[funini.com] -> [kei@sodan] -> Kernel Reading

root/fs/reiserfs/prints.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. reiserfs_cpu_offset
  2. le_offset
  3. cpu_type
  4. le_type
  5. sprintf_le_key
  6. sprintf_cpu_key
  7. sprintf_de_head
  8. sprintf_item_head
  9. sprintf_direntry
  10. sprintf_block_head
  11. sprintf_buffer_head
  12. sprintf_disk_child
  13. is_there_reiserfs_struct
  14. prepare_error_buf
  15. reiserfs_warning
  16. reiserfs_info
  17. reiserfs_printk
  18. reiserfs_debug
  19. reiserfs_panic
  20. reiserfs_abort
  21. print_internal
  22. print_leaf
  23. reiserfs_hashname
  24. print_super_block
  25. print_desc_block
  26. print_block
  27. store_print_tb
  28. print_cur_tb
  29. check_leaf_block_head
  30. check_internal_block_head
  31. check_leaf
  32. check_internal
  33. print_statistics

/*
 * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README
 */

#include <linux/time.h>
#include <linux/fs.h>
#include <linux/reiserfs_fs.h>
#include <linux/string.h>
#include <linux/buffer_head.h>

#include <stdarg.h>

static char error_buf[1024];
static char fmt_buf[1024];
static char off_buf[80];

static char *reiserfs_cpu_offset(struct cpu_key *key)
{
        if (cpu_key_k_type(key) == TYPE_DIRENTRY)
                sprintf(off_buf, "%Lu(%Lu)",
                        (unsigned long long)
                        GET_HASH_VALUE(cpu_key_k_offset(key)),
                        (unsigned long long)
                        GET_GENERATION_NUMBER(cpu_key_k_offset(key)));
        else
                sprintf(off_buf, "0x%Lx",
                        (unsigned long long)cpu_key_k_offset(key));
        return off_buf;
}

static char *le_offset(struct reiserfs_key *key)
{
        int version;

        version = le_key_version(key);
        if (le_key_k_type(version, key) == TYPE_DIRENTRY)
                sprintf(off_buf, "%Lu(%Lu)",
                        (unsigned long long)
                        GET_HASH_VALUE(le_key_k_offset(version, key)),
                        (unsigned long long)
                        GET_GENERATION_NUMBER(le_key_k_offset(version, key)));
        else
                sprintf(off_buf, "0x%Lx",
                        (unsigned long long)le_key_k_offset(version, key));
        return off_buf;
}

static char *cpu_type(struct cpu_key *key)
{
        if (cpu_key_k_type(key) == TYPE_STAT_DATA)
                return "SD";
        if (cpu_key_k_type(key) == TYPE_DIRENTRY)
                return "DIR";
        if (cpu_key_k_type(key) == TYPE_DIRECT)
                return "DIRECT";
        if (cpu_key_k_type(key) == TYPE_INDIRECT)
                return "IND";
        return "UNKNOWN";
}

static char *le_type(struct reiserfs_key *key)
{
        int version;

        version = le_key_version(key);

        if (le_key_k_type(version, key) == TYPE_STAT_DATA)
                return "SD";
        if (le_key_k_type(version, key) == TYPE_DIRENTRY)
                return "DIR";
        if (le_key_k_type(version, key) == TYPE_DIRECT)
                return "DIRECT";
        if (le_key_k_type(version, key) == TYPE_INDIRECT)
                return "IND";
        return "UNKNOWN";
}

/* %k */
static void sprintf_le_key(char *buf, struct reiserfs_key *key)
{
        if (key)
                sprintf(buf, "[%d %d %s %s]", le32_to_cpu(key->k_dir_id),
                        le32_to_cpu(key->k_objectid), le_offset(key),
                        le_type(key));
        else
                sprintf(buf, "[NULL]");
}

/* %K */
static void sprintf_cpu_key(char *buf, struct cpu_key *key)
{
        if (key)
                sprintf(buf, "[%d %d %s %s]", key->on_disk_key.k_dir_id,
                        key->on_disk_key.k_objectid, reiserfs_cpu_offset(key),
                        cpu_type(key));
        else
                sprintf(buf, "[NULL]");
}

static void sprintf_de_head(char *buf, struct reiserfs_de_head *deh)
{
        if (deh)
                sprintf(buf,
                        "[offset=%d dir_id=%d objectid=%d location=%d state=%04x]",
                        deh_offset(deh), deh_dir_id(deh), deh_objectid(deh),
                        deh_location(deh), deh_state(deh));
        else
                sprintf(buf, "[NULL]");

}

static void sprintf_item_head(char *buf, struct item_head *ih)
{
        if (ih) {
                strcpy(buf,
                       (ih_version(ih) == KEY_FORMAT_3_6) ? "*3.6* " : "*3.5*");
                sprintf_le_key(buf + strlen(buf), &(ih->ih_key));
                sprintf(buf + strlen(buf), ", item_len %d, item_location %d, "
                        "free_space(entry_count) %d",
                        ih_item_len(ih), ih_location(ih), ih_free_space(ih));
        } else
                sprintf(buf, "[NULL]");
}

static void sprintf_direntry(char *buf, struct reiserfs_dir_entry *de)
{
        char name[20];

        memcpy(name, de->de_name, de->de_namelen > 19 ? 19 : de->de_namelen);
        name[de->de_namelen > 19 ? 19 : de->de_namelen] = 0;
        sprintf(buf, "\"%s\"==>[%d %d]", name, de->de_dir_id, de->de_objectid);
}

static void sprintf_block_head(char *buf, struct buffer_head *bh)
{
        sprintf(buf, "level=%d, nr_items=%d, free_space=%d rdkey ",
                B_LEVEL(bh), B_NR_ITEMS(bh), B_FREE_SPACE(bh));
}

static void sprintf_buffer_head(char *buf, struct buffer_head *bh)
{
        char b[BDEVNAME_SIZE];

        sprintf(buf,
                "dev %s, size %zd, blocknr %llu, count %d, state 0x%lx, page %p, (%s, %s, %s)",
                bdevname(bh->b_bdev, b), bh->b_size,
                (unsigned long long)bh->b_blocknr, atomic_read(&(bh->b_count)),
                bh->b_state, bh->b_page,
                buffer_uptodate(bh) ? "UPTODATE" : "!UPTODATE",
                buffer_dirty(bh) ? "DIRTY" : "CLEAN",
                buffer_locked(bh) ? "LOCKED" : "UNLOCKED");
}

static void sprintf_disk_child(char *buf, struct disk_child *dc)
{
        sprintf(buf, "[dc_number=%d, dc_size=%u]", dc_block_number(dc),
                dc_size(dc));
}

static char *is_there_reiserfs_struct(char *fmt, int *what, int *skip)
{
        char *k = fmt;

        *skip = 0;

        while ((k = strchr(k, '%')) != NULL) {
                if (k[1] == 'k' || k[1] == 'K' || k[1] == 'h' || k[1] == 't' ||
                    k[1] == 'z' || k[1] == 'b' || k[1] == 'y' || k[1] == 'a') {
                        *what = k[1];
                        break;
                }
                (*skip)++;
                k++;
        }
        return k;
}

/* debugging reiserfs we used to print out a lot of different
   variables, like keys, item headers, buffer heads etc. Values of
   most fields matter. So it took a long time just to write
   appropriative printk. With this reiserfs_warning you can use format
   specification for complex structures like you used to do with
   printfs for integers, doubles and pointers. For instance, to print
   out key structure you have to write just: 
   reiserfs_warning ("bad key %k", key); 
   instead of 
   printk ("bad key %lu %lu %lu %lu", key->k_dir_id, key->k_objectid, 
           key->k_offset, key->k_uniqueness); 
*/

static void prepare_error_buf(const char *fmt, va_list args)
{
        char *fmt1 = fmt_buf;
        char *k;
        char *p = error_buf;
        int i, j, what, skip;

        strcpy(fmt1, fmt);

        while ((k = is_there_reiserfs_struct(fmt1, &what, &skip)) != NULL) {
                *k = 0;

                p += vsprintf(p, fmt1, args);

                for (i = 0; i < skip; i++)
                        j = va_arg(args, int);

                switch (what) {
                case 'k':
                        sprintf_le_key(p, va_arg(args, struct reiserfs_key *));
                        break;
                case 'K':
                        sprintf_cpu_key(p, va_arg(args, struct cpu_key *));
                        break;
                case 'h':
                        sprintf_item_head(p, va_arg(args, struct item_head *));
                        break;
                case 't':
                        sprintf_direntry(p,
                                         va_arg(args,
                                                struct reiserfs_dir_entry *));
                        break;
                case 'y':
                        sprintf_disk_child(p,
                                           va_arg(args, struct disk_child *));
                        break;
                case 'z':
                        sprintf_block_head(p,
                                           va_arg(args, struct buffer_head *));
                        break;
                case 'b':
                        sprintf_buffer_head(p,
                                            va_arg(args, struct buffer_head *));
                        break;
                case 'a':
                        sprintf_de_head(p,
                                        va_arg(args,
                                               struct reiserfs_de_head *));
                        break;
                }

                p += strlen(p);
                fmt1 = k + 2;
        }
        vsprintf(p, fmt1, args);

}

/* in addition to usual conversion specifiers this accepts reiserfs
   specific conversion specifiers: 
   %k to print little endian key, 
   %K to print cpu key, 
   %h to print item_head,
   %t to print directory entry 
   %z to print block head (arg must be struct buffer_head *
   %b to print buffer_head
*/

#define do_reiserfs_warning(fmt)\
{\
    va_list args;\
    va_start( args, fmt );\
    prepare_error_buf( fmt, args );\
    va_end( args );\
}

void reiserfs_warning(struct super_block *sb, const char *fmt, ...)
{
        do_reiserfs_warning(fmt);
        if (sb)
                printk(KERN_WARNING "ReiserFS: %s: warning: %s\n",
                       reiserfs_bdevname(sb), error_buf);
        else
                printk(KERN_WARNING "ReiserFS: warning: %s\n", error_buf);
}

/* No newline.. reiserfs_info calls can be followed by printk's */
void reiserfs_info(struct super_block *sb, const char *fmt, ...)
{
        do_reiserfs_warning(fmt);
        if (sb)
                printk(KERN_NOTICE "ReiserFS: %s: %s",
                       reiserfs_bdevname(sb), error_buf);
        else
                printk(KERN_NOTICE "ReiserFS: %s", error_buf);
}

/* No newline.. reiserfs_printk calls can be followed by printk's */
static void reiserfs_printk(const char *fmt, ...)
{
        do_reiserfs_warning(fmt);
        printk(error_buf);
}

void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...)
{
#ifdef CONFIG_REISERFS_CHECK
        do_reiserfs_warning(fmt);
        if (s)
                printk(KERN_DEBUG "ReiserFS: %s: %s\n",
                       reiserfs_bdevname(s), error_buf);
        else
                printk(KERN_DEBUG "ReiserFS: %s\n", error_buf);
#endif
}

/* The format:

           maintainer-errorid: [function-name:] message

    where errorid is unique to the maintainer and function-name is
    optional, is recommended, so that anyone can easily find the bug
    with a simple grep for the short to type string
    maintainer-errorid.  Don't bother with reusing errorids, there are
    lots of numbers out there.

    Example: 
    
    reiserfs_panic(
        p_sb, "reiser-29: reiserfs_new_blocknrs: "
        "one of search_start or rn(%d) is equal to MAX_B_NUM,"
        "which means that we are optimizing location based on the bogus location of a temp buffer (%p).", 
        rn, bh
    );

    Regular panic()s sometimes clear the screen before the message can
    be read, thus the need for the while loop.  

    Numbering scheme for panic used by Vladimir and Anatoly( Hans completely ignores this scheme, and considers it
    pointless complexity):

    panics in reiserfs_fs.h have numbers from 1000 to 1999
    super.c                                     2000 to 2999
    preserve.c (unused)                     3000 to 3999
    bitmap.c                                4000 to 4999
    stree.c                                     5000 to 5999
    prints.c                                6000 to 6999
    namei.c                     7000 to 7999
    fix_nodes.c                 8000 to 8999
    dir.c                       9000 to 9999
        lbalance.c                                      10000 to 10999
        ibalance.c              11000 to 11999 not ready
        do_balan.c              12000 to 12999
        inode.c                 13000 to 13999
        file.c                  14000 to 14999
    objectid.c                       15000 - 15999
    buffer.c                         16000 - 16999
    symlink.c                        17000 - 17999

   .  */

#ifdef CONFIG_REISERFS_CHECK
extern struct tree_balance *cur_tb;
#endif

void reiserfs_panic(struct super_block *sb, const char *fmt, ...)
{
        do_reiserfs_warning(fmt);

        dump_stack();

        panic(KERN_EMERG "REISERFS: panic (device %s): %s\n",
               reiserfs_bdevname(sb), error_buf);
}

void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...)
{
        do_reiserfs_warning(fmt);

        if (reiserfs_error_panic(sb)) {
                panic(KERN_CRIT "REISERFS: panic (device %s): %s\n",
                      reiserfs_bdevname(sb), error_buf);
        }

        if (sb->s_flags & MS_RDONLY)
                return;

        printk(KERN_CRIT "REISERFS: abort (device %s): %s\n",
               reiserfs_bdevname(sb), error_buf);

        sb->s_flags |= MS_RDONLY;
        reiserfs_journal_abort(sb, errno);
}

/* this prints internal nodes (4 keys/items in line) (dc_number,
   dc_size)[k_dirid, k_objectid, k_offset, k_uniqueness](dc_number,
   dc_size)...*/
static int print_internal(struct buffer_head *bh, int first, int last)
{
        struct reiserfs_key *key;
        struct disk_child *dc;
        int i;
        int from, to;

        if (!B_IS_KEYS_LEVEL(bh))
                return 1;

        check_internal(bh);

        if (first == -1) {
                from = 0;
                to = B_NR_ITEMS(bh);
        } else {
                from = first;
                to = last < B_NR_ITEMS(bh) ? last : B_NR_ITEMS(bh);
        }

        reiserfs_printk("INTERNAL NODE (%ld) contains %z\n", bh->b_blocknr, bh);

        dc = B_N_CHILD(bh, from);
        reiserfs_printk("PTR %d: %y ", from, dc);

        for (i = from, key = B_N_PDELIM_KEY(bh, from), dc++; i < to;
             i++, key++, dc++) {
                reiserfs_printk("KEY %d: %k PTR %d: %y ", i, key, i + 1, dc);
                if (i && i % 4 == 0)
                        printk("\n");
        }
        printk("\n");
        return 0;
}

static int print_leaf(struct buffer_head *bh, int print_mode, int first,
                      int last)
{
        struct block_head *blkh;
        struct item_head *ih;
        int i, nr;
        int from, to;

        if (!B_IS_ITEMS_LEVEL(bh))
                return 1;

        check_leaf(bh);

        blkh = B_BLK_HEAD(bh);
        ih = B_N_PITEM_HEAD(bh, 0);
        nr = blkh_nr_item(blkh);

        printk
            ("\n===================================================================\n");
        reiserfs_printk("LEAF NODE (%ld) contains %z\n", bh->b_blocknr, bh);

        if (!(print_mode & PRINT_LEAF_ITEMS)) {
                reiserfs_printk("FIRST ITEM_KEY: %k, LAST ITEM KEY: %k\n",
                                &(ih->ih_key), &((ih + nr - 1)->ih_key));
                return 0;
        }

        if (first < 0 || first > nr - 1)
                from = 0;
        else
                from = first;

        if (last < 0 || last > nr)
                to = nr;
        else
                to = last;

        ih += from;
        printk
            ("-------------------------------------------------------------------------------\n");
        printk
            ("|##|   type    |           key           | ilen | free_space | version | loc  |\n");
        for (i = from; i < to; i++, ih++) {
                printk
                    ("-------------------------------------------------------------------------------\n");
                reiserfs_printk("|%2d| %h |\n", i, ih);
                if (print_mode & PRINT_LEAF_ITEMS)
                        op_print_item(ih, B_I_PITEM(bh, ih));
        }

        printk
            ("===================================================================\n");

        return 0;
}

char *reiserfs_hashname(int code)
{
        if (code == YURA_HASH)
                return "rupasov";
        if (code == TEA_HASH)
                return "tea";
        if (code == R5_HASH)
                return "r5";

        return "unknown";
}

/* return 1 if this is not super block */
static int print_super_block(struct buffer_head *bh)
{
        struct reiserfs_super_block *rs =
            (struct reiserfs_super_block *)(bh->b_data);
        int skipped, data_blocks;
        char *version;
        char b[BDEVNAME_SIZE];

        if (is_reiserfs_3_5(rs)) {
                version = "3.5";
        } else if (is_reiserfs_3_6(rs)) {
                version = "3.6";
        } else if (is_reiserfs_jr(rs)) {
                version = ((sb_version(rs) == REISERFS_VERSION_2) ?
                           "3.6" : "3.5");
        } else {
                return 1;
        }

        printk("%s\'s super block is in block %llu\n", bdevname(bh->b_bdev, b),
               (unsigned long long)bh->b_blocknr);
        printk("Reiserfs version %s\n", version);
        printk("Block count %u\n", sb_block_count(rs));
        printk("Blocksize %d\n", sb_blocksize(rs));
        printk("Free blocks %u\n", sb_free_blocks(rs));
        // FIXME: this would be confusing if
        // someone stores reiserfs super block in some data block ;)
//    skipped = (bh->b_blocknr * bh->b_size) / sb_blocksize(rs);
        skipped = bh->b_blocknr;
        data_blocks = sb_block_count(rs) - skipped - 1 - sb_bmap_nr(rs) -
            (!is_reiserfs_jr(rs) ? sb_jp_journal_size(rs) +
             1 : sb_reserved_for_journal(rs)) - sb_free_blocks(rs);
        printk
            ("Busy blocks (skipped %d, bitmaps - %d, journal (or reserved) blocks - %d\n"
             "1 super block, %d data blocks\n", skipped, sb_bmap_nr(rs),
             (!is_reiserfs_jr(rs) ? (sb_jp_journal_size(rs) + 1) :
              sb_reserved_for_journal(rs)), data_blocks);
        printk("Root block %u\n", sb_root_block(rs));
        printk("Journal block (first) %d\n", sb_jp_journal_1st_block(rs));
        printk("Journal dev %d\n", sb_jp_journal_dev(rs));
        printk("Journal orig size %d\n", sb_jp_journal_size(rs));
        printk("FS state %d\n", sb_fs_state(rs));
        printk("Hash function \"%s\"\n",
               reiserfs_hashname(sb_hash_function_code(rs)));

        printk("Tree height %d\n", sb_tree_height(rs));
        return 0;
}

static int print_desc_block(struct buffer_head *bh)
{
        struct reiserfs_journal_desc *desc;

        if (memcmp(get_journal_desc_magic(bh), JOURNAL_DESC_MAGIC, 8))
                return 1;

        desc = (struct reiserfs_journal_desc *)(bh->b_data);
        printk("Desc block %llu (j_trans_id %d, j_mount_id %d, j_len %d)",
               (unsigned long long)bh->b_blocknr, get_desc_trans_id(desc),
               get_desc_mount_id(desc), get_desc_trans_len(desc));

        return 0;
}

void print_block(struct buffer_head *bh, ...)   //int print_mode, int first, int last)
{
        va_list args;
        int mode, first, last;

        va_start(args, bh);

        if (!bh) {
                printk("print_block: buffer is NULL\n");
                return;
        }

        mode = va_arg(args, int);
        first = va_arg(args, int);
        last = va_arg(args, int);
        if (print_leaf(bh, mode, first, last))
                if (print_internal(bh, first, last))
                        if (print_super_block(bh))
                                if (print_desc_block(bh))
                                        printk
                                            ("Block %llu contains unformatted data\n",
                                             (unsigned long long)bh->b_blocknr);

        va_end(args);
}

static char print_tb_buf[2048];

/* this stores initial state of tree balance in the print_tb_buf */
void store_print_tb(struct tree_balance *tb)
{
        int h = 0;
        int i;
        struct buffer_head *tbSh, *tbFh;

        if (!tb)
                return;

        sprintf(print_tb_buf, "\n"
                "BALANCING %d\n"
                "MODE=%c, ITEM_POS=%d POS_IN_ITEM=%d\n"
                "=====================================================================\n"
                "* h *    S    *    L    *    R    *   F   *   FL  *   FR  *  CFL  *  CFR  *\n",
                REISERFS_SB(tb->tb_sb)->s_do_balance,
                tb->tb_mode, PATH_LAST_POSITION(tb->tb_path),
                tb->tb_path->pos_in_item);

        for (h = 0; h < ARRAY_SIZE(tb->insert_size); h++) {
                if (PATH_H_PATH_OFFSET(tb->tb_path, h) <=
                    tb->tb_path->path_length
                    && PATH_H_PATH_OFFSET(tb->tb_path,
                                          h) > ILLEGAL_PATH_ELEMENT_OFFSET) {
                        tbSh = PATH_H_PBUFFER(tb->tb_path, h);
                        tbFh = PATH_H_PPARENT(tb->tb_path, h);
                } else {
                        tbSh = NULL;
                        tbFh = NULL;
                }
                sprintf(print_tb_buf + strlen(print_tb_buf),
                        "* %d * %3lld(%2d) * %3lld(%2d) * %3lld(%2d) * %5lld * %5lld * %5lld * %5lld * %5lld *\n",
                        h,
                        (tbSh) ? (long long)(tbSh->b_blocknr) : (-1LL),
                        (tbSh) ? atomic_read(&(tbSh->b_count)) : -1,
                        (tb->L[h]) ? (long long)(tb->L[h]->b_blocknr) : (-1LL),
                        (tb->L[h]) ? atomic_read(&(tb->L[h]->b_count)) : -1,
                        (tb->R[h]) ? (long long)(tb->R[h]->b_blocknr) : (-1LL),
                        (tb->R[h]) ? atomic_read(&(tb->R[h]->b_count)) : -1,
                        (tbFh) ? (long long)(tbFh->b_blocknr) : (-1LL),
                        (tb->FL[h]) ? (long long)(tb->FL[h]->
                                                  b_blocknr) : (-1LL),
                        (tb->FR[h]) ? (long long)(tb->FR[h]->
                                                  b_blocknr) : (-1LL),
                        (tb->CFL[h]) ? (long long)(tb->CFL[h]->
                                                   b_blocknr) : (-1LL),
                        (tb->CFR[h]) ? (long long)(tb->CFR[h]->
                                                   b_blocknr) : (-1LL));
        }

        sprintf(print_tb_buf + strlen(print_tb_buf),
                "=====================================================================\n"
                "* h * size * ln * lb * rn * rb * blkn * s0 * s1 * s1b * s2 * s2b * curb * lk * rk *\n"
                "* 0 * %4d * %2d * %2d * %2d * %2d * %4d * %2d * %2d * %3d * %2d * %3d * %4d * %2d * %2d *\n",
                tb->insert_size[0], tb->lnum[0], tb->lbytes, tb->rnum[0],
                tb->rbytes, tb->blknum[0], tb->s0num, tb->s1num, tb->s1bytes,
                tb->s2num, tb->s2bytes, tb->cur_blknum, tb->lkey[0],
                tb->rkey[0]);

        /* this prints balance parameters for non-leaf levels */
        h = 0;
        do {
                h++;
                sprintf(print_tb_buf + strlen(print_tb_buf),
                        "* %d * %4d * %2d *    * %2d *    * %2d *\n",
                        h, tb->insert_size[h], tb->lnum[h], tb->rnum[h],
                        tb->blknum[h]);
        } while (tb->insert_size[h]);

        sprintf(print_tb_buf + strlen(print_tb_buf),
                "=====================================================================\n"
                "FEB list: ");

        /* print FEB list (list of buffers in form (bh (b_blocknr, b_count), that will be used for new nodes) */
        h = 0;
        for (i = 0; i < ARRAY_SIZE(tb->FEB); i++)
                sprintf(print_tb_buf + strlen(print_tb_buf),
                        "%p (%llu %d)%s", tb->FEB[i],
                        tb->FEB[i] ? (unsigned long long)tb->FEB[i]->
                        b_blocknr : 0ULL,
                        tb->FEB[i] ? atomic_read(&(tb->FEB[i]->b_count)) : 0,
                        (i == ARRAY_SIZE(tb->FEB) - 1) ? "\n" : ", ");

        sprintf(print_tb_buf + strlen(print_tb_buf),
                "======================== the end ====================================\n");
}

void print_cur_tb(char *mes)
{
        printk("%s\n%s", mes, print_tb_buf);
}

static void check_leaf_block_head(struct buffer_head *bh)
{
        struct block_head *blkh;
        int nr;

        blkh = B_BLK_HEAD(bh);
        nr = blkh_nr_item(blkh);
        if (nr > (bh->b_size - BLKH_SIZE) / IH_SIZE)
                reiserfs_panic(NULL,
                               "vs-6010: check_leaf_block_head: invalid item number %z",
                               bh);
        if (blkh_free_space(blkh) > bh->b_size - BLKH_SIZE - IH_SIZE * nr)
                reiserfs_panic(NULL,
                               "vs-6020: check_leaf_block_head: invalid free space %z",
                               bh);

}

static void check_internal_block_head(struct buffer_head *bh)
{
        struct block_head *blkh;

        blkh = B_BLK_HEAD(bh);
        if (!(B_LEVEL(bh) > DISK_LEAF_NODE_LEVEL && B_LEVEL(bh) <= MAX_HEIGHT))
                reiserfs_panic(NULL,
                               "vs-6025: check_internal_block_head: invalid level %z",
                               bh);

        if (B_NR_ITEMS(bh) > (bh->b_size - BLKH_SIZE) / IH_SIZE)
                reiserfs_panic(NULL,
                               "vs-6030: check_internal_block_head: invalid item number %z",
                               bh);

        if (B_FREE_SPACE(bh) !=
            bh->b_size - BLKH_SIZE - KEY_SIZE * B_NR_ITEMS(bh) -
            DC_SIZE * (B_NR_ITEMS(bh) + 1))
                reiserfs_panic(NULL,
                               "vs-6040: check_internal_block_head: invalid free space %z",
                               bh);

}

void check_leaf(struct buffer_head *bh)
{
        int i;
        struct item_head *ih;

        if (!bh)
                return;
        check_leaf_block_head(bh);
        for (i = 0, ih = B_N_PITEM_HEAD(bh, 0); i < B_NR_ITEMS(bh); i++, ih++)
                op_check_item(ih, B_I_PITEM(bh, ih));
}

void check_internal(struct buffer_head *bh)
{
        if (!bh)
                return;
        check_internal_block_head(bh);
}

void print_statistics(struct super_block *s)
{

        /*
           printk ("reiserfs_put_super: session statistics: balances %d, fix_nodes %d, \
           bmap with search %d, without %d, dir2ind %d, ind2dir %d\n",
           REISERFS_SB(s)->s_do_balance, REISERFS_SB(s)->s_fix_nodes,
           REISERFS_SB(s)->s_bmaps, REISERFS_SB(s)->s_bmaps_without_search,
           REISERFS_SB(s)->s_direct2indirect, REISERFS_SB(s)->s_indirect2direct);
         */

}

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading