[funini.com] -> [kei@sodan] -> Kernel Reading

root/crypto/gcm.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. crypto_gcm_reqctx
  2. crypto_gcm_ghash_init
  3. crypto_gcm_ghash_update
  4. crypto_gcm_ghash_update_sg
  5. crypto_gcm_ghash_flush
  6. crypto_gcm_ghash_final_xor
  7. crypto_gcm_setkey_done
  8. crypto_gcm_setkey
  9. crypto_gcm_setauthsize
  10. crypto_gcm_init_crypt
  11. crypto_gcm_hash
  12. crypto_gcm_encrypt_done
  13. crypto_gcm_encrypt
  14. crypto_gcm_verify
  15. crypto_gcm_decrypt_done
  16. crypto_gcm_decrypt
  17. crypto_gcm_init_tfm
  18. crypto_gcm_exit_tfm
  19. crypto_gcm_alloc_common
  20. crypto_gcm_alloc
  21. crypto_gcm_free
  22. crypto_gcm_base_alloc
  23. crypto_rfc4106_setkey
  24. crypto_rfc4106_setauthsize
  25. crypto_rfc4106_crypt
  26. crypto_rfc4106_encrypt
  27. crypto_rfc4106_decrypt
  28. crypto_rfc4106_init_tfm
  29. crypto_rfc4106_exit_tfm
  30. crypto_rfc4106_alloc
  31. crypto_rfc4106_free
  32. crypto_gcm_module_init
  33. crypto_gcm_module_exit

/*
 * GCM: Galois/Counter Mode.
 *
 * Copyright (c) 2007 Nokia Siemens Networks - Mikko Herranen <mh1@iki.fi>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation.
 */

#include <crypto/gf128mul.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/skcipher.h>
#include <crypto/scatterwalk.h>
#include <linux/completion.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>

struct gcm_instance_ctx {
        struct crypto_skcipher_spawn ctr;
};

struct crypto_gcm_ctx {
        struct crypto_ablkcipher *ctr;
        struct gf128mul_4k *gf128;
};

struct crypto_rfc4106_ctx {
        struct crypto_aead *child;
        u8 nonce[4];
};

struct crypto_gcm_ghash_ctx {
        u32 bytes;
        u32 flags;
        struct gf128mul_4k *gf128;
        u8 buffer[16];
};

struct crypto_gcm_req_priv_ctx {
        u8 auth_tag[16];
        u8 iauth_tag[16];
        struct scatterlist src[2];
        struct scatterlist dst[2];
        struct crypto_gcm_ghash_ctx ghash;
        struct ablkcipher_request abreq;
};

struct crypto_gcm_setkey_result {
        int err;
        struct completion completion;
};

static inline struct crypto_gcm_req_priv_ctx *crypto_gcm_reqctx(
        struct aead_request *req)
{
        unsigned long align = crypto_aead_alignmask(crypto_aead_reqtfm(req));

        return (void *)PTR_ALIGN((u8 *)aead_request_ctx(req), align + 1);
}

static void crypto_gcm_ghash_init(struct crypto_gcm_ghash_ctx *ctx, u32 flags,
                                  struct gf128mul_4k *gf128)
{
        ctx->bytes = 0;
        ctx->flags = flags;
        ctx->gf128 = gf128;
        memset(ctx->buffer, 0, 16);
}

static void crypto_gcm_ghash_update(struct crypto_gcm_ghash_ctx *ctx,
                                    const u8 *src, unsigned int srclen)
{
        u8 *dst = ctx->buffer;

        if (ctx->bytes) {
                int n = min(srclen, ctx->bytes);
                u8 *pos = dst + (16 - ctx->bytes);

                ctx->bytes -= n;
                srclen -= n;

                while (n--)
                        *pos++ ^= *src++;

                if (!ctx->bytes)
                        gf128mul_4k_lle((be128 *)dst, ctx->gf128);
        }

        while (srclen >= 16) {
                crypto_xor(dst, src, 16);
                gf128mul_4k_lle((be128 *)dst, ctx->gf128);
                src += 16;
                srclen -= 16;
        }

        if (srclen) {
                ctx->bytes = 16 - srclen;
                while (srclen--)
                        *dst++ ^= *src++;
        }
}

static void crypto_gcm_ghash_update_sg(struct crypto_gcm_ghash_ctx *ctx,
                                       struct scatterlist *sg, int len)
{
        struct scatter_walk walk;
        u8 *src;
        int n;

        if (!len)
                return;

        scatterwalk_start(&walk, sg);

        while (len) {
                n = scatterwalk_clamp(&walk, len);

                if (!n) {
                        scatterwalk_start(&walk, scatterwalk_sg_next(walk.sg));
                        n = scatterwalk_clamp(&walk, len);
                }

                src = scatterwalk_map(&walk, 0);

                crypto_gcm_ghash_update(ctx, src, n);
                len -= n;

                scatterwalk_unmap(src, 0);
                scatterwalk_advance(&walk, n);
                scatterwalk_done(&walk, 0, len);
                if (len)
                        crypto_yield(ctx->flags);
        }
}

static void crypto_gcm_ghash_flush(struct crypto_gcm_ghash_ctx *ctx)
{
        u8 *dst = ctx->buffer;

        if (ctx->bytes) {
                u8 *tmp = dst + (16 - ctx->bytes);

                while (ctx->bytes--)
                        *tmp++ ^= 0;

                gf128mul_4k_lle((be128 *)dst, ctx->gf128);
        }

        ctx->bytes = 0;
}

static void crypto_gcm_ghash_final_xor(struct crypto_gcm_ghash_ctx *ctx,
                                       unsigned int authlen,
                                       unsigned int cryptlen, u8 *dst)
{
        u8 *buf = ctx->buffer;
        u128 lengths;

        lengths.a = cpu_to_be64(authlen * 8);
        lengths.b = cpu_to_be64(cryptlen * 8);

        crypto_gcm_ghash_flush(ctx);
        crypto_xor(buf, (u8 *)&lengths, 16);
        gf128mul_4k_lle((be128 *)buf, ctx->gf128);
        crypto_xor(dst, buf, 16);
}

static void crypto_gcm_setkey_done(struct crypto_async_request *req, int err)
{
        struct crypto_gcm_setkey_result *result = req->data;

        if (err == -EINPROGRESS)
                return;

        result->err = err;
        complete(&result->completion);
}

static int crypto_gcm_setkey(struct crypto_aead *aead, const u8 *key,
                             unsigned int keylen)
{
        struct crypto_gcm_ctx *ctx = crypto_aead_ctx(aead);
        struct crypto_ablkcipher *ctr = ctx->ctr;
        struct {
                be128 hash;
                u8 iv[8];

                struct crypto_gcm_setkey_result result;

                struct scatterlist sg[1];
                struct ablkcipher_request req;
        } *data;
        int err;

        crypto_ablkcipher_clear_flags(ctr, CRYPTO_TFM_REQ_MASK);
        crypto_ablkcipher_set_flags(ctr, crypto_aead_get_flags(aead) &
                                   CRYPTO_TFM_REQ_MASK);

        err = crypto_ablkcipher_setkey(ctr, key, keylen);
        if (err)
                return err;

        crypto_aead_set_flags(aead, crypto_ablkcipher_get_flags(ctr) &
                                       CRYPTO_TFM_RES_MASK);

        data = kzalloc(sizeof(*data) + crypto_ablkcipher_reqsize(ctr),
                       GFP_KERNEL);
        if (!data)
                return -ENOMEM;

        init_completion(&data->result.completion);
        sg_init_one(data->sg, &data->hash, sizeof(data->hash));
        ablkcipher_request_set_tfm(&data->req, ctr);
        ablkcipher_request_set_callback(&data->req, CRYPTO_TFM_REQ_MAY_SLEEP |
                                                    CRYPTO_TFM_REQ_MAY_BACKLOG,
                                        crypto_gcm_setkey_done,
                                        &data->result);
        ablkcipher_request_set_crypt(&data->req, data->sg, data->sg,
                                     sizeof(data->hash), data->iv);

        err = crypto_ablkcipher_encrypt(&data->req);
        if (err == -EINPROGRESS || err == -EBUSY) {
                err = wait_for_completion_interruptible(
                        &data->result.completion);
                if (!err)
                        err = data->result.err;
        }

        if (err)
                goto out;

        if (ctx->gf128 != NULL)
                gf128mul_free_4k(ctx->gf128);

        ctx->gf128 = gf128mul_init_4k_lle(&data->hash);

        if (ctx->gf128 == NULL)
                err = -ENOMEM;

out:
        kfree(data);
        return err;
}

static int crypto_gcm_setauthsize(struct crypto_aead *tfm,
                                  unsigned int authsize)
{
        switch (authsize) {
        case 4:
        case 8:
        case 12:
        case 13:
        case 14:
        case 15:
        case 16:
                break;
        default:
                return -EINVAL;
        }

        return 0;
}

static void crypto_gcm_init_crypt(struct ablkcipher_request *ablk_req,
                                  struct aead_request *req,
                                  unsigned int cryptlen)
{
        struct crypto_aead *aead = crypto_aead_reqtfm(req);
        struct crypto_gcm_ctx *ctx = crypto_aead_ctx(aead);
        struct crypto_gcm_req_priv_ctx *pctx = crypto_gcm_reqctx(req);
        u32 flags = req->base.tfm->crt_flags;
        struct crypto_gcm_ghash_ctx *ghash = &pctx->ghash;
        struct scatterlist *dst;
        __be32 counter = cpu_to_be32(1);

        memset(pctx->auth_tag, 0, sizeof(pctx->auth_tag));
        memcpy(req->iv + 12, &counter, 4);

        sg_init_table(pctx->src, 2);
        sg_set_buf(pctx->src, pctx->auth_tag, sizeof(pctx->auth_tag));
        scatterwalk_sg_chain(pctx->src, 2, req->src);

        dst = pctx->src;
        if (req->src != req->dst) {
                sg_init_table(pctx->dst, 2);
                sg_set_buf(pctx->dst, pctx->auth_tag, sizeof(pctx->auth_tag));
                scatterwalk_sg_chain(pctx->dst, 2, req->dst);
                dst = pctx->dst;
        }

        ablkcipher_request_set_tfm(ablk_req, ctx->ctr);
        ablkcipher_request_set_crypt(ablk_req, pctx->src, dst,
                                     cryptlen + sizeof(pctx->auth_tag),
                                     req->iv);

        crypto_gcm_ghash_init(ghash, flags, ctx->gf128);

        crypto_gcm_ghash_update_sg(ghash, req->assoc, req->assoclen);
        crypto_gcm_ghash_flush(ghash);
}

static int crypto_gcm_hash(struct aead_request *req)
{
        struct crypto_aead *aead = crypto_aead_reqtfm(req);
        struct crypto_gcm_req_priv_ctx *pctx = crypto_gcm_reqctx(req);
        u8 *auth_tag = pctx->auth_tag;
        struct crypto_gcm_ghash_ctx *ghash = &pctx->ghash;

        crypto_gcm_ghash_update_sg(ghash, req->dst, req->cryptlen);
        crypto_gcm_ghash_final_xor(ghash, req->assoclen, req->cryptlen,
                                   auth_tag);

        scatterwalk_map_and_copy(auth_tag, req->dst, req->cryptlen,
                                 crypto_aead_authsize(aead), 1);
        return 0;
}

static void crypto_gcm_encrypt_done(struct crypto_async_request *areq, int err)
{
        struct aead_request *req = areq->data;

        if (!err)
                err = crypto_gcm_hash(req);

        aead_request_complete(req, err);
}

static int crypto_gcm_encrypt(struct aead_request *req)
{
        struct crypto_gcm_req_priv_ctx *pctx = crypto_gcm_reqctx(req);
        struct ablkcipher_request *abreq = &pctx->abreq;
        int err;

        crypto_gcm_init_crypt(abreq, req, req->cryptlen);
        ablkcipher_request_set_callback(abreq, aead_request_flags(req),
                                        crypto_gcm_encrypt_done, req);

        err = crypto_ablkcipher_encrypt(abreq);
        if (err)
                return err;

        return crypto_gcm_hash(req);
}

static int crypto_gcm_verify(struct aead_request *req)
{
        struct crypto_aead *aead = crypto_aead_reqtfm(req);
        struct crypto_gcm_req_priv_ctx *pctx = crypto_gcm_reqctx(req);
        struct crypto_gcm_ghash_ctx *ghash = &pctx->ghash;
        u8 *auth_tag = pctx->auth_tag;
        u8 *iauth_tag = pctx->iauth_tag;
        unsigned int authsize = crypto_aead_authsize(aead);
        unsigned int cryptlen = req->cryptlen - authsize;

        crypto_gcm_ghash_final_xor(ghash, req->assoclen, cryptlen, auth_tag);

        authsize = crypto_aead_authsize(aead);
        scatterwalk_map_and_copy(iauth_tag, req->src, cryptlen, authsize, 0);
        return memcmp(iauth_tag, auth_tag, authsize) ? -EBADMSG : 0;
}

static void crypto_gcm_decrypt_done(struct crypto_async_request *areq, int err)
{
        struct aead_request *req = areq->data;

        if (!err)
                err = crypto_gcm_verify(req);

        aead_request_complete(req, err);
}

static int crypto_gcm_decrypt(struct aead_request *req)
{
        struct crypto_aead *aead = crypto_aead_reqtfm(req);
        struct crypto_gcm_req_priv_ctx *pctx = crypto_gcm_reqctx(req);
        struct ablkcipher_request *abreq = &pctx->abreq;
        struct crypto_gcm_ghash_ctx *ghash = &pctx->ghash;
        unsigned int cryptlen = req->cryptlen;
        unsigned int authsize = crypto_aead_authsize(aead);
        int err;

        if (cryptlen < authsize)
                return -EINVAL;
        cryptlen -= authsize;

        crypto_gcm_init_crypt(abreq, req, cryptlen);
        ablkcipher_request_set_callback(abreq, aead_request_flags(req),
                                        crypto_gcm_decrypt_done, req);

        crypto_gcm_ghash_update_sg(ghash, req->src, cryptlen);

        err = crypto_ablkcipher_decrypt(abreq);
        if (err)
                return err;

        return crypto_gcm_verify(req);
}

static int crypto_gcm_init_tfm(struct crypto_tfm *tfm)
{
        struct crypto_instance *inst = (void *)tfm->__crt_alg;
        struct gcm_instance_ctx *ictx = crypto_instance_ctx(inst);
        struct crypto_gcm_ctx *ctx = crypto_tfm_ctx(tfm);
        struct crypto_ablkcipher *ctr;
        unsigned long align;
        int err;

        ctr = crypto_spawn_skcipher(&ictx->ctr);
        err = PTR_ERR(ctr);
        if (IS_ERR(ctr))
                return err;

        ctx->ctr = ctr;
        ctx->gf128 = NULL;

        align = crypto_tfm_alg_alignmask(tfm);
        align &= ~(crypto_tfm_ctx_alignment() - 1);
        tfm->crt_aead.reqsize = align +
                                sizeof(struct crypto_gcm_req_priv_ctx) +
                                crypto_ablkcipher_reqsize(ctr);

        return 0;
}

static void crypto_gcm_exit_tfm(struct crypto_tfm *tfm)
{
        struct crypto_gcm_ctx *ctx = crypto_tfm_ctx(tfm);

        if (ctx->gf128 != NULL)
                gf128mul_free_4k(ctx->gf128);

        crypto_free_ablkcipher(ctx->ctr);
}

static struct crypto_instance *crypto_gcm_alloc_common(struct rtattr **tb,
                                                       const char *full_name,
                                                       const char *ctr_name)
{
        struct crypto_attr_type *algt;
        struct crypto_instance *inst;
        struct crypto_alg *ctr;
        struct gcm_instance_ctx *ctx;
        int err;

        algt = crypto_get_attr_type(tb);
        err = PTR_ERR(algt);
        if (IS_ERR(algt))
                return ERR_PTR(err);

        if ((algt->type ^ CRYPTO_ALG_TYPE_AEAD) & algt->mask)
                return ERR_PTR(-EINVAL);

        inst = kzalloc(sizeof(*inst) + sizeof(*ctx), GFP_KERNEL);
        if (!inst)
                return ERR_PTR(-ENOMEM);

        ctx = crypto_instance_ctx(inst);
        crypto_set_skcipher_spawn(&ctx->ctr, inst);
        err = crypto_grab_skcipher(&ctx->ctr, ctr_name, 0,
                                   crypto_requires_sync(algt->type,
                                                        algt->mask));
        if (err)
                goto err_free_inst;

        ctr = crypto_skcipher_spawn_alg(&ctx->ctr);

        /* We only support 16-byte blocks. */
        if (ctr->cra_ablkcipher.ivsize != 16)
                goto out_put_ctr;

        /* Not a stream cipher? */
        err = -EINVAL;
        if (ctr->cra_blocksize != 1)
                goto out_put_ctr;

        err = -ENAMETOOLONG;
        if (snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
                     "gcm_base(%s)", ctr->cra_driver_name) >=
            CRYPTO_MAX_ALG_NAME)
                goto out_put_ctr;

        memcpy(inst->alg.cra_name, full_name, CRYPTO_MAX_ALG_NAME);

        inst->alg.cra_flags = CRYPTO_ALG_TYPE_AEAD;
        inst->alg.cra_flags |= ctr->cra_flags & CRYPTO_ALG_ASYNC;
        inst->alg.cra_priority = ctr->cra_priority;
        inst->alg.cra_blocksize = 1;
        inst->alg.cra_alignmask = ctr->cra_alignmask | (__alignof__(u64) - 1);
        inst->alg.cra_type = &crypto_aead_type;
        inst->alg.cra_aead.ivsize = 16;
        inst->alg.cra_aead.maxauthsize = 16;
        inst->alg.cra_ctxsize = sizeof(struct crypto_gcm_ctx);
        inst->alg.cra_init = crypto_gcm_init_tfm;
        inst->alg.cra_exit = crypto_gcm_exit_tfm;
        inst->alg.cra_aead.setkey = crypto_gcm_setkey;
        inst->alg.cra_aead.setauthsize = crypto_gcm_setauthsize;
        inst->alg.cra_aead.encrypt = crypto_gcm_encrypt;
        inst->alg.cra_aead.decrypt = crypto_gcm_decrypt;

out:
        return inst;

out_put_ctr:
        crypto_drop_skcipher(&ctx->ctr);
err_free_inst:
        kfree(inst);
        inst = ERR_PTR(err);
        goto out;
}

static struct crypto_instance *crypto_gcm_alloc(struct rtattr **tb)
{
        int err;
        const char *cipher_name;
        char ctr_name[CRYPTO_MAX_ALG_NAME];
        char full_name[CRYPTO_MAX_ALG_NAME];

        cipher_name = crypto_attr_alg_name(tb[1]);
        err = PTR_ERR(cipher_name);
        if (IS_ERR(cipher_name))
                return ERR_PTR(err);

        if (snprintf(ctr_name, CRYPTO_MAX_ALG_NAME, "ctr(%s)", cipher_name) >=
            CRYPTO_MAX_ALG_NAME)
                return ERR_PTR(-ENAMETOOLONG);

        if (snprintf(full_name, CRYPTO_MAX_ALG_NAME, "gcm(%s)", cipher_name) >=
            CRYPTO_MAX_ALG_NAME)
                return ERR_PTR(-ENAMETOOLONG);

        return crypto_gcm_alloc_common(tb, full_name, ctr_name);
}

static void crypto_gcm_free(struct crypto_instance *inst)
{
        struct gcm_instance_ctx *ctx = crypto_instance_ctx(inst);

        crypto_drop_skcipher(&ctx->ctr);
        kfree(inst);
}

static struct crypto_template crypto_gcm_tmpl = {
        .name = "gcm",
        .alloc = crypto_gcm_alloc,
        .free = crypto_gcm_free,
        .module = THIS_MODULE,
};

static struct crypto_instance *crypto_gcm_base_alloc(struct rtattr **tb)
{
        int err;
        const char *ctr_name;
        char full_name[CRYPTO_MAX_ALG_NAME];

        ctr_name = crypto_attr_alg_name(tb[1]);
        err = PTR_ERR(ctr_name);
        if (IS_ERR(ctr_name))
                return ERR_PTR(err);

        if (snprintf(full_name, CRYPTO_MAX_ALG_NAME, "gcm_base(%s)",
                     ctr_name) >= CRYPTO_MAX_ALG_NAME)
                return ERR_PTR(-ENAMETOOLONG);

        return crypto_gcm_alloc_common(tb, full_name, ctr_name);
}

static struct crypto_template crypto_gcm_base_tmpl = {
        .name = "gcm_base",
        .alloc = crypto_gcm_base_alloc,
        .free = crypto_gcm_free,
        .module = THIS_MODULE,
};

static int crypto_rfc4106_setkey(struct crypto_aead *parent, const u8 *key,
                                 unsigned int keylen)
{
        struct crypto_rfc4106_ctx *ctx = crypto_aead_ctx(parent);
        struct crypto_aead *child = ctx->child;
        int err;

        if (keylen < 4)
                return -EINVAL;

        keylen -= 4;
        memcpy(ctx->nonce, key + keylen, 4);

        crypto_aead_clear_flags(child, CRYPTO_TFM_REQ_MASK);
        crypto_aead_set_flags(child, crypto_aead_get_flags(parent) &
                                     CRYPTO_TFM_REQ_MASK);
        err = crypto_aead_setkey(child, key, keylen);
        crypto_aead_set_flags(parent, crypto_aead_get_flags(child) &
                                      CRYPTO_TFM_RES_MASK);

        return err;
}

static int crypto_rfc4106_setauthsize(struct crypto_aead *parent,
                                      unsigned int authsize)
{
        struct crypto_rfc4106_ctx *ctx = crypto_aead_ctx(parent);

        switch (authsize) {
        case 8:
        case 12:
        case 16:
                break;
        default:
                return -EINVAL;
        }

        return crypto_aead_setauthsize(ctx->child, authsize);
}

static struct aead_request *crypto_rfc4106_crypt(struct aead_request *req)
{
        struct aead_request *subreq = aead_request_ctx(req);
        struct crypto_aead *aead = crypto_aead_reqtfm(req);
        struct crypto_rfc4106_ctx *ctx = crypto_aead_ctx(aead);
        struct crypto_aead *child = ctx->child;
        u8 *iv = PTR_ALIGN((u8 *)(subreq + 1) + crypto_aead_reqsize(child),
                           crypto_aead_alignmask(child) + 1);

        memcpy(iv, ctx->nonce, 4);
        memcpy(iv + 4, req->iv, 8);

        aead_request_set_tfm(subreq, child);
        aead_request_set_callback(subreq, req->base.flags, req->base.complete,
                                  req->base.data);
        aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen, iv);
        aead_request_set_assoc(subreq, req->assoc, req->assoclen);

        return subreq;
}

static int crypto_rfc4106_encrypt(struct aead_request *req)
{
        req = crypto_rfc4106_crypt(req);

        return crypto_aead_encrypt(req);
}

static int crypto_rfc4106_decrypt(struct aead_request *req)
{
        req = crypto_rfc4106_crypt(req);

        return crypto_aead_decrypt(req);
}

static int crypto_rfc4106_init_tfm(struct crypto_tfm *tfm)
{
        struct crypto_instance *inst = (void *)tfm->__crt_alg;
        struct crypto_aead_spawn *spawn = crypto_instance_ctx(inst);
        struct crypto_rfc4106_ctx *ctx = crypto_tfm_ctx(tfm);
        struct crypto_aead *aead;
        unsigned long align;

        aead = crypto_spawn_aead(spawn);
        if (IS_ERR(aead))
                return PTR_ERR(aead);

        ctx->child = aead;

        align = crypto_aead_alignmask(aead);
        align &= ~(crypto_tfm_ctx_alignment() - 1);
        tfm->crt_aead.reqsize = sizeof(struct aead_request) +
                                ALIGN(crypto_aead_reqsize(aead),
                                      crypto_tfm_ctx_alignment()) +
                                align + 16;

        return 0;
}

static void crypto_rfc4106_exit_tfm(struct crypto_tfm *tfm)
{
        struct crypto_rfc4106_ctx *ctx = crypto_tfm_ctx(tfm);

        crypto_free_aead(ctx->child);
}

static struct crypto_instance *crypto_rfc4106_alloc(struct rtattr **tb)
{
        struct crypto_attr_type *algt;
        struct crypto_instance *inst;
        struct crypto_aead_spawn *spawn;
        struct crypto_alg *alg;
        const char *ccm_name;
        int err;

        algt = crypto_get_attr_type(tb);
        err = PTR_ERR(algt);
        if (IS_ERR(algt))
                return ERR_PTR(err);

        if ((algt->type ^ CRYPTO_ALG_TYPE_AEAD) & algt->mask)
                return ERR_PTR(-EINVAL);

        ccm_name = crypto_attr_alg_name(tb[1]);
        err = PTR_ERR(ccm_name);
        if (IS_ERR(ccm_name))
                return ERR_PTR(err);

        inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
        if (!inst)
                return ERR_PTR(-ENOMEM);

        spawn = crypto_instance_ctx(inst);
        crypto_set_aead_spawn(spawn, inst);
        err = crypto_grab_aead(spawn, ccm_name, 0,
                               crypto_requires_sync(algt->type, algt->mask));
        if (err)
                goto out_free_inst;

        alg = crypto_aead_spawn_alg(spawn);

        err = -EINVAL;

        /* We only support 16-byte blocks. */
        if (alg->cra_aead.ivsize != 16)
                goto out_drop_alg;

        /* Not a stream cipher? */
        if (alg->cra_blocksize != 1)
                goto out_drop_alg;

        err = -ENAMETOOLONG;
        if (snprintf(inst->alg.cra_name, CRYPTO_MAX_ALG_NAME,
                     "rfc4106(%s)", alg->cra_name) >= CRYPTO_MAX_ALG_NAME ||
            snprintf(inst->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME,
                     "rfc4106(%s)", alg->cra_driver_name) >=
            CRYPTO_MAX_ALG_NAME)
                goto out_drop_alg;

        inst->alg.cra_flags = CRYPTO_ALG_TYPE_AEAD;
        inst->alg.cra_flags |= alg->cra_flags & CRYPTO_ALG_ASYNC;
        inst->alg.cra_priority = alg->cra_priority;
        inst->alg.cra_blocksize = 1;
        inst->alg.cra_alignmask = alg->cra_alignmask;
        inst->alg.cra_type = &crypto_nivaead_type;

        inst->alg.cra_aead.ivsize = 8;
        inst->alg.cra_aead.maxauthsize = 16;

        inst->alg.cra_ctxsize = sizeof(struct crypto_rfc4106_ctx);

        inst->alg.cra_init = crypto_rfc4106_init_tfm;
        inst->alg.cra_exit = crypto_rfc4106_exit_tfm;

        inst->alg.cra_aead.setkey = crypto_rfc4106_setkey;
        inst->alg.cra_aead.setauthsize = crypto_rfc4106_setauthsize;
        inst->alg.cra_aead.encrypt = crypto_rfc4106_encrypt;
        inst->alg.cra_aead.decrypt = crypto_rfc4106_decrypt;

        inst->alg.cra_aead.geniv = "seqiv";

out:
        return inst;

out_drop_alg:
        crypto_drop_aead(spawn);
out_free_inst:
        kfree(inst);
        inst = ERR_PTR(err);
        goto out;
}

static void crypto_rfc4106_free(struct crypto_instance *inst)
{
        crypto_drop_spawn(crypto_instance_ctx(inst));
        kfree(inst);
}

static struct crypto_template crypto_rfc4106_tmpl = {
        .name = "rfc4106",
        .alloc = crypto_rfc4106_alloc,
        .free = crypto_rfc4106_free,
        .module = THIS_MODULE,
};

static int __init crypto_gcm_module_init(void)
{
        int err;

        err = crypto_register_template(&crypto_gcm_base_tmpl);
        if (err)
                goto out;

        err = crypto_register_template(&crypto_gcm_tmpl);
        if (err)
                goto out_undo_base;

        err = crypto_register_template(&crypto_rfc4106_tmpl);
        if (err)
                goto out_undo_gcm;

out:
        return err;

out_undo_gcm:
        crypto_unregister_template(&crypto_gcm_tmpl);
out_undo_base:
        crypto_unregister_template(&crypto_gcm_base_tmpl);
        goto out;
}

static void __exit crypto_gcm_module_exit(void)
{
        crypto_unregister_template(&crypto_rfc4106_tmpl);
        crypto_unregister_template(&crypto_gcm_tmpl);
        crypto_unregister_template(&crypto_gcm_base_tmpl);
}

module_init(crypto_gcm_module_init);
module_exit(crypto_gcm_module_exit);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Galois/Counter Mode");
MODULE_AUTHOR("Mikko Herranen <mh1@iki.fi>");
MODULE_ALIAS("gcm_base");
MODULE_ALIAS("rfc4106");

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading