[funini.com] -> [kei@sodan] -> Kernel Reading

root/arch/x86/pci/olpc.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. is_simulated
  2. hdr_addr
  3. pci_olpc_read
  4. pci_olpc_write
  5. pci_olpc_init

/*
 * Low-level PCI config space access for OLPC systems who lack the VSA
 * PCI virtualization software.
 *
 * Copyright © 2006  Advanced Micro Devices, Inc.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * The AMD Geode chipset (ie: GX2 processor, cs5536 I/O companion device)
 * has some I/O functions (display, southbridge, sound, USB HCIs, etc)
 * that more or less behave like PCI devices, but the hardware doesn't
 * directly implement the PCI configuration space headers.  AMD provides
 * "VSA" (Virtual System Architecture) software that emulates PCI config
 * space for these devices, by trapping I/O accesses to PCI config register
 * (CF8/CFC) and running some code in System Management Mode interrupt state.
 * On the OLPC platform, we don't want to use that VSA code because
 * (a) it slows down suspend/resume, and (b) recompiling it requires special
 * compilers that are hard to get.  So instead of letting the complex VSA
 * code simulate the PCI config registers for the on-chip devices, we
 * just simulate them the easy way, by inserting the code into the
 * pci_write_config and pci_read_config path.  Most of the config registers
 * are read-only anyway, so the bulk of the simulation is just table lookup.
 */

#include <linux/pci.h>
#include <linux/init.h>
#include <asm/olpc.h>
#include <asm/geode.h>
#include "pci.h"

/*
 * In the tables below, the first two line (8 longwords) are the
 * size masks that are used when the higher level PCI code determines
 * the size of the region by writing ~0 to a base address register
 * and reading back the result.
 *
 * The following lines are the values that are read during normal
 * PCI config access cycles, i.e. not after just having written
 * ~0 to a base address register.
 */

static const uint32_t lxnb_hdr[] = {  /* dev 1 function 0 - devfn = 8 */
        0x0,    0x0,    0x0,    0x0,
        0x0,    0x0,    0x0,    0x0,

        0x281022, 0x2200005, 0x6000021, 0x80f808,       /* AMD Vendor ID */
        0x0,    0x0,    0x0,    0x0,   /* No virtual registers, hence no BAR */
        0x0,    0x0,    0x0,    0x28100b,
        0x0,    0x0,    0x0,    0x0,
        0x0,    0x0,    0x0,    0x0,
        0x0,    0x0,    0x0,    0x0,
        0x0,    0x0,    0x0,    0x0,
};

static const uint32_t gxnb_hdr[] = {  /* dev 1 function 0 - devfn = 8 */
        0xfffffffd, 0x0, 0x0,   0x0,
        0x0,    0x0,    0x0,    0x0,

        0x28100b, 0x2200005, 0x6000021, 0x80f808,       /* NSC Vendor ID */
        0xac1d, 0x0,    0x0,    0x0,  /* I/O BAR - base of virtual registers */
        0x0,    0x0,    0x0,    0x28100b,
        0x0,    0x0,    0x0,    0x0,
        0x0,    0x0,    0x0,    0x0,
        0x0,    0x0,    0x0,    0x0,
        0x0,    0x0,    0x0,    0x0,
};

static const uint32_t lxfb_hdr[] = {  /* dev 1 function 1 - devfn = 9 */
        0xff000008, 0xffffc000, 0xffffc000, 0xffffc000,
        0xffffc000,     0x0,    0x0,    0x0,

        0x20811022, 0x2200003, 0x3000000, 0x0,          /* AMD Vendor ID */
        0xfd000000, 0xfe000000, 0xfe004000, 0xfe008000, /* FB, GP, VG, DF */
        0xfe00c000, 0x0, 0x0,   0x30100b,               /* VIP */
        0x0,    0x0,    0x0,    0x10e,     /* INTA, IRQ14 for graphics accel */
        0x0,    0x0,    0x0,    0x0,
        0x3d0,  0x3c0,  0xa0000, 0x0,       /* VG IO, VG IO, EGA FB, MONO FB */
        0x0,    0x0,    0x0,    0x0,
};

static const uint32_t gxfb_hdr[] = {  /* dev 1 function 1 - devfn = 9 */
        0xff800008, 0xffffc000, 0xffffc000, 0xffffc000,
        0x0,    0x0,    0x0,    0x0,

        0x30100b, 0x2200003, 0x3000000, 0x0,            /* NSC Vendor ID */
        0xfd000000, 0xfe000000, 0xfe004000, 0xfe008000, /* FB, GP, VG, DF */
        0x0,    0x0,    0x0,    0x30100b,
        0x0,    0x0,    0x0,    0x0,
        0x0,    0x0,    0x0,    0x0,
        0x3d0,  0x3c0,  0xa0000, 0x0,       /* VG IO, VG IO, EGA FB, MONO FB */
        0x0,    0x0,    0x0,    0x0,
};

static const uint32_t aes_hdr[] = {     /* dev 1 function 2 - devfn = 0xa */
        0xffffc000, 0x0, 0x0,   0x0,
        0x0,    0x0,    0x0,    0x0,

        0x20821022, 0x2a00006, 0x10100000, 0x8,         /* NSC Vendor ID */
        0xfe010000, 0x0, 0x0,   0x0,                    /* AES registers */
        0x0,    0x0,    0x0,    0x20821022,
        0x0,    0x0,    0x0,    0x0,
        0x0,    0x0,    0x0,    0x0,
        0x0,    0x0,    0x0,    0x0,
        0x0,    0x0,    0x0,    0x0,
};


static const uint32_t isa_hdr[] = {  /* dev f function 0 - devfn = 78 */
        0xfffffff9, 0xffffff01, 0xffffffc1, 0xffffffe1,
        0xffffff81, 0xffffffc1, 0x0, 0x0,

        0x20901022, 0x2a00049, 0x6010003, 0x802000,
        0x18b1, 0x1001, 0x1801, 0x1881, /* SMB-8   GPIO-256 MFGPT-64  IRQ-32 */
        0x1401, 0x1841, 0x0,    0x20901022,             /* PMS-128 ACPI-64 */
        0x0,    0x0,    0x0,    0x0,
        0x0,    0x0,    0x0,    0x0,
        0x0,    0x0,    0x0,    0xaa5b,                 /* IRQ steering */
        0x0,    0x0,    0x0,    0x0,
};

static const uint32_t ac97_hdr[] = {  /* dev f function 3 - devfn = 7b */
        0xffffff81, 0x0, 0x0,   0x0,
        0x0,    0x0,    0x0,    0x0,

        0x20931022, 0x2a00041, 0x4010001, 0x0,
        0x1481, 0x0,    0x0,    0x0,                    /* I/O BAR-128 */
        0x0,    0x0,    0x0,    0x20931022,
        0x0,    0x0,    0x0,    0x205,                  /* IntB, IRQ5 */
        0x0,    0x0,    0x0,    0x0,
        0x0,    0x0,    0x0,    0x0,
        0x0,    0x0,    0x0,    0x0,
};

static const uint32_t ohci_hdr[] = {  /* dev f function 4 - devfn = 7c */
        0xfffff000, 0x0, 0x0,   0x0,
        0x0,    0x0,    0x0,    0x0,

        0x20941022, 0x2300006, 0xc031002, 0x0,
        0xfe01a000, 0x0, 0x0,   0x0,                    /* MEMBAR-1000 */
        0x0,    0x0,    0x0,    0x20941022,
        0x0,    0x40,   0x0,    0x40a,                  /* CapPtr INT-D, IRQA */
        0xc8020001, 0x0, 0x0,   0x0,    /* Capabilities - 40 is R/O,
                                           44 is mask 8103 (power control) */
        0x0,    0x0,    0x0,    0x0,
        0x0,    0x0,    0x0,    0x0,
};

static const uint32_t ehci_hdr[] = {  /* dev f function 4 - devfn = 7d */
        0xfffff000, 0x0, 0x0,   0x0,
        0x0,    0x0,    0x0,    0x0,

        0x20951022, 0x2300006, 0xc032002, 0x0,
        0xfe01b000, 0x0, 0x0,   0x0,                    /* MEMBAR-1000 */
        0x0,    0x0,    0x0,    0x20951022,
        0x0,    0x40,   0x0,    0x40a,                  /* CapPtr INT-D, IRQA */
        0xc8020001, 0x0, 0x0,   0x0,    /* Capabilities - 40 is R/O, 44 is
                                           mask 8103 (power control) */
#if 0
        0x1,    0x40080000, 0x0, 0x0,   /* EECP - see EHCI spec section 2.1.7 */
#endif
        0x01000001, 0x0, 0x0,   0x0,    /* EECP - see EHCI spec section 2.1.7 */
        0x2020, 0x0,    0x0,    0x0,    /* (EHCI page 8) 60 SBRN (R/O),
                                           61 FLADJ (R/W), PORTWAKECAP  */
};

static uint32_t ff_loc = ~0;
static uint32_t zero_loc;
static int bar_probing;         /* Set after a write of ~0 to a BAR */
static int is_lx;

#define NB_SLOT 0x1     /* Northbridge - GX chip - Device 1 */
#define SB_SLOT 0xf     /* Southbridge - CS5536 chip - Device F */

static int is_simulated(unsigned int bus, unsigned int devfn)
{
        return (!bus && ((PCI_SLOT(devfn) == NB_SLOT) ||
                        (PCI_SLOT(devfn) == SB_SLOT)));
}

static uint32_t *hdr_addr(const uint32_t *hdr, int reg)
{
        uint32_t addr;

        /*
         * This is a little bit tricky.  The header maps consist of
         * 0x20 bytes of size masks, followed by 0x70 bytes of header data.
         * In the normal case, when not probing a BAR's size, we want
         * to access the header data, so we add 0x20 to the reg offset,
         * thus skipping the size mask area.
         * In the BAR probing case, we want to access the size mask for
         * the BAR, so we subtract 0x10 (the config header offset for
         * BAR0), and don't skip the size mask area.
         */

        addr = (uint32_t)hdr + reg + (bar_probing ? -0x10 : 0x20);

        bar_probing = 0;
        return (uint32_t *)addr;
}

static int pci_olpc_read(unsigned int seg, unsigned int bus,
                unsigned int devfn, int reg, int len, uint32_t *value)
{
        uint32_t *addr;

        /* Use the hardware mechanism for non-simulated devices */
        if (!is_simulated(bus, devfn))
                return pci_direct_conf1.read(seg, bus, devfn, reg, len, value);

        /*
         * No device has config registers past 0x70, so we save table space
         * by not storing entries for the nonexistent registers
         */
        if (reg >= 0x70)
                addr = &zero_loc;
        else {
                switch (devfn) {
                case  0x8:
                        addr = hdr_addr(is_lx ? lxnb_hdr : gxnb_hdr, reg);
                        break;
                case  0x9:
                        addr = hdr_addr(is_lx ? lxfb_hdr : gxfb_hdr, reg);
                        break;
                case  0xa:
                        addr = is_lx ? hdr_addr(aes_hdr, reg) : &ff_loc;
                        break;
                case 0x78:
                        addr = hdr_addr(isa_hdr, reg);
                        break;
                case 0x7b:
                        addr = hdr_addr(ac97_hdr, reg);
                        break;
                case 0x7c:
                        addr = hdr_addr(ohci_hdr, reg);
                        break;
                case 0x7d:
                        addr = hdr_addr(ehci_hdr, reg);
                        break;
                default:
                        addr = &ff_loc;
                        break;
                }
        }
        switch (len) {
        case 1:
                *value = *(uint8_t *)addr;
                break;
        case 2:
                *value = *(uint16_t *)addr;
                break;
        case 4:
                *value = *addr;
                break;
        default:
                BUG();
        }

        return 0;
}

static int pci_olpc_write(unsigned int seg, unsigned int bus,
                unsigned int devfn, int reg, int len, uint32_t value)
{
        /* Use the hardware mechanism for non-simulated devices */
        if (!is_simulated(bus, devfn))
                return pci_direct_conf1.write(seg, bus, devfn, reg, len, value);

        /* XXX we may want to extend this to simulate EHCI power management */

        /*
         * Mostly we just discard writes, but if the write is a size probe
         * (i.e. writing ~0 to a BAR), we remember it and arrange to return
         * the appropriate size mask on the next read.  This is cheating
         * to some extent, because it depends on the fact that the next
         * access after such a write will always be a read to the same BAR.
         */

        if ((reg >= 0x10) && (reg < 0x2c)) {
                /* write is to a BAR */
                if (value == ~0)
                        bar_probing = 1;
        } else {
                /*
                 * No warning on writes to ROM BAR, CMD, LATENCY_TIMER,
                 * CACHE_LINE_SIZE, or PM registers.
                 */
                if ((reg != PCI_ROM_ADDRESS) && (reg != PCI_COMMAND_MASTER) &&
                                (reg != PCI_LATENCY_TIMER) &&
                                (reg != PCI_CACHE_LINE_SIZE) && (reg != 0x44))
                        printk(KERN_WARNING "OLPC PCI: Config write to devfn"
                                " %x reg %x value %x\n", devfn, reg, value);
        }

        return 0;
}

static struct pci_raw_ops pci_olpc_conf = {
        .read = pci_olpc_read,
        .write = pci_olpc_write,
};

int __init pci_olpc_init(void)
{
        if (!machine_is_olpc() || olpc_has_vsa())
                return -ENODEV;

        printk(KERN_INFO "PCI: Using configuration type OLPC\n");
        raw_pci_ops = &pci_olpc_conf;
        is_lx = is_geode_lx();
        return 0;
}

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading