[funini.com] -> [kei@sodan] -> Kernel Reading

root/net/dsa/mv88e6xxx.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. mv88e6xxx_reg_wait_ready
  2. __mv88e6xxx_reg_read
  3. mv88e6xxx_reg_read
  4. __mv88e6xxx_reg_write
  5. mv88e6xxx_reg_write
  6. mv88e6xxx_config_prio
  7. mv88e6xxx_set_addr_direct
  8. mv88e6xxx_set_addr_indirect
  9. mv88e6xxx_phy_read
  10. mv88e6xxx_phy_write
  11. mv88e6xxx_ppu_disable
  12. mv88e6xxx_ppu_enable
  13. mv88e6xxx_ppu_reenable_work
  14. mv88e6xxx_ppu_reenable_timer
  15. mv88e6xxx_ppu_access_get
  16. mv88e6xxx_ppu_access_put
  17. mv88e6xxx_ppu_state_init
  18. mv88e6xxx_phy_read_ppu
  19. mv88e6xxx_phy_write_ppu
  20. mv88e6xxx_poll_link
  21. mv88e6xxx_stats_wait
  22. mv88e6xxx_stats_snapshot
  23. mv88e6xxx_stats_read
  24. mv88e6xxx_get_strings
  25. mv88e6xxx_get_ethtool_stats

/*
 * net/dsa/mv88e6xxx.c - Marvell 88e6xxx switch chip support
 * Copyright (c) 2008 Marvell Semiconductor
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/list.h>
#include <linux/netdevice.h>
#include <linux/phy.h>
#include "dsa_priv.h"
#include "mv88e6xxx.h"

/*
 * If the switch's ADDR[4:0] strap pins are strapped to zero, it will
 * use all 32 SMI bus addresses on its SMI bus, and all switch registers
 * will be directly accessible on some {device address,register address}
 * pair.  If the ADDR[4:0] pins are not strapped to zero, the switch
 * will only respond to SMI transactions to that specific address, and
 * an indirect addressing mechanism needs to be used to access its
 * registers.
 */
static int mv88e6xxx_reg_wait_ready(struct mii_bus *bus, int sw_addr)
{
        int ret;
        int i;

        for (i = 0; i < 16; i++) {
                ret = mdiobus_read(bus, sw_addr, 0);
                if (ret < 0)
                        return ret;

                if ((ret & 0x8000) == 0)
                        return 0;
        }

        return -ETIMEDOUT;
}

int __mv88e6xxx_reg_read(struct mii_bus *bus, int sw_addr, int addr, int reg)
{
        int ret;

        if (sw_addr == 0)
                return mdiobus_read(bus, addr, reg);

        /*
         * Wait for the bus to become free.
         */
        ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
        if (ret < 0)
                return ret;

        /*
         * Transmit the read command.
         */
        ret = mdiobus_write(bus, sw_addr, 0, 0x9800 | (addr << 5) | reg);
        if (ret < 0)
                return ret;

        /*
         * Wait for the read command to complete.
         */
        ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
        if (ret < 0)
                return ret;

        /*
         * Read the data.
         */
        ret = mdiobus_read(bus, sw_addr, 1);
        if (ret < 0)
                return ret;

        return ret & 0xffff;
}

int mv88e6xxx_reg_read(struct dsa_switch *ds, int addr, int reg)
{
        struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
        int ret;

        mutex_lock(&ps->smi_mutex);
        ret = __mv88e6xxx_reg_read(ds->master_mii_bus,
                                   ds->pd->sw_addr, addr, reg);
        mutex_unlock(&ps->smi_mutex);

        return ret;
}

int __mv88e6xxx_reg_write(struct mii_bus *bus, int sw_addr, int addr,
                          int reg, u16 val)
{
        int ret;

        if (sw_addr == 0)
                return mdiobus_write(bus, addr, reg, val);

        /*
         * Wait for the bus to become free.
         */
        ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
        if (ret < 0)
                return ret;

        /*
         * Transmit the data to write.
         */
        ret = mdiobus_write(bus, sw_addr, 1, val);
        if (ret < 0)
                return ret;

        /*
         * Transmit the write command.
         */
        ret = mdiobus_write(bus, sw_addr, 0, 0x9400 | (addr << 5) | reg);
        if (ret < 0)
                return ret;

        /*
         * Wait for the write command to complete.
         */
        ret = mv88e6xxx_reg_wait_ready(bus, sw_addr);
        if (ret < 0)
                return ret;

        return 0;
}

int mv88e6xxx_reg_write(struct dsa_switch *ds, int addr, int reg, u16 val)
{
        struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
        int ret;

        mutex_lock(&ps->smi_mutex);
        ret = __mv88e6xxx_reg_write(ds->master_mii_bus,
                                    ds->pd->sw_addr, addr, reg, val);
        mutex_unlock(&ps->smi_mutex);

        return ret;
}

int mv88e6xxx_config_prio(struct dsa_switch *ds)
{
        /*
         * Configure the IP ToS mapping registers.
         */
        REG_WRITE(REG_GLOBAL, 0x10, 0x0000);
        REG_WRITE(REG_GLOBAL, 0x11, 0x0000);
        REG_WRITE(REG_GLOBAL, 0x12, 0x5555);
        REG_WRITE(REG_GLOBAL, 0x13, 0x5555);
        REG_WRITE(REG_GLOBAL, 0x14, 0xaaaa);
        REG_WRITE(REG_GLOBAL, 0x15, 0xaaaa);
        REG_WRITE(REG_GLOBAL, 0x16, 0xffff);
        REG_WRITE(REG_GLOBAL, 0x17, 0xffff);

        /*
         * Configure the IEEE 802.1p priority mapping register.
         */
        REG_WRITE(REG_GLOBAL, 0x18, 0xfa41);

        return 0;
}

int mv88e6xxx_set_addr_direct(struct dsa_switch *ds, u8 *addr)
{
        REG_WRITE(REG_GLOBAL, 0x01, (addr[0] << 8) | addr[1]);
        REG_WRITE(REG_GLOBAL, 0x02, (addr[2] << 8) | addr[3]);
        REG_WRITE(REG_GLOBAL, 0x03, (addr[4] << 8) | addr[5]);

        return 0;
}

int mv88e6xxx_set_addr_indirect(struct dsa_switch *ds, u8 *addr)
{
        int i;
        int ret;

        for (i = 0; i < 6; i++) {
                int j;

                /*
                 * Write the MAC address byte.
                 */
                REG_WRITE(REG_GLOBAL2, 0x0d, 0x8000 | (i << 8) | addr[i]);

                /*
                 * Wait for the write to complete.
                 */
                for (j = 0; j < 16; j++) {
                        ret = REG_READ(REG_GLOBAL2, 0x0d);
                        if ((ret & 0x8000) == 0)
                                break;
                }
                if (j == 16)
                        return -ETIMEDOUT;
        }

        return 0;
}

int mv88e6xxx_phy_read(struct dsa_switch *ds, int addr, int regnum)
{
        if (addr >= 0)
                return mv88e6xxx_reg_read(ds, addr, regnum);
        return 0xffff;
}

int mv88e6xxx_phy_write(struct dsa_switch *ds, int addr, int regnum, u16 val)
{
        if (addr >= 0)
                return mv88e6xxx_reg_write(ds, addr, regnum, val);
        return 0;
}

#ifdef CONFIG_NET_DSA_MV88E6XXX_NEED_PPU
static int mv88e6xxx_ppu_disable(struct dsa_switch *ds)
{
        int ret;
        int i;

        ret = REG_READ(REG_GLOBAL, 0x04);
        REG_WRITE(REG_GLOBAL, 0x04, ret & ~0x4000);

        for (i = 0; i < 1000; i++) {
                ret = REG_READ(REG_GLOBAL, 0x00);
                msleep(1);
                if ((ret & 0xc000) != 0xc000)
                        return 0;
        }

        return -ETIMEDOUT;
}

static int mv88e6xxx_ppu_enable(struct dsa_switch *ds)
{
        int ret;
        int i;

        ret = REG_READ(REG_GLOBAL, 0x04);
        REG_WRITE(REG_GLOBAL, 0x04, ret | 0x4000);

        for (i = 0; i < 1000; i++) {
                ret = REG_READ(REG_GLOBAL, 0x00);
                msleep(1);
                if ((ret & 0xc000) == 0xc000)
                        return 0;
        }

        return -ETIMEDOUT;
}

static void mv88e6xxx_ppu_reenable_work(struct work_struct *ugly)
{
        struct mv88e6xxx_priv_state *ps;

        ps = container_of(ugly, struct mv88e6xxx_priv_state, ppu_work);
        if (mutex_trylock(&ps->ppu_mutex)) {
                struct dsa_switch *ds = ((struct dsa_switch *)ps) - 1;

                if (mv88e6xxx_ppu_enable(ds) == 0)
                        ps->ppu_disabled = 0;
                mutex_unlock(&ps->ppu_mutex);
        }
}

static void mv88e6xxx_ppu_reenable_timer(unsigned long _ps)
{
        struct mv88e6xxx_priv_state *ps = (void *)_ps;

        schedule_work(&ps->ppu_work);
}

static int mv88e6xxx_ppu_access_get(struct dsa_switch *ds)
{
        struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
        int ret;

        mutex_lock(&ps->ppu_mutex);

        /*
         * If the PHY polling unit is enabled, disable it so that
         * we can access the PHY registers.  If it was already
         * disabled, cancel the timer that is going to re-enable
         * it.
         */
        if (!ps->ppu_disabled) {
                ret = mv88e6xxx_ppu_disable(ds);
                if (ret < 0) {
                        mutex_unlock(&ps->ppu_mutex);
                        return ret;
                }
                ps->ppu_disabled = 1;
        } else {
                del_timer(&ps->ppu_timer);
                ret = 0;
        }

        return ret;
}

static void mv88e6xxx_ppu_access_put(struct dsa_switch *ds)
{
        struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);

        /*
         * Schedule a timer to re-enable the PHY polling unit.
         */
        mod_timer(&ps->ppu_timer, jiffies + msecs_to_jiffies(10));
        mutex_unlock(&ps->ppu_mutex);
}

void mv88e6xxx_ppu_state_init(struct dsa_switch *ds)
{
        struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);

        mutex_init(&ps->ppu_mutex);
        INIT_WORK(&ps->ppu_work, mv88e6xxx_ppu_reenable_work);
        init_timer(&ps->ppu_timer);
        ps->ppu_timer.data = (unsigned long)ps;
        ps->ppu_timer.function = mv88e6xxx_ppu_reenable_timer;
}

int mv88e6xxx_phy_read_ppu(struct dsa_switch *ds, int addr, int regnum)
{
        int ret;

        ret = mv88e6xxx_ppu_access_get(ds);
        if (ret >= 0) {
                ret = mv88e6xxx_reg_read(ds, addr, regnum);
                mv88e6xxx_ppu_access_put(ds);
        }

        return ret;
}

int mv88e6xxx_phy_write_ppu(struct dsa_switch *ds, int addr,
                            int regnum, u16 val)
{
        int ret;

        ret = mv88e6xxx_ppu_access_get(ds);
        if (ret >= 0) {
                ret = mv88e6xxx_reg_write(ds, addr, regnum, val);
                mv88e6xxx_ppu_access_put(ds);
        }

        return ret;
}
#endif

void mv88e6xxx_poll_link(struct dsa_switch *ds)
{
        int i;

        for (i = 0; i < DSA_MAX_PORTS; i++) {
                struct net_device *dev;
                int port_status;
                int link;
                int speed;
                int duplex;
                int fc;

                dev = ds->ports[i];
                if (dev == NULL)
                        continue;

                link = 0;
                if (dev->flags & IFF_UP) {
                        port_status = mv88e6xxx_reg_read(ds, REG_PORT(i), 0x00);
                        if (port_status < 0)
                                continue;

                        link = !!(port_status & 0x0800);
                }

                if (!link) {
                        if (netif_carrier_ok(dev)) {
                                printk(KERN_INFO "%s: link down\n", dev->name);
                                netif_carrier_off(dev);
                        }
                        continue;
                }

                switch (port_status & 0x0300) {
                case 0x0000:
                        speed = 10;
                        break;
                case 0x0100:
                        speed = 100;
                        break;
                case 0x0200:
                        speed = 1000;
                        break;
                default:
                        speed = -1;
                        break;
                }
                duplex = (port_status & 0x0400) ? 1 : 0;
                fc = (port_status & 0x8000) ? 1 : 0;

                if (!netif_carrier_ok(dev)) {
                        printk(KERN_INFO "%s: link up, %d Mb/s, %s duplex, "
                                         "flow control %sabled\n", dev->name,
                                         speed, duplex ? "full" : "half",
                                         fc ? "en" : "dis");
                        netif_carrier_on(dev);
                }
        }
}

static int mv88e6xxx_stats_wait(struct dsa_switch *ds)
{
        int ret;
        int i;

        for (i = 0; i < 10; i++) {
                ret = REG_READ(REG_GLOBAL2, 0x1d);
                if ((ret & 0x8000) == 0)
                        return 0;
        }

        return -ETIMEDOUT;
}

static int mv88e6xxx_stats_snapshot(struct dsa_switch *ds, int port)
{
        int ret;

        /*
         * Snapshot the hardware statistics counters for this port.
         */
        REG_WRITE(REG_GLOBAL, 0x1d, 0xdc00 | port);

        /*
         * Wait for the snapshotting to complete.
         */
        ret = mv88e6xxx_stats_wait(ds);
        if (ret < 0)
                return ret;

        return 0;
}

static void mv88e6xxx_stats_read(struct dsa_switch *ds, int stat, u32 *val)
{
        u32 _val;
        int ret;

        *val = 0;

        ret = mv88e6xxx_reg_write(ds, REG_GLOBAL, 0x1d, 0xcc00 | stat);
        if (ret < 0)
                return;

        ret = mv88e6xxx_stats_wait(ds);
        if (ret < 0)
                return;

        ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x1e);
        if (ret < 0)
                return;

        _val = ret << 16;

        ret = mv88e6xxx_reg_read(ds, REG_GLOBAL, 0x1f);
        if (ret < 0)
                return;

        *val = _val | ret;
}

void mv88e6xxx_get_strings(struct dsa_switch *ds,
                           int nr_stats, struct mv88e6xxx_hw_stat *stats,
                           int port, uint8_t *data)
{
        int i;

        for (i = 0; i < nr_stats; i++) {
                memcpy(data + i * ETH_GSTRING_LEN,
                       stats[i].string, ETH_GSTRING_LEN);
        }
}

void mv88e6xxx_get_ethtool_stats(struct dsa_switch *ds,
                                 int nr_stats, struct mv88e6xxx_hw_stat *stats,
                                 int port, uint64_t *data)
{
        struct mv88e6xxx_priv_state *ps = (void *)(ds + 1);
        int ret;
        int i;

        mutex_lock(&ps->stats_mutex);

        ret = mv88e6xxx_stats_snapshot(ds, port);
        if (ret < 0) {
                mutex_unlock(&ps->stats_mutex);
                return;
        }

        /*
         * Read each of the counters.
         */
        for (i = 0; i < nr_stats; i++) {
                struct mv88e6xxx_hw_stat *s = stats + i;
                u32 low;
                u32 high;

                mv88e6xxx_stats_read(ds, s->reg, &low);
                if (s->sizeof_stat == 8)
                        mv88e6xxx_stats_read(ds, s->reg + 1, &high);
                else
                        high = 0;

                data[i] = (((u64)high) << 32) | low;
        }

        mutex_unlock(&ps->stats_mutex);
}

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading