[funini.com] -> [kei@sodan] -> Kernel Reading

root/net/ipv4/netfilter/arp_tables.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. arp_devaddr_compare
  2. arp_packet_match
  3. arp_checkentry
  4. arpt_error
  5. get_entry
  6. arpt_do_table
  7. unconditional
  8. mark_source_chains
  9. check_entry
  10. check_target
  11. find_check_entry
  12. check_entry_size_and_hooks
  13. cleanup_entry
  14. translate_table
  15. add_entry_to_counter
  16. set_entry_to_counter
  17. get_counters
  18. alloc_counters
  19. copy_entries_to_user
  20. compat_standard_from_user
  21. compat_standard_to_user
  22. compat_calc_entry
  23. compat_table_info
  24. get_info
  25. get_entries
  26. __do_replace
  27. do_replace
  28. add_counter_to_entry
  29. do_add_counters
  30. compat_release_entry
  31. check_compat_entry_size_and_hooks
  32. compat_copy_entry_from_user
  33. compat_check_entry
  34. translate_compat_table
  35. compat_do_replace
  36. compat_do_arpt_set_ctl
  37. compat_copy_entry_to_user
  38. compat_copy_entries_to_user
  39. compat_get_entries
  40. compat_do_arpt_get_ctl
  41. do_arpt_set_ctl
  42. do_arpt_get_ctl
  43. arpt_register_table
  44. arpt_unregister_table
  45. arp_tables_net_init
  46. arp_tables_net_exit
  47. arp_tables_init
  48. arp_tables_fini

/*
 * Packet matching code for ARP packets.
 *
 * Based heavily, if not almost entirely, upon ip_tables.c framework.
 *
 * Some ARP specific bits are:
 *
 * Copyright (C) 2002 David S. Miller (davem@redhat.com)
 *
 */

#include <linux/kernel.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/capability.h>
#include <linux/if_arp.h>
#include <linux/kmod.h>
#include <linux/vmalloc.h>
#include <linux/proc_fs.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/mutex.h>
#include <linux/err.h>
#include <net/compat.h>
#include <net/sock.h>
#include <asm/uaccess.h>

#include <linux/netfilter/x_tables.h>
#include <linux/netfilter_arp/arp_tables.h>

MODULE_LICENSE("GPL");
MODULE_AUTHOR("David S. Miller <davem@redhat.com>");
MODULE_DESCRIPTION("arptables core");

/*#define DEBUG_ARP_TABLES*/
/*#define DEBUG_ARP_TABLES_USER*/

#ifdef DEBUG_ARP_TABLES
#define dprintf(format, args...)  printk(format , ## args)
#else
#define dprintf(format, args...)
#endif

#ifdef DEBUG_ARP_TABLES_USER
#define duprintf(format, args...) printk(format , ## args)
#else
#define duprintf(format, args...)
#endif

#ifdef CONFIG_NETFILTER_DEBUG
#define ARP_NF_ASSERT(x)                                        \
do {                                                            \
        if (!(x))                                               \
                printk("ARP_NF_ASSERT: %s:%s:%u\n",             \
                       __func__, __FILE__, __LINE__);   \
} while(0)
#else
#define ARP_NF_ASSERT(x)
#endif

static inline int arp_devaddr_compare(const struct arpt_devaddr_info *ap,
                                      const char *hdr_addr, int len)
{
        int i, ret;

        if (len > ARPT_DEV_ADDR_LEN_MAX)
                len = ARPT_DEV_ADDR_LEN_MAX;

        ret = 0;
        for (i = 0; i < len; i++)
                ret |= (hdr_addr[i] ^ ap->addr[i]) & ap->mask[i];

        return (ret != 0);
}

/* Returns whether packet matches rule or not. */
static inline int arp_packet_match(const struct arphdr *arphdr,
                                   struct net_device *dev,
                                   const char *indev,
                                   const char *outdev,
                                   const struct arpt_arp *arpinfo)
{
        const char *arpptr = (char *)(arphdr + 1);
        const char *src_devaddr, *tgt_devaddr;
        __be32 src_ipaddr, tgt_ipaddr;
        int i, ret;

#define FWINV(bool, invflg) ((bool) ^ !!(arpinfo->invflags & (invflg)))

        if (FWINV((arphdr->ar_op & arpinfo->arpop_mask) != arpinfo->arpop,
                  ARPT_INV_ARPOP)) {
                dprintf("ARP operation field mismatch.\n");
                dprintf("ar_op: %04x info->arpop: %04x info->arpop_mask: %04x\n",
                        arphdr->ar_op, arpinfo->arpop, arpinfo->arpop_mask);
                return 0;
        }

        if (FWINV((arphdr->ar_hrd & arpinfo->arhrd_mask) != arpinfo->arhrd,
                  ARPT_INV_ARPHRD)) {
                dprintf("ARP hardware address format mismatch.\n");
                dprintf("ar_hrd: %04x info->arhrd: %04x info->arhrd_mask: %04x\n",
                        arphdr->ar_hrd, arpinfo->arhrd, arpinfo->arhrd_mask);
                return 0;
        }

        if (FWINV((arphdr->ar_pro & arpinfo->arpro_mask) != arpinfo->arpro,
                  ARPT_INV_ARPPRO)) {
                dprintf("ARP protocol address format mismatch.\n");
                dprintf("ar_pro: %04x info->arpro: %04x info->arpro_mask: %04x\n",
                        arphdr->ar_pro, arpinfo->arpro, arpinfo->arpro_mask);
                return 0;
        }

        if (FWINV((arphdr->ar_hln & arpinfo->arhln_mask) != arpinfo->arhln,
                  ARPT_INV_ARPHLN)) {
                dprintf("ARP hardware address length mismatch.\n");
                dprintf("ar_hln: %02x info->arhln: %02x info->arhln_mask: %02x\n",
                        arphdr->ar_hln, arpinfo->arhln, arpinfo->arhln_mask);
                return 0;
        }

        src_devaddr = arpptr;
        arpptr += dev->addr_len;
        memcpy(&src_ipaddr, arpptr, sizeof(u32));
        arpptr += sizeof(u32);
        tgt_devaddr = arpptr;
        arpptr += dev->addr_len;
        memcpy(&tgt_ipaddr, arpptr, sizeof(u32));

        if (FWINV(arp_devaddr_compare(&arpinfo->src_devaddr, src_devaddr, dev->addr_len),
                  ARPT_INV_SRCDEVADDR) ||
            FWINV(arp_devaddr_compare(&arpinfo->tgt_devaddr, tgt_devaddr, dev->addr_len),
                  ARPT_INV_TGTDEVADDR)) {
                dprintf("Source or target device address mismatch.\n");

                return 0;
        }

        if (FWINV((src_ipaddr & arpinfo->smsk.s_addr) != arpinfo->src.s_addr,
                  ARPT_INV_SRCIP) ||
            FWINV(((tgt_ipaddr & arpinfo->tmsk.s_addr) != arpinfo->tgt.s_addr),
                  ARPT_INV_TGTIP)) {
                dprintf("Source or target IP address mismatch.\n");

                dprintf("SRC: %u.%u.%u.%u. Mask: %u.%u.%u.%u. Target: %u.%u.%u.%u.%s\n",
                        NIPQUAD(src_ipaddr),
                        NIPQUAD(arpinfo->smsk.s_addr),
                        NIPQUAD(arpinfo->src.s_addr),
                        arpinfo->invflags & ARPT_INV_SRCIP ? " (INV)" : "");
                dprintf("TGT: %u.%u.%u.%u Mask: %u.%u.%u.%u Target: %u.%u.%u.%u.%s\n",
                        NIPQUAD(tgt_ipaddr),
                        NIPQUAD(arpinfo->tmsk.s_addr),
                        NIPQUAD(arpinfo->tgt.s_addr),
                        arpinfo->invflags & ARPT_INV_TGTIP ? " (INV)" : "");
                return 0;
        }

        /* Look for ifname matches.  */
        for (i = 0, ret = 0; i < IFNAMSIZ; i++) {
                ret |= (indev[i] ^ arpinfo->iniface[i])
                        & arpinfo->iniface_mask[i];
        }

        if (FWINV(ret != 0, ARPT_INV_VIA_IN)) {
                dprintf("VIA in mismatch (%s vs %s).%s\n",
                        indev, arpinfo->iniface,
                        arpinfo->invflags&ARPT_INV_VIA_IN ?" (INV)":"");
                return 0;
        }

        for (i = 0, ret = 0; i < IFNAMSIZ; i++) {
                ret |= (outdev[i] ^ arpinfo->outiface[i])
                        & arpinfo->outiface_mask[i];
        }

        if (FWINV(ret != 0, ARPT_INV_VIA_OUT)) {
                dprintf("VIA out mismatch (%s vs %s).%s\n",
                        outdev, arpinfo->outiface,
                        arpinfo->invflags&ARPT_INV_VIA_OUT ?" (INV)":"");
                return 0;
        }

        return 1;
#undef FWINV
}

static inline int arp_checkentry(const struct arpt_arp *arp)
{
        if (arp->flags & ~ARPT_F_MASK) {
                duprintf("Unknown flag bits set: %08X\n",
                         arp->flags & ~ARPT_F_MASK);
                return 0;
        }
        if (arp->invflags & ~ARPT_INV_MASK) {
                duprintf("Unknown invflag bits set: %08X\n",
                         arp->invflags & ~ARPT_INV_MASK);
                return 0;
        }

        return 1;
}

static unsigned int
arpt_error(struct sk_buff *skb, const struct xt_target_param *par)
{
        if (net_ratelimit())
                printk("arp_tables: error: '%s'\n",
                       (const char *)par->targinfo);

        return NF_DROP;
}

static inline struct arpt_entry *get_entry(void *base, unsigned int offset)
{
        return (struct arpt_entry *)(base + offset);
}

unsigned int arpt_do_table(struct sk_buff *skb,
                           unsigned int hook,
                           const struct net_device *in,
                           const struct net_device *out,
                           struct xt_table *table)
{
        static const char nulldevname[IFNAMSIZ];
        unsigned int verdict = NF_DROP;
        const struct arphdr *arp;
        bool hotdrop = false;
        struct arpt_entry *e, *back;
        const char *indev, *outdev;
        void *table_base;
        const struct xt_table_info *private;
        struct xt_target_param tgpar;

        if (!pskb_may_pull(skb, arp_hdr_len(skb->dev)))
                return NF_DROP;

        indev = in ? in->name : nulldevname;
        outdev = out ? out->name : nulldevname;

        read_lock_bh(&table->lock);
        private = table->private;
        table_base = (void *)private->entries[smp_processor_id()];
        e = get_entry(table_base, private->hook_entry[hook]);
        back = get_entry(table_base, private->underflow[hook]);

        tgpar.in      = in;
        tgpar.out     = out;
        tgpar.hooknum = hook;
        tgpar.family  = NFPROTO_ARP;

        arp = arp_hdr(skb);
        do {
                if (arp_packet_match(arp, skb->dev, indev, outdev, &e->arp)) {
                        struct arpt_entry_target *t;
                        int hdr_len;

                        hdr_len = sizeof(*arp) + (2 * sizeof(struct in_addr)) +
                                (2 * skb->dev->addr_len);
                        ADD_COUNTER(e->counters, hdr_len, 1);

                        t = arpt_get_target(e);

                        /* Standard target? */
                        if (!t->u.kernel.target->target) {
                                int v;

                                v = ((struct arpt_standard_target *)t)->verdict;
                                if (v < 0) {
                                        /* Pop from stack? */
                                        if (v != ARPT_RETURN) {
                                                verdict = (unsigned)(-v) - 1;
                                                break;
                                        }
                                        e = back;
                                        back = get_entry(table_base,
                                                         back->comefrom);
                                        continue;
                                }
                                if (table_base + v
                                    != (void *)e + e->next_offset) {
                                        /* Save old back ptr in next entry */
                                        struct arpt_entry *next
                                                = (void *)e + e->next_offset;
                                        next->comefrom =
                                                (void *)back - table_base;

                                        /* set back pointer to next entry */
                                        back = next;
                                }

                                e = get_entry(table_base, v);
                        } else {
                                /* Targets which reenter must return
                                 * abs. verdicts
                                 */
                                tgpar.target   = t->u.kernel.target;
                                tgpar.targinfo = t->data;
                                verdict = t->u.kernel.target->target(skb,
                                                                     &tgpar);

                                /* Target might have changed stuff. */
                                arp = arp_hdr(skb);

                                if (verdict == ARPT_CONTINUE)
                                        e = (void *)e + e->next_offset;
                                else
                                        /* Verdict */
                                        break;
                        }
                } else {
                        e = (void *)e + e->next_offset;
                }
        } while (!hotdrop);
        read_unlock_bh(&table->lock);

        if (hotdrop)
                return NF_DROP;
        else
                return verdict;
}

/* All zeroes == unconditional rule. */
static inline int unconditional(const struct arpt_arp *arp)
{
        unsigned int i;

        for (i = 0; i < sizeof(*arp)/sizeof(__u32); i++)
                if (((__u32 *)arp)[i])
                        return 0;

        return 1;
}

/* Figures out from what hook each rule can be called: returns 0 if
 * there are loops.  Puts hook bitmask in comefrom.
 */
static int mark_source_chains(struct xt_table_info *newinfo,
                              unsigned int valid_hooks, void *entry0)
{
        unsigned int hook;

        /* No recursion; use packet counter to save back ptrs (reset
         * to 0 as we leave), and comefrom to save source hook bitmask.
         */
        for (hook = 0; hook < NF_ARP_NUMHOOKS; hook++) {
                unsigned int pos = newinfo->hook_entry[hook];
                struct arpt_entry *e
                        = (struct arpt_entry *)(entry0 + pos);

                if (!(valid_hooks & (1 << hook)))
                        continue;

                /* Set initial back pointer. */
                e->counters.pcnt = pos;

                for (;;) {
                        const struct arpt_standard_target *t
                                = (void *)arpt_get_target(e);
                        int visited = e->comefrom & (1 << hook);

                        if (e->comefrom & (1 << NF_ARP_NUMHOOKS)) {
                                printk("arptables: loop hook %u pos %u %08X.\n",
                                       hook, pos, e->comefrom);
                                return 0;
                        }
                        e->comefrom
                                |= ((1 << hook) | (1 << NF_ARP_NUMHOOKS));

                        /* Unconditional return/END. */
                        if ((e->target_offset == sizeof(struct arpt_entry)
                            && (strcmp(t->target.u.user.name,
                                       ARPT_STANDARD_TARGET) == 0)
                            && t->verdict < 0
                            && unconditional(&e->arp)) || visited) {
                                unsigned int oldpos, size;

                                if (t->verdict < -NF_MAX_VERDICT - 1) {
                                        duprintf("mark_source_chains: bad "
                                                "negative verdict (%i)\n",
                                                                t->verdict);
                                        return 0;
                                }

                                /* Return: backtrack through the last
                                 * big jump.
                                 */
                                do {
                                        e->comefrom ^= (1<<NF_ARP_NUMHOOKS);
                                        oldpos = pos;
                                        pos = e->counters.pcnt;
                                        e->counters.pcnt = 0;

                                        /* We're at the start. */
                                        if (pos == oldpos)
                                                goto next;

                                        e = (struct arpt_entry *)
                                                (entry0 + pos);
                                } while (oldpos == pos + e->next_offset);

                                /* Move along one */
                                size = e->next_offset;
                                e = (struct arpt_entry *)
                                        (entry0 + pos + size);
                                e->counters.pcnt = pos;
                                pos += size;
                        } else {
                                int newpos = t->verdict;

                                if (strcmp(t->target.u.user.name,
                                           ARPT_STANDARD_TARGET) == 0
                                    && newpos >= 0) {
                                        if (newpos > newinfo->size -
                                                sizeof(struct arpt_entry)) {
                                                duprintf("mark_source_chains: "
                                                        "bad verdict (%i)\n",
                                                                newpos);
                                                return 0;
                                        }

                                        /* This a jump; chase it. */
                                        duprintf("Jump rule %u -> %u\n",
                                                 pos, newpos);
                                } else {
                                        /* ... this is a fallthru */
                                        newpos = pos + e->next_offset;
                                }
                                e = (struct arpt_entry *)
                                        (entry0 + newpos);
                                e->counters.pcnt = pos;
                                pos = newpos;
                        }
                }
                next:
                duprintf("Finished chain %u\n", hook);
        }
        return 1;
}

static inline int check_entry(struct arpt_entry *e, const char *name)
{
        const struct arpt_entry_target *t;

        if (!arp_checkentry(&e->arp)) {
                duprintf("arp_tables: arp check failed %p %s.\n", e, name);
                return -EINVAL;
        }

        if (e->target_offset + sizeof(struct arpt_entry_target) > e->next_offset)
                return -EINVAL;

        t = arpt_get_target(e);
        if (e->target_offset + t->u.target_size > e->next_offset)
                return -EINVAL;

        return 0;
}

static inline int check_target(struct arpt_entry *e, const char *name)
{
        struct arpt_entry_target *t = arpt_get_target(e);
        int ret;
        struct xt_tgchk_param par = {
                .table     = name,
                .entryinfo = e,
                .target    = t->u.kernel.target,
                .targinfo  = t->data,
                .hook_mask = e->comefrom,
                .family    = NFPROTO_ARP,
        };

        ret = xt_check_target(&par, t->u.target_size - sizeof(*t), 0, false);
        if (ret < 0) {
                duprintf("arp_tables: check failed for `%s'.\n",
                         t->u.kernel.target->name);
                return ret;
        }
        return 0;
}

static inline int
find_check_entry(struct arpt_entry *e, const char *name, unsigned int size,
                 unsigned int *i)
{
        struct arpt_entry_target *t;
        struct xt_target *target;
        int ret;

        ret = check_entry(e, name);
        if (ret)
                return ret;

        t = arpt_get_target(e);
        target = try_then_request_module(xt_find_target(NFPROTO_ARP,
                                                        t->u.user.name,
                                                        t->u.user.revision),
                                         "arpt_%s", t->u.user.name);
        if (IS_ERR(target) || !target) {
                duprintf("find_check_entry: `%s' not found\n", t->u.user.name);
                ret = target ? PTR_ERR(target) : -ENOENT;
                goto out;
        }
        t->u.kernel.target = target;

        ret = check_target(e, name);
        if (ret)
                goto err;

        (*i)++;
        return 0;
err:
        module_put(t->u.kernel.target->me);
out:
        return ret;
}

static inline int check_entry_size_and_hooks(struct arpt_entry *e,
                                             struct xt_table_info *newinfo,
                                             unsigned char *base,
                                             unsigned char *limit,
                                             const unsigned int *hook_entries,
                                             const unsigned int *underflows,
                                             unsigned int *i)
{
        unsigned int h;

        if ((unsigned long)e % __alignof__(struct arpt_entry) != 0
            || (unsigned char *)e + sizeof(struct arpt_entry) >= limit) {
                duprintf("Bad offset %p\n", e);
                return -EINVAL;
        }

        if (e->next_offset
            < sizeof(struct arpt_entry) + sizeof(struct arpt_entry_target)) {
                duprintf("checking: element %p size %u\n",
                         e, e->next_offset);
                return -EINVAL;
        }

        /* Check hooks & underflows */
        for (h = 0; h < NF_ARP_NUMHOOKS; h++) {
                if ((unsigned char *)e - base == hook_entries[h])
                        newinfo->hook_entry[h] = hook_entries[h];
                if ((unsigned char *)e - base == underflows[h])
                        newinfo->underflow[h] = underflows[h];
        }

        /* FIXME: underflows must be unconditional, standard verdicts
           < 0 (not ARPT_RETURN). --RR */

        /* Clear counters and comefrom */
        e->counters = ((struct xt_counters) { 0, 0 });
        e->comefrom = 0;

        (*i)++;
        return 0;
}

static inline int cleanup_entry(struct arpt_entry *e, unsigned int *i)
{
        struct xt_tgdtor_param par;
        struct arpt_entry_target *t;

        if (i && (*i)-- == 0)
                return 1;

        t = arpt_get_target(e);
        par.target   = t->u.kernel.target;
        par.targinfo = t->data;
        par.family   = NFPROTO_ARP;
        if (par.target->destroy != NULL)
                par.target->destroy(&par);
        module_put(par.target->me);
        return 0;
}

/* Checks and translates the user-supplied table segment (held in
 * newinfo).
 */
static int translate_table(const char *name,
                           unsigned int valid_hooks,
                           struct xt_table_info *newinfo,
                           void *entry0,
                           unsigned int size,
                           unsigned int number,
                           const unsigned int *hook_entries,
                           const unsigned int *underflows)
{
        unsigned int i;
        int ret;

        newinfo->size = size;
        newinfo->number = number;

        /* Init all hooks to impossible value. */
        for (i = 0; i < NF_ARP_NUMHOOKS; i++) {
                newinfo->hook_entry[i] = 0xFFFFFFFF;
                newinfo->underflow[i] = 0xFFFFFFFF;
        }

        duprintf("translate_table: size %u\n", newinfo->size);
        i = 0;

        /* Walk through entries, checking offsets. */
        ret = ARPT_ENTRY_ITERATE(entry0, newinfo->size,
                                 check_entry_size_and_hooks,
                                 newinfo,
                                 entry0,
                                 entry0 + size,
                                 hook_entries, underflows, &i);
        duprintf("translate_table: ARPT_ENTRY_ITERATE gives %d\n", ret);
        if (ret != 0)
                return ret;

        if (i != number) {
                duprintf("translate_table: %u not %u entries\n",
                         i, number);
                return -EINVAL;
        }

        /* Check hooks all assigned */
        for (i = 0; i < NF_ARP_NUMHOOKS; i++) {
                /* Only hooks which are valid */
                if (!(valid_hooks & (1 << i)))
                        continue;
                if (newinfo->hook_entry[i] == 0xFFFFFFFF) {
                        duprintf("Invalid hook entry %u %u\n",
                                 i, hook_entries[i]);
                        return -EINVAL;
                }
                if (newinfo->underflow[i] == 0xFFFFFFFF) {
                        duprintf("Invalid underflow %u %u\n",
                                 i, underflows[i]);
                        return -EINVAL;
                }
        }

        if (!mark_source_chains(newinfo, valid_hooks, entry0)) {
                duprintf("Looping hook\n");
                return -ELOOP;
        }

        /* Finally, each sanity check must pass */
        i = 0;
        ret = ARPT_ENTRY_ITERATE(entry0, newinfo->size,
                                 find_check_entry, name, size, &i);

        if (ret != 0) {
                ARPT_ENTRY_ITERATE(entry0, newinfo->size,
                                cleanup_entry, &i);
                return ret;
        }

        /* And one copy for every other CPU */
        for_each_possible_cpu(i) {
                if (newinfo->entries[i] && newinfo->entries[i] != entry0)
                        memcpy(newinfo->entries[i], entry0, newinfo->size);
        }

        return ret;
}

/* Gets counters. */
static inline int add_entry_to_counter(const struct arpt_entry *e,
                                       struct xt_counters total[],
                                       unsigned int *i)
{
        ADD_COUNTER(total[*i], e->counters.bcnt, e->counters.pcnt);

        (*i)++;
        return 0;
}

static inline int set_entry_to_counter(const struct arpt_entry *e,
                                       struct xt_counters total[],
                                       unsigned int *i)
{
        SET_COUNTER(total[*i], e->counters.bcnt, e->counters.pcnt);

        (*i)++;
        return 0;
}

static void get_counters(const struct xt_table_info *t,
                         struct xt_counters counters[])
{
        unsigned int cpu;
        unsigned int i;
        unsigned int curcpu;

        /* Instead of clearing (by a previous call to memset())
         * the counters and using adds, we set the counters
         * with data used by 'current' CPU
         * We dont care about preemption here.
         */
        curcpu = raw_smp_processor_id();

        i = 0;
        ARPT_ENTRY_ITERATE(t->entries[curcpu],
                           t->size,
                           set_entry_to_counter,
                           counters,
                           &i);

        for_each_possible_cpu(cpu) {
                if (cpu == curcpu)
                        continue;
                i = 0;
                ARPT_ENTRY_ITERATE(t->entries[cpu],
                                   t->size,
                                   add_entry_to_counter,
                                   counters,
                                   &i);
        }
}

static inline struct xt_counters *alloc_counters(struct xt_table *table)
{
        unsigned int countersize;
        struct xt_counters *counters;
        const struct xt_table_info *private = table->private;

        /* We need atomic snapshot of counters: rest doesn't change
         * (other than comefrom, which userspace doesn't care
         * about).
         */
        countersize = sizeof(struct xt_counters) * private->number;
        counters = vmalloc_node(countersize, numa_node_id());

        if (counters == NULL)
                return ERR_PTR(-ENOMEM);

        /* First, sum counters... */
        write_lock_bh(&table->lock);
        get_counters(private, counters);
        write_unlock_bh(&table->lock);

        return counters;
}

static int copy_entries_to_user(unsigned int total_size,
                                struct xt_table *table,
                                void __user *userptr)
{
        unsigned int off, num;
        struct arpt_entry *e;
        struct xt_counters *counters;
        struct xt_table_info *private = table->private;
        int ret = 0;
        void *loc_cpu_entry;

        counters = alloc_counters(table);
        if (IS_ERR(counters))
                return PTR_ERR(counters);

        loc_cpu_entry = private->entries[raw_smp_processor_id()];
        /* ... then copy entire thing ... */
        if (copy_to_user(userptr, loc_cpu_entry, total_size) != 0) {
                ret = -EFAULT;
                goto free_counters;
        }

        /* FIXME: use iterator macros --RR */
        /* ... then go back and fix counters and names */
        for (off = 0, num = 0; off < total_size; off += e->next_offset, num++){
                struct arpt_entry_target *t;

                e = (struct arpt_entry *)(loc_cpu_entry + off);
                if (copy_to_user(userptr + off
                                 + offsetof(struct arpt_entry, counters),
                                 &counters[num],
                                 sizeof(counters[num])) != 0) {
                        ret = -EFAULT;
                        goto free_counters;
                }

                t = arpt_get_target(e);
                if (copy_to_user(userptr + off + e->target_offset
                                 + offsetof(struct arpt_entry_target,
                                            u.user.name),
                                 t->u.kernel.target->name,
                                 strlen(t->u.kernel.target->name)+1) != 0) {
                        ret = -EFAULT;
                        goto free_counters;
                }
        }

 free_counters:
        vfree(counters);
        return ret;
}

#ifdef CONFIG_COMPAT
static void compat_standard_from_user(void *dst, void *src)
{
        int v = *(compat_int_t *)src;

        if (v > 0)
                v += xt_compat_calc_jump(NFPROTO_ARP, v);
        memcpy(dst, &v, sizeof(v));
}

static int compat_standard_to_user(void __user *dst, void *src)
{
        compat_int_t cv = *(int *)src;

        if (cv > 0)
                cv -= xt_compat_calc_jump(NFPROTO_ARP, cv);
        return copy_to_user(dst, &cv, sizeof(cv)) ? -EFAULT : 0;
}

static int compat_calc_entry(struct arpt_entry *e,
                             const struct xt_table_info *info,
                             void *base, struct xt_table_info *newinfo)
{
        struct arpt_entry_target *t;
        unsigned int entry_offset;
        int off, i, ret;

        off = sizeof(struct arpt_entry) - sizeof(struct compat_arpt_entry);
        entry_offset = (void *)e - base;

        t = arpt_get_target(e);
        off += xt_compat_target_offset(t->u.kernel.target);
        newinfo->size -= off;
        ret = xt_compat_add_offset(NFPROTO_ARP, entry_offset, off);
        if (ret)
                return ret;

        for (i = 0; i < NF_ARP_NUMHOOKS; i++) {
                if (info->hook_entry[i] &&
                    (e < (struct arpt_entry *)(base + info->hook_entry[i])))
                        newinfo->hook_entry[i] -= off;
                if (info->underflow[i] &&
                    (e < (struct arpt_entry *)(base + info->underflow[i])))
                        newinfo->underflow[i] -= off;
        }
        return 0;
}

static int compat_table_info(const struct xt_table_info *info,
                             struct xt_table_info *newinfo)
{
        void *loc_cpu_entry;

        if (!newinfo || !info)
                return -EINVAL;

        /* we dont care about newinfo->entries[] */
        memcpy(newinfo, info, offsetof(struct xt_table_info, entries));
        newinfo->initial_entries = 0;
        loc_cpu_entry = info->entries[raw_smp_processor_id()];
        return ARPT_ENTRY_ITERATE(loc_cpu_entry, info->size,
                                  compat_calc_entry, info, loc_cpu_entry,
                                  newinfo);
}
#endif

static int get_info(struct net *net, void __user *user, int *len, int compat)
{
        char name[ARPT_TABLE_MAXNAMELEN];
        struct xt_table *t;
        int ret;

        if (*len != sizeof(struct arpt_getinfo)) {
                duprintf("length %u != %Zu\n", *len,
                         sizeof(struct arpt_getinfo));
                return -EINVAL;
        }

        if (copy_from_user(name, user, sizeof(name)) != 0)
                return -EFAULT;

        name[ARPT_TABLE_MAXNAMELEN-1] = '\0';
#ifdef CONFIG_COMPAT
        if (compat)
                xt_compat_lock(NFPROTO_ARP);
#endif
        t = try_then_request_module(xt_find_table_lock(net, NFPROTO_ARP, name),
                                    "arptable_%s", name);
        if (t && !IS_ERR(t)) {
                struct arpt_getinfo info;
                const struct xt_table_info *private = t->private;

#ifdef CONFIG_COMPAT
                if (compat) {
                        struct xt_table_info tmp;
                        ret = compat_table_info(private, &tmp);
                        xt_compat_flush_offsets(NFPROTO_ARP);
                        private = &tmp;
                }
#endif
                info.valid_hooks = t->valid_hooks;
                memcpy(info.hook_entry, private->hook_entry,
                       sizeof(info.hook_entry));
                memcpy(info.underflow, private->underflow,
                       sizeof(info.underflow));
                info.num_entries = private->number;
                info.size = private->size;
                strcpy(info.name, name);

                if (copy_to_user(user, &info, *len) != 0)
                        ret = -EFAULT;
                else
                        ret = 0;
                xt_table_unlock(t);
                module_put(t->me);
        } else
                ret = t ? PTR_ERR(t) : -ENOENT;
#ifdef CONFIG_COMPAT
        if (compat)
                xt_compat_unlock(NFPROTO_ARP);
#endif
        return ret;
}

static int get_entries(struct net *net, struct arpt_get_entries __user *uptr,
                       int *len)
{
        int ret;
        struct arpt_get_entries get;
        struct xt_table *t;

        if (*len < sizeof(get)) {
                duprintf("get_entries: %u < %Zu\n", *len, sizeof(get));
                return -EINVAL;
        }
        if (copy_from_user(&get, uptr, sizeof(get)) != 0)
                return -EFAULT;
        if (*len != sizeof(struct arpt_get_entries) + get.size) {
                duprintf("get_entries: %u != %Zu\n", *len,
                         sizeof(struct arpt_get_entries) + get.size);
                return -EINVAL;
        }

        t = xt_find_table_lock(net, NFPROTO_ARP, get.name);
        if (t && !IS_ERR(t)) {
                const struct xt_table_info *private = t->private;

                duprintf("t->private->number = %u\n",
                         private->number);
                if (get.size == private->size)
                        ret = copy_entries_to_user(private->size,
                                                   t, uptr->entrytable);
                else {
                        duprintf("get_entries: I've got %u not %u!\n",
                                 private->size, get.size);
                        ret = -EAGAIN;
                }
                module_put(t->me);
                xt_table_unlock(t);
        } else
                ret = t ? PTR_ERR(t) : -ENOENT;

        return ret;
}

static int __do_replace(struct net *net, const char *name,
                        unsigned int valid_hooks,
                        struct xt_table_info *newinfo,
                        unsigned int num_counters,
                        void __user *counters_ptr)
{
        int ret;
        struct xt_table *t;
        struct xt_table_info *oldinfo;
        struct xt_counters *counters;
        void *loc_cpu_old_entry;

        ret = 0;
        counters = vmalloc_node(num_counters * sizeof(struct xt_counters),
                                numa_node_id());
        if (!counters) {
                ret = -ENOMEM;
                goto out;
        }

        t = try_then_request_module(xt_find_table_lock(net, NFPROTO_ARP, name),
                                    "arptable_%s", name);
        if (!t || IS_ERR(t)) {
                ret = t ? PTR_ERR(t) : -ENOENT;
                goto free_newinfo_counters_untrans;
        }

        /* You lied! */
        if (valid_hooks != t->valid_hooks) {
                duprintf("Valid hook crap: %08X vs %08X\n",
                         valid_hooks, t->valid_hooks);
                ret = -EINVAL;
                goto put_module;
        }

        oldinfo = xt_replace_table(t, num_counters, newinfo, &ret);
        if (!oldinfo)
                goto put_module;

        /* Update module usage count based on number of rules */
        duprintf("do_replace: oldnum=%u, initnum=%u, newnum=%u\n",
                oldinfo->number, oldinfo->initial_entries, newinfo->number);
        if ((oldinfo->number > oldinfo->initial_entries) ||
            (newinfo->number <= oldinfo->initial_entries))
                module_put(t->me);
        if ((oldinfo->number > oldinfo->initial_entries) &&
            (newinfo->number <= oldinfo->initial_entries))
                module_put(t->me);

        /* Get the old counters. */
        get_counters(oldinfo, counters);
        /* Decrease module usage counts and free resource */
        loc_cpu_old_entry = oldinfo->entries[raw_smp_processor_id()];
        ARPT_ENTRY_ITERATE(loc_cpu_old_entry, oldinfo->size, cleanup_entry,
                           NULL);

        xt_free_table_info(oldinfo);
        if (copy_to_user(counters_ptr, counters,
                         sizeof(struct xt_counters) * num_counters) != 0)
                ret = -EFAULT;
        vfree(counters);
        xt_table_unlock(t);
        return ret;

 put_module:
        module_put(t->me);
        xt_table_unlock(t);
 free_newinfo_counters_untrans:
        vfree(counters);
 out:
        return ret;
}

static int do_replace(struct net *net, void __user *user, unsigned int len)
{
        int ret;
        struct arpt_replace tmp;
        struct xt_table_info *newinfo;
        void *loc_cpu_entry;

        if (copy_from_user(&tmp, user, sizeof(tmp)) != 0)
                return -EFAULT;

        /* overflow check */
        if (tmp.num_counters >= INT_MAX / sizeof(struct xt_counters))
                return -ENOMEM;

        newinfo = xt_alloc_table_info(tmp.size);
        if (!newinfo)
                return -ENOMEM;

        /* choose the copy that is on our node/cpu */
        loc_cpu_entry = newinfo->entries[raw_smp_processor_id()];
        if (copy_from_user(loc_cpu_entry, user + sizeof(tmp),
                           tmp.size) != 0) {
                ret = -EFAULT;
                goto free_newinfo;
        }

        ret = translate_table(tmp.name, tmp.valid_hooks,
                              newinfo, loc_cpu_entry, tmp.size, tmp.num_entries,
                              tmp.hook_entry, tmp.underflow);
        if (ret != 0)
                goto free_newinfo;

        duprintf("arp_tables: Translated table\n");

        ret = __do_replace(net, tmp.name, tmp.valid_hooks, newinfo,
                           tmp.num_counters, tmp.counters);
        if (ret)
                goto free_newinfo_untrans;
        return 0;

 free_newinfo_untrans:
        ARPT_ENTRY_ITERATE(loc_cpu_entry, newinfo->size, cleanup_entry, NULL);
 free_newinfo:
        xt_free_table_info(newinfo);
        return ret;
}

/* We're lazy, and add to the first CPU; overflow works its fey magic
 * and everything is OK.
 */
static inline int add_counter_to_entry(struct arpt_entry *e,
                                       const struct xt_counters addme[],
                                       unsigned int *i)
{

        ADD_COUNTER(e->counters, addme[*i].bcnt, addme[*i].pcnt);

        (*i)++;
        return 0;
}

static int do_add_counters(struct net *net, void __user *user, unsigned int len,
                           int compat)
{
        unsigned int i;
        struct xt_counters_info tmp;
        struct xt_counters *paddc;
        unsigned int num_counters;
        const char *name;
        int size;
        void *ptmp;
        struct xt_table *t;
        const struct xt_table_info *private;
        int ret = 0;
        void *loc_cpu_entry;
#ifdef CONFIG_COMPAT
        struct compat_xt_counters_info compat_tmp;

        if (compat) {
                ptmp = &compat_tmp;
                size = sizeof(struct compat_xt_counters_info);
        } else
#endif
        {
                ptmp = &tmp;
                size = sizeof(struct xt_counters_info);
        }

        if (copy_from_user(ptmp, user, size) != 0)
                return -EFAULT;

#ifdef CONFIG_COMPAT
        if (compat) {
                num_counters = compat_tmp.num_counters;
                name = compat_tmp.name;
        } else
#endif
        {
                num_counters = tmp.num_counters;
                name = tmp.name;
        }

        if (len != size + num_counters * sizeof(struct xt_counters))
                return -EINVAL;

        paddc = vmalloc_node(len - size, numa_node_id());
        if (!paddc)
                return -ENOMEM;

        if (copy_from_user(paddc, user + size, len - size) != 0) {
                ret = -EFAULT;
                goto free;
        }

        t = xt_find_table_lock(net, NFPROTO_ARP, name);
        if (!t || IS_ERR(t)) {
                ret = t ? PTR_ERR(t) : -ENOENT;
                goto free;
        }

        write_lock_bh(&t->lock);
        private = t->private;
        if (private->number != num_counters) {
                ret = -EINVAL;
                goto unlock_up_free;
        }

        i = 0;
        /* Choose the copy that is on our node */
        loc_cpu_entry = private->entries[smp_processor_id()];
        ARPT_ENTRY_ITERATE(loc_cpu_entry,
                           private->size,
                           add_counter_to_entry,
                           paddc,
                           &i);
 unlock_up_free:
        write_unlock_bh(&t->lock);
        xt_table_unlock(t);
        module_put(t->me);
 free:
        vfree(paddc);

        return ret;
}

#ifdef CONFIG_COMPAT
static inline int
compat_release_entry(struct compat_arpt_entry *e, unsigned int *i)
{
        struct arpt_entry_target *t;

        if (i && (*i)-- == 0)
                return 1;

        t = compat_arpt_get_target(e);
        module_put(t->u.kernel.target->me);
        return 0;
}

static inline int
check_compat_entry_size_and_hooks(struct compat_arpt_entry *e,
                                  struct xt_table_info *newinfo,
                                  unsigned int *size,
                                  unsigned char *base,
                                  unsigned char *limit,
                                  unsigned int *hook_entries,
                                  unsigned int *underflows,
                                  unsigned int *i,
                                  const char *name)
{
        struct arpt_entry_target *t;
        struct xt_target *target;
        unsigned int entry_offset;
        int ret, off, h;

        duprintf("check_compat_entry_size_and_hooks %p\n", e);
        if ((unsigned long)e % __alignof__(struct compat_arpt_entry) != 0
            || (unsigned char *)e + sizeof(struct compat_arpt_entry) >= limit) {
                duprintf("Bad offset %p, limit = %p\n", e, limit);
                return -EINVAL;
        }

        if (e->next_offset < sizeof(struct compat_arpt_entry) +
                             sizeof(struct compat_xt_entry_target)) {
                duprintf("checking: element %p size %u\n",
                         e, e->next_offset);
                return -EINVAL;
        }

        /* For purposes of check_entry casting the compat entry is fine */
        ret = check_entry((struct arpt_entry *)e, name);
        if (ret)
                return ret;

        off = sizeof(struct arpt_entry) - sizeof(struct compat_arpt_entry);
        entry_offset = (void *)e - (void *)base;

        t = compat_arpt_get_target(e);
        target = try_then_request_module(xt_find_target(NFPROTO_ARP,
                                                        t->u.user.name,
                                                        t->u.user.revision),
                                         "arpt_%s", t->u.user.name);
        if (IS_ERR(target) || !target) {
                duprintf("check_compat_entry_size_and_hooks: `%s' not found\n",
                         t->u.user.name);
                ret = target ? PTR_ERR(target) : -ENOENT;
                goto out;
        }
        t->u.kernel.target = target;

        off += xt_compat_target_offset(target);
        *size += off;
        ret = xt_compat_add_offset(NFPROTO_ARP, entry_offset, off);
        if (ret)
                goto release_target;

        /* Check hooks & underflows */
        for (h = 0; h < NF_ARP_NUMHOOKS; h++) {
                if ((unsigned char *)e - base == hook_entries[h])
                        newinfo->hook_entry[h] = hook_entries[h];
                if ((unsigned char *)e - base == underflows[h])
                        newinfo->underflow[h] = underflows[h];
        }

        /* Clear counters and comefrom */
        memset(&e->counters, 0, sizeof(e->counters));
        e->comefrom = 0;

        (*i)++;
        return 0;

release_target:
        module_put(t->u.kernel.target->me);
out:
        return ret;
}

static int
compat_copy_entry_from_user(struct compat_arpt_entry *e, void **dstptr,
                            unsigned int *size, const char *name,
                            struct xt_table_info *newinfo, unsigned char *base)
{
        struct arpt_entry_target *t;
        struct xt_target *target;
        struct arpt_entry *de;
        unsigned int origsize;
        int ret, h;

        ret = 0;
        origsize = *size;
        de = (struct arpt_entry *)*dstptr;
        memcpy(de, e, sizeof(struct arpt_entry));
        memcpy(&de->counters, &e->counters, sizeof(e->counters));

        *dstptr += sizeof(struct arpt_entry);
        *size += sizeof(struct arpt_entry) - sizeof(struct compat_arpt_entry);

        de->target_offset = e->target_offset - (origsize - *size);
        t = compat_arpt_get_target(e);
        target = t->u.kernel.target;
        xt_compat_target_from_user(t, dstptr, size);

        de->next_offset = e->next_offset - (origsize - *size);
        for (h = 0; h < NF_ARP_NUMHOOKS; h++) {
                if ((unsigned char *)de - base < newinfo->hook_entry[h])
                        newinfo->hook_entry[h] -= origsize - *size;
                if ((unsigned char *)de - base < newinfo->underflow[h])
                        newinfo->underflow[h] -= origsize - *size;
        }
        return ret;
}

static inline int compat_check_entry(struct arpt_entry *e, const char *name,
                                     unsigned int *i)
{
        int ret;

        ret = check_target(e, name);
        if (ret)
                return ret;

        (*i)++;
        return 0;
}

static int translate_compat_table(const char *name,
                                  unsigned int valid_hooks,
                                  struct xt_table_info **pinfo,
                                  void **pentry0,
                                  unsigned int total_size,
                                  unsigned int number,
                                  unsigned int *hook_entries,
                                  unsigned int *underflows)
{
        unsigned int i, j;
        struct xt_table_info *newinfo, *info;
        void *pos, *entry0, *entry1;
        unsigned int size;
        int ret;

        info = *pinfo;
        entry0 = *pentry0;
        size = total_size;
        info->number = number;

        /* Init all hooks to impossible value. */
        for (i = 0; i < NF_ARP_NUMHOOKS; i++) {
                info->hook_entry[i] = 0xFFFFFFFF;
                info->underflow[i] = 0xFFFFFFFF;
        }

        duprintf("translate_compat_table: size %u\n", info->size);
        j = 0;
        xt_compat_lock(NFPROTO_ARP);
        /* Walk through entries, checking offsets. */
        ret = COMPAT_ARPT_ENTRY_ITERATE(entry0, total_size,
                                        check_compat_entry_size_and_hooks,
                                        info, &size, entry0,
                                        entry0 + total_size,
                                        hook_entries, underflows, &j, name);
        if (ret != 0)
                goto out_unlock;

        ret = -EINVAL;
        if (j != number) {
                duprintf("translate_compat_table: %u not %u entries\n",
                         j, number);
                goto out_unlock;
        }

        /* Check hooks all assigned */
        for (i = 0; i < NF_ARP_NUMHOOKS; i++) {
                /* Only hooks which are valid */
                if (!(valid_hooks & (1 << i)))
                        continue;
                if (info->hook_entry[i] == 0xFFFFFFFF) {
                        duprintf("Invalid hook entry %u %u\n",
                                 i, hook_entries[i]);
                        goto out_unlock;
                }
                if (info->underflow[i] == 0xFFFFFFFF) {
                        duprintf("Invalid underflow %u %u\n",
                                 i, underflows[i]);
                        goto out_unlock;
                }
        }

        ret = -ENOMEM;
        newinfo = xt_alloc_table_info(size);
        if (!newinfo)
                goto out_unlock;

        newinfo->number = number;
        for (i = 0; i < NF_ARP_NUMHOOKS; i++) {
                newinfo->hook_entry[i] = info->hook_entry[i];
                newinfo->underflow[i] = info->underflow[i];
        }
        entry1 = newinfo->entries[raw_smp_processor_id()];
        pos = entry1;
        size = total_size;
        ret = COMPAT_ARPT_ENTRY_ITERATE(entry0, total_size,
                                        compat_copy_entry_from_user,
                                        &pos, &size, name, newinfo, entry1);
        xt_compat_flush_offsets(NFPROTO_ARP);
        xt_compat_unlock(NFPROTO_ARP);
        if (ret)
                goto free_newinfo;

        ret = -ELOOP;
        if (!mark_source_chains(newinfo, valid_hooks, entry1))
                goto free_newinfo;

        i = 0;
        ret = ARPT_ENTRY_ITERATE(entry1, newinfo->size, compat_check_entry,
                                 name, &i);
        if (ret) {
                j -= i;
                COMPAT_ARPT_ENTRY_ITERATE_CONTINUE(entry0, newinfo->size, i,
                                                   compat_release_entry, &j);
                ARPT_ENTRY_ITERATE(entry1, newinfo->size, cleanup_entry, &i);
                xt_free_table_info(newinfo);
                return ret;
        }

        /* And one copy for every other CPU */
        for_each_possible_cpu(i)
                if (newinfo->entries[i] && newinfo->entries[i] != entry1)
                        memcpy(newinfo->entries[i], entry1, newinfo->size);

        *pinfo = newinfo;
        *pentry0 = entry1;
        xt_free_table_info(info);
        return 0;

free_newinfo:
        xt_free_table_info(newinfo);
out:
        COMPAT_ARPT_ENTRY_ITERATE(entry0, total_size, compat_release_entry, &j);
        return ret;
out_unlock:
        xt_compat_flush_offsets(NFPROTO_ARP);
        xt_compat_unlock(NFPROTO_ARP);
        goto out;
}

struct compat_arpt_replace {
        char                            name[ARPT_TABLE_MAXNAMELEN];
        u32                             valid_hooks;
        u32                             num_entries;
        u32                             size;
        u32                             hook_entry[NF_ARP_NUMHOOKS];
        u32                             underflow[NF_ARP_NUMHOOKS];
        u32                             num_counters;
        compat_uptr_t                   counters;
        struct compat_arpt_entry        entries[0];
};

static int compat_do_replace(struct net *net, void __user *user,
                             unsigned int len)
{
        int ret;
        struct compat_arpt_replace tmp;
        struct xt_table_info *newinfo;
        void *loc_cpu_entry;

        if (copy_from_user(&tmp, user, sizeof(tmp)) != 0)
                return -EFAULT;

        /* overflow check */
        if (tmp.size >= INT_MAX / num_possible_cpus())
                return -ENOMEM;
        if (tmp.num_counters >= INT_MAX / sizeof(struct xt_counters))
                return -ENOMEM;

        newinfo = xt_alloc_table_info(tmp.size);
        if (!newinfo)
                return -ENOMEM;

        /* choose the copy that is on our node/cpu */
        loc_cpu_entry = newinfo->entries[raw_smp_processor_id()];
        if (copy_from_user(loc_cpu_entry, user + sizeof(tmp), tmp.size) != 0) {
                ret = -EFAULT;
                goto free_newinfo;
        }

        ret = translate_compat_table(tmp.name, tmp.valid_hooks,
                                     &newinfo, &loc_cpu_entry, tmp.size,
                                     tmp.num_entries, tmp.hook_entry,
                                     tmp.underflow);
        if (ret != 0)
                goto free_newinfo;

        duprintf("compat_do_replace: Translated table\n");

        ret = __do_replace(net, tmp.name, tmp.valid_hooks, newinfo,
                           tmp.num_counters, compat_ptr(tmp.counters));
        if (ret)
                goto free_newinfo_untrans;
        return 0;

 free_newinfo_untrans:
        ARPT_ENTRY_ITERATE(loc_cpu_entry, newinfo->size, cleanup_entry, NULL);
 free_newinfo:
        xt_free_table_info(newinfo);
        return ret;
}

static int compat_do_arpt_set_ctl(struct sock *sk, int cmd, void __user *user,
                                  unsigned int len)
{
        int ret;

        if (!capable(CAP_NET_ADMIN))
                return -EPERM;

        switch (cmd) {
        case ARPT_SO_SET_REPLACE:
                ret = compat_do_replace(sock_net(sk), user, len);
                break;

        case ARPT_SO_SET_ADD_COUNTERS:
                ret = do_add_counters(sock_net(sk), user, len, 1);
                break;

        default:
                duprintf("do_arpt_set_ctl:  unknown request %i\n", cmd);
                ret = -EINVAL;
        }

        return ret;
}

static int compat_copy_entry_to_user(struct arpt_entry *e, void __user **dstptr,
                                     compat_uint_t *size,
                                     struct xt_counters *counters,
                                     unsigned int *i)
{
        struct arpt_entry_target *t;
        struct compat_arpt_entry __user *ce;
        u_int16_t target_offset, next_offset;
        compat_uint_t origsize;
        int ret;

        ret = -EFAULT;
        origsize = *size;
        ce = (struct compat_arpt_entry __user *)*dstptr;
        if (copy_to_user(ce, e, sizeof(struct arpt_entry)))
                goto out;

        if (copy_to_user(&ce->counters, &counters[*i], sizeof(counters[*i])))
                goto out;

        *dstptr += sizeof(struct compat_arpt_entry);
        *size -= sizeof(struct arpt_entry) - sizeof(struct compat_arpt_entry);

        target_offset = e->target_offset - (origsize - *size);

        t = arpt_get_target(e);
        ret = xt_compat_target_to_user(t, dstptr, size);
        if (ret)
                goto out;
        ret = -EFAULT;
        next_offset = e->next_offset - (origsize - *size);
        if (put_user(target_offset, &ce->target_offset))
                goto out;
        if (put_user(next_offset, &ce->next_offset))
                goto out;

        (*i)++;
        return 0;
out:
        return ret;
}

static int compat_copy_entries_to_user(unsigned int total_size,
                                       struct xt_table *table,
                                       void __user *userptr)
{
        struct xt_counters *counters;
        const struct xt_table_info *private = table->private;
        void __user *pos;
        unsigned int size;
        int ret = 0;
        void *loc_cpu_entry;
        unsigned int i = 0;

        counters = alloc_counters(table);
        if (IS_ERR(counters))
                return PTR_ERR(counters);

        /* choose the copy on our node/cpu */
        loc_cpu_entry = private->entries[raw_smp_processor_id()];
        pos = userptr;
        size = total_size;
        ret = ARPT_ENTRY_ITERATE(loc_cpu_entry, total_size,
                                 compat_copy_entry_to_user,
                                 &pos, &size, counters, &i);
        vfree(counters);
        return ret;
}

struct compat_arpt_get_entries {
        char name[ARPT_TABLE_MAXNAMELEN];
        compat_uint_t size;
        struct compat_arpt_entry entrytable[0];
};

static int compat_get_entries(struct net *net,
                              struct compat_arpt_get_entries __user *uptr,
                              int *len)
{
        int ret;
        struct compat_arpt_get_entries get;
        struct xt_table *t;

        if (*len < sizeof(get)) {
                duprintf("compat_get_entries: %u < %zu\n", *len, sizeof(get));
                return -EINVAL;
        }
        if (copy_from_user(&get, uptr, sizeof(get)) != 0)
                return -EFAULT;
        if (*len != sizeof(struct compat_arpt_get_entries) + get.size) {
                duprintf("compat_get_entries: %u != %zu\n",
                         *len, sizeof(get) + get.size);
                return -EINVAL;
        }

        xt_compat_lock(NFPROTO_ARP);
        t = xt_find_table_lock(net, NFPROTO_ARP, get.name);
        if (t && !IS_ERR(t)) {
                const struct xt_table_info *private = t->private;
                struct xt_table_info info;

                duprintf("t->private->number = %u\n", private->number);
                ret = compat_table_info(private, &info);
                if (!ret && get.size == info.size) {
                        ret = compat_copy_entries_to_user(private->size,
                                                          t, uptr->entrytable);
                } else if (!ret) {
                        duprintf("compat_get_entries: I've got %u not %u!\n",
                                 private->size, get.size);
                        ret = -EAGAIN;
                }
                xt_compat_flush_offsets(NFPROTO_ARP);
                module_put(t->me);
                xt_table_unlock(t);
        } else
                ret = t ? PTR_ERR(t) : -ENOENT;

        xt_compat_unlock(NFPROTO_ARP);
        return ret;
}

static int do_arpt_get_ctl(struct sock *, int, void __user *, int *);

static int compat_do_arpt_get_ctl(struct sock *sk, int cmd, void __user *user,
                                  int *len)
{
        int ret;

        if (!capable(CAP_NET_ADMIN))
                return -EPERM;

        switch (cmd) {
        case ARPT_SO_GET_INFO:
                ret = get_info(sock_net(sk), user, len, 1);
                break;
        case ARPT_SO_GET_ENTRIES:
                ret = compat_get_entries(sock_net(sk), user, len);
                break;
        default:
                ret = do_arpt_get_ctl(sk, cmd, user, len);
        }
        return ret;
}
#endif

static int do_arpt_set_ctl(struct sock *sk, int cmd, void __user *user, unsigned int len)
{
        int ret;

        if (!capable(CAP_NET_ADMIN))
                return -EPERM;

        switch (cmd) {
        case ARPT_SO_SET_REPLACE:
                ret = do_replace(sock_net(sk), user, len);
                break;

        case ARPT_SO_SET_ADD_COUNTERS:
                ret = do_add_counters(sock_net(sk), user, len, 0);
                break;

        default:
                duprintf("do_arpt_set_ctl:  unknown request %i\n", cmd);
                ret = -EINVAL;
        }

        return ret;
}

static int do_arpt_get_ctl(struct sock *sk, int cmd, void __user *user, int *len)
{
        int ret;

        if (!capable(CAP_NET_ADMIN))
                return -EPERM;

        switch (cmd) {
        case ARPT_SO_GET_INFO:
                ret = get_info(sock_net(sk), user, len, 0);
                break;

        case ARPT_SO_GET_ENTRIES:
                ret = get_entries(sock_net(sk), user, len);
                break;

        case ARPT_SO_GET_REVISION_TARGET: {
                struct xt_get_revision rev;

                if (*len != sizeof(rev)) {
                        ret = -EINVAL;
                        break;
                }
                if (copy_from_user(&rev, user, sizeof(rev)) != 0) {
                        ret = -EFAULT;
                        break;
                }

                try_then_request_module(xt_find_revision(NFPROTO_ARP, rev.name,
                                                         rev.revision, 1, &ret),
                                        "arpt_%s", rev.name);
                break;
        }

        default:
                duprintf("do_arpt_get_ctl: unknown request %i\n", cmd);
                ret = -EINVAL;
        }

        return ret;
}

struct xt_table *arpt_register_table(struct net *net, struct xt_table *table,
                                     const struct arpt_replace *repl)
{
        int ret;
        struct xt_table_info *newinfo;
        struct xt_table_info bootstrap
                = { 0, 0, 0, { 0 }, { 0 }, { } };
        void *loc_cpu_entry;
        struct xt_table *new_table;

        newinfo = xt_alloc_table_info(repl->size);
        if (!newinfo) {
                ret = -ENOMEM;
                goto out;
        }

        /* choose the copy on our node/cpu */
        loc_cpu_entry = newinfo->entries[raw_smp_processor_id()];
        memcpy(loc_cpu_entry, repl->entries, repl->size);

        ret = translate_table(table->name, table->valid_hooks,
                              newinfo, loc_cpu_entry, repl->size,
                              repl->num_entries,
                              repl->hook_entry,
                              repl->underflow);

        duprintf("arpt_register_table: translate table gives %d\n", ret);
        if (ret != 0)
                goto out_free;

        new_table = xt_register_table(net, table, &bootstrap, newinfo);
        if (IS_ERR(new_table)) {
                ret = PTR_ERR(new_table);
                goto out_free;
        }
        return new_table;

out_free:
        xt_free_table_info(newinfo);
out:
        return ERR_PTR(ret);
}

void arpt_unregister_table(struct xt_table *table)
{
        struct xt_table_info *private;
        void *loc_cpu_entry;
        struct module *table_owner = table->me;

        private = xt_unregister_table(table);

        /* Decrease module usage counts and free resources */
        loc_cpu_entry = private->entries[raw_smp_processor_id()];
        ARPT_ENTRY_ITERATE(loc_cpu_entry, private->size,
                           cleanup_entry, NULL);
        if (private->number > private->initial_entries)
                module_put(table_owner);
        xt_free_table_info(private);
}

/* The built-in targets: standard (NULL) and error. */
static struct xt_target arpt_standard_target __read_mostly = {
        .name           = ARPT_STANDARD_TARGET,
        .targetsize     = sizeof(int),
        .family         = NFPROTO_ARP,
#ifdef CONFIG_COMPAT
        .compatsize     = sizeof(compat_int_t),
        .compat_from_user = compat_standard_from_user,
        .compat_to_user = compat_standard_to_user,
#endif
};

static struct xt_target arpt_error_target __read_mostly = {
        .name           = ARPT_ERROR_TARGET,
        .target         = arpt_error,
        .targetsize     = ARPT_FUNCTION_MAXNAMELEN,
        .family         = NFPROTO_ARP,
};

static struct nf_sockopt_ops arpt_sockopts = {
        .pf             = PF_INET,
        .set_optmin     = ARPT_BASE_CTL,
        .set_optmax     = ARPT_SO_SET_MAX+1,
        .set            = do_arpt_set_ctl,
#ifdef CONFIG_COMPAT
        .compat_set     = compat_do_arpt_set_ctl,
#endif
        .get_optmin     = ARPT_BASE_CTL,
        .get_optmax     = ARPT_SO_GET_MAX+1,
        .get            = do_arpt_get_ctl,
#ifdef CONFIG_COMPAT
        .compat_get     = compat_do_arpt_get_ctl,
#endif
        .owner          = THIS_MODULE,
};

static int __net_init arp_tables_net_init(struct net *net)
{
        return xt_proto_init(net, NFPROTO_ARP);
}

static void __net_exit arp_tables_net_exit(struct net *net)
{
        xt_proto_fini(net, NFPROTO_ARP);
}

static struct pernet_operations arp_tables_net_ops = {
        .init = arp_tables_net_init,
        .exit = arp_tables_net_exit,
};

static int __init arp_tables_init(void)
{
        int ret;

        ret = register_pernet_subsys(&arp_tables_net_ops);
        if (ret < 0)
                goto err1;

        /* Noone else will be downing sem now, so we won't sleep */
        ret = xt_register_target(&arpt_standard_target);
        if (ret < 0)
                goto err2;
        ret = xt_register_target(&arpt_error_target);
        if (ret < 0)
                goto err3;

        /* Register setsockopt */
        ret = nf_register_sockopt(&arpt_sockopts);
        if (ret < 0)
                goto err4;

        printk(KERN_INFO "arp_tables: (C) 2002 David S. Miller\n");
        return 0;

err4:
        xt_unregister_target(&arpt_error_target);
err3:
        xt_unregister_target(&arpt_standard_target);
err2:
        unregister_pernet_subsys(&arp_tables_net_ops);
err1:
        return ret;
}

static void __exit arp_tables_fini(void)
{
        nf_unregister_sockopt(&arpt_sockopts);
        xt_unregister_target(&arpt_error_target);
        xt_unregister_target(&arpt_standard_target);
        unregister_pernet_subsys(&arp_tables_net_ops);
}

EXPORT_SYMBOL(arpt_register_table);
EXPORT_SYMBOL(arpt_unregister_table);
EXPORT_SYMBOL(arpt_do_table);

module_init(arp_tables_init);
module_exit(arp_tables_fini);

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading