss(sk, 1));

        return 0;
}

/* Not accounting for SACKs here. */
int tcp_mtu_to_mss(struct sock *sk, int pmtu)
{
        struct tcp_sock *tp = tcp_sk(sk);
        struct inet_connection_sock *icsk = inet_csk(sk);
        int mss_now;

        /* Calculate base mss without TCP options:
           It is MMS_S - sizeof(tcphdr) of rfc1122
         */
        mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);

        /* Clamp it (mss_clamp does not include tcp options) */
        if (mss_now > tp->rx_opt.mss_clamp)
                mss_now = tp->rx_opt.mss_clamp;

        /* Now subtract optional transport overhead */
        mss_now -= icsk->icsk_ext_hdr_len;

        /* Then reserve room for full set of TCP options and 8 bytes of data */
        if (mss_now < 48)
                mss_now = 48;

        /* Now subtract TCP options size, not including SACKs */
        mss_now -= tp->tcp_header_len - sizeof(struct tcphdr);

        return mss_now;
}

/* Inverse of above */
int tcp_mss_to_mtu(struct sock *sk, int mss)
{
        struct tcp_sock *tp = tcp_sk(sk);
        struct inet_connection_sock *icsk = inet_csk(sk);
        int mtu;

        mtu = mss +
              tp->tcp_header_len +
              icsk->icsk_ext_hdr_len +
              icsk->icsk_af_ops->net_header_len;

        return mtu;
}

void tcp_mtup_init(struct sock *sk)
{
        struct tcp_sock *tp = tcp_sk(sk);
        struct inet_connection_sock *icsk = inet_csk(sk);

        icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1;
        icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
                               icsk->icsk_af_ops->net_header_len;
        icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss);
        icsk->icsk_mtup.probe_size = 0;
}

/* Bound MSS / TSO packet size with the half of the window */
static int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
{
        if (tp->max_window && pktsize > (tp->max_window >> 1))
                return max(tp->max_window >> 1, 68U - tp->tcp_header_len);
        else
                return pktsize;
}

/* This function synchronize snd mss to current pmtu/exthdr set.

   tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
   for TCP options, but includes only bare TCP header.

   tp->rx_opt.mss_clamp is mss negotiated at connection setup.
   It is minimum of user_mss and mss received with SYN.
   It also does not include TCP options.

   inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.

   tp->mss_cache is current effective sending mss, including
   all tcp options except for SACKs. It is evaluated,
   taking into account current pmtu, but never exceeds
   tp->rx_opt.mss_clamp.

   NOTE1. rfc1122 clearly states that advertised MSS
   DOES NOT include either tcp or ip options.

   NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
   are READ ONLY outside this function.         --ANK (980731)
 */
unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
{
        struct tcp_sock *tp = tcp_sk(sk);
        struct inet_connection_sock *icsk = inet_csk(sk);
        int mss_now;

        if (icsk->icsk_mtup.search_high > pmtu)
                icsk->icsk_mtup.search_high = pmtu;

        mss_now = tcp_mtu_to_mss(sk, pmtu);
        mss_now = tcp_bound_to_half_wnd(tp, mss_now);

        /* And store cached results */
        icsk->icsk_pmtu_cookie = pmtu;
        if (icsk->icsk_mtup.enabled)
                mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
        tp->mss_cache = mss_now;

        return mss_now;
}

/* Compute the current effective MSS, taking SACKs and IP options,
 * and even PMTU discovery events into account.
 *
 * LARGESEND note: !tcp_urg_mode is overkill, only frames up to snd_up
 * cannot be large. However, taking into account rare use of URG, this
 * is not a big flaw.
 */
unsigned int tcp_current_mss(struct sock *sk, int large_allowed)
{
        struct tcp_sock *tp = tcp_sk(sk);
        struct dst_entry *dst = __sk_dst_get(sk);
        u32 mss_now;
        u16 xmit_size_goal;
        int doing_tso = 0;
        unsigned header_len;
        struct tcp_out_options opts;
        struct tcp_md5sig_key *md5;

        mss_now = tp->mss_cache;

        if (large_allowed && sk_can_gso(sk) && !tcp_urg_mode(tp))
                doing_tso = 1;

        if (dst) {
                u32 mtu = dst_mtu(dst);
                if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
                        mss_now = tcp_sync_mss(sk, mtu);
        }

        header_len = tcp_established_options(sk, NULL, &opts, &md5) +
                     sizeof(struct tcphdr);
        /* The mss_cache is sized based on tp->tcp_header_len, which assumes
         * some common options. If this is an odd packet (because we have SACK
         * blocks etc) then our calculated header_len will be different, and
         * we have to adjust mss_now correspondingly */
        if (header_len != tp->tcp_header_len) {
                int delta = (int) header_len - tp->tcp_header_len;
                mss_now -= delta;
        }

        xmit_size_goal = mss_now;

        if (doing_tso) {
                xmit_size_goal = ((sk->sk_gso_max_size - 1) -
                                  inet_csk(sk)->icsk_af_ops->net_header_len -
                                  inet_csk(sk)->icsk_ext_hdr_len -
                                  tp->tcp_header_len);

                xmit_size_goal = tcp_bound_to_half_wnd(tp, xmit_size_goal);
                xmit_size_goal -= (xmit_size_goal % mss_now);
        }
        tp->xmit_size_goal = xmit_size_goal;

        return mss_now;
}

/* Congestion window validation. (RFC2861) */
static void tcp_cwnd_validate(struct sock *sk)
{
        struct tcp_sock *tp = tcp_sk(sk);

        if (tp->packets_out >= tp->snd_cwnd) {
                /* Network is feed fully. */
                tp->snd_cwnd_used = 0;
                tp->snd_cwnd_stamp = tcp_time_stamp;
        } else {
                /* Network starves. */
                if (tp->packets_out > tp->snd_cwnd_used)
                        tp->snd_cwnd_used = tp->packets_out;

                if (sysctl_tcp_slow_start_after_idle &&
                    (s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto)
                        tcp_cwnd_application_limited(sk);
        }
}

/* Returns the portion of skb which can be sent right away without
 * introducing MSS oddities to segment boundaries. In rare cases where
 * mss_now != mss_cache, we will request caller to create a small skb
 * per input skb which could be mostly avoided here (if desired).
 *
 * We explicitly want to create a request for splitting write queue tail
 * to a small skb for Nagle purposes while avoiding unnecessary modulos,
 * thus all the complexity (cwnd_len is always MSS multiple which we
 * return whenever allowed by the other factors). Basically we need the
 * modulo only when the receiver window alone is the limiting factor or
 * when we would be allowed to send the split-due-to-Nagle skb fully.
 */
static unsigned int tcp_mss_split_point(struct sock *sk, struct sk_buff *skb,
                                        unsigned int mss_now, unsigned int cwnd)
{
        struct tcp_sock *tp = tcp_sk(sk);
        u32 needed, window, cwnd_len;

        window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
        cwnd_len = mss_now * cwnd;

        if (likely(cwnd_len <= window && skb != tcp_write_queue_tail(sk)))
                return cwnd_len;

        needed = min(skb->len, window);

        if (cwnd_len <= needed)
                return cwnd_len;

        return needed - needed % mss_now;
}

/* Can at least one segment of SKB be sent right now, according to the
 * congestion window rules?  If so, return how many segments are allowed.
 */
static inline unsigned int tcp_cwnd_test(struct tcp_sock *tp,
                                         struct sk_buff *skb)
{
        u32 in_flight, cwnd;

        /* Don't be strict about the congestion window for the final FIN.  */
        if ((TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
            tcp_skb_pcount(skb) == 1)
                return 1;

        in_flight = tcp_packets_in_flight(tp);
        cwnd = tp->snd_cwnd;
        if (in_flight < cwnd)
                return (cwnd - in_flight);

        return 0;
}

/* This must be invoked the first time we consider transmitting
 * SKB onto the wire.
 */
static int tcp_init_tso_segs(struct sock *sk, struct sk_buff *skb,
                             unsigned int mss_now)
{
        int tso_segs = tcp_skb_pcount(skb);

        if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
                tcp_set_skb_tso_segs(sk, skb, mss_now);
                tso_segs = tcp_skb_pcount(skb);
        }
        return tso_segs;
}

static inline int tcp_minshall_check(const struct tcp_sock *tp)
{
        return after(tp->snd_sml,tp->snd_una) &&
                !after(tp->snd_sml, tp->snd_nxt);
}

/* Return 0, if packet can be sent now without violation Nagle's rules:
 * 1. It is full sized.
 * 2. Or it contains FIN. (already checked by caller)
 * 3. Or TCP_NODELAY was set.
 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
 *    With Minshall's modification: all sent small packets are ACKed.
 */
static inline int tcp_nagle_check(const struct tcp_sock *tp,
                                  const struct sk_buff *skb,
                                  unsigned mss_now, int nonagle)
{
        return (skb->len < mss_now &&
                ((nonagle & TCP_NAGLE_CORK) ||
                 (!nonagle && tp->packets_out && tcp_minshall_check(tp))));
}

/* Return non-zero if the Nagle test allows this packet to be
 * sent now.
 */
static inline int tcp_nagle_test(struct tcp_sock *tp, struct sk_buff *skb,
                                 unsigned int cur_mss, int nonagle)
{
        /* Nagle rule does not apply to frames, which sit in the middle of the
         * write_queue (they have no chances to get new data).
         *
         * This is implemented in the callers, where they modify the 'nonagle'
         * argument based upon the location of SKB in the send queue.
         */
        if (nonagle & TCP_NAGLE_PUSH)
                return 1;

        /* Don't use the nagle rule for urgent data (or for the final FIN).
         * Nagle can be ignored during F-RTO too (see RFC4138).
         */
        if (tcp_urg_mode(tp) || (tp->frto_counter == 2) ||
            (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN))
                return 1;

        if (!tcp_nagle_check(tp, skb, cur_mss, nonagle))
                return 1;

        return 0;
}

/* Does at least the first segment of SKB fit into the send window? */
static inline int tcp_snd_wnd_test(struct tcp_sock *tp, struct sk_buff *skb,
                                   unsigned int cur_mss)
{
        u32 end_seq = TCP_SKB_CB(skb)->end_seq;

        if (skb->len > cur_mss)
                end_seq = TCP_SKB_CB(skb)->seq + cur_mss;

        return !after(end_seq, tcp_wnd_end(tp));
}

/* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
 * should be put on the wire right now.  If so, it returns the number of
 * packets allowed by the congestion window.
 */
static unsigned int tcp_snd_test(struct sock *sk, struct sk_buff *skb,
                                 unsigned int cur_mss, int nonagle)
{
        struct tcp_sock *tp = tcp_sk(sk);
        unsigned int cwnd_quota;

        tcp_init_tso_segs(sk, skb, cur_mss);

        if (!tcp_nagle_test(tp, skb, cur_mss, nonagle))
                return 0;

        cwnd_quota = tcp_cwnd_test(tp, skb);
        if (cwnd_quota && !tcp_snd_wnd_test(tp, skb, cur_mss))
                cwnd_quota = 0;

        return cwnd_quota;
}

int tcp_may_send_now(struct sock *sk)
{
        struct tcp_sock *tp = tcp_sk(sk);
        struct sk_buff *skb = tcp_send_head(sk);

        return (skb &&
                tcp_snd_test(sk, skb, tcp_current_mss(sk, 1),
                             (tcp_skb_is_last(sk, skb) ?
                              tp->nonagle : TCP_NAGLE_PUSH)));
}

/* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
 * which is put after SKB on the list.  It is very much like
 * tcp_fragment() except that it may make several kinds of assumptions
 * in order to speed up the splitting operation.  In particular, we
 * know that all the data is in scatter-gather pages, and that the
 * packet has never been sent out before (and thus is not cloned).
 */
static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
                        unsigned int mss_now)
{
        struct sk_buff *buff;
        int nlen = skb->len - len;
        u16 flags;

        /* All of a TSO frame must be composed of paged data.  */
        if (skb->len != skb->data_len)
                return tcp_fragment(sk, skb, len, mss_now);

        buff = sk_stream_alloc_skb(sk, 0, GFP_ATOMIC);
        if (unlikely(buff == NULL))
                return -ENOMEM;

        sk->sk_wmem_queued += buff->truesize;
        sk_mem_charge(sk, buff->truesize);
        buff->truesize += nlen;
        skb->truesize -= nlen;

        /* Correct the sequence numbers. */
        TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
        TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
        TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;

        /* PSH and FIN should only be set in the second packet. */
        flags = TCP_SKB_CB(skb)->flags;
        TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN | TCPCB_FLAG_PSH);
        TCP_SKB_CB(buff)->flags = flags;

        /* This packet was never sent out yet, so no SACK bits. */
        TCP_SKB_CB(buff)->sacked = 0;

        buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL;
        skb_split(skb, buff, len);

        /* Fix up tso_factor for both original and new SKB.  */
        tcp_set_skb_tso_segs(sk, skb, mss_now);
        tcp_set_skb_tso_segs(sk, buff, mss_now);

        /* Link BUFF into the send queue. */
        skb_header_release(buff);
        tcp_insert_write_queue_after(skb, buff, sk);

        return 0;
}

/* Try to defer sending, if possible, in order to minimize the amount
 * of TSO splitting we do.  View it as a kind of TSO Nagle test.
 *
 * This algorithm is from John Heffner.
 */
static int tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb)
{
        struct tcp_sock *tp = tcp_sk(sk);
        const struct inet_connection_sock *icsk = inet_csk(sk);
        u32 send_win, cong_win, limit, in_flight;

        if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)
                goto send_now;

        if (icsk->icsk_ca_state != TCP_CA_Open)
                goto send_now;

        /* Defer for less than two clock ticks. */
        if (tp->tso_deferred &&
            ((jiffies << 1) >> 1) - (tp->tso_deferred >> 1) > 1)
                goto send_now;

        in_flight = tcp_packets_in_flight(tp);

        BUG_ON(tcp_skb_pcount(skb) <= 1 || (tp->snd_cwnd <= in_flight));

        send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;

        /* From in_flight test above, we know that cwnd > in_flight.  */
        cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache;

        limit = min(send_win, cong_win);

        /* If a full-sized TSO skb can be sent, do it. */
        if (limit >= sk->sk_gso_max_size)
                goto send_now;

        if (sysctl_tcp_tso_win_divisor) {
                u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache);

                /* If at least some fraction of a window is available,
                 * just use it.
                 */
                chunk /= sysctl_tcp_tso_win_divisor;
                if (limit >= chunk)
                        goto send_now;
        } else {
                /* Different approach, try not to defer past a single
                 * ACK.  Receiver should ACK every other full sized
                 * frame, so if we have space for more than 3 frames
                 * then send now.
                 */
                if (limit > tcp_max_burst(tp) * tp->mss_cache)
                        goto send_now;
        }

        /* Ok, it looks like it is advisable to defer.  */
        tp->tso_deferred = 1 | (jiffies << 1);

        return 1;

send_now:
        tp->tso_deferred = 0;
        return 0;
}

/* Create a new MTU probe if we are ready.
 * Returns 0 if we should wait to probe (no cwnd available),
 *         1 if a probe was sent,
 *         -1 otherwise
 */
static int tcp_mtu_probe(struct sock *sk)
{
        struct tcp_sock *tp = tcp_sk(sk);
        struct inet_connection_sock *icsk = inet_csk(sk);
        struct sk_buff *skb, *nskb, *next;
        int len;
        int probe_size;
        int size_needed;
        int copy;
        int mss_now;

        /* Not currently probing/verifying,
         * not in recovery,
         * have enough cwnd, and
         * not SACKing (the variable headers throw things off) */
        if (!icsk->icsk_mtup.enabled ||
            icsk->icsk_mtup.probe_size ||
            inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
            tp->snd_cwnd < 11 ||
            tp->rx_opt.eff_sacks)
                return -1;

        /* Very simple search strategy: just double the MSS. */
        mss_now = tcp_current_mss(sk, 0);
        probe_size = 2 * tp->mss_cache;
        size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
        if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) {
                /* TODO: set timer for probe_converge_event */
                return -1;
        }

        /* Have enough data in the send queue to probe? */
        if (tp->write_seq - tp->snd_nxt < size_needed)
                return -1;

        if (tp->snd_wnd < size_needed)
                return -1;
        if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
                return 0;

        /* Do we need to wait to drain cwnd? With none in flight, don't stall */
        if (tcp_packets_in_flight(tp) + 2 > tp->snd_cwnd) {
                if (!tcp_packets_in_flight(tp))
                        return -1;
                else
                        return 0;
        }

        /* We're allowed to probe.  Build it now. */
        if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL)
                return -1;
        sk->sk_wmem_queued += nskb->truesize;
        sk_mem_charge(sk, nskb->truesize);

        skb = tcp_send_head(sk);

        TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
        TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
        TCP_SKB_CB(nskb)->flags = TCPCB_FLAG_ACK;
        TCP_SKB_CB(nskb)->sacked = 0;
        nskb->csum = 0;
        nskb->ip_summed = skb->ip_summed;

        tcp_insert_write_queue_before(nskb, skb, sk);

        len = 0;
        tcp_for_write_queue_from_safe(skb, next, sk) {
                copy = min_t(int, skb->len, probe_size - len);
                if (nskb->ip_summed)
                        skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
                else
                        nskb->csum = skb_copy_and_csum_bits(skb, 0,
                                                            skb_put(nskb, copy),
                                                            copy, nskb->csum);

                if (skb->len <= copy) {
                        /* We've eaten all the data from this skb.
                         * Throw it away. */
                        TCP_SKB_CB(nskb)->flags |= TCP_SKB_CB(skb)->flags;
                        tcp_unlink_write_queue(skb, sk);
                        sk_wmem_free_skb(sk, skb);
                } else {
                        TCP_SKB_CB(nskb)->flags |= TCP_SKB_CB(skb)->flags &
                                                   ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH);
                        if (!skb_shinfo(skb)->nr_frags) {
                                skb_pull(skb, copy);
                                if (skb->ip_summed != CHECKSUM_PARTIAL)
                                        skb->csum = csum_partial(skb->data,
                                                                 skb->len, 0);
                        } else {
                                __pskb_trim_head(skb, copy);
                                tcp_set_skb_tso_segs(sk, skb, mss_now);
                        }
                        TCP_SKB_CB(skb)->seq += copy;
                }

                len += copy;

                if (len >= probe_size)
                        break;
        }
        tcp_init_tso_segs(sk, nskb, nskb->len);

        /* We're ready to send.  If this fails, the probe will
         * be resegmented into mss-sized pieces by tcp_write_xmit(). */
        TCP_SKB_CB(nskb)->when = tcp_time_stamp;
        if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
                /* Decrement cwnd here because we are sending
                 * effectively two packets. */
                tp->snd_cwnd--;
                tcp_event_new_data_sent(sk, nskb);

                icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
                tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
                tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;

                return 1;
        }

        return -1;
}

/* This routine writes packets to the network.  It advances the
 * send_head.  This happens as incoming acks open up the remote
 * window for us.
 *
 * Returns 1, if no segments are in flight and we have queued segments, but
 * cannot send anything now because of SWS or another problem.
 */
static int tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle)
{
        struct tcp_sock *tp = tcp_sk(sk);
        struct sk_buff *skb;
        unsigned int tso_segs, sent_pkts;
        int cwnd_quota;
        int result;

        /* If we are closed, the bytes will have to remain here.
         * In time closedown will finish, we empty the write queue and all
         * will be happy.
         */
        if (unlikely(sk->sk_state == TCP_CLOSE))
                return 0;

        sent_pkts = 0;

        /* Do MTU probing. */
        if ((result = tcp_mtu_probe(sk)) == 0) {
                return 0;
        } else if (result > 0) {
                sent_pkts = 1;
        }

        while ((skb = tcp_send_head(sk))) {
                unsigned int limit;

                tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
                BUG_ON(!tso_segs);

                cwnd_quota = tcp_cwnd_test(tp, skb);
                if (!cwnd_quota)
                        break;

                if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now)))
                        break;

                if (tso_segs == 1) {
                        if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
                                                     (tcp_skb_is_last(sk, skb) ?
                                                      nonagle : TCP_NAGLE_PUSH))))
                                break;
                } else {
                        if (tcp_tso_should_defer(sk, skb))
                                break;
                }

                limit = mss_now;
                if (tso_segs > 1)
                        limit = tcp_mss_split_point(sk, skb, mss_now,
                                                    cwnd_quota);

                if (skb->len > limit &&
                    unlikely(tso_fragment(sk, skb, limit, mss_now)))
                        break;

                TCP_SKB_CB(skb)->when = tcp_time_stamp;

                if (unlikely(tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC)))
                        break;

                /* Advance the send_head.  This one is sent out.
                 * This call will increment packets_out.
                 */
                tcp_event_new_data_sent(sk, skb);

                tcp_minshall_update(tp, mss_now, skb);
                sent_pkts++;
        }

        if (likely(sent_pkts)) {
                tcp_cwnd_validate(sk);
                return 0;
        }
        return !tp->packets_out && tcp_send_head(sk);
}

/* Push out any pending frames which were held back due to
 * TCP_CORK or attempt at coalescing tiny packets.
 * The socket must be locked by the caller.
 */
void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
                               int nonagle)
{
        struct sk_buff *skb = tcp_send_head(sk);

        if (skb) {
                if (tcp_write_xmit(sk, cur_mss, nonagle))
                        tcp_check_probe_timer(sk);
        }
}

/* Send _single_ skb sitting at the send head. This function requires
 * true push pending frames to setup probe timer etc.
 */
void tcp_push_one(struct sock *sk, unsigned int mss_now)
{
        struct sk_buff *skb = tcp_send_head(sk);
        unsigned int tso_segs, cwnd_quota;

        BUG_ON(!skb || skb->len < mss_now);

        tso_segs = tcp_init_tso_segs(sk, skb, mss_now);
        cwnd_quota = tcp_snd_test(sk, skb, mss_now, TCP_NAGLE_PUSH);

        if (likely(cwnd_quota)) {
                unsigned int limit;

                BUG_ON(!tso_segs);

                limit = mss_now;
                if (tso_segs > 1)
                        limit = tcp_mss_split_point(sk, skb, mss_now,
                                                    cwnd_quota);

                if (skb->len > limit &&
                    unlikely(tso_fragment(sk, skb, limit, mss_now)))
                        return;

                /* Send it out now. */
                TCP_SKB_CB(skb)->when = tcp_time_stamp;

                if (likely(!tcp_transmit_skb(sk, skb, 1, sk->sk_allocation))) {
                        tcp_event_new_data_sent(sk, skb);
                        tcp_cwnd_validate(sk);
                        return;
                }
        }
}

/* This function returns the amount that we can raise the
 * usable window based on the following constraints
 *
 * 1. The window can never be shrunk once it is offered (RFC 793)
 * 2. We limit memory per socket
 *
 * RFC 1122:
 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
 *  RECV.NEXT + RCV.WIN fixed until:
 *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
 *
 * i.e. don't raise the right edge of the window until you can raise
 * it at least MSS bytes.
 *
 * Unfortunately, the recommended algorithm breaks header prediction,
 * since header prediction assumes th->window stays fixed.
 *
 * Strictly speaking, keeping th->window fixed violates the receiver
 * side SWS prevention criteria. The problem is that under this rule
 * a stream of single byte packets will cause the right side of the
 * window to always advance by a single byte.
 *
 * Of course, if the sender implements sender side SWS prevention
 * then this will not be a problem.
 *
 * BSD seems to make the following compromise:
 *
 *      If the free space is less than the 1/4 of the maximum
 *      space available and the free space is less than 1/2 mss,
 *      then set the window to 0.
 *      [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
 *      Otherwise, just prevent the window from shrinking
 *      and from being larger than the largest representable value.
 *
 * This prevents incremental opening of the window in the regime
 * where TCP is limited by the speed of the reader side taking
 * data out of the TCP receive queue. It does nothing about
 * those cases where the window is constrained on the sender side
 * because the pipeline is full.
 *
 * BSD also seems to "accidentally" limit itself to windows that are a
 * multiple of MSS, at least until the free space gets quite small.
 * This would appear to be a side effect of the mbuf implementation.
 * Combining these two algorithms results in the observed behavior
 * of having a fixed window size at almost all times.
 *
 * Below we obtain similar behavior by forcing the offered window to
 * a multiple of the mss when it is feasible to do so.
 *
 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
 * Regular options like TIMESTAMP are taken into account.
 */
u32 __tcp_select_window(struct sock *sk)
{
        struct inet_connection_sock *icsk = inet_csk(sk);
        struct tcp_sock *tp = tcp_sk(sk);
        /* MSS for the peer's data.  Previous versions used mss_clamp
         * here.  I don't know if the value based on our guesses
         * of peer's MSS is better for the performance.  It's more correct
         * but may be worse for the performance because of rcv_mss
         * fluctuations.  --SAW  1998/11/1
         */
        int mss = icsk->icsk_ack.rcv_mss;
        int free_space = tcp_space(sk);
        int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk));
        int window;

        if (mss > full_space)
                mss = full_space;

        if (free_space < (full_space >> 1)) {
                icsk->icsk_ack.quick = 0;

                if (tcp_memory_pressure)
                        tp->rcv_ssthresh = min(tp->rcv_ssthresh,
                                               4U * tp->advmss);

                if (free_space < mss)
                        return 0;
        }

        if (free_space > tp->rcv_ssthresh)
                free_space = tp->rcv_ssthresh;

        /* Don't do rounding if we are using window scaling, since the
         * scaled window will not line up with the MSS boundary anyway.
         */
        window = tp->rcv_wnd;
        if (tp->rx_opt.rcv_wscale) {
                window = free_space;

                /* Advertise enough space so that it won't get scaled away.
                 * Import case: prevent zero window announcement if
                 * 1<<rcv_wscale > mss.
                 */
                if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window)
                        window = (((window >> tp->rx_opt.rcv_wscale) + 1)
                                  << tp->rx_opt.rcv_wscale);
        } else {
                /* Get the largest window that is a nice multiple of mss.
                 * Window clamp already applied above.
                 * If our current window offering is within 1 mss of the
                 * free space we just keep it. This prevents the divide
                 * and multiply from happening most of the time.
                 * We also don't do any window rounding when the free space
                 * is too small.
                 */
                if (window <= free_space - mss || window > free_space)
                        window = (free_space / mss) * mss;
                else if (mss == full_space &&
                         free_space > window + (full_space >> 1))
                        window = free_space;
        }

        return window;
}

/* Attempt to collapse two adjacent SKB's during retransmission. */
static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb,
                                     int mss_now)
{
        struct tcp_sock *tp = tcp_sk(sk);
        struct sk_buff *next_skb = tcp_write_queue_next(sk, skb);
        int skb_size, next_skb_size;
        u16 flags;

        /* The first test we must make is that neither of these two
         * SKB's are still referenced by someone else.
         */
        if (skb_cloned(skb) || skb_cloned(next_skb))
                return;

        skb_size = skb->len;
        next_skb_size = next_skb->len;
        flags = TCP_SKB_CB(skb)->flags;

        /* Also punt if next skb has been SACK'd. */
        if (TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_ACKED)
                return;

        /* Next skb is out of window. */
        if (after(TCP_SKB_CB(next_skb)->end_seq, tcp_wnd_end(tp)))
                return;

        /* Punt if not enough space exists in the first SKB for
         * the data in the second, or the total combined payload
         * would exceed the MSS.
         */
        if ((next_skb_size > skb_tailroom(skb)) ||
            ((skb_size + next_skb_size) > mss_now))
                return;

        BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);

        tcp_highest_sack_combine(sk, next_skb, skb);

        /* Ok.  We will be able to collapse the packet. */
        tcp_unlink_write_queue(next_skb, sk);

        skb_copy_from_linear_data(next_skb, skb_put(skb, next_skb_size),
                                  next_skb_size);

        if (next_skb->ip_summed == CHECKSUM_PARTIAL)
                skb->ip_summed = CHECKSUM_PARTIAL;

        if (skb->ip_summed != CHECKSUM_PARTIAL)
                skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size);

        /* Update sequence range on original skb. */
        TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;

        /* Merge over control information. */
        flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */
        TCP_SKB_CB(skb)->flags = flags;

        /* All done, get rid of second SKB and account for it so
         * packet counting does not break.
         */
        TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
        if (TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_RETRANS)
                tp->retrans_out -= tcp_skb_pcount(next_skb);
        if (TCP_SKB_CB(next_skb)->sacked & TCPCB_LOST)
                tp->lost_out -= tcp_skb_pcount(next_skb);
        /* Reno case is special. Sigh... */
        if (tcp_is_reno(tp) && tp->sacked_out)
                tcp_dec_pcount_approx(&tp->sacked_out, next_skb);

        tcp_adjust_fackets_out(sk, next_skb, tcp_skb_pcount(next_skb));
        tp->packets_out -= tcp_skb_pcount(next_skb);

        /* changed transmit queue under us so clear hints */
        tcp_clear_retrans_hints_partial(tp);
        if (next_skb == tp->retransmit_skb_hint)
                tp->retransmit_skb_hint = skb;

        sk_wmem_free_skb(sk, next_skb);
}

/* Do a simple retransmit without using the backoff mechanisms in
 * tcp_timer. This is used for path mtu discovery.
 * The socket is already locked here.
 */
void tcp_simple_retransmit(struct sock *sk)
{
        const struct inet_connection_sock *icsk = inet_csk(sk);
        struct tcp_sock *tp = tcp_sk(sk);
        struct sk_buff *skb;
        unsigned int mss = tcp_current_mss(sk, 0);
        u32 prior_lost = tp->lost_out;

        tcp_for_write_queue(skb, sk) {
                if (skb == tcp_send_head(sk))
                        break;
                if (skb->len > mss &&
                    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
                        if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
                                TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
                                tp->retrans_out -= tcp_skb_pcount(skb);
                        }
                        tcp_skb_mark_lost_uncond_verify(tp, skb);
                }
        }

        tcp_clear_retrans_hints_partial(tp);

        if (prior_lost == tp->lost_out)
                return;

        if (tcp_is_reno(tp))
                tcp_limit_reno_sacked(tp);

        tcp_verify_left_out(tp);

        /* Don't muck with the congestion window here.
         * Reason is that we do not increase amount of _data_
         * in network, but units changed and effective
         * cwnd/ssthresh really reduced now.
         */
        if (icsk->icsk_ca_state != TCP_CA_Loss) {
                tp->high_seq = tp->snd_nxt;
                tp->snd_ssthresh = tcp_current_ssthresh(sk);
                tp->prior_ssthresh = 0;
                tp->undo_marker = 0;
                tcp_set_ca_state(sk, TCP_CA_Loss);
        }
        tcp_xmit_retransmit_queue(sk);
}

/* This retransmits one SKB.  Policy decisions and retransmit queue
 * state updates are done by the caller.  Returns non-zero if an
 * error occurred which prevented the send.
 */
int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb)
{
        struct tcp_sock *tp = tcp_sk(sk);
        struct inet_connection_sock *icsk = inet_csk(sk);
        unsigned int cur_mss;
        int err;

        /* Inconslusive MTU probe */
        if (icsk->icsk_mtup.probe_size) {
                icsk->icsk_mtup.probe_size = 0;
        }

        /* Do not sent more than we queued. 1/4 is reserved for possible
         * copying overhead: fragmentation, tunneling, mangling etc.
         */
        if (atomic_read(&sk->sk_wmem_alloc) >
            min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf))
                return -EAGAIN;

        if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
                if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
                        BUG();
                if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
                        return -ENOMEM;
        }

        if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
                return -EHOSTUNREACH; /* Routing failure or similar. */

        cur_mss = tcp_current_mss(sk, 0);

        /* If receiver has shrunk his window, and skb is out of
         * new window, do not retransmit it. The exception is the
         * case, when window is shrunk to zero. In this case
         * our retransmit serves as a zero window probe.
         */
        if (!before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))
            && TCP_SKB_CB(skb)->seq != tp->snd_una)
                return -EAGAIN;

        if (skb->len > cur_mss) {
                if (tcp_fragment(sk, skb, cur_mss, cur_mss))
                        return -ENOMEM; /* We'll try again later. */
        }

        /* Collapse two adjacent packets if worthwhile and we can. */
        if (!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) &&
            (skb->len < (cur_mss >> 1)) &&
            (!tcp_skb_is_last(sk, skb)) &&
            (tcp_write_queue_next(sk, skb) != tcp_send_head(sk)) &&
            (skb_shinfo(skb)->nr_frags == 0 &&
             skb_shinfo(tcp_write_queue_next(sk, skb))->nr_frags == 0) &&
            (tcp_skb_pcount(skb) == 1 &&
             tcp_skb_pcount(tcp_write_queue_next(sk, skb)) == 1) &&
            (sysctl_tcp_retrans_collapse != 0))
                tcp_retrans_try_collapse(sk, skb, cur_mss);

        /* Some Solaris stacks overoptimize and ignore the FIN on a
         * retransmit when old data is attached.  So strip it off
         * since it is cheap to do so and saves bytes on the network.
         */
        if (skb->len > 0 &&
            (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) &&
            tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) {
                if (!pskb_trim(skb, 0)) {
                        /* Reuse, even though it does some unnecessary work */
                        tcp_init_nondata_skb(skb, TCP_SKB_CB(skb)->end_seq - 1,
                                             TCP_SKB_CB(skb)->flags);
                        skb->ip_summed = CHECKSUM_NONE;
                }
        }

        /* Make a copy, if the first transmission SKB clone we made
         * is still in somebody's hands, else make a clone.
         */
        TCP_SKB_CB(skb)->when = tcp_time_stamp;

        err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);

        if (err == 0) {
                /* Update global TCP statistics. */
                TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);

                tp->total_retrans++;

#if FASTRETRANS_DEBUG > 0
                if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
                        if (net_ratelimit())
                                printk(KERN_DEBUG "retrans_out leaked.\n");
                }
#endif
                if (!tp->retrans_out)
                        tp->lost_retrans_low = tp->snd_nxt;
                TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
                tp->retrans_out += tcp_skb_pcount(skb);

                /* Save stamp of the first retransmit. */
                if (!tp->retrans_stamp)
                        tp->retrans_stamp = TCP_SKB_CB(skb)->when;

                tp->undo_retrans++;

                /* snd_nxt is stored to detect loss of retransmitted segment,
                 * see tcp_input.c tcp_sacktag_write_queue().
                 */
                TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt;
        }
        return err;
}

static int tcp_can_forward_retransmit(struct sock *sk)
{
        const struct inet_connection_sock *icsk = inet_csk(sk);
        struct tcp_sock *tp = tcp_sk(sk);

        /* Forward retransmissions are possible only during Recovery. */
        if (icsk->icsk_ca_state != TCP_CA_Recovery)
                return 0;

        /* No forward retransmissions in Reno are possible. */
        if (tcp_is_reno(tp))
                return 0;

        /* Yeah, we have to make difficult choice between forward transmission
         * and retransmission... Both ways have their merits...
         *
         * For now we do not retransmit anything, while we have some new
         * segments to send. In the other cases, follow rule 3 for
         * NextSeg() specified in RFC3517.
         */

        if (tcp_may_send_now(sk))
                return 0;

        return 1;
}

/* This gets called after a retransmit timeout, and the initially
 * retransmitted data is acknowledged.  It tries to continue
 * resending the rest of the retransmit queue, until either
 * we've sent it all or the congestion window limit is reached.
 * If doing SACK, the first ACK which comes back for a timeout
 * based retransmit packet might feed us FACK information again.
 * If so, we use it to avoid unnecessarily retransmissions.
 */
void tcp_xmit_retransmit_queue(struct sock *sk)
{
        const struct inet_connection_sock *icsk = inet_csk(sk);
        struct tcp_sock *tp = tcp_sk(sk);
        struct sk_buff *skb;
        struct sk_buff *hole = NULL;
        u32 last_lost;
        int mib_idx;
        int fwd_rexmitting = 0;

        if (!tp->lost_out)
                tp->retransmit_high = tp->snd_una;

        if (tp->retransmit_skb_hint) {
                skb = tp->retransmit_skb_hint;
                last_lost = TCP_SKB_CB(skb)->end_seq;
                if (after(last_lost, tp->retransmit_high))
                        last_lost = tp->retransmit_high;
        } else {
                skb = tcp_write_queue_head(sk);
                last_lost = tp->snd_una;
        }

        /* First pass: retransmit lost packets. */
        tcp_for_write_queue_from(skb, sk) {
                __u8 sacked = TCP_SKB_CB(skb)->sacked;

                if (skb == tcp_send_head(sk))
                        break;
                /* we could do better than to assign each time */
                if (hole == NULL)
                        tp->retransmit_skb_hint = skb;

                /* Assume this retransmit will generate
                 * only one packet for congestion window
                 * calculation purposes.  This works because
                 * tcp_retransmit_skb() will chop up the
                 * packet to be MSS sized and all the
                 * packet counting works out.
                 */
                if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
                        return;

                if (fwd_rexmitting) {
begin_fwd:
                        if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
                                break;
                        mib_idx = LINUX_MIB_TCPFORWARDRETRANS;

                } else if (!before(TCP_SKB_CB(skb)->seq, tp->retransmit_high)) {
                        tp->retransmit_high = last_lost;
                        if (!tcp_can_forward_retransmit(sk))
                                break;
                        /* Backtrack if necessary to non-L'ed skb */
                        if (hole != NULL) {
                                skb = hole;
                                hole = NULL;
                        }
                        fwd_rexmitting = 1;
                        goto begin_fwd;

                } else if (!(sacked & TCPCB_LOST)) {
                        if (hole == NULL && !(sacked & TCPCB_SACKED_RETRANS))
                                hole = skb;
                        continue;

                } else {
                        last_lost = TCP_SKB_CB(skb)->end_seq;
                        if (icsk->icsk_ca_state != TCP_CA_Loss)
                                mib_idx = LINUX_MIB_TCPFASTRETRANS;
                        else
                                mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
                }

                if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
                        continue;

                if (tcp_retransmit_skb(sk, skb))
                        return;
                NET_INC_STATS_BH(sock_net(sk), mib_idx);

                if (skb == tcp_write_queue_head(sk))
                        inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
                                                  inet_csk(sk)->icsk_rto,
                                                  TCP_RTO_MAX);
        }
}

/* Send a fin.  The caller locks the socket for us.  This cannot be
 * allowed to fail queueing a FIN frame under any circumstances.
 */
void tcp_send_fin(struct sock *sk)
{
        struct tcp_sock *tp = tcp_sk(sk);
        struct sk_buff *skb = tcp_write_queue_tail(sk);
        int mss_now;

        /* Optimization, tack on the FIN if we have a queue of
         * unsent frames.  But be careful about outgoing SACKS
         * and IP options.
         */
        mss_now = tcp_current_mss(sk, 1);

        if (tcp_send_head(sk) != NULL) {
                TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN;
                TCP_SKB_CB(skb)->end_seq++;
                tp->write_seq++;
        } else {
                /* Socket is locked, keep trying until memory is available. */
                for (;;) {
                        skb = alloc_skb_fclone(MAX_TCP_HEADER, GFP_KERNEL);
                        if (skb)
                                break;
                        yield();
                }

                /* Reserve space for headers and prepare control bits. */
                skb_reserve(skb, MAX_TCP_HEADER);
                /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
                tcp_init_nondata_skb(skb, tp->write_seq,
                                     TCPCB_FLAG_ACK | TCPCB_FLAG_FIN);
                tcp_queue_skb(sk, skb);
        }
        __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_OFF);
}

/* We get here when a process closes a file descriptor (either due to
 * an explicit close() or as a byproduct of exit()'ing) and there
 * was unread data in the receive queue.  This behavior is recommended
 * by RFC 2525, section 2.17.  -DaveM
 */
void tcp_send_active_reset(struct sock *sk, gfp_t priority)
{
        struct sk_buff *skb;

        /* NOTE: No TCP options attached and we never retransmit this. */
        skb = alloc_skb(MAX_TCP_HEADER, priority);
        if (!skb) {
                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
                return;
        }

        /* Reserve space for headers and prepare control bits. */
        skb_reserve(skb, MAX_TCP_HEADER);
        tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
                             TCPCB_FLAG_ACK | TCPCB_FLAG_RST);
        /* Send it off. */
        TCP_SKB_CB(skb)->when = tcp_time_stamp;
        if (tcp_transmit_skb(sk, skb, 0, priority))
                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);

        TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
}

/* WARNING: This routine must only be called when we have already sent
 * a SYN packet that crossed the incoming SYN that caused this routine
 * to get called. If this assumption fails then the initial rcv_wnd
 * and rcv_wscale values will not be correct.
 */
int tcp_send_synack(struct sock *sk)
{
        struct sk_buff *skb;

        skb = tcp_write_queue_head(sk);
        if (skb == NULL || !(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN)) {
                printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n");
                return -EFAULT;
        }
        if (!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_ACK)) {
                if (skb_cloned(skb)) {
                        struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC);
                        if (nskb == NULL)
                                return -ENOMEM;
                        tcp_unlink_write_queue(skb, sk);
                        skb_header_release(nskb);
                        __tcp_add_write_queue_head(sk, nskb);
                        sk_wmem_free_skb(sk, skb);
                        sk->sk_wmem_queued += nskb->truesize;
                        sk_mem_charge(sk, nskb->truesize);
                        skb = nskb;
                }

                TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK;
                TCP_ECN_send_synack(tcp_sk(sk), skb);
        }
        TCP_SKB_CB(skb)->when = tcp_time_stamp;
        return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
}

/*
 * Prepare a SYN-ACK.
 */
struct sk_buff *tcp_make_synack(struct sock *sk, struct dst_entry *dst,
                                struct request_sock *req)
{
        struct inet_request_sock *ireq = inet_rsk(req);
        struct tcp_sock *tp = tcp_sk(sk);
        struct tcphdr *th;
        int tcp_header_size;
        struct tcp_out_options opts;
        struct sk_buff *skb;
        struct tcp_md5sig_key *md5;
        __u8 *md5_hash_location;
        int mss;

        skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC);
        if (skb == NULL)
                return NULL;

        /* Reserve space for headers. */
        skb_reserve(skb, MAX_TCP_HEADER);

        skb->dst = dst_clone(dst);

        mss = dst_metric(dst, RTAX_ADVMSS);
        if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < mss)
                mss = tp->rx_opt.user_mss;

        if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */
                __u8 rcv_wscale;
                /* Set this up on the first call only */
                req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW);
                /* tcp_full_space because it is guaranteed to be the first packet */
                tcp_select_initial_window(tcp_full_space(sk),
                        mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
                        &req->rcv_wnd,
                        &req->window_clamp,
                        ireq->wscale_ok,
                        &rcv_wscale);
                ireq->rcv_wscale = rcv_wscale;
        }

        memset(&opts, 0, sizeof(opts));
        TCP_SKB_CB(skb)->when = tcp_time_stamp;
        tcp_header_size = tcp_synack_options(sk, req, mss,
                                             skb, &opts, &md5) +
                          sizeof(struct tcphdr);

        skb_push(skb, tcp_header_size);
        skb_reset_transport_header(skb);

        th = tcp_hdr(skb);
        memset(th, 0, sizeof(struct tcphdr));
        th->syn = 1;
        th->ack = 1;
        TCP_ECN_make_synack(req, th);
        th->source = ireq->loc_port;
        th->dest = ireq->rmt_port;
        /* Setting of flags are superfluous here for callers (and ECE is
         * not even correctly set)
         */
        tcp_init_nondata_skb(skb, tcp_rsk(req)->snt_isn,
                             TCPCB_FLAG_SYN | TCPCB_FLAG_ACK);
        th->seq = htonl(TCP_SKB_CB(skb)->seq);
        th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1);

        /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
        th->window = htons(min(req->rcv_wnd, 65535U));
#ifdef CONFIG_SYN_COOKIES
        if (unlikely(req->cookie_ts))
                TCP_SKB_CB(skb)->when = cookie_init_timestamp(req);
        else
#endif
        tcp_options_write((__be32 *)(th + 1), tp, &opts, &md5_hash_location);
        th->doff = (tcp_header_size >> 2);
        TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);

#ifdef CONFIG_TCP_MD5SIG
        /* Okay, we have all we need - do the md5 hash if needed */
        if (md5) {
                tp->af_specific->calc_md5_hash(md5_hash_location,
                                               md5, NULL, req, skb);
        }
#endif

        return skb;
}

/*
 * Do all connect socket setups that can be done AF independent.
 */
static void tcp_connect_init(struct sock *sk)
{
        struct dst_entry *dst = __sk_dst_get(sk);
        struct tcp_sock *tp = tcp_sk(sk);
        __u8 rcv_wscale;

        /* We'll fix this up when we get a response from the other end.
         * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
         */
        tp->tcp_header_len = sizeof(struct tcphdr) +
                (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0);

#ifdef CONFIG_TCP_MD5SIG
        if (tp->af_specific->md5_lookup(sk, sk) != NULL)
                tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
#endif

        /* If user gave his TCP_MAXSEG, record it to clamp */
        if (tp->rx_opt.user_mss)
                tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
        tp->max_window = 0;
        tcp_mtup_init(sk);
        tcp_sync_mss(sk, dst_mtu(dst));

        if (!tp->window_clamp)
                tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
        tp->advmss = dst_metric(dst, RTAX_ADVMSS);
        if (tp->rx_opt.user_mss && tp->rx_opt.user_mss < tp->advmss)
                tp->advmss = tp->rx_opt.user_mss;

        tcp_initialize_rcv_mss(sk);

        tcp_select_initial_window(tcp_full_space(sk),
                                  tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
                                  &tp->rcv_wnd,
                                  &tp->window_clamp,
                                  sysctl_tcp_window_scaling,
                                  &rcv_wscale);

        tp->rx_opt.rcv_wscale = rcv_wscale;
        tp->rcv_ssthresh = tp->rcv_wnd;

        sk->sk_err = 0;
        sock_reset_flag(sk, SOCK_DONE);
        tp->snd_wnd = 0;
        tcp_init_wl(tp, tp->write_seq, 0);
        tp->snd_una = tp->write_seq;
        tp->snd_sml = tp->write_seq;
        tp->snd_up = tp->write_seq;
        tp->rcv_nxt = 0;
        tp->rcv_wup = 0;
        tp->copied_seq = 0;

        inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
        inet_csk(sk)->icsk_retransmits = 0;
        tcp_clear_retrans(tp);
}

/*
 * Build a SYN and send it off.
 */
int tcp_connect(struct sock *sk)
{
        struct tcp_sock *tp = tcp_sk(sk);
        struct sk_buff *buff;

        tcp_connect_init(sk);

        buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation);
        if (unlikely(buff == NULL))
                return -ENOBUFS;

        /* Reserve space for headers. */
        skb_reserve(buff, MAX_TCP_HEADER);

        tp->snd_nxt = tp->write_seq;
        tcp_init_nondata_skb(buff, tp->write_seq++, TCPCB_FLAG_SYN);
        TCP_ECN_send_syn(sk, buff);

        /* Send it off. */
        TCP_SKB_CB(buff)->when = tcp_time_stamp;
        tp->retrans_stamp = TCP_SKB_CB(buff)->when;
        skb_header_release(buff);
        __tcp_add_write_queue_tail(sk, buff);
        sk->sk_wmem_queued += buff->truesize;
        sk_mem_charge(sk, buff->truesize);
        tp->packets_out += tcp_skb_pcount(buff);
        tcp_transmit_skb(sk, buff, 1, GFP_KERNEL);

        /* We change tp->snd_nxt after the tcp_transmit_skb() call
         * in order to make this packet get counted in tcpOutSegs.
         */
        tp->snd_nxt = tp->write_seq;
        tp->pushed_seq = tp->write_seq;
        TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);

        /* Timer for repeating the SYN until an answer. */
        inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
                                  inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
        return 0;
}

/* Send out a delayed ack, the caller does the policy checking
 * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check()
 * for details.
 */
void tcp_send_delayed_ack(struct sock *sk)
{
        struct inet_connection_sock *icsk = inet_csk(sk);
        int ato = icsk->icsk_ack.ato;
        unsigned long timeout;

        if (ato > TCP_DELACK_MIN) {
                const struct tcp_sock *tp = tcp_sk(sk);
                int max_ato = HZ / 2;

                if (icsk->icsk_ack.pingpong ||
                    (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
                        max_ato = TCP_DELACK_MAX;

                /* Slow path, intersegment interval is "high". */

                /* If some rtt estimate is known, use it to bound delayed ack.
                 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
                 * directly.
                 */
                if (tp->srtt) {
                        int rtt = max(tp->srtt >> 3, TCP_DELACK_MIN);

                        if (rtt < max_ato)
                                max_ato = rtt;
                }

                ato = min(ato, max_ato);
        }

        /* Stay within the limit we were given */
        timeout = jiffies + ato;

        /* Use new timeout only if there wasn't a older one earlier. */
        if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
                /* If delack timer was blocked or is about to expire,
                 * send ACK now.
                 */
                if (icsk->icsk_ack.blocked ||
                    time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
                        tcp_send_ack(sk);
                        return;
                }

                if (!time_before(timeout, icsk->icsk_ack.timeout))
                        timeout = icsk->icsk_ack.timeout;
        }
        icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
        icsk->icsk_ack.timeout = timeout;
        sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
}

/* This routine sends an ack and also updates the window. */
void tcp_send_ack(struct sock *sk)
{
        struct sk_buff *buff;

        /* If we have been reset, we may not send again. */
        if (sk->sk_state == TCP_CLOSE)
                return;

        /* We are not putting this on the write queue, so
         * tcp_transmit_skb() will set the ownership to this
         * sock.
         */
        buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
        if (buff == NULL) {
                inet_csk_schedule_ack(sk);
                inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN;
                inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
                                          TCP_DELACK_MAX, TCP_RTO_MAX);
                return;
        }

        /* Reserve space for headers and prepare control bits. */
        skb_reserve(buff, MAX_TCP_HEADER);
        tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPCB_FLAG_ACK);

        /* Send it off, this clears delayed acks for us. */
        TCP_SKB_CB(buff)->when = tcp_time_stamp;
        tcp_transmit_skb(sk, buff, 0, GFP_ATOMIC);
}

/* This routine sends a packet with an out of date sequence
 * number. It assumes the other end will try to ack it.
 *
 * Question: what should we make while urgent mode?
 * 4.4BSD forces sending single byte of data. We cannot send
 * out of window data, because we have SND.NXT==SND.MAX...
 *
 * Current solution: to send TWO zero-length segments in urgent mode:
 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
 * out-of-date with SND.UNA-1 to probe window.
 */
static int tcp_xmit_probe_skb(struct sock *sk, int urgent)
{
        struct tcp_sock *tp = tcp_sk(sk);
        struct sk_buff *skb;

        /* We don't queue it, tcp_transmit_skb() sets ownership. */
        skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
        if (skb == NULL)
                return -1;

        /* Reserve space for headers and set control bits. */
        skb_reserve(skb, MAX_TCP_HEADER);
        /* Use a previous sequence.  This should cause the other
         * end to send an ack.  Don't queue or clone SKB, just
         * send it.
         */
        tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPCB_FLAG_ACK);
        TCP_SKB_CB(skb)->when = tcp_time_stamp;
        return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC);
}

int tcp_write_wakeup(struct sock *sk)
{
        struct tcp_sock *tp = tcp_sk(sk);
        struct sk_buff *skb;

        if (sk->sk_state == TCP_CLOSE)
                return -1;

        if ((skb = tcp_send_head(sk)) != NULL &&
            before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
                int err;
                unsigned int mss = tcp_current_mss(sk, 0);
                unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;

                if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
                        tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;

                /* We are probing the opening of a window
                 * but the window size is != 0
                 * must have been a result SWS avoidance ( sender )
                 */
                if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
                    skb->len > mss) {
                        seg_size = min(seg_size, mss);
                        TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
                        if (tcp_fragment(sk, skb, seg_size, mss))
                                return -1;
                } else if (!tcp_skb_pcount(skb))
                        tcp_set_skb_tso_segs(sk, skb, mss);

                TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH;
                TCP_SKB_CB(skb)->when = tcp_time_stamp;
                err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
                if (!err)
                        tcp_event_new_data_sent(sk, skb);
                return err;
        } else {
                if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
                        tcp_xmit_probe_skb(sk, 1);
                return tcp_xmit_probe_skb(sk, 0);
        }
}

/* A window probe timeout has occurred.  If window is not closed send
 * a partial packet else a zero probe.
 */
void tcp_send_probe0(struct sock *sk)
{
        struct inet_connection_sock *icsk = inet_csk(sk);
        struct tcp_sock *tp = tcp_sk(sk);
        int err;

        err = tcp_write_wakeup(sk);

        if (tp->packets_out || !tcp_send_head(sk)) {
                /* Cancel probe timer, if it is not required. */
                icsk->icsk_probes_out = 0;
                icsk->icsk_backoff = 0;
                return;
        }

        if (err <= 0) {
                if (icsk->icsk_backoff < sysctl_tcp_retries2)
                        icsk->icsk_backoff++;
                icsk->icsk_probes_out++;
                inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
                                          min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
                                          TCP_RTO_MAX);
        } else {
                /* If packet was not sent due to local congestion,
                 * do not backoff and do not remember icsk_probes_out.
                 * Let local senders to fight for local resources.
                 *
                 * Use accumulated backoff yet.
                 */
                if (!icsk->icsk_probes_out)
                        icsk->icsk_probes_out = 1;
                inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
                                          min(icsk->icsk_rto << icsk->icsk_backoff,
                                              TCP_RESOURCE_PROBE_INTERVAL),
                                          TCP_RTO_MAX);
        }
}

EXPORT_SYMBOL(tcp_select_initial_window);
EXPORT_SYMBOL(tcp_connect);
EXPORT_SYMBOL(tcp_make_synack);
EXPORT_SYMBOL(tcp_simple_retransmit);
EXPORT_SYMBOL(tcp_sync_mss);
EXPORT_SYMBOL(tcp_mtup_init);

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading