[funini.com] -> [kei@sodan] -> Kernel Reading

root/fs/ocfs2/alloc.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. ocfs2_dinode_set_last_eb_blk
  2. ocfs2_dinode_get_last_eb_blk
  3. ocfs2_dinode_update_clusters
  4. ocfs2_dinode_insert_check
  5. ocfs2_dinode_sanity_check
  6. ocfs2_dinode_fill_root_el
  7. ocfs2_xattr_value_fill_root_el
  8. ocfs2_xattr_value_set_last_eb_blk
  9. ocfs2_xattr_value_get_last_eb_blk
  10. ocfs2_xattr_value_update_clusters
  11. ocfs2_xattr_tree_fill_root_el
  12. ocfs2_xattr_tree_fill_max_leaf_clusters
  13. ocfs2_xattr_tree_set_last_eb_blk
  14. ocfs2_xattr_tree_get_last_eb_blk
  15. ocfs2_xattr_tree_update_clusters
  16. __ocfs2_init_extent_tree
  17. ocfs2_init_dinode_extent_tree
  18. ocfs2_init_xattr_tree_extent_tree
  19. ocfs2_init_xattr_value_extent_tree
  20. ocfs2_et_set_last_eb_blk
  21. ocfs2_et_get_last_eb_blk
  22. ocfs2_et_update_clusters
  23. ocfs2_et_insert_check
  24. ocfs2_et_sanity_check
  25. ocfs2_reinit_path
  26. ocfs2_free_path
  27. ocfs2_cp_path
  28. ocfs2_mv_path
  29. ocfs2_path_insert_eb
  30. ocfs2_new_path
  31. ocfs2_journal_access_path
  32. ocfs2_search_extent_list
  33. ocfs2_block_extent_contig
  34. ocfs2_extents_adjacent
  35. ocfs2_extent_contig
  36. ocfs2_num_free_extents
  37. ocfs2_create_new_meta_bhs
  38. ocfs2_sum_rightmost_rec
  39. ocfs2_add_branch
  40. ocfs2_shift_tree_depth
  41. ocfs2_find_branch_target
  42. ocfs2_grow_tree
  43. ocfs2_shift_records_right
  44. ocfs2_rotate_leaf
  45. ocfs2_remove_empty_extent
  46. ocfs2_create_empty_extent
  47. ocfs2_find_subtree_root
  48. __ocfs2_find_path
  49. find_path_ins
  50. ocfs2_find_path
  51. find_leaf_ins
  52. ocfs2_find_leaf
  53. ocfs2_adjust_adjacent_records
  54. ocfs2_adjust_root_records
  55. ocfs2_complete_edge_insert
  56. ocfs2_rotate_subtree_right
  57. ocfs2_find_cpos_for_left_leaf
  58. ocfs2_extend_rotate_transaction
  59. ocfs2_rotate_requires_path_adjustment
  60. ocfs2_leftmost_rec_contains
  61. ocfs2_rotate_tree_right
  62. ocfs2_update_edge_lengths
  63. ocfs2_unlink_path
  64. ocfs2_unlink_subtree
  65. ocfs2_rotate_subtree_left
  66. ocfs2_find_cpos_for_right_leaf
  67. ocfs2_rotate_rightmost_leaf_left
  68. __ocfs2_rotate_tree_left
  69. ocfs2_remove_rightmost_path
  70. ocfs2_rotate_tree_left
  71. ocfs2_cleanup_merge
  72. ocfs2_get_right_path
  73. ocfs2_merge_rec_right
  74. ocfs2_get_left_path
  75. ocfs2_merge_rec_left
  76. ocfs2_try_to_merge_extent
  77. ocfs2_subtract_from_rec
  78. ocfs2_insert_at_leaf
  79. ocfs2_adjust_rightmost_records
  80. ocfs2_append_rec_to_path
  81. ocfs2_split_record
  82. ocfs2_insert_path
  83. ocfs2_do_insert_extent
  84. ocfs2_figure_merge_contig_type
  85. ocfs2_figure_contig_type
  86. ocfs2_figure_appending_type
  87. ocfs2_figure_insert_type
  88. ocfs2_insert_extent
  89. ocfs2_add_clusters_in_btree
  90. ocfs2_make_right_split_rec
  91. ocfs2_split_and_insert
  92. __ocfs2_mark_extent_written
  93. ocfs2_mark_extent_written
  94. ocfs2_split_tree
  95. ocfs2_truncate_rec
  96. ocfs2_remove_extent
  97. ocfs2_truncate_log_needs_flush
  98. ocfs2_truncate_log_can_coalesce
  99. ocfs2_truncate_log_append
  100. ocfs2_replay_truncate_records
  101. __ocfs2_flush_truncate_log
  102. ocfs2_flush_truncate_log
  103. ocfs2_truncate_log_worker
  104. ocfs2_schedule_truncate_log_flush
  105. ocfs2_get_truncate_log_info
  106. ocfs2_begin_truncate_log_recovery
  107. ocfs2_complete_truncate_log_recovery
  108. ocfs2_truncate_log_shutdown
  109. ocfs2_truncate_log_init
  110. ocfs2_free_cached_items
  111. ocfs2_run_deallocs
  112. ocfs2_find_per_slot_free_list
  113. ocfs2_cache_block_dealloc
  114. ocfs2_cache_extent_block_free
  115. ocfs2_find_new_last_ext_blk
  116. ocfs2_trim_tree
  117. ocfs2_do_truncate
  118. ocfs2_zero_func
  119. ocfs2_map_and_dirty_page
  120. ocfs2_zero_cluster_pages
  121. ocfs2_grab_eof_pages
  122. ocfs2_zero_range_for_truncate
  123. ocfs2_zero_dinode_id2_with_xattr
  124. ocfs2_dinode_new_extent_list
  125. ocfs2_set_inode_data_inline
  126. ocfs2_convert_inline_data_to_extents
  127. ocfs2_commit_truncate
  128. ocfs2_prepare_truncate
  129. ocfs2_truncate_inline
  130. ocfs2_free_truncate_context

/* -*- mode: c; c-basic-offset: 8; -*-
 * vim: noexpandtab sw=8 ts=8 sts=0:
 *
 * alloc.c
 *
 * Extent allocs and frees
 *
 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public
 * License along with this program; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 021110-1307, USA.
 */

#include <linux/fs.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/highmem.h>
#include <linux/swap.h>

#define MLOG_MASK_PREFIX ML_DISK_ALLOC
#include <cluster/masklog.h>

#include "ocfs2.h"

#include "alloc.h"
#include "aops.h"
#include "dlmglue.h"
#include "extent_map.h"
#include "inode.h"
#include "journal.h"
#include "localalloc.h"
#include "suballoc.h"
#include "sysfile.h"
#include "file.h"
#include "super.h"
#include "uptodate.h"

#include "buffer_head_io.h"


/*
 * Operations for a specific extent tree type.
 *
 * To implement an on-disk btree (extent tree) type in ocfs2, add
 * an ocfs2_extent_tree_operations structure and the matching
 * ocfs2_init_<thingy>_extent_tree() function.  That's pretty much it
 * for the allocation portion of the extent tree.
 */
struct ocfs2_extent_tree_operations {
        /*
         * last_eb_blk is the block number of the right most leaf extent
         * block.  Most on-disk structures containing an extent tree store
         * this value for fast access.  The ->eo_set_last_eb_blk() and
         * ->eo_get_last_eb_blk() operations access this value.  They are
         *  both required.
         */
        void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
                                   u64 blkno);
        u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);

        /*
         * The on-disk structure usually keeps track of how many total
         * clusters are stored in this extent tree.  This function updates
         * that value.  new_clusters is the delta, and must be
         * added to the total.  Required.
         */
        void (*eo_update_clusters)(struct inode *inode,
                                   struct ocfs2_extent_tree *et,
                                   u32 new_clusters);

        /*
         * If ->eo_insert_check() exists, it is called before rec is
         * inserted into the extent tree.  It is optional.
         */
        int (*eo_insert_check)(struct inode *inode,
                               struct ocfs2_extent_tree *et,
                               struct ocfs2_extent_rec *rec);
        int (*eo_sanity_check)(struct inode *inode, struct ocfs2_extent_tree *et);

        /*
         * --------------------------------------------------------------
         * The remaining are internal to ocfs2_extent_tree and don't have
         * accessor functions
         */

        /*
         * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
         * It is required.
         */
        void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);

        /*
         * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
         * it exists.  If it does not, et->et_max_leaf_clusters is set
         * to 0 (unlimited).  Optional.
         */
        void (*eo_fill_max_leaf_clusters)(struct inode *inode,
                                          struct ocfs2_extent_tree *et);
};


/*
 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
 * in the methods.
 */
static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
                                         u64 blkno);
static void ocfs2_dinode_update_clusters(struct inode *inode,
                                         struct ocfs2_extent_tree *et,
                                         u32 clusters);
static int ocfs2_dinode_insert_check(struct inode *inode,
                                     struct ocfs2_extent_tree *et,
                                     struct ocfs2_extent_rec *rec);
static int ocfs2_dinode_sanity_check(struct inode *inode,
                                     struct ocfs2_extent_tree *et);
static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
        .eo_set_last_eb_blk     = ocfs2_dinode_set_last_eb_blk,
        .eo_get_last_eb_blk     = ocfs2_dinode_get_last_eb_blk,
        .eo_update_clusters     = ocfs2_dinode_update_clusters,
        .eo_insert_check        = ocfs2_dinode_insert_check,
        .eo_sanity_check        = ocfs2_dinode_sanity_check,
        .eo_fill_root_el        = ocfs2_dinode_fill_root_el,
};

static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
                                         u64 blkno)
{
        struct ocfs2_dinode *di = et->et_object;

        BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
        di->i_last_eb_blk = cpu_to_le64(blkno);
}

static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
{
        struct ocfs2_dinode *di = et->et_object;

        BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
        return le64_to_cpu(di->i_last_eb_blk);
}

static void ocfs2_dinode_update_clusters(struct inode *inode,
                                         struct ocfs2_extent_tree *et,
                                         u32 clusters)
{
        struct ocfs2_dinode *di = et->et_object;

        le32_add_cpu(&di->i_clusters, clusters);
        spin_lock(&OCFS2_I(inode)->ip_lock);
        OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
        spin_unlock(&OCFS2_I(inode)->ip_lock);
}

static int ocfs2_dinode_insert_check(struct inode *inode,
                                     struct ocfs2_extent_tree *et,
                                     struct ocfs2_extent_rec *rec)
{
        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);

        BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
        mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
                        (OCFS2_I(inode)->ip_clusters != rec->e_cpos),
                        "Device %s, asking for sparse allocation: inode %llu, "
                        "cpos %u, clusters %u\n",
                        osb->dev_str,
                        (unsigned long long)OCFS2_I(inode)->ip_blkno,
                        rec->e_cpos,
                        OCFS2_I(inode)->ip_clusters);

        return 0;
}

static int ocfs2_dinode_sanity_check(struct inode *inode,
                                     struct ocfs2_extent_tree *et)
{
        int ret = 0;
        struct ocfs2_dinode *di;

        BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);

        di = et->et_object;
        if (!OCFS2_IS_VALID_DINODE(di)) {
                ret = -EIO;
                ocfs2_error(inode->i_sb,
                        "Inode %llu has invalid path root",
                        (unsigned long long)OCFS2_I(inode)->ip_blkno);
        }

        return ret;
}

static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
{
        struct ocfs2_dinode *di = et->et_object;

        et->et_root_el = &di->id2.i_list;
}


static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
{
        struct ocfs2_xattr_value_root *xv = et->et_object;

        et->et_root_el = &xv->xr_list;
}

static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
                                              u64 blkno)
{
        struct ocfs2_xattr_value_root *xv =
                (struct ocfs2_xattr_value_root *)et->et_object;

        xv->xr_last_eb_blk = cpu_to_le64(blkno);
}

static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
{
        struct ocfs2_xattr_value_root *xv =
                (struct ocfs2_xattr_value_root *) et->et_object;

        return le64_to_cpu(xv->xr_last_eb_blk);
}

static void ocfs2_xattr_value_update_clusters(struct inode *inode,
                                              struct ocfs2_extent_tree *et,
                                              u32 clusters)
{
        struct ocfs2_xattr_value_root *xv =
                (struct ocfs2_xattr_value_root *)et->et_object;

        le32_add_cpu(&xv->xr_clusters, clusters);
}

static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
        .eo_set_last_eb_blk     = ocfs2_xattr_value_set_last_eb_blk,
        .eo_get_last_eb_blk     = ocfs2_xattr_value_get_last_eb_blk,
        .eo_update_clusters     = ocfs2_xattr_value_update_clusters,
        .eo_fill_root_el        = ocfs2_xattr_value_fill_root_el,
};

static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
{
        struct ocfs2_xattr_block *xb = et->et_object;

        et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
}

static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct inode *inode,
                                                    struct ocfs2_extent_tree *et)
{
        et->et_max_leaf_clusters =
                ocfs2_clusters_for_bytes(inode->i_sb,
                                         OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
}

static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
                                             u64 blkno)
{
        struct ocfs2_xattr_block *xb = et->et_object;
        struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;

        xt->xt_last_eb_blk = cpu_to_le64(blkno);
}

static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
{
        struct ocfs2_xattr_block *xb = et->et_object;
        struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;

        return le64_to_cpu(xt->xt_last_eb_blk);
}

static void ocfs2_xattr_tree_update_clusters(struct inode *inode,
                                             struct ocfs2_extent_tree *et,
                                             u32 clusters)
{
        struct ocfs2_xattr_block *xb = et->et_object;

        le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
}

static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
        .eo_set_last_eb_blk     = ocfs2_xattr_tree_set_last_eb_blk,
        .eo_get_last_eb_blk     = ocfs2_xattr_tree_get_last_eb_blk,
        .eo_update_clusters     = ocfs2_xattr_tree_update_clusters,
        .eo_fill_root_el        = ocfs2_xattr_tree_fill_root_el,
        .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
};

static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
                                     struct inode *inode,
                                     struct buffer_head *bh,
                                     void *obj,
                                     struct ocfs2_extent_tree_operations *ops)
{
        et->et_ops = ops;
        et->et_root_bh = bh;
        if (!obj)
                obj = (void *)bh->b_data;
        et->et_object = obj;

        et->et_ops->eo_fill_root_el(et);
        if (!et->et_ops->eo_fill_max_leaf_clusters)
                et->et_max_leaf_clusters = 0;
        else
                et->et_ops->eo_fill_max_leaf_clusters(inode, et);
}

void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
                                   struct inode *inode,
                                   struct buffer_head *bh)
{
        __ocfs2_init_extent_tree(et, inode, bh, NULL, &ocfs2_dinode_et_ops);
}

void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
                                       struct inode *inode,
                                       struct buffer_head *bh)
{
        __ocfs2_init_extent_tree(et, inode, bh, NULL,
                                 &ocfs2_xattr_tree_et_ops);
}

void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
                                        struct inode *inode,
                                        struct buffer_head *bh,
                                        struct ocfs2_xattr_value_root *xv)
{
        __ocfs2_init_extent_tree(et, inode, bh, xv,
                                 &ocfs2_xattr_value_et_ops);
}

static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
                                            u64 new_last_eb_blk)
{
        et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
}

static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
{
        return et->et_ops->eo_get_last_eb_blk(et);
}

static inline void ocfs2_et_update_clusters(struct inode *inode,
                                            struct ocfs2_extent_tree *et,
                                            u32 clusters)
{
        et->et_ops->eo_update_clusters(inode, et, clusters);
}

static inline int ocfs2_et_insert_check(struct inode *inode,
                                        struct ocfs2_extent_tree *et,
                                        struct ocfs2_extent_rec *rec)
{
        int ret = 0;

        if (et->et_ops->eo_insert_check)
                ret = et->et_ops->eo_insert_check(inode, et, rec);
        return ret;
}

static inline int ocfs2_et_sanity_check(struct inode *inode,
                                        struct ocfs2_extent_tree *et)
{
        int ret = 0;

        if (et->et_ops->eo_sanity_check)
                ret = et->et_ops->eo_sanity_check(inode, et);
        return ret;
}

static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
                                         struct ocfs2_extent_block *eb);

/*
 * Structures which describe a path through a btree, and functions to
 * manipulate them.
 *
 * The idea here is to be as generic as possible with the tree
 * manipulation code.
 */
struct ocfs2_path_item {
        struct buffer_head              *bh;
        struct ocfs2_extent_list        *el;
};

#define OCFS2_MAX_PATH_DEPTH    5

struct ocfs2_path {
        int                     p_tree_depth;
        struct ocfs2_path_item  p_node[OCFS2_MAX_PATH_DEPTH];
};

#define path_root_bh(_path) ((_path)->p_node[0].bh)
#define path_root_el(_path) ((_path)->p_node[0].el)
#define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
#define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
#define path_num_items(_path) ((_path)->p_tree_depth + 1)

/*
 * Reset the actual path elements so that we can re-use the structure
 * to build another path. Generally, this involves freeing the buffer
 * heads.
 */
static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
{
        int i, start = 0, depth = 0;
        struct ocfs2_path_item *node;

        if (keep_root)
                start = 1;

        for(i = start; i < path_num_items(path); i++) {
                node = &path->p_node[i];

                brelse(node->bh);
                node->bh = NULL;
                node->el = NULL;
        }

        /*
         * Tree depth may change during truncate, or insert. If we're
         * keeping the root extent list, then make sure that our path
         * structure reflects the proper depth.
         */
        if (keep_root)
                depth = le16_to_cpu(path_root_el(path)->l_tree_depth);

        path->p_tree_depth = depth;
}

static void ocfs2_free_path(struct ocfs2_path *path)
{
        if (path) {
                ocfs2_reinit_path(path, 0);
                kfree(path);
        }
}

/*
 * All the elements of src into dest. After this call, src could be freed
 * without affecting dest.
 *
 * Both paths should have the same root. Any non-root elements of dest
 * will be freed.
 */
static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
{
        int i;

        BUG_ON(path_root_bh(dest) != path_root_bh(src));
        BUG_ON(path_root_el(dest) != path_root_el(src));

        ocfs2_reinit_path(dest, 1);

        for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
                dest->p_node[i].bh = src->p_node[i].bh;
                dest->p_node[i].el = src->p_node[i].el;

                if (dest->p_node[i].bh)
                        get_bh(dest->p_node[i].bh);
        }
}

/*
 * Make the *dest path the same as src and re-initialize src path to
 * have a root only.
 */
static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
{
        int i;

        BUG_ON(path_root_bh(dest) != path_root_bh(src));

        for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
                brelse(dest->p_node[i].bh);

                dest->p_node[i].bh = src->p_node[i].bh;
                dest->p_node[i].el = src->p_node[i].el;

                src->p_node[i].bh = NULL;
                src->p_node[i].el = NULL;
        }
}

/*
 * Insert an extent block at given index.
 *
 * This will not take an additional reference on eb_bh.
 */
static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
                                        struct buffer_head *eb_bh)
{
        struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;

        /*
         * Right now, no root bh is an extent block, so this helps
         * catch code errors with dinode trees. The assertion can be
         * safely removed if we ever need to insert extent block
         * structures at the root.
         */
        BUG_ON(index == 0);

        path->p_node[index].bh = eb_bh;
        path->p_node[index].el = &eb->h_list;
}

static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
                                         struct ocfs2_extent_list *root_el)
{
        struct ocfs2_path *path;

        BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);

        path = kzalloc(sizeof(*path), GFP_NOFS);
        if (path) {
                path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
                get_bh(root_bh);
                path_root_bh(path) = root_bh;
                path_root_el(path) = root_el;
        }

        return path;
}

/*
 * Convenience function to journal all components in a path.
 */
static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
                                     struct ocfs2_path *path)
{
        int i, ret = 0;

        if (!path)
                goto out;

        for(i = 0; i < path_num_items(path); i++) {
                ret = ocfs2_journal_access(handle, inode, path->p_node[i].bh,
                                           OCFS2_JOURNAL_ACCESS_WRITE);
                if (ret < 0) {
                        mlog_errno(ret);
                        goto out;
                }
        }

out:
        return ret;
}

/*
 * Return the index of the extent record which contains cluster #v_cluster.
 * -1 is returned if it was not found.
 *
 * Should work fine on interior and exterior nodes.
 */
int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
{
        int ret = -1;
        int i;
        struct ocfs2_extent_rec *rec;
        u32 rec_end, rec_start, clusters;

        for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
                rec = &el->l_recs[i];

                rec_start = le32_to_cpu(rec->e_cpos);
                clusters = ocfs2_rec_clusters(el, rec);

                rec_end = rec_start + clusters;

                if (v_cluster >= rec_start && v_cluster < rec_end) {
                        ret = i;
                        break;
                }
        }

        return ret;
}

enum ocfs2_contig_type {
        CONTIG_NONE = 0,
        CONTIG_LEFT,
        CONTIG_RIGHT,
        CONTIG_LEFTRIGHT,
};


/*
 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
 * ocfs2_extent_contig only work properly against leaf nodes!
 */
static int ocfs2_block_extent_contig(struct super_block *sb,
                                     struct ocfs2_extent_rec *ext,
                                     u64 blkno)
{
        u64 blk_end = le64_to_cpu(ext->e_blkno);

        blk_end += ocfs2_clusters_to_blocks(sb,
                                    le16_to_cpu(ext->e_leaf_clusters));

        return blkno == blk_end;
}

static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
                                  struct ocfs2_extent_rec *right)
{
        u32 left_range;

        left_range = le32_to_cpu(left->e_cpos) +
                le16_to_cpu(left->e_leaf_clusters);

        return (left_range == le32_to_cpu(right->e_cpos));
}

static enum ocfs2_contig_type
        ocfs2_extent_contig(struct inode *inode,
                            struct ocfs2_extent_rec *ext,
                            struct ocfs2_extent_rec *insert_rec)
{
        u64 blkno = le64_to_cpu(insert_rec->e_blkno);

        /*
         * Refuse to coalesce extent records with different flag
         * fields - we don't want to mix unwritten extents with user
         * data.
         */
        if (ext->e_flags != insert_rec->e_flags)
                return CONTIG_NONE;

        if (ocfs2_extents_adjacent(ext, insert_rec) &&
            ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
                        return CONTIG_RIGHT;

        blkno = le64_to_cpu(ext->e_blkno);
        if (ocfs2_extents_adjacent(insert_rec, ext) &&
            ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
                return CONTIG_LEFT;

        return CONTIG_NONE;
}

/*
 * NOTE: We can have pretty much any combination of contiguousness and
 * appending.
 *
 * The usefulness of APPEND_TAIL is more in that it lets us know that
 * we'll have to update the path to that leaf.
 */
enum ocfs2_append_type {
        APPEND_NONE = 0,
        APPEND_TAIL,
};

enum ocfs2_split_type {
        SPLIT_NONE = 0,
        SPLIT_LEFT,
        SPLIT_RIGHT,
};

struct ocfs2_insert_type {
        enum ocfs2_split_type   ins_split;
        enum ocfs2_append_type  ins_appending;
        enum ocfs2_contig_type  ins_contig;
        int                     ins_contig_index;
        int                     ins_tree_depth;
};

struct ocfs2_merge_ctxt {
        enum ocfs2_contig_type  c_contig_type;
        int                     c_has_empty_extent;
        int                     c_split_covers_rec;
};

/*
 * How many free extents have we got before we need more meta data?
 */
int ocfs2_num_free_extents(struct ocfs2_super *osb,
                           struct inode *inode,
                           struct ocfs2_extent_tree *et)
{
        int retval;
        struct ocfs2_extent_list *el = NULL;
        struct ocfs2_extent_block *eb;
        struct buffer_head *eb_bh = NULL;
        u64 last_eb_blk = 0;

        mlog_entry_void();

        el = et->et_root_el;
        last_eb_blk = ocfs2_et_get_last_eb_blk(et);

        if (last_eb_blk) {
                retval = ocfs2_read_block(inode, last_eb_blk,
                                          &eb_bh);
                if (retval < 0) {
                        mlog_errno(retval);
                        goto bail;
                }
                eb = (struct ocfs2_extent_block *) eb_bh->b_data;
                el = &eb->h_list;
        }

        BUG_ON(el->l_tree_depth != 0);

        retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
bail:
        brelse(eb_bh);

        mlog_exit(retval);
        return retval;
}

/* expects array to already be allocated
 *
 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
 * l_count for you
 */
static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
                                     handle_t *handle,
                                     struct inode *inode,
                                     int wanted,
                                     struct ocfs2_alloc_context *meta_ac,
                                     struct buffer_head *bhs[])
{
        int count, status, i;
        u16 suballoc_bit_start;
        u32 num_got;
        u64 first_blkno;
        struct ocfs2_extent_block *eb;

        mlog_entry_void();

        count = 0;
        while (count < wanted) {
                status = ocfs2_claim_metadata(osb,
                                              handle,
                                              meta_ac,
                                              wanted - count,
                                              &suballoc_bit_start,
                                              &num_got,
                                              &first_blkno);
                if (status < 0) {
                        mlog_errno(status);
                        goto bail;
                }

                for(i = count;  i < (num_got + count); i++) {
                        bhs[i] = sb_getblk(osb->sb, first_blkno);
                        if (bhs[i] == NULL) {
                                status = -EIO;
                                mlog_errno(status);
                                goto bail;
                        }
                        ocfs2_set_new_buffer_uptodate(inode, bhs[i]);

                        status = ocfs2_journal_access(handle, inode, bhs[i],
                                                      OCFS2_JOURNAL_ACCESS_CREATE);
                        if (status < 0) {
                                mlog_errno(status);
                                goto bail;
                        }

                        memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
                        eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
                        /* Ok, setup the minimal stuff here. */
                        strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
                        eb->h_blkno = cpu_to_le64(first_blkno);
                        eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
                        eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
                        eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
                        eb->h_list.l_count =
                                cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));

                        suballoc_bit_start++;
                        first_blkno++;

                        /* We'll also be dirtied by the caller, so
                         * this isn't absolutely necessary. */
                        status = ocfs2_journal_dirty(handle, bhs[i]);
                        if (status < 0) {
                                mlog_errno(status);
                                goto bail;
                        }
                }

                count += num_got;
        }

        status = 0;
bail:
        if (status < 0) {
                for(i = 0; i < wanted; i++) {
                        brelse(bhs[i]);
                        bhs[i] = NULL;
                }
        }
        mlog_exit(status);
        return status;
}

/*
 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
 *
 * Returns the sum of the rightmost extent rec logical offset and
 * cluster count.
 *
 * ocfs2_add_branch() uses this to determine what logical cluster
 * value should be populated into the leftmost new branch records.
 *
 * ocfs2_shift_tree_depth() uses this to determine the # clusters
 * value for the new topmost tree record.
 */
static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list  *el)
{
        int i;

        i = le16_to_cpu(el->l_next_free_rec) - 1;

        return le32_to_cpu(el->l_recs[i].e_cpos) +
                ocfs2_rec_clusters(el, &el->l_recs[i]);
}

/*
 * Add an entire tree branch to our inode. eb_bh is the extent block
 * to start at, if we don't want to start the branch at the dinode
 * structure.
 *
 * last_eb_bh is required as we have to update it's next_leaf pointer
 * for the new last extent block.
 *
 * the new branch will be 'empty' in the sense that every block will
 * contain a single record with cluster count == 0.
 */
static int ocfs2_add_branch(struct ocfs2_super *osb,
                            handle_t *handle,
                            struct inode *inode,
                            struct ocfs2_extent_tree *et,
                            struct buffer_head *eb_bh,
                            struct buffer_head **last_eb_bh,
                            struct ocfs2_alloc_context *meta_ac)
{
        int status, new_blocks, i;
        u64 next_blkno, new_last_eb_blk;
        struct buffer_head *bh;
        struct buffer_head **new_eb_bhs = NULL;
        struct ocfs2_extent_block *eb;
        struct ocfs2_extent_list  *eb_el;
        struct ocfs2_extent_list  *el;
        u32 new_cpos;

        mlog_entry_void();

        BUG_ON(!last_eb_bh || !*last_eb_bh);

        if (eb_bh) {
                eb = (struct ocfs2_extent_block *) eb_bh->b_data;
                el = &eb->h_list;
        } else
                el = et->et_root_el;

        /* we never add a branch to a leaf. */
        BUG_ON(!el->l_tree_depth);

        new_blocks = le16_to_cpu(el->l_tree_depth);

        /* allocate the number of new eb blocks we need */
        new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
                             GFP_KERNEL);
        if (!new_eb_bhs) {
                status = -ENOMEM;
                mlog_errno(status);
                goto bail;
        }

        status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
                                           meta_ac, new_eb_bhs);
        if (status < 0) {
                mlog_errno(status);
                goto bail;
        }

        eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
        new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);

        /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
         * linked with the rest of the tree.
         * conversly, new_eb_bhs[0] is the new bottommost leaf.
         *
         * when we leave the loop, new_last_eb_blk will point to the
         * newest leaf, and next_blkno will point to the topmost extent
         * block. */
        next_blkno = new_last_eb_blk = 0;
        for(i = 0; i < new_blocks; i++) {
                bh = new_eb_bhs[i];
                eb = (struct ocfs2_extent_block *) bh->b_data;
                if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
                        OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
                        status = -EIO;
                        goto bail;
                }
                eb_el = &eb->h_list;

                status = ocfs2_journal_access(handle, inode, bh,
                                              OCFS2_JOURNAL_ACCESS_CREATE);
                if (status < 0) {
                        mlog_errno(status);
                        goto bail;
                }

                eb->h_next_leaf_blk = 0;
                eb_el->l_tree_depth = cpu_to_le16(i);
                eb_el->l_next_free_rec = cpu_to_le16(1);
                /*
                 * This actually counts as an empty extent as
                 * c_clusters == 0
                 */
                eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
                eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
                /*
                 * eb_el isn't always an interior node, but even leaf
                 * nodes want a zero'd flags and reserved field so
                 * this gets the whole 32 bits regardless of use.
                 */
                eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
                if (!eb_el->l_tree_depth)
                        new_last_eb_blk = le64_to_cpu(eb->h_blkno);

                status = ocfs2_journal_dirty(handle, bh);
                if (status < 0) {
                        mlog_errno(status);
                        goto bail;
                }

                next_blkno = le64_to_cpu(eb->h_blkno);
        }

        /* This is a bit hairy. We want to update up to three blocks
         * here without leaving any of them in an inconsistent state
         * in case of error. We don't have to worry about
         * journal_dirty erroring as it won't unless we've aborted the
         * handle (in which case we would never be here) so reserving
         * the write with journal_access is all we need to do. */
        status = ocfs2_journal_access(handle, inode, *last_eb_bh,
                                      OCFS2_JOURNAL_ACCESS_WRITE);
        if (status < 0) {
                mlog_errno(status);
                goto bail;
        }
        status = ocfs2_journal_access(handle, inode, et->et_root_bh,
                                      OCFS2_JOURNAL_ACCESS_WRITE);
        if (status < 0) {
                mlog_errno(status);
                goto bail;
        }
        if (eb_bh) {
                status = ocfs2_journal_access(handle, inode, eb_bh,
                                              OCFS2_JOURNAL_ACCESS_WRITE);
                if (status < 0) {
                        mlog_errno(status);
                        goto bail;
                }
        }

        /* Link the new branch into the rest of the tree (el will
         * either be on the root_bh, or the extent block passed in. */
        i = le16_to_cpu(el->l_next_free_rec);
        el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
        el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
        el->l_recs[i].e_int_clusters = 0;
        le16_add_cpu(&el->l_next_free_rec, 1);

        /* fe needs a new last extent block pointer, as does the
         * next_leaf on the previously last-extent-block. */
        ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);

        eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
        eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);

        status = ocfs2_journal_dirty(handle, *last_eb_bh);
        if (status < 0)
                mlog_errno(status);
        status = ocfs2_journal_dirty(handle, et->et_root_bh);
        if (status < 0)
                mlog_errno(status);
        if (eb_bh) {
                status = ocfs2_journal_dirty(handle, eb_bh);
                if (status < 0)
                        mlog_errno(status);
        }

        /*
         * Some callers want to track the rightmost leaf so pass it
         * back here.
         */
        brelse(*last_eb_bh);
        get_bh(new_eb_bhs[0]);
        *last_eb_bh = new_eb_bhs[0];

        status = 0;
bail:
        if (new_eb_bhs) {
                for (i = 0; i < new_blocks; i++)
                        brelse(new_eb_bhs[i]);
                kfree(new_eb_bhs);
        }

        mlog_exit(status);
        return status;
}

/*
 * adds another level to the allocation tree.
 * returns back the new extent block so you can add a branch to it
 * after this call.
 */
static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
                                  handle_t *handle,
                                  struct inode *inode,
                                  struct ocfs2_extent_tree *et,
                                  struct ocfs2_alloc_context *meta_ac,
                                  struct buffer_head **ret_new_eb_bh)
{
        int status, i;
        u32 new_clusters;
        struct buffer_head *new_eb_bh = NULL;
        struct ocfs2_extent_block *eb;
        struct ocfs2_extent_list  *root_el;
        struct ocfs2_extent_list  *eb_el;

        mlog_entry_void();

        status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
                                           &new_eb_bh);
        if (status < 0) {
                mlog_errno(status);
                goto bail;
        }

        eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
        if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
                OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
                status = -EIO;
                goto bail;
        }

        eb_el = &eb->h_list;
        root_el = et->et_root_el;

        status = ocfs2_journal_access(handle, inode, new_eb_bh,
                                      OCFS2_JOURNAL_ACCESS_CREATE);
        if (status < 0) {
                mlog_errno(status);
                goto bail;
        }

        /* copy the root extent list data into the new extent block */
        eb_el->l_tree_depth = root_el->l_tree_depth;
        eb_el->l_next_free_rec = root_el->l_next_free_rec;
        for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
                eb_el->l_recs[i] = root_el->l_recs[i];

        status = ocfs2_journal_dirty(handle, new_eb_bh);
        if (status < 0) {
                mlog_errno(status);
                goto bail;
        }

        status = ocfs2_journal_access(handle, inode, et->et_root_bh,
                                      OCFS2_JOURNAL_ACCESS_WRITE);
        if (status < 0) {
                mlog_errno(status);
                goto bail;
        }

        new_clusters = ocfs2_sum_rightmost_rec(eb_el);

        /* update root_bh now */
        le16_add_cpu(&root_el->l_tree_depth, 1);
        root_el->l_recs[0].e_cpos = 0;
        root_el->l_recs[0].e_blkno = eb->h_blkno;
        root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
        for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
                memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
        root_el->l_next_free_rec = cpu_to_le16(1);

        /* If this is our 1st tree depth shift, then last_eb_blk
         * becomes the allocated extent block */
        if (root_el->l_tree_depth == cpu_to_le16(1))
                ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));

        status = ocfs2_journal_dirty(handle, et->et_root_bh);
        if (status < 0) {
                mlog_errno(status);
                goto bail;
        }

        *ret_new_eb_bh = new_eb_bh;
        new_eb_bh = NULL;
        status = 0;
bail:
        brelse(new_eb_bh);

        mlog_exit(status);
        return status;
}

/*
 * Should only be called when there is no space left in any of the
 * leaf nodes. What we want to do is find the lowest tree depth
 * non-leaf extent block with room for new records. There are three
 * valid results of this search:
 *
 * 1) a lowest extent block is found, then we pass it back in
 *    *lowest_eb_bh and return '0'
 *
 * 2) the search fails to find anything, but the root_el has room. We
 *    pass NULL back in *lowest_eb_bh, but still return '0'
 *
 * 3) the search fails to find anything AND the root_el is full, in
 *    which case we return > 0
 *
 * return status < 0 indicates an error.
 */
static int ocfs2_find_branch_target(struct ocfs2_super *osb,
                                    struct inode *inode,
                                    struct ocfs2_extent_tree *et,
                                    struct buffer_head **target_bh)
{
        int status = 0, i;
        u64 blkno;
        struct ocfs2_extent_block *eb;
        struct ocfs2_extent_list  *el;
        struct buffer_head *bh = NULL;
        struct buffer_head *lowest_bh = NULL;

        mlog_entry_void();

        *target_bh = NULL;

        el = et->et_root_el;

        while(le16_to_cpu(el->l_tree_depth) > 1) {
                if (le16_to_cpu(el->l_next_free_rec) == 0) {
                        ocfs2_error(inode->i_sb, "Dinode %llu has empty "
                                    "extent list (next_free_rec == 0)",
                                    (unsigned long long)OCFS2_I(inode)->ip_blkno);
                        status = -EIO;
                        goto bail;
                }
                i = le16_to_cpu(el->l_next_free_rec) - 1;
                blkno = le64_to_cpu(el->l_recs[i].e_blkno);
                if (!blkno) {
                        ocfs2_error(inode->i_sb, "Dinode %llu has extent "
                                    "list where extent # %d has no physical "
                                    "block start",
                                    (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
                        status = -EIO;
                        goto bail;
                }

                brelse(bh);
                bh = NULL;

                status = ocfs2_read_block(inode, blkno, &bh);
                if (status < 0) {
                        mlog_errno(status);
                        goto bail;
                }

                eb = (struct ocfs2_extent_block *) bh->b_data;
                if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
                        OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
                        status = -EIO;
                        goto bail;
                }
                el = &eb->h_list;

                if (le16_to_cpu(el->l_next_free_rec) <
                    le16_to_cpu(el->l_count)) {
                        brelse(lowest_bh);
                        lowest_bh = bh;
                        get_bh(lowest_bh);
                }
        }

        /* If we didn't find one and the fe doesn't have any room,
         * then return '1' */
        el = et->et_root_el;
        if (!lowest_bh && (el->l_next_free_rec == el->l_count))
                status = 1;

        *target_bh = lowest_bh;
bail:
        brelse(bh);

        mlog_exit(status);
        return status;
}

/*
 * Grow a b-tree so that it has more records.
 *
 * We might shift the tree depth in which case existing paths should
 * be considered invalid.
 *
 * Tree depth after the grow is returned via *final_depth.
 *
 * *last_eb_bh will be updated by ocfs2_add_branch().
 */
static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
                           struct ocfs2_extent_tree *et, int *final_depth,
                           struct buffer_head **last_eb_bh,
                           struct ocfs2_alloc_context *meta_ac)
{
        int ret, shift;
        struct ocfs2_extent_list *el = et->et_root_el;
        int depth = le16_to_cpu(el->l_tree_depth);
        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
        struct buffer_head *bh = NULL;

        BUG_ON(meta_ac == NULL);

        shift = ocfs2_find_branch_target(osb, inode, et, &bh);
        if (shift < 0) {
                ret = shift;
                mlog_errno(ret);
                goto out;
        }

        /* We traveled all the way to the bottom of the allocation tree
         * and didn't find room for any more extents - we need to add
         * another tree level */
        if (shift) {
                BUG_ON(bh);
                mlog(0, "need to shift tree depth (current = %d)\n", depth);

                /* ocfs2_shift_tree_depth will return us a buffer with
                 * the new extent block (so we can pass that to
                 * ocfs2_add_branch). */
                ret = ocfs2_shift_tree_depth(osb, handle, inode, et,
                                             meta_ac, &bh);
                if (ret < 0) {
                        mlog_errno(ret);
                        goto out;
                }
                depth++;
                if (depth == 1) {
                        /*
                         * Special case: we have room now if we shifted from
                         * tree_depth 0, so no more work needs to be done.
                         *
                         * We won't be calling add_branch, so pass
                         * back *last_eb_bh as the new leaf. At depth
                         * zero, it should always be null so there's
                         * no reason to brelse.
                         */
                        BUG_ON(*last_eb_bh);
                        get_bh(bh);
                        *last_eb_bh = bh;
                        goto out;
                }
        }

        /* call ocfs2_add_branch to add the final part of the tree with
         * the new data. */
        mlog(0, "add branch. bh = %p\n", bh);
        ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh,
                               meta_ac);
        if (ret < 0) {
                mlog_errno(ret);
                goto out;
        }

out:
        if (final_depth)
                *final_depth = depth;
        brelse(bh);
        return ret;
}

/*
 * This function will discard the rightmost extent record.
 */
static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
{
        int next_free = le16_to_cpu(el->l_next_free_rec);
        int count = le16_to_cpu(el->l_count);
        unsigned int num_bytes;

        BUG_ON(!next_free);
        /* This will cause us to go off the end of our extent list. */
        BUG_ON(next_free >= count);

        num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;

        memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
}

static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
                              struct ocfs2_extent_rec *insert_rec)
{
        int i, insert_index, next_free, has_empty, num_bytes;
        u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
        struct ocfs2_extent_rec *rec;

        next_free = le16_to_cpu(el->l_next_free_rec);
        has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);

        BUG_ON(!next_free);

        /* The tree code before us didn't allow enough room in the leaf. */
        BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);

        /*
         * The easiest way to approach this is to just remove the
         * empty extent and temporarily decrement next_free.
         */
        if (has_empty) {
                /*
                 * If next_free was 1 (only an empty extent), this
                 * loop won't execute, which is fine. We still want
                 * the decrement above to happen.
                 */
                for(i = 0; i < (next_free - 1); i++)
                        el->l_recs[i] = el->l_recs[i+1];

                next_free--;
        }

        /*
         * Figure out what the new record index should be.
         */
        for(i = 0; i < next_free; i++) {
                rec = &el->l_recs[i];

                if (insert_cpos < le32_to_cpu(rec->e_cpos))
                        break;
        }
        insert_index = i;

        mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
             insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));

        BUG_ON(insert_index < 0);
        BUG_ON(insert_index >= le16_to_cpu(el->l_count));
        BUG_ON(insert_index > next_free);

        /*
         * No need to memmove if we're just adding to the tail.
         */
        if (insert_index != next_free) {
                BUG_ON(next_free >= le16_to_cpu(el->l_count));

                num_bytes = next_free - insert_index;
                num_bytes *= sizeof(struct ocfs2_extent_rec);
                memmove(&el->l_recs[insert_index + 1],
                        &el->l_recs[insert_index],
                        num_bytes);
        }

        /*
         * Either we had an empty extent, and need to re-increment or
         * there was no empty extent on a non full rightmost leaf node,
         * in which case we still need to increment.
         */
        next_free++;
        el->l_next_free_rec = cpu_to_le16(next_free);
        /*
         * Make sure none of the math above just messed up our tree.
         */
        BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));

        el->l_recs[insert_index] = *insert_rec;

}

static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
{
        int size, num_recs = le16_to_cpu(el->l_next_free_rec);

        BUG_ON(num_recs == 0);

        if (ocfs2_is_empty_extent(&el->l_recs[0])) {
                num_recs--;
                size = num_recs * sizeof(struct ocfs2_extent_rec);
                memmove(&el->l_recs[0], &el->l_recs[1], size);
                memset(&el->l_recs[num_recs], 0,
                       sizeof(struct ocfs2_extent_rec));
                el->l_next_free_rec = cpu_to_le16(num_recs);
        }
}

/*
 * Create an empty extent record .
 *
 * l_next_free_rec may be updated.
 *
 * If an empty extent already exists do nothing.
 */
static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
{
        int next_free = le16_to_cpu(el->l_next_free_rec);

        BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);

        if (next_free == 0)
                goto set_and_inc;

        if (ocfs2_is_empty_extent(&el->l_recs[0]))
                return;

        mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
                        "Asked to create an empty extent in a full list:\n"
                        "count = %u, tree depth = %u",
                        le16_to_cpu(el->l_count),
                        le16_to_cpu(el->l_tree_depth));

        ocfs2_shift_records_right(el);

set_and_inc:
        le16_add_cpu(&el->l_next_free_rec, 1);
        memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
}

/*
 * For a rotation which involves two leaf nodes, the "root node" is
 * the lowest level tree node which contains a path to both leafs. This
 * resulting set of information can be used to form a complete "subtree"
 *
 * This function is passed two full paths from the dinode down to a
 * pair of adjacent leaves. It's task is to figure out which path
 * index contains the subtree root - this can be the root index itself
 * in a worst-case rotation.
 *
 * The array index of the subtree root is passed back.
 */
static int ocfs2_find_subtree_root(struct inode *inode,
                                   struct ocfs2_path *left,
                                   struct ocfs2_path *right)
{
        int i = 0;

        /*
         * Check that the caller passed in two paths from the same tree.
         */
        BUG_ON(path_root_bh(left) != path_root_bh(right));

        do {
                i++;

                /*
                 * The caller didn't pass two adjacent paths.
                 */
                mlog_bug_on_msg(i > left->p_tree_depth,
                                "Inode %lu, left depth %u, right depth %u\n"
                                "left leaf blk %llu, right leaf blk %llu\n",
                                inode->i_ino, left->p_tree_depth,
                                right->p_tree_depth,
                                (unsigned long long)path_leaf_bh(left)->b_blocknr,
                                (unsigned long long)path_leaf_bh(right)->b_blocknr);
        } while (left->p_node[i].bh->b_blocknr ==
                 right->p_node[i].bh->b_blocknr);

        return i - 1;
}

typedef void (path_insert_t)(void *, struct buffer_head *);

/*
 * Traverse a btree path in search of cpos, starting at root_el.
 *
 * This code can be called with a cpos larger than the tree, in which
 * case it will return the rightmost path.
 */
static int __ocfs2_find_path(struct inode *inode,
                             struct ocfs2_extent_list *root_el, u32 cpos,
                             path_insert_t *func, void *data)
{
        int i, ret = 0;
        u32 range;
        u64 blkno;
        struct buffer_head *bh = NULL;
        struct ocfs2_extent_block *eb;
        struct ocfs2_extent_list *el;
        struct ocfs2_extent_rec *rec;
        struct ocfs2_inode_info *oi = OCFS2_I(inode);

        el = root_el;
        while (el->l_tree_depth) {
                if (le16_to_cpu(el->l_next_free_rec) == 0) {
                        ocfs2_error(inode->i_sb,
                                    "Inode %llu has empty extent list at "
                                    "depth %u\n",
                                    (unsigned long long)oi->ip_blkno,
                                    le16_to_cpu(el->l_tree_depth));
                        ret = -EROFS;
                        goto out;

                }

                for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
                        rec = &el->l_recs[i];

                        /*
                         * In the case that cpos is off the allocation
                         * tree, this should just wind up returning the
                         * rightmost record.
                         */
                        range = le32_to_cpu(rec->e_cpos) +
                                ocfs2_rec_clusters(el, rec);
                        if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
                            break;
                }

                blkno = le64_to_cpu(el->l_recs[i].e_blkno);
                if (blkno == 0) {
                        ocfs2_error(inode->i_sb,
                                    "Inode %llu has bad blkno in extent list "
                                    "at depth %u (index %d)\n",
                                    (unsigned long long)oi->ip_blkno,
                                    le16_to_cpu(el->l_tree_depth), i);
                        ret = -EROFS;
                        goto out;
                }

                brelse(bh);
                bh = NULL;
                ret = ocfs2_read_block(inode, blkno, &bh);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }

                eb = (struct ocfs2_extent_block *) bh->b_data;
                el = &eb->h_list;
                if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
                        OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
                        ret = -EIO;
                        goto out;
                }

                if (le16_to_cpu(el->l_next_free_rec) >
                    le16_to_cpu(el->l_count)) {
                        ocfs2_error(inode->i_sb,
                                    "Inode %llu has bad count in extent list "
                                    "at block %llu (next free=%u, count=%u)\n",
                                    (unsigned long long)oi->ip_blkno,
                                    (unsigned long long)bh->b_blocknr,
                                    le16_to_cpu(el->l_next_free_rec),
                                    le16_to_cpu(el->l_count));
                        ret = -EROFS;
                        goto out;
                }

                if (func)
                        func(data, bh);
        }

out:
        /*
         * Catch any trailing bh that the loop didn't handle.
         */
        brelse(bh);

        return ret;
}

/*
 * Given an initialized path (that is, it has a valid root extent
 * list), this function will traverse the btree in search of the path
 * which would contain cpos.
 *
 * The path traveled is recorded in the path structure.
 *
 * Note that this will not do any comparisons on leaf node extent
 * records, so it will work fine in the case that we just added a tree
 * branch.
 */
struct find_path_data {
        int index;
        struct ocfs2_path *path;
};
static void find_path_ins(void *data, struct buffer_head *bh)
{
        struct find_path_data *fp = data;

        get_bh(bh);
        ocfs2_path_insert_eb(fp->path, fp->index, bh);
        fp->index++;
}
static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
                           u32 cpos)
{
        struct find_path_data data;

        data.index = 1;
        data.path = path;
        return __ocfs2_find_path(inode, path_root_el(path), cpos,
                                 find_path_ins, &data);
}

static void find_leaf_ins(void *data, struct buffer_head *bh)
{
        struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
        struct ocfs2_extent_list *el = &eb->h_list;
        struct buffer_head **ret = data;

        /* We want to retain only the leaf block. */
        if (le16_to_cpu(el->l_tree_depth) == 0) {
                get_bh(bh);
                *ret = bh;
        }
}
/*
 * Find the leaf block in the tree which would contain cpos. No
 * checking of the actual leaf is done.
 *
 * Some paths want to call this instead of allocating a path structure
 * and calling ocfs2_find_path().
 *
 * This function doesn't handle non btree extent lists.
 */
int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
                    u32 cpos, struct buffer_head **leaf_bh)
{
        int ret;
        struct buffer_head *bh = NULL;

        ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
        if (ret) {
                mlog_errno(ret);
                goto out;
        }

        *leaf_bh = bh;
out:
        return ret;
}

/*
 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
 *
 * Basically, we've moved stuff around at the bottom of the tree and
 * we need to fix up the extent records above the changes to reflect
 * the new changes.
 *
 * left_rec: the record on the left.
 * left_child_el: is the child list pointed to by left_rec
 * right_rec: the record to the right of left_rec
 * right_child_el: is the child list pointed to by right_rec
 *
 * By definition, this only works on interior nodes.
 */
static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
                                  struct ocfs2_extent_list *left_child_el,
                                  struct ocfs2_extent_rec *right_rec,
                                  struct ocfs2_extent_list *right_child_el)
{
        u32 left_clusters, right_end;

        /*
         * Interior nodes never have holes. Their cpos is the cpos of
         * the leftmost record in their child list. Their cluster
         * count covers the full theoretical range of their child list
         * - the range between their cpos and the cpos of the record
         * immediately to their right.
         */
        left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
        if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) {
                BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
                left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
        }
        left_clusters -= le32_to_cpu(left_rec->e_cpos);
        left_rec->e_int_clusters = cpu_to_le32(left_clusters);

        /*
         * Calculate the rightmost cluster count boundary before
         * moving cpos - we will need to adjust clusters after
         * updating e_cpos to keep the same highest cluster count.
         */
        right_end = le32_to_cpu(right_rec->e_cpos);
        right_end += le32_to_cpu(right_rec->e_int_clusters);

        right_rec->e_cpos = left_rec->e_cpos;
        le32_add_cpu(&right_rec->e_cpos, left_clusters);

        right_end -= le32_to_cpu(right_rec->e_cpos);
        right_rec->e_int_clusters = cpu_to_le32(right_end);
}

/*
 * Adjust the adjacent root node records involved in a
 * rotation. left_el_blkno is passed in as a key so that we can easily
 * find it's index in the root list.
 */
static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
                                      struct ocfs2_extent_list *left_el,
                                      struct ocfs2_extent_list *right_el,
                                      u64 left_el_blkno)
{
        int i;

        BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
               le16_to_cpu(left_el->l_tree_depth));

        for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
                if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
                        break;
        }

        /*
         * The path walking code should have never returned a root and
         * two paths which are not adjacent.
         */
        BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));

        ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
                                      &root_el->l_recs[i + 1], right_el);
}

/*
 * We've changed a leaf block (in right_path) and need to reflect that
 * change back up the subtree.
 *
 * This happens in multiple places:
 *   - When we've moved an extent record from the left path leaf to the right
 *     path leaf to make room for an empty extent in the left path leaf.
 *   - When our insert into the right path leaf is at the leftmost edge
 *     and requires an update of the path immediately to it's left. This
 *     can occur at the end of some types of rotation and appending inserts.
 *   - When we've adjusted the last extent record in the left path leaf and the
 *     1st extent record in the right path leaf during cross extent block merge.
 */
static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
                                       struct ocfs2_path *left_path,
                                       struct ocfs2_path *right_path,
                                       int subtree_index)
{
        int ret, i, idx;
        struct ocfs2_extent_list *el, *left_el, *right_el;
        struct ocfs2_extent_rec *left_rec, *right_rec;
        struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;

        /*
         * Update the counts and position values within all the
         * interior nodes to reflect the leaf rotation we just did.
         *
         * The root node is handled below the loop.
         *
         * We begin the loop with right_el and left_el pointing to the
         * leaf lists and work our way up.
         *
         * NOTE: within this loop, left_el and right_el always refer
         * to the *child* lists.
         */
        left_el = path_leaf_el(left_path);
        right_el = path_leaf_el(right_path);
        for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
                mlog(0, "Adjust records at index %u\n", i);

                /*
                 * One nice property of knowing that all of these
                 * nodes are below the root is that we only deal with
                 * the leftmost right node record and the rightmost
                 * left node record.
                 */
                el = left_path->p_node[i].el;
                idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
                left_rec = &el->l_recs[idx];

                el = right_path->p_node[i].el;
                right_rec = &el->l_recs[0];

                ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
                                              right_el);

                ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
                if (ret)
                        mlog_errno(ret);

                ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
                if (ret)
                        mlog_errno(ret);

                /*
                 * Setup our list pointers now so that the current
                 * parents become children in the next iteration.
                 */
                left_el = left_path->p_node[i].el;
                right_el = right_path->p_node[i].el;
        }

        /*
         * At the root node, adjust the two adjacent records which
         * begin our path to the leaves.
         */

        el = left_path->p_node[subtree_index].el;
        left_el = left_path->p_node[subtree_index + 1].el;
        right_el = right_path->p_node[subtree_index + 1].el;

        ocfs2_adjust_root_records(el, left_el, right_el,
                                  left_path->p_node[subtree_index + 1].bh->b_blocknr);

        root_bh = left_path->p_node[subtree_index].bh;

        ret = ocfs2_journal_dirty(handle, root_bh);
        if (ret)
                mlog_errno(ret);
}

static int ocfs2_rotate_subtree_right(struct inode *inode,
                                      handle_t *handle,
                                      struct ocfs2_path *left_path,
                                      struct ocfs2_path *right_path,
                                      int subtree_index)
{
        int ret, i;
        struct buffer_head *right_leaf_bh;
        struct buffer_head *left_leaf_bh = NULL;
        struct buffer_head *root_bh;
        struct ocfs2_extent_list *right_el, *left_el;
        struct ocfs2_extent_rec move_rec;

        left_leaf_bh = path_leaf_bh(left_path);
        left_el = path_leaf_el(left_path);

        if (left_el->l_next_free_rec != left_el->l_count) {
                ocfs2_error(inode->i_sb,
                            "Inode %llu has non-full interior leaf node %llu"
                            "(next free = %u)",
                            (unsigned long long)OCFS2_I(inode)->ip_blkno,
                            (unsigned long long)left_leaf_bh->b_blocknr,
                            le16_to_cpu(left_el->l_next_free_rec));
                return -EROFS;
        }

        /*
         * This extent block may already have an empty record, so we
         * return early if so.
         */
        if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
                return 0;

        root_bh = left_path->p_node[subtree_index].bh;
        BUG_ON(root_bh != right_path->p_node[subtree_index].bh);

        ret = ocfs2_journal_access(handle, inode, root_bh,
                                   OCFS2_JOURNAL_ACCESS_WRITE);
        if (ret) {
                mlog_errno(ret);
                goto out;
        }

        for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
                ret = ocfs2_journal_access(handle, inode,
                                           right_path->p_node[i].bh,
                                           OCFS2_JOURNAL_ACCESS_WRITE);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }

                ret = ocfs2_journal_access(handle, inode,
                                           left_path->p_node[i].bh,
                                           OCFS2_JOURNAL_ACCESS_WRITE);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }
        }

        right_leaf_bh = path_leaf_bh(right_path);
        right_el = path_leaf_el(right_path);

        /* This is a code error, not a disk corruption. */
        mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
                        "because rightmost leaf block %llu is empty\n",
                        (unsigned long long)OCFS2_I(inode)->ip_blkno,
                        (unsigned long long)right_leaf_bh->b_blocknr);

        ocfs2_create_empty_extent(right_el);

        ret = ocfs2_journal_dirty(handle, right_leaf_bh);
        if (ret) {
                mlog_errno(ret);
                goto out;
        }

        /* Do the copy now. */
        i = le16_to_cpu(left_el->l_next_free_rec) - 1;
        move_rec = left_el->l_recs[i];
        right_el->l_recs[0] = move_rec;

        /*
         * Clear out the record we just copied and shift everything
         * over, leaving an empty extent in the left leaf.
         *
         * We temporarily subtract from next_free_rec so that the
         * shift will lose the tail record (which is now defunct).
         */
        le16_add_cpu(&left_el->l_next_free_rec, -1);
        ocfs2_shift_records_right(left_el);
        memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
        le16_add_cpu(&left_el->l_next_free_rec, 1);

        ret = ocfs2_journal_dirty(handle, left_leaf_bh);
        if (ret) {
                mlog_errno(ret);
                goto out;
        }

        ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
                                subtree_index);

out:
        return ret;
}

/*
 * Given a full path, determine what cpos value would return us a path
 * containing the leaf immediately to the left of the current one.
 *
 * Will return zero if the path passed in is already the leftmost path.
 */
static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
                                         struct ocfs2_path *path, u32 *cpos)
{
        int i, j, ret = 0;
        u64 blkno;
        struct ocfs2_extent_list *el;

        BUG_ON(path->p_tree_depth == 0);

        *cpos = 0;

        blkno = path_leaf_bh(path)->b_blocknr;

        /* Start at the tree node just above the leaf and work our way up. */
        i = path->p_tree_depth - 1;
        while (i >= 0) {
                el = path->p_node[i].el;

                /*
                 * Find the extent record just before the one in our
                 * path.
                 */
                for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
                        if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
                                if (j == 0) {
                                        if (i == 0) {
                                                /*
                                                 * We've determined that the
                                                 * path specified is already
                                                 * the leftmost one - return a
                                                 * cpos of zero.
                                                 */
                                                goto out;
                                        }
                                        /*
                                         * The leftmost record points to our
                                         * leaf - we need to travel up the
                                         * tree one level.
                                         */
                                        goto next_node;
                                }

                                *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
                                *cpos = *cpos + ocfs2_rec_clusters(el,
                                                           &el->l_recs[j - 1]);
                                *cpos = *cpos - 1;
                                goto out;
                        }
                }

                /*
                 * If we got here, we never found a valid node where
                 * the tree indicated one should be.
                 */
                ocfs2_error(sb,
                            "Invalid extent tree at extent block %llu\n",
                            (unsigned long long)blkno);
                ret = -EROFS;
                goto out;

next_node:
                blkno = path->p_node[i].bh->b_blocknr;
                i--;
        }

out:
        return ret;
}

/*
 * Extend the transaction by enough credits to complete the rotation,
 * and still leave at least the original number of credits allocated
 * to this transaction.
 */
static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
                                           int op_credits,
                                           struct ocfs2_path *path)
{
        int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;

        if (handle->h_buffer_credits < credits)
                return ocfs2_extend_trans(handle, credits);

        return 0;
}

/*
 * Trap the case where we're inserting into the theoretical range past
 * the _actual_ left leaf range. Otherwise, we'll rotate a record
 * whose cpos is less than ours into the right leaf.
 *
 * It's only necessary to look at the rightmost record of the left
 * leaf because the logic that calls us should ensure that the
 * theoretical ranges in the path components above the leaves are
 * correct.
 */
static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
                                                 u32 insert_cpos)
{
        struct ocfs2_extent_list *left_el;
        struct ocfs2_extent_rec *rec;
        int next_free;

        left_el = path_leaf_el(left_path);
        next_free = le16_to_cpu(left_el->l_next_free_rec);
        rec = &left_el->l_recs[next_free - 1];

        if (insert_cpos > le32_to_cpu(rec->e_cpos))
                return 1;
        return 0;
}

static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
{
        int next_free = le16_to_cpu(el->l_next_free_rec);
        unsigned int range;
        struct ocfs2_extent_rec *rec;

        if (next_free == 0)
                return 0;

        rec = &el->l_recs[0];
        if (ocfs2_is_empty_extent(rec)) {
                /* Empty list. */
                if (next_free == 1)
                        return 0;
                rec = &el->l_recs[1];
        }

        range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
        if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
                return 1;
        return 0;
}

/*
 * Rotate all the records in a btree right one record, starting at insert_cpos.
 *
 * The path to the rightmost leaf should be passed in.
 *
 * The array is assumed to be large enough to hold an entire path (tree depth).
 *
 * Upon succesful return from this function:
 *
 * - The 'right_path' array will contain a path to the leaf block
 *   whose range contains e_cpos.
 * - That leaf block will have a single empty extent in list index 0.
 * - In the case that the rotation requires a post-insert update,
 *   *ret_left_path will contain a valid path which can be passed to
 *   ocfs2_insert_path().
 */
static int ocfs2_rotate_tree_right(struct inode *inode,
                                   handle_t *handle,
                                   enum ocfs2_split_type split,
                                   u32 insert_cpos,
                                   struct ocfs2_path *right_path,
                                   struct ocfs2_path **ret_left_path)
{
        int ret, start, orig_credits = handle->h_buffer_credits;
        u32 cpos;
        struct ocfs2_path *left_path = NULL;

        *ret_left_path = NULL;

        left_path = ocfs2_new_path(path_root_bh(right_path),
                                   path_root_el(right_path));
        if (!left_path) {
                ret = -ENOMEM;
                mlog_errno(ret);
                goto out;
        }

        ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
        if (ret) {
                mlog_errno(ret);
                goto out;
        }

        mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);

        /*
         * What we want to do here is:
         *
         * 1) Start with the rightmost path.
         *
         * 2) Determine a path to the leaf block directly to the left
         *    of that leaf.
         *
         * 3) Determine the 'subtree root' - the lowest level tree node
         *    which contains a path to both leaves.
         *
         * 4) Rotate the subtree.
         *
         * 5) Find the next subtree by considering the left path to be
         *    the new right path.
         *
         * The check at the top of this while loop also accepts
         * insert_cpos == cpos because cpos is only a _theoretical_
         * value to get us the left path - insert_cpos might very well
         * be filling that hole.
         *
         * Stop at a cpos of '0' because we either started at the
         * leftmost branch (i.e., a tree with one branch and a
         * rotation inside of it), or we've gone as far as we can in
         * rotating subtrees.
         */
        while (cpos && insert_cpos <= cpos) {
                mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
                     insert_cpos, cpos);

                ret = ocfs2_find_path(inode, left_path, cpos);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }

                mlog_bug_on_msg(path_leaf_bh(left_path) ==
                                path_leaf_bh(right_path),
                                "Inode %lu: error during insert of %u "
                                "(left path cpos %u) results in two identical "
                                "paths ending at %llu\n",
                                inode->i_ino, insert_cpos, cpos,
                                (unsigned long long)
                                path_leaf_bh(left_path)->b_blocknr);

                if (split == SPLIT_NONE &&
                    ocfs2_rotate_requires_path_adjustment(left_path,
                                                          insert_cpos)) {

                        /*
                         * We've rotated the tree as much as we
                         * should. The rest is up to
                         * ocfs2_insert_path() to complete, after the
                         * record insertion. We indicate this
                         * situation by returning the left path.
                         *
                         * The reason we don't adjust the records here
                         * before the record insert is that an error
                         * later might break the rule where a parent
                         * record e_cpos will reflect the actual
                         * e_cpos of the 1st nonempty record of the
                         * child list.
                         */
                        *ret_left_path = left_path;
                        goto out_ret_path;
                }

                start = ocfs2_find_subtree_root(inode, left_path, right_path);

                mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
                     start,
                     (unsigned long long) right_path->p_node[start].bh->b_blocknr,
                     right_path->p_tree_depth);

                ret = ocfs2_extend_rotate_transaction(handle, start,
                                                      orig_credits, right_path);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }

                ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
                                                 right_path, start);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }

                if (split != SPLIT_NONE &&
                    ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
                                                insert_cpos)) {
                        /*
                         * A rotate moves the rightmost left leaf
                         * record over to the leftmost right leaf
                         * slot. If we're doing an extent split
                         * instead of a real insert, then we have to
                         * check that the extent to be split wasn't
                         * just moved over. If it was, then we can
                         * exit here, passing left_path back -
                         * ocfs2_split_extent() is smart enough to
                         * search both leaves.
                         */
                        *ret_left_path = left_path;
                        goto out_ret_path;
                }

                /*
                 * There is no need to re-read the next right path
                 * as we know that it'll be our current left
                 * path. Optimize by copying values instead.
                 */
                ocfs2_mv_path(right_path, left_path);

                ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
                                                    &cpos);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }
        }

out:
        ocfs2_free_path(left_path);

out_ret_path:
        return ret;
}

static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
                                      struct ocfs2_path *path)
{
        int i, idx;
        struct ocfs2_extent_rec *rec;
        struct ocfs2_extent_list *el;
        struct ocfs2_extent_block *eb;
        u32 range;

        /* Path should always be rightmost. */
        eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
        BUG_ON(eb->h_next_leaf_blk != 0ULL);

        el = &eb->h_list;
        BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
        idx = le16_to_cpu(el->l_next_free_rec) - 1;
        rec = &el->l_recs[idx];
        range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);

        for (i = 0; i < path->p_tree_depth; i++) {
                el = path->p_node[i].el;
                idx = le16_to_cpu(el->l_next_free_rec) - 1;
                rec = &el->l_recs[idx];

                rec->e_int_clusters = cpu_to_le32(range);
                le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));

                ocfs2_journal_dirty(handle, path->p_node[i].bh);
        }
}

static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
                              struct ocfs2_cached_dealloc_ctxt *dealloc,
                              struct ocfs2_path *path, int unlink_start)
{
        int ret, i;
        struct ocfs2_extent_block *eb;
        struct ocfs2_extent_list *el;
        struct buffer_head *bh;

        for(i = unlink_start; i < path_num_items(path); i++) {
                bh = path->p_node[i].bh;

                eb = (struct ocfs2_extent_block *)bh->b_data;
                /*
                 * Not all nodes might have had their final count
                 * decremented by the caller - handle this here.
                 */
                el = &eb->h_list;
                if (le16_to_cpu(el->l_next_free_rec) > 1) {
                        mlog(ML_ERROR,
                             "Inode %llu, attempted to remove extent block "
                             "%llu with %u records\n",
                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
                             (unsigned long long)le64_to_cpu(eb->h_blkno),
                             le16_to_cpu(el->l_next_free_rec));

                        ocfs2_journal_dirty(handle, bh);
                        ocfs2_remove_from_cache(inode, bh);
                        continue;
                }

                el->l_next_free_rec = 0;
                memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));

                ocfs2_journal_dirty(handle, bh);

                ret = ocfs2_cache_extent_block_free(dealloc, eb);
                if (ret)
                        mlog_errno(ret);

                ocfs2_remove_from_cache(inode, bh);
        }
}

static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
                                 struct ocfs2_path *left_path,
                                 struct ocfs2_path *right_path,
                                 int subtree_index,
                                 struct ocfs2_cached_dealloc_ctxt *dealloc)
{
        int i;
        struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
        struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
        struct ocfs2_extent_list *el;
        struct ocfs2_extent_block *eb;

        el = path_leaf_el(left_path);

        eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;

        for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
                if (root_el->l_recs[i].e_blkno == eb->h_blkno)
                        break;

        BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));

        memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
        le16_add_cpu(&root_el->l_next_free_rec, -1);

        eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
        eb->h_next_leaf_blk = 0;

        ocfs2_journal_dirty(handle, root_bh);
        ocfs2_journal_dirty(handle, path_leaf_bh(left_path));

        ocfs2_unlink_path(inode, handle, dealloc, right_path,
                          subtree_index + 1);
}

static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
                                     struct ocfs2_path *left_path,
                                     struct ocfs2_path *right_path,
                                     int subtree_index,
                                     struct ocfs2_cached_dealloc_ctxt *dealloc,
                                     int *deleted,
                                     struct ocfs2_extent_tree *et)
{
        int ret, i, del_right_subtree = 0, right_has_empty = 0;
        struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
        struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
        struct ocfs2_extent_block *eb;

        *deleted = 0;

        right_leaf_el = path_leaf_el(right_path);
        left_leaf_el = path_leaf_el(left_path);
        root_bh = left_path->p_node[subtree_index].bh;
        BUG_ON(root_bh != right_path->p_node[subtree_index].bh);

        if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
                return 0;

        eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
        if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
                /*
                 * It's legal for us to proceed if the right leaf is
                 * the rightmost one and it has an empty extent. There
                 * are two cases to handle - whether the leaf will be
                 * empty after removal or not. If the leaf isn't empty
                 * then just remove the empty extent up front. The
                 * next block will handle empty leaves by flagging
                 * them for unlink.
                 *
                 * Non rightmost leaves will throw -EAGAIN and the
                 * caller can manually move the subtree and retry.
                 */

                if (eb->h_next_leaf_blk != 0ULL)
                        return -EAGAIN;

                if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
                        ret = ocfs2_journal_access(handle, inode,
                                                   path_leaf_bh(right_path),
                                                   OCFS2_JOURNAL_ACCESS_WRITE);
                        if (ret) {
                                mlog_errno(ret);
                                goto out;
                        }

                        ocfs2_remove_empty_extent(right_leaf_el);
                } else
                        right_has_empty = 1;
        }

        if (eb->h_next_leaf_blk == 0ULL &&
            le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
                /*
                 * We have to update i_last_eb_blk during the meta
                 * data delete.
                 */
                ret = ocfs2_journal_access(handle, inode, et_root_bh,
                                           OCFS2_JOURNAL_ACCESS_WRITE);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }

                del_right_subtree = 1;
        }

        /*
         * Getting here with an empty extent in the right path implies
         * that it's the rightmost path and will be deleted.
         */
        BUG_ON(right_has_empty && !del_right_subtree);

        ret = ocfs2_journal_access(handle, inode, root_bh,
                                   OCFS2_JOURNAL_ACCESS_WRITE);
        if (ret) {
                mlog_errno(ret);
                goto out;
        }

        for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
                ret = ocfs2_journal_access(handle, inode,
                                           right_path->p_node[i].bh,
                                           OCFS2_JOURNAL_ACCESS_WRITE);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }

                ret = ocfs2_journal_access(handle, inode,
                                           left_path->p_node[i].bh,
                                           OCFS2_JOURNAL_ACCESS_WRITE);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }
        }

        if (!right_has_empty) {
                /*
                 * Only do this if we're moving a real
                 * record. Otherwise, the action is delayed until
                 * after removal of the right path in which case we
                 * can do a simple shift to remove the empty extent.
                 */
                ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
                memset(&right_leaf_el->l_recs[0], 0,
                       sizeof(struct ocfs2_extent_rec));
        }
        if (eb->h_next_leaf_blk == 0ULL) {
                /*
                 * Move recs over to get rid of empty extent, decrease
                 * next_free. This is allowed to remove the last
                 * extent in our leaf (setting l_next_free_rec to
                 * zero) - the delete code below won't care.
                 */
                ocfs2_remove_empty_extent(right_leaf_el);
        }

        ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
        if (ret)
                mlog_errno(ret);
        ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
        if (ret)
                mlog_errno(ret);

        if (del_right_subtree) {
                ocfs2_unlink_subtree(inode, handle, left_path, right_path,
                                     subtree_index, dealloc);
                ocfs2_update_edge_lengths(inode, handle, left_path);

                eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
                ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));

                /*
                 * Removal of the extent in the left leaf was skipped
                 * above so we could delete the right path
                 * 1st.
                 */
                if (right_has_empty)
                        ocfs2_remove_empty_extent(left_leaf_el);

                ret = ocfs2_journal_dirty(handle, et_root_bh);
                if (ret)
                        mlog_errno(ret);

                *deleted = 1;
        } else
                ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
                                           subtree_index);

out:
        return ret;
}

/*
 * Given a full path, determine what cpos value would return us a path
 * containing the leaf immediately to the right of the current one.
 *
 * Will return zero if the path passed in is already the rightmost path.
 *
 * This looks similar, but is subtly different to
 * ocfs2_find_cpos_for_left_leaf().
 */
static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
                                          struct ocfs2_path *path, u32 *cpos)
{
        int i, j, ret = 0;
        u64 blkno;
        struct ocfs2_extent_list *el;

        *cpos = 0;

        if (path->p_tree_depth == 0)
                return 0;

        blkno = path_leaf_bh(path)->b_blocknr;

        /* Start at the tree node just above the leaf and work our way up. */
        i = path->p_tree_depth - 1;
        while (i >= 0) {
                int next_free;

                el = path->p_node[i].el;

                /*
                 * Find the extent record just after the one in our
                 * path.
                 */
                next_free = le16_to_cpu(el->l_next_free_rec);
                for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
                        if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
                                if (j == (next_free - 1)) {
                                        if (i == 0) {
                                                /*
                                                 * We've determined that the
                                                 * path specified is already
                                                 * the rightmost one - return a
                                                 * cpos of zero.
                                                 */
                                                goto out;
                                        }
                                        /*
                                         * The rightmost record points to our
                                         * leaf - we need to travel up the
                                         * tree one level.
                                         */
                                        goto next_node;
                                }

                                *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
                                goto out;
                        }
                }

                /*
                 * If we got here, we never found a valid node where
                 * the tree indicated one should be.
                 */
                ocfs2_error(sb,
                            "Invalid extent tree at extent block %llu\n",
                            (unsigned long long)blkno);
                ret = -EROFS;
                goto out;

next_node:
                blkno = path->p_node[i].bh->b_blocknr;
                i--;
        }

out:
        return ret;
}

static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
                                            handle_t *handle,
                                            struct buffer_head *bh,
                                            struct ocfs2_extent_list *el)
{
        int ret;

        if (!ocfs2_is_empty_extent(&el->l_recs[0]))
                return 0;

        ret = ocfs2_journal_access(handle, inode, bh,
                                   OCFS2_JOURNAL_ACCESS_WRITE);
        if (ret) {
                mlog_errno(ret);
                goto out;
        }

        ocfs2_remove_empty_extent(el);

        ret = ocfs2_journal_dirty(handle, bh);
        if (ret)
                mlog_errno(ret);

out:
        return ret;
}

static int __ocfs2_rotate_tree_left(struct inode *inode,
                                    handle_t *handle, int orig_credits,
                                    struct ocfs2_path *path,
                                    struct ocfs2_cached_dealloc_ctxt *dealloc,
                                    struct ocfs2_path **empty_extent_path,
                                    struct ocfs2_extent_tree *et)
{
        int ret, subtree_root, deleted;
        u32 right_cpos;
        struct ocfs2_path *left_path = NULL;
        struct ocfs2_path *right_path = NULL;

        BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));

        *empty_extent_path = NULL;

        ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
                                             &right_cpos);
        if (ret) {
                mlog_errno(ret);
                goto out;
        }

        left_path = ocfs2_new_path(path_root_bh(path),
                                   path_root_el(path));
        if (!left_path) {
                ret = -ENOMEM;
                mlog_errno(ret);
                goto out;
        }

        ocfs2_cp_path(left_path, path);

        right_path = ocfs2_new_path(path_root_bh(path),
                                    path_root_el(path));
        if (!right_path) {
                ret = -ENOMEM;
                mlog_errno(ret);
                goto out;
        }

        while (right_cpos) {
                ret = ocfs2_find_path(inode, right_path, right_cpos);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }

                subtree_root = ocfs2_find_subtree_root(inode, left_path,
                                                       right_path);

                mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
                     subtree_root,
                     (unsigned long long)
                     right_path->p_node[subtree_root].bh->b_blocknr,
                     right_path->p_tree_depth);

                ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
                                                      orig_credits, left_path);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }

                /*
                 * Caller might still want to make changes to the
                 * tree root, so re-add it to the journal here.
                 */
                ret = ocfs2_journal_access(handle, inode,
                                           path_root_bh(left_path),
                                           OCFS2_JOURNAL_ACCESS_WRITE);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }

                ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
                                                right_path, subtree_root,
                                                dealloc, &deleted, et);
                if (ret == -EAGAIN) {
                        /*
                         * The rotation has to temporarily stop due to
                         * the right subtree having an empty
                         * extent. Pass it back to the caller for a
                         * fixup.
                         */
                        *empty_extent_path = right_path;
                        right_path = NULL;
                        goto out;
                }
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }

                /*
                 * The subtree rotate might have removed records on
                 * the rightmost edge. If so, then rotation is
                 * complete.
                 */
                if (deleted)
                        break;

                ocfs2_mv_path(left_path, right_path);

                ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
                                                     &right_cpos);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }
        }

out:
        ocfs2_free_path(right_path);
        ocfs2_free_path(left_path);

        return ret;
}

static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
                                struct ocfs2_path *path,
                                struct ocfs2_cached_dealloc_ctxt *dealloc,
                                struct ocfs2_extent_tree *et)
{
        int ret, subtree_index;
        u32 cpos;
        struct ocfs2_path *left_path = NULL;
        struct ocfs2_extent_block *eb;
        struct ocfs2_extent_list *el;


        ret = ocfs2_et_sanity_check(inode, et);
        if (ret)
                goto out;
        /*
         * There's two ways we handle this depending on
         * whether path is the only existing one.
         */
        ret = ocfs2_extend_rotate_transaction(handle, 0,
                                              handle->h_buffer_credits,
                                              path);
        if (ret) {
                mlog_errno(ret);
                goto out;
        }

        ret = ocfs2_journal_access_path(inode, handle, path);
        if (ret) {
                mlog_errno(ret);
                goto out;
        }

        ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
        if (ret) {
                mlog_errno(ret);
                goto out;
        }

        if (cpos) {
                /*
                 * We have a path to the left of this one - it needs
                 * an update too.
                 */
                left_path = ocfs2_new_path(path_root_bh(path),
                                           path_root_el(path));
                if (!left_path) {
                        ret = -ENOMEM;
                        mlog_errno(ret);
                        goto out;
                }

                ret = ocfs2_find_path(inode, left_path, cpos);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }

                ret = ocfs2_journal_access_path(inode, handle, left_path);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }

                subtree_index = ocfs2_find_subtree_root(inode, left_path, path);

                ocfs2_unlink_subtree(inode, handle, left_path, path,
                                     subtree_index, dealloc);
                ocfs2_update_edge_lengths(inode, handle, left_path);

                eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
                ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
        } else {
                /*
                 * 'path' is also the leftmost path which
                 * means it must be the only one. This gets
                 * handled differently because we want to
                 * revert the inode back to having extents
                 * in-line.
                 */
                ocfs2_unlink_path(inode, handle, dealloc, path, 1);

                el = et->et_root_el;
                el->l_tree_depth = 0;
                el->l_next_free_rec = 0;
                memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));

                ocfs2_et_set_last_eb_blk(et, 0);
        }

        ocfs2_journal_dirty(handle, path_root_bh(path));

out:
        ocfs2_free_path(left_path);
        return ret;
}

/*
 * Left rotation of btree records.
 *
 * In many ways, this is (unsurprisingly) the opposite of right
 * rotation. We start at some non-rightmost path containing an empty
 * extent in the leaf block. The code works its way to the rightmost
 * path by rotating records to the left in every subtree.
 *
 * This is used by any code which reduces the number of extent records
 * in a leaf. After removal, an empty record should be placed in the
 * leftmost list position.
 *
 * This won't handle a length update of the rightmost path records if
 * the rightmost tree leaf record is removed so the caller is
 * responsible for detecting and correcting that.
 */
static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
                                  struct ocfs2_path *path,
                                  struct ocfs2_cached_dealloc_ctxt *dealloc,
                                  struct ocfs2_extent_tree *et)
{
        int ret, orig_credits = handle->h_buffer_credits;
        struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
        struct ocfs2_extent_block *eb;
        struct ocfs2_extent_list *el;

        el = path_leaf_el(path);
        if (!ocfs2_is_empty_extent(&el->l_recs[0]))
                return 0;

        if (path->p_tree_depth == 0) {
rightmost_no_delete:
                /*
                 * Inline extents. This is trivially handled, so do
                 * it up front.
                 */
                ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
                                                       path_leaf_bh(path),
                                                       path_leaf_el(path));
                if (ret)
                        mlog_errno(ret);
                goto out;
        }

        /*
         * Handle rightmost branch now. There's several cases:
         *  1) simple rotation leaving records in there. That's trivial.
         *  2) rotation requiring a branch delete - there's no more
         *     records left. Two cases of this:
         *     a) There are branches to the left.
         *     b) This is also the leftmost (the only) branch.
         *
         *  1) is handled via ocfs2_rotate_rightmost_leaf_left()
         *  2a) we need the left branch so that we can update it with the unlink
         *  2b) we need to bring the inode back to inline extents.
         */

        eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
        el = &eb->h_list;
        if (eb->h_next_leaf_blk == 0) {
                /*
                 * This gets a bit tricky if we're going to delete the
                 * rightmost path. Get the other cases out of the way
                 * 1st.
                 */
                if (le16_to_cpu(el->l_next_free_rec) > 1)
                        goto rightmost_no_delete;

                if (le16_to_cpu(el->l_next_free_rec) == 0) {
                        ret = -EIO;
                        ocfs2_error(inode->i_sb,
                                    "Inode %llu has empty extent block at %llu",
                                    (unsigned long long)OCFS2_I(inode)->ip_blkno,
                                    (unsigned long long)le64_to_cpu(eb->h_blkno));
                        goto out;
                }

                /*
                 * XXX: The caller can not trust "path" any more after
                 * this as it will have been deleted. What do we do?
                 *
                 * In theory the rotate-for-merge code will never get
                 * here because it'll always ask for a rotate in a
                 * nonempty list.
                 */

                ret = ocfs2_remove_rightmost_path(inode, handle, path,
                                                  dealloc, et);
                if (ret)
                        mlog_errno(ret);
                goto out;
        }

        /*
         * Now we can loop, remembering the path we get from -EAGAIN
         * and restarting from there.
         */
try_rotate:
        ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
                                       dealloc, &restart_path, et);
        if (ret && ret != -EAGAIN) {
                mlog_errno(ret);
                goto out;
        }

        while (ret == -EAGAIN) {
                tmp_path = restart_path;
                restart_path = NULL;

                ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
                                               tmp_path, dealloc,
                                               &restart_path, et);
                if (ret && ret != -EAGAIN) {
                        mlog_errno(ret);
                        goto out;
                }

                ocfs2_free_path(tmp_path);
                tmp_path = NULL;

                if (ret == 0)
                        goto try_rotate;
        }

out:
        ocfs2_free_path(tmp_path);
        ocfs2_free_path(restart_path);
        return ret;
}

static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
                                int index)
{
        struct ocfs2_extent_rec *rec = &el->l_recs[index];
        unsigned int size;

        if (rec->e_leaf_clusters == 0) {
                /*
                 * We consumed all of the merged-from record. An empty
                 * extent cannot exist anywhere but the 1st array
                 * position, so move things over if the merged-from
                 * record doesn't occupy that position.
                 *
                 * This creates a new empty extent so the caller
                 * should be smart enough to have removed any existing
                 * ones.
                 */
                if (index > 0) {
                        BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
                        size = index * sizeof(struct ocfs2_extent_rec);
                        memmove(&el->l_recs[1], &el->l_recs[0], size);
                }

                /*
                 * Always memset - the caller doesn't check whether it
                 * created an empty extent, so there could be junk in
                 * the other fields.
                 */
                memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
        }
}

static int ocfs2_get_right_path(struct inode *inode,
                                struct ocfs2_path *left_path,
                                struct ocfs2_path **ret_right_path)
{
        int ret;
        u32 right_cpos;
        struct ocfs2_path *right_path = NULL;
        struct ocfs2_extent_list *left_el;

        *ret_right_path = NULL;

        /* This function shouldn't be called for non-trees. */
        BUG_ON(left_path->p_tree_depth == 0);

        left_el = path_leaf_el(left_path);
        BUG_ON(left_el->l_next_free_rec != left_el->l_count);

        ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
                                             &right_cpos);
        if (ret) {
                mlog_errno(ret);
                goto out;
        }

        /* This function shouldn't be called for the rightmost leaf. */
        BUG_ON(right_cpos == 0);

        right_path = ocfs2_new_path(path_root_bh(left_path),
                                    path_root_el(left_path));
        if (!right_path) {
                ret = -ENOMEM;
                mlog_errno(ret);
                goto out;
        }

        ret = ocfs2_find_path(inode, right_path, right_cpos);
        if (ret) {
                mlog_errno(ret);
                goto out;
        }

        *ret_right_path = right_path;
out:
        if (ret)
                ocfs2_free_path(right_path);
        return ret;
}

/*
 * Remove split_rec clusters from the record at index and merge them
 * onto the beginning of the record "next" to it.
 * For index < l_count - 1, the next means the extent rec at index + 1.
 * For index == l_count - 1, the "next" means the 1st extent rec of the
 * next extent block.
 */
static int ocfs2_merge_rec_right(struct inode *inode,
                                 struct ocfs2_path *left_path,
                                 handle_t *handle,
                                 struct ocfs2_extent_rec *split_rec,
                                 int index)
{
        int ret, next_free, i;
        unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
        struct ocfs2_extent_rec *left_rec;
        struct ocfs2_extent_rec *right_rec;
        struct ocfs2_extent_list *right_el;
        struct ocfs2_path *right_path = NULL;
        int subtree_index = 0;
        struct ocfs2_extent_list *el = path_leaf_el(left_path);
        struct buffer_head *bh = path_leaf_bh(left_path);
        struct buffer_head *root_bh = NULL;

        BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
        left_rec = &el->l_recs[index];

        if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
            le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
                /* we meet with a cross extent block merge. */
                ret = ocfs2_get_right_path(inode, left_path, &right_path);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }

                right_el = path_leaf_el(right_path);
                next_free = le16_to_cpu(right_el->l_next_free_rec);
                BUG_ON(next_free <= 0);
                right_rec = &right_el->l_recs[0];
                if (ocfs2_is_empty_extent(right_rec)) {
                        BUG_ON(next_free <= 1);
                        right_rec = &right_el->l_recs[1];
                }

                BUG_ON(le32_to_cpu(left_rec->e_cpos) +
                       le16_to_cpu(left_rec->e_leaf_clusters) !=
                       le32_to_cpu(right_rec->e_cpos));

                subtree_index = ocfs2_find_subtree_root(inode,
                                                        left_path, right_path);

                ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
                                                      handle->h_buffer_credits,
                                                      right_path);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }

                root_bh = left_path->p_node[subtree_index].bh;
                BUG_ON(root_bh != right_path->p_node[subtree_index].bh);

                ret = ocfs2_journal_access(handle, inode, root_bh,
                                           OCFS2_JOURNAL_ACCESS_WRITE);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }

                for (i = subtree_index + 1;
                     i < path_num_items(right_path); i++) {
                        ret = ocfs2_journal_access(handle, inode,
                                                   right_path->p_node[i].bh,
                                                   OCFS2_JOURNAL_ACCESS_WRITE);
                        if (ret) {
                                mlog_errno(ret);
                                goto out;
                        }

                        ret = ocfs2_journal_access(handle, inode,
                                                   left_path->p_node[i].bh,
                                                   OCFS2_JOURNAL_ACCESS_WRITE);
                        if (ret) {
                                mlog_errno(ret);
                                goto out;
                        }
                }

        } else {
                BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
                right_rec = &el->l_recs[index + 1];
        }

        ret = ocfs2_journal_access(handle, inode, bh,
                                   OCFS2_JOURNAL_ACCESS_WRITE);
        if (ret) {
                mlog_errno(ret);
                goto out;
        }

        le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);

        le32_add_cpu(&right_rec->e_cpos, -split_clusters);
        le64_add_cpu(&right_rec->e_blkno,
                     -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
        le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);

        ocfs2_cleanup_merge(el, index);

        ret = ocfs2_journal_dirty(handle, bh);
        if (ret)
                mlog_errno(ret);

        if (right_path) {
                ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
                if (ret)
                        mlog_errno(ret);

                ocfs2_complete_edge_insert(inode, handle, left_path,
                                           right_path, subtree_index);
        }
out:
        if (right_path)
                ocfs2_free_path(right_path);
        return ret;
}

static int ocfs2_get_left_path(struct inode *inode,
                               struct ocfs2_path *right_path,
                               struct ocfs2_path **ret_left_path)
{
        int ret;
        u32 left_cpos;
        struct ocfs2_path *left_path = NULL;

        *ret_left_path = NULL;

        /* This function shouldn't be called for non-trees. */
        BUG_ON(right_path->p_tree_depth == 0);

        ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
                                            right_path, &left_cpos);
        if (ret) {
                mlog_errno(ret);
                goto out;
        }

        /* This function shouldn't be called for the leftmost leaf. */
        BUG_ON(left_cpos == 0);

        left_path = ocfs2_new_path(path_root_bh(right_path),
                                   path_root_el(right_path));
        if (!left_path) {
                ret = -ENOMEM;
                mlog_errno(ret);
                goto out;
        }

        ret = ocfs2_find_path(inode, left_path, left_cpos);
        if (ret) {
                mlog_errno(ret);
                goto out;
        }

        *ret_left_path = left_path;
out:
        if (ret)
                ocfs2_free_path(left_path);
        return ret;
}

/*
 * Remove split_rec clusters from the record at index and merge them
 * onto the tail of the record "before" it.
 * For index > 0, the "before" means the extent rec at index - 1.
 *
 * For index == 0, the "before" means the last record of the previous
 * extent block. And there is also a situation that we may need to
 * remove the rightmost leaf extent block in the right_path and change
 * the right path to indicate the new rightmost path.
 */
static int ocfs2_merge_rec_left(struct inode *inode,
                                struct ocfs2_path *right_path,
                                handle_t *handle,
                                struct ocfs2_extent_rec *split_rec,
                                struct ocfs2_cached_dealloc_ctxt *dealloc,
                                struct ocfs2_extent_tree *et,
                                int index)
{
        int ret, i, subtree_index = 0, has_empty_extent = 0;
        unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
        struct ocfs2_extent_rec *left_rec;
        struct ocfs2_extent_rec *right_rec;
        struct ocfs2_extent_list *el = path_leaf_el(right_path);
        struct buffer_head *bh = path_leaf_bh(right_path);
        struct buffer_head *root_bh = NULL;
        struct ocfs2_path *left_path = NULL;
        struct ocfs2_extent_list *left_el;

        BUG_ON(index < 0);

        right_rec = &el->l_recs[index];
        if (index == 0) {
                /* we meet with a cross extent block merge. */
                ret = ocfs2_get_left_path(inode, right_path, &left_path);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }

                left_el = path_leaf_el(left_path);
                BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
                       le16_to_cpu(left_el->l_count));

                left_rec = &left_el->l_recs[
                                le16_to_cpu(left_el->l_next_free_rec) - 1];
                BUG_ON(le32_to_cpu(left_rec->e_cpos) +
                       le16_to_cpu(left_rec->e_leaf_clusters) !=
                       le32_to_cpu(split_rec->e_cpos));

                subtree_index = ocfs2_find_subtree_root(inode,
                                                        left_path, right_path);

                ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
                                                      handle->h_buffer_credits,
                                                      left_path);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }

                root_bh = left_path->p_node[subtree_index].bh;
                BUG_ON(root_bh != right_path->p_node[subtree_index].bh);

                ret = ocfs2_journal_access(handle, inode, root_bh,
                                           OCFS2_JOURNAL_ACCESS_WRITE);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }

                for (i = subtree_index + 1;
                     i < path_num_items(right_path); i++) {
                        ret = ocfs2_journal_access(handle, inode,
                                                   right_path->p_node[i].bh,
                                                   OCFS2_JOURNAL_ACCESS_WRITE);
                        if (ret) {
                                mlog_errno(ret);
                                goto out;
                        }

                        ret = ocfs2_journal_access(handle, inode,
                                                   left_path->p_node[i].bh,
                                                   OCFS2_JOURNAL_ACCESS_WRITE);
                        if (ret) {
                                mlog_errno(ret);
                                goto out;
                        }
                }
        } else {
                left_rec = &el->l_recs[index - 1];
                if (ocfs2_is_empty_extent(&el->l_recs[0]))
                        has_empty_extent = 1;
        }

        ret = ocfs2_journal_access(handle, inode, bh,
                                   OCFS2_JOURNAL_ACCESS_WRITE);
        if (ret) {
                mlog_errno(ret);
                goto out;
        }

        if (has_empty_extent && index == 1) {
                /*
                 * The easy case - we can just plop the record right in.
                 */
                *left_rec = *split_rec;

                has_empty_extent = 0;
        } else
                le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);

        le32_add_cpu(&right_rec->e_cpos, split_clusters);
        le64_add_cpu(&right_rec->e_blkno,
                     ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
        le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);

        ocfs2_cleanup_merge(el, index);

        ret = ocfs2_journal_dirty(handle, bh);
        if (ret)
                mlog_errno(ret);

        if (left_path) {
                ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
                if (ret)
                        mlog_errno(ret);

                /*
                 * In the situation that the right_rec is empty and the extent
                 * block is empty also,  ocfs2_complete_edge_insert can't handle
                 * it and we need to delete the right extent block.
                 */
                if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
                    le16_to_cpu(el->l_next_free_rec) == 1) {

                        ret = ocfs2_remove_rightmost_path(inode, handle,
                                                          right_path,
                                                          dealloc, et);
                        if (ret) {
                                mlog_errno(ret);
                                goto out;
                        }

                        /* Now the rightmost extent block has been deleted.
                         * So we use the new rightmost path.
                         */
                        ocfs2_mv_path(right_path, left_path);
                        left_path = NULL;
                } else
                        ocfs2_complete_edge_insert(inode, handle, left_path,
                                                   right_path, subtree_index);
        }
out:
        if (left_path)
                ocfs2_free_path(left_path);
        return ret;
}

static int ocfs2_try_to_merge_extent(struct inode *inode,
                                     handle_t *handle,
                                     struct ocfs2_path *path,
                                     int split_index,
                                     struct ocfs2_extent_rec *split_rec,
                                     struct ocfs2_cached_dealloc_ctxt *dealloc,
                                     struct ocfs2_merge_ctxt *ctxt,
                                     struct ocfs2_extent_tree *et)

{
        int ret = 0;
        struct ocfs2_extent_list *el = path_leaf_el(path);
        struct ocfs2_extent_rec *rec = &el->l_recs[split_index];

        BUG_ON(ctxt->c_contig_type == CONTIG_NONE);

        if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
                /*
                 * The merge code will need to create an empty
                 * extent to take the place of the newly
                 * emptied slot. Remove any pre-existing empty
                 * extents - having more than one in a leaf is
                 * illegal.
                 */
                ret = ocfs2_rotate_tree_left(inode, handle, path,
                                             dealloc, et);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }
                split_index--;
                rec = &el->l_recs[split_index];
        }

        if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
                /*
                 * Left-right contig implies this.
                 */
                BUG_ON(!ctxt->c_split_covers_rec);

                /*
                 * Since the leftright insert always covers the entire
                 * extent, this call will delete the insert record
                 * entirely, resulting in an empty extent record added to
                 * the extent block.
                 *
                 * Since the adding of an empty extent shifts
                 * everything back to the right, there's no need to
                 * update split_index here.
                 *
                 * When the split_index is zero, we need to merge it to the
                 * prevoius extent block. It is more efficient and easier
                 * if we do merge_right first and merge_left later.
                 */
                ret = ocfs2_merge_rec_right(inode, path,
                                            handle, split_rec,
                                            split_index);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }

                /*
                 * We can only get this from logic error above.
                 */
                BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));

                /* The merge left us with an empty extent, remove it. */
                ret = ocfs2_rotate_tree_left(inode, handle, path,
                                             dealloc, et);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }

                rec = &el->l_recs[split_index];

                /*
                 * Note that we don't pass split_rec here on purpose -
                 * we've merged it into the rec already.
                 */
                ret = ocfs2_merge_rec_left(inode, path,
                                           handle, rec,
                                           dealloc, et,
                                           split_index);

                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }

                ret = ocfs2_rotate_tree_left(inode, handle, path,
                                             dealloc, et);
                /*
                 * Error from this last rotate is not critical, so
                 * print but don't bubble it up.
                 */
                if (ret)
                        mlog_errno(ret);
                ret = 0;
        } else {
                /*
                 * Merge a record to the left or right.
                 *
                 * 'contig_type' is relative to the existing record,
                 * so for example, if we're "right contig", it's to
                 * the record on the left (hence the left merge).
                 */
                if (ctxt->c_contig_type == CONTIG_RIGHT) {
                        ret = ocfs2_merge_rec_left(inode,
                                                   path,
                                                   handle, split_rec,
                                                   dealloc, et,
                                                   split_index);
                        if (ret) {
                                mlog_errno(ret);
                                goto out;
                        }
                } else {
                        ret = ocfs2_merge_rec_right(inode,
                                                    path,
                                                    handle, split_rec,
                                                    split_index);
                        if (ret) {
                                mlog_errno(ret);
                                goto out;
                        }
                }

                if (ctxt->c_split_covers_rec) {
                        /*
                         * The merge may have left an empty extent in
                         * our leaf. Try to rotate it away.
                         */
                        ret = ocfs2_rotate_tree_left(inode, handle, path,
                                                     dealloc, et);
                        if (ret)
                                mlog_errno(ret);
                        ret = 0;
                }
        }

out:
        return ret;
}

static void ocfs2_subtract_from_rec(struct super_block *sb,
                                    enum ocfs2_split_type split,
                                    struct ocfs2_extent_rec *rec,
                                    struct ocfs2_extent_rec *split_rec)
{
        u64 len_blocks;

        len_blocks = ocfs2_clusters_to_blocks(sb,
                                le16_to_cpu(split_rec->e_leaf_clusters));

        if (split == SPLIT_LEFT) {
                /*
                 * Region is on the left edge of the existing
                 * record.
                 */
                le32_add_cpu(&rec->e_cpos,
                             le16_to_cpu(split_rec->e_leaf_clusters));
                le64_add_cpu(&rec->e_blkno, len_blocks);
                le16_add_cpu(&rec->e_leaf_clusters,
                             -le16_to_cpu(split_rec->e_leaf_clusters));
        } else {
                /*
                 * Region is on the right edge of the existing
                 * record.
                 */
                le16_add_cpu(&rec->e_leaf_clusters,
                             -le16_to_cpu(split_rec->e_leaf_clusters));
        }
}

/*
 * Do the final bits of extent record insertion at the target leaf
 * list. If this leaf is part of an allocation tree, it is assumed
 * that the tree above has been prepared.
 */
static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
                                 struct ocfs2_extent_list *el,
                                 struct ocfs2_insert_type *insert,
                                 struct inode *inode)
{
        int i = insert->ins_contig_index;
        unsigned int range;
        struct ocfs2_extent_rec *rec;

        BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);

        if (insert->ins_split != SPLIT_NONE) {
                i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
                BUG_ON(i == -1);
                rec = &el->l_recs[i];
                ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
                                        insert_rec);
                goto rotate;
        }

        /*
         * Contiguous insert - either left or right.
         */
        if (insert->ins_contig != CONTIG_NONE) {
                rec = &el->l_recs[i];
                if (insert->ins_contig == CONTIG_LEFT) {
                        rec->e_blkno = insert_rec->e_blkno;
                        rec->e_cpos = insert_rec->e_cpos;
                }
                le16_add_cpu(&rec->e_leaf_clusters,
                             le16_to_cpu(insert_rec->e_leaf_clusters));
                return;
        }

        /*
         * Handle insert into an empty leaf.
         */
        if (le16_to_cpu(el->l_next_free_rec) == 0 ||
            ((le16_to_cpu(el->l_next_free_rec) == 1) &&
             ocfs2_is_empty_extent(&el->l_recs[0]))) {
                el->l_recs[0] = *insert_rec;
                el->l_next_free_rec = cpu_to_le16(1);
                return;
        }

        /*
         * Appending insert.
         */
        if (insert->ins_appending == APPEND_TAIL) {
                i = le16_to_cpu(el->l_next_free_rec) - 1;
                rec = &el->l_recs[i];
                range = le32_to_cpu(rec->e_cpos)
                        + le16_to_cpu(rec->e_leaf_clusters);
                BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);

                mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
                                le16_to_cpu(el->l_count),
                                "inode %lu, depth %u, count %u, next free %u, "
                                "rec.cpos %u, rec.clusters %u, "
                                "insert.cpos %u, insert.clusters %u\n",
                                inode->i_ino,
                                le16_to_cpu(el->l_tree_depth),
                                le16_to_cpu(el->l_count),
                                le16_to_cpu(el->l_next_free_rec),
                                le32_to_cpu(el->l_recs[i].e_cpos),
                                le16_to_cpu(el->l_recs[i].e_leaf_clusters),
                                le32_to_cpu(insert_rec->e_cpos),
                                le16_to_cpu(insert_rec->e_leaf_clusters));
                i++;
                el->l_recs[i] = *insert_rec;
                le16_add_cpu(&el->l_next_free_rec, 1);
                return;
        }

rotate:
        /*
         * Ok, we have to rotate.
         *
         * At this point, it is safe to assume that inserting into an
         * empty leaf and appending to a leaf have both been handled
         * above.
         *
         * This leaf needs to have space, either by the empty 1st
         * extent record, or by virtue of an l_next_rec < l_count.
         */
        ocfs2_rotate_leaf(el, insert_rec);
}

static void ocfs2_adjust_rightmost_records(struct inode *inode,
                                           handle_t *handle,
                                           struct ocfs2_path *path,
                                           struct ocfs2_extent_rec *insert_rec)
{
        int ret, i, next_free;
        struct buffer_head *bh;
        struct ocfs2_extent_list *el;
        struct ocfs2_extent_rec *rec;

        /*
         * Update everything except the leaf block.
         */
        for (i = 0; i < path->p_tree_depth; i++) {
                bh = path->p_node[i].bh;
                el = path->p_node[i].el;

                next_free = le16_to_cpu(el->l_next_free_rec);
                if (next_free == 0) {
                        ocfs2_error(inode->i_sb,
                                    "Dinode %llu has a bad extent list",
                                    (unsigned long long)OCFS2_I(inode)->ip_blkno);
                        ret = -EIO;
                        return;
                }

                rec = &el->l_recs[next_free - 1];

                rec->e_int_clusters = insert_rec->e_cpos;
                le32_add_cpu(&rec->e_int_clusters,
                             le16_to_cpu(insert_rec->e_leaf_clusters));
                le32_add_cpu(&rec->e_int_clusters,
                             -le32_to_cpu(rec->e_cpos));

                ret = ocfs2_journal_dirty(handle, bh);
                if (ret)
                        mlog_errno(ret);

        }
}

static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
                                    struct ocfs2_extent_rec *insert_rec,
                                    struct ocfs2_path *right_path,
                                    struct ocfs2_path **ret_left_path)
{
        int ret, next_free;
        struct ocfs2_extent_list *el;
        struct ocfs2_path *left_path = NULL;

        *ret_left_path = NULL;

        /*
         * This shouldn't happen for non-trees. The extent rec cluster
         * count manipulation below only works for interior nodes.
         */
        BUG_ON(right_path->p_tree_depth == 0);

        /*
         * If our appending insert is at the leftmost edge of a leaf,
         * then we might need to update the rightmost records of the
         * neighboring path.
         */
        el = path_leaf_el(right_path);
        next_free = le16_to_cpu(el->l_next_free_rec);
        if (next_free == 0 ||
            (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
                u32 left_cpos;

                ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
                                                    &left_cpos);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }

                mlog(0, "Append may need a left path update. cpos: %u, "
                     "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
                     left_cpos);

                /*
                 * No need to worry if the append is already in the
                 * leftmost leaf.
                 */
                if (left_cpos) {
                        left_path = ocfs2_new_path(path_root_bh(right_path),
                                                   path_root_el(right_path));
                        if (!left_path) {
                                ret = -ENOMEM;
                                mlog_errno(ret);
                                goto out;
                        }

                        ret = ocfs2_find_path(inode, left_path, left_cpos);
                        if (ret) {
                                mlog_errno(ret);
                                goto out;
                        }

                        /*
                         * ocfs2_insert_path() will pass the left_path to the
                         * journal for us.
                         */
                }
        }

        ret = ocfs2_journal_access_path(inode, handle, right_path);
        if (ret) {
                mlog_errno(ret);
                goto out;
        }

        ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);

        *ret_left_path = left_path;
        ret = 0;
out:
        if (ret != 0)
                ocfs2_free_path(left_path);

        return ret;
}

static void ocfs2_split_record(struct inode *inode,
                               struct ocfs2_path *left_path,
                               struct ocfs2_path *right_path,
                               struct ocfs2_extent_rec *split_rec,
                               enum ocfs2_split_type split)
{
        int index;
        u32 cpos = le32_to_cpu(split_rec->e_cpos);
        struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
        struct ocfs2_extent_rec *rec, *tmprec;

        right_el = path_leaf_el(right_path);;
        if (left_path)
                left_el = path_leaf_el(left_path);

        el = right_el;
        insert_el = right_el;
        index = ocfs2_search_extent_list(el, cpos);
        if (index != -1) {
                if (index == 0 && left_path) {
                        BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));

                        /*
                         * This typically means that the record
                         * started in the left path but moved to the
                         * right as a result of rotation. We either
                         * move the existing record to the left, or we
                         * do the later insert there.
                         *
                         * In this case, the left path should always
                         * exist as the rotate code will have passed
                         * it back for a post-insert update.
                         */

                        if (split == SPLIT_LEFT) {
                                /*
                                 * It's a left split. Since we know
                                 * that the rotate code gave us an
                                 * empty extent in the left path, we
                                 * can just do the insert there.
                                 */
                                insert_el = left_el;
                        } else {
                                /*
                                 * Right split - we have to move the
                                 * existing record over to the left
                                 * leaf. The insert will be into the
                                 * newly created empty extent in the
                                 * right leaf.
                                 */
                                tmprec = &right_el->l_recs[index];
                                ocfs2_rotate_leaf(left_el, tmprec);
                                el = left_el;

                                memset(tmprec, 0, sizeof(*tmprec));
                                index = ocfs2_search_extent_list(left_el, cpos);
                                BUG_ON(index == -1);
                        }
                }
        } else {
                BUG_ON(!left_path);
                BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
                /*
                 * Left path is easy - we can just allow the insert to
                 * happen.
                 */
                el = left_el;
                insert_el = left_el;
                index = ocfs2_search_extent_list(el, cpos);
                BUG_ON(index == -1);
        }

        rec = &el->l_recs[index];
        ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
        ocfs2_rotate_leaf(insert_el, split_rec);
}

/*
 * This function only does inserts on an allocation b-tree. For tree
 * depth = 0, ocfs2_insert_at_leaf() is called directly.
 *
 * right_path is the path we want to do the actual insert
 * in. left_path should only be passed in if we need to update that
 * portion of the tree after an edge insert.
 */
static int ocfs2_insert_path(struct inode *inode,
                             handle_t *handle,
                             struct ocfs2_path *left_path,
                             struct ocfs2_path *right_path,
                             struct ocfs2_extent_rec *insert_rec,
                             struct ocfs2_insert_type *insert)
{
        int ret, subtree_index;
        struct buffer_head *leaf_bh = path_leaf_bh(right_path);

        if (left_path) {
                int credits = handle->h_buffer_credits;

                /*
                 * There's a chance that left_path got passed back to
                 * us without being accounted for in the
                 * journal. Extend our transaction here to be sure we
                 * can change those blocks.
                 */
                credits += left_path->p_tree_depth;

                ret = ocfs2_extend_trans(handle, credits);
                if (ret < 0) {
                        mlog_errno(ret);
                        goto out;
                }

                ret = ocfs2_journal_access_path(inode, handle, left_path);
                if (ret < 0) {
                        mlog_errno(ret);
                        goto out;
                }
        }

        /*
         * Pass both paths to the journal. The majority of inserts
         * will be touching all components anyway.
         */
        ret = ocfs2_journal_access_path(inode, handle, right_path);
        if (ret < 0) {
                mlog_errno(ret);
                goto out;
        }

        if (insert->ins_split != SPLIT_NONE) {
                /*
                 * We could call ocfs2_insert_at_leaf() for some types
                 * of splits, but it's easier to just let one separate
                 * function sort it all out.
                 */
                ocfs2_split_record(inode, left_path, right_path,
                                   insert_rec, insert->ins_split);

                /*
                 * Split might have modified either leaf and we don't
                 * have a guarantee that the later edge insert will
                 * dirty this for us.
                 */
                if (left_path)
                        ret = ocfs2_journal_dirty(handle,
                                                  path_leaf_bh(left_path));
                        if (ret)
                                mlog_errno(ret);
        } else
                ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
                                     insert, inode);

        ret = ocfs2_journal_dirty(handle, leaf_bh);
        if (ret)
                mlog_errno(ret);

        if (left_path) {
                /*
                 * The rotate code has indicated that we need to fix
                 * up portions of the tree after the insert.
                 *
                 * XXX: Should we extend the transaction here?
                 */
                subtree_index = ocfs2_find_subtree_root(inode, left_path,
                                                        right_path);
                ocfs2_complete_edge_insert(inode, handle, left_path,
                                           right_path, subtree_index);
        }

        ret = 0;
out:
        return ret;
}

static int ocfs2_do_insert_extent(struct inode *inode,
                                  handle_t *handle,
                                  struct ocfs2_extent_tree *et,
                                  struct ocfs2_extent_rec *insert_rec,
                                  struct ocfs2_insert_type *type)
{
        int ret, rotate = 0;
        u32 cpos;
        struct ocfs2_path *right_path = NULL;
        struct ocfs2_path *left_path = NULL;
        struct ocfs2_extent_list *el;

        el = et->et_root_el;

        ret = ocfs2_journal_access(handle, inode, et->et_root_bh,
                                   OCFS2_JOURNAL_ACCESS_WRITE);
        if (ret) {
                mlog_errno(ret);
                goto out;
        }

        if (le16_to_cpu(el->l_tree_depth) == 0) {
                ocfs2_insert_at_leaf(insert_rec, el, type, inode);
                goto out_update_clusters;
        }

        right_path = ocfs2_new_path(et->et_root_bh, et->et_root_el);
        if (!right_path) {
                ret = -ENOMEM;
                mlog_errno(ret);
                goto out;
        }

        /*
         * Determine the path to start with. Rotations need the
         * rightmost path, everything else can go directly to the
         * target leaf.
         */
        cpos = le32_to_cpu(insert_rec->e_cpos);
        if (type->ins_appending == APPEND_NONE &&
            type->ins_contig == CONTIG_NONE) {
                rotate = 1;
                cpos = UINT_MAX;
        }

        ret = ocfs2_find_path(inode, right_path, cpos);
        if (ret) {
                mlog_errno(ret);
                goto out;
        }

        /*
         * Rotations and appends need special treatment - they modify
         * parts of the tree's above them.
         *
         * Both might pass back a path immediate to the left of the
         * one being inserted to. This will be cause
         * ocfs2_insert_path() to modify the rightmost records of
         * left_path to account for an edge insert.
         *
         * XXX: When modifying this code, keep in mind that an insert
         * can wind up skipping both of these two special cases...
         */
        if (rotate) {
                ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
                                              le32_to_cpu(insert_rec->e_cpos),
                                              right_path, &left_path);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }

                /*
                 * ocfs2_rotate_tree_right() might have extended the
                 * transaction without re-journaling our tree root.
                 */
                ret = ocfs2_journal_access(handle, inode, et->et_root_bh,
                                           OCFS2_JOURNAL_ACCESS_WRITE);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }
        } else if (type->ins_appending == APPEND_TAIL
                   && type->ins_contig != CONTIG_LEFT) {
                ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
                                               right_path, &left_path);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }
        }

        ret = ocfs2_insert_path(inode, handle, left_path, right_path,
                                insert_rec, type);
        if (ret) {
                mlog_errno(ret);
                goto out;
        }

out_update_clusters:
        if (type->ins_split == SPLIT_NONE)
                ocfs2_et_update_clusters(inode, et,
                                         le16_to_cpu(insert_rec->e_leaf_clusters));

        ret = ocfs2_journal_dirty(handle, et->et_root_bh);
        if (ret)
                mlog_errno(ret);

out:
        ocfs2_free_path(left_path);
        ocfs2_free_path(right_path);

        return ret;
}

static enum ocfs2_contig_type
ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
                               struct ocfs2_extent_list *el, int index,
                               struct ocfs2_extent_rec *split_rec)
{
        int status;
        enum ocfs2_contig_type ret = CONTIG_NONE;
        u32 left_cpos, right_cpos;
        struct ocfs2_extent_rec *rec = NULL;
        struct ocfs2_extent_list *new_el;
        struct ocfs2_path *left_path = NULL, *right_path = NULL;
        struct buffer_head *bh;
        struct ocfs2_extent_block *eb;

        if (index > 0) {
                rec = &el->l_recs[index - 1];
        } else if (path->p_tree_depth > 0) {
                status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
                                                       path, &left_cpos);
                if (status)
                        goto out;

                if (left_cpos != 0) {
                        left_path = ocfs2_new_path(path_root_bh(path),
                                                   path_root_el(path));
                        if (!left_path)
                                goto out;

                        status = ocfs2_find_path(inode, left_path, left_cpos);
                        if (status)
                                goto out;

                        new_el = path_leaf_el(left_path);

                        if (le16_to_cpu(new_el->l_next_free_rec) !=
                            le16_to_cpu(new_el->l_count)) {
                                bh = path_leaf_bh(left_path);
                                eb = (struct ocfs2_extent_block *)bh->b_data;
                                OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb,
                                                                 eb);
                                goto out;
                        }
                        rec = &new_el->l_recs[
                                le16_to_cpu(new_el->l_next_free_rec) - 1];
                }
        }

        /*
         * We're careful to check for an empty extent record here -
         * the merge code will know what to do if it sees one.
         */
        if (rec) {
                if (index == 1 && ocfs2_is_empty_extent(rec)) {
                        if (split_rec->e_cpos == el->l_recs[index].e_cpos)
                                ret = CONTIG_RIGHT;
                } else {
                        ret = ocfs2_extent_contig(inode, rec, split_rec);
                }
        }

        rec = NULL;
        if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
                rec = &el->l_recs[index + 1];
        else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
                 path->p_tree_depth > 0) {
                status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
                                                        path, &right_cpos);
                if (status)
                        goto out;

                if (right_cpos == 0)
                        goto out;

                right_path = ocfs2_new_path(path_root_bh(path),
                                            path_root_el(path));
                if (!right_path)
                        goto out;

                status = ocfs2_find_path(inode, right_path, right_cpos);
                if (status)
                        goto out;

                new_el = path_leaf_el(right_path);
                rec = &new_el->l_recs[0];
                if (ocfs2_is_empty_extent(rec)) {
                        if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
                                bh = path_leaf_bh(right_path);
                                eb = (struct ocfs2_extent_block *)bh->b_data;
                                OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb,
                                                                 eb);
                                goto out;
                        }
                        rec = &new_el->l_recs[1];
                }
        }

        if (rec) {
                enum ocfs2_contig_type contig_type;

                contig_type = ocfs2_extent_contig(inode, rec, split_rec);

                if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
                        ret = CONTIG_LEFTRIGHT;
                else if (ret == CONTIG_NONE)
                        ret = contig_type;
        }

out:
        if (left_path)
                ocfs2_free_path(left_path);
        if (right_path)
                ocfs2_free_path(right_path);

        return ret;
}

static void ocfs2_figure_contig_type(struct inode *inode,
                                     struct ocfs2_insert_type *insert,
                                     struct ocfs2_extent_list *el,
                                     struct ocfs2_extent_rec *insert_rec,
                                     struct ocfs2_extent_tree *et)
{
        int i;
        enum ocfs2_contig_type contig_type = CONTIG_NONE;

        BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);

        for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
                contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
                                                  insert_rec);
                if (contig_type != CONTIG_NONE) {
                        insert->ins_contig_index = i;
                        break;
                }
        }
        insert->ins_contig = contig_type;

        if (insert->ins_contig != CONTIG_NONE) {
                struct ocfs2_extent_rec *rec =
                                &el->l_recs[insert->ins_contig_index];
                unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
                                   le16_to_cpu(insert_rec->e_leaf_clusters);

                /*
                 * Caller might want us to limit the size of extents, don't
                 * calculate contiguousness if we might exceed that limit.
                 */
                if (et->et_max_leaf_clusters &&
                    (len > et->et_max_leaf_clusters))
                        insert->ins_contig = CONTIG_NONE;
        }
}

/*
 * This should only be called against the righmost leaf extent list.
 *
 * ocfs2_figure_appending_type() will figure out whether we'll have to
 * insert at the tail of the rightmost leaf.
 *
 * This should also work against the root extent list for tree's with 0
 * depth. If we consider the root extent list to be the rightmost leaf node
 * then the logic here makes sense.
 */
static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
                                        struct ocfs2_extent_list *el,
                                        struct ocfs2_extent_rec *insert_rec)
{
        int i;
        u32 cpos = le32_to_cpu(insert_rec->e_cpos);
        struct ocfs2_extent_rec *rec;

        insert->ins_appending = APPEND_NONE;

        BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);

        if (!el->l_next_free_rec)
                goto set_tail_append;

        if (ocfs2_is_empty_extent(&el->l_recs[0])) {
                /* Were all records empty? */
                if (le16_to_cpu(el->l_next_free_rec) == 1)
                        goto set_tail_append;
        }

        i = le16_to_cpu(el->l_next_free_rec) - 1;
        rec = &el->l_recs[i];

        if (cpos >=
            (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
                goto set_tail_append;

        return;

set_tail_append:
        insert->ins_appending = APPEND_TAIL;
}

/*
 * Helper function called at the begining of an insert.
 *
 * This computes a few things that are commonly used in the process of
 * inserting into the btree:
 *   - Whether the new extent is contiguous with an existing one.
 *   - The current tree depth.
 *   - Whether the insert is an appending one.
 *   - The total # of free records in the tree.
 *
 * All of the information is stored on the ocfs2_insert_type
 * structure.
 */
static int ocfs2_figure_insert_type(struct inode *inode,
                                    struct ocfs2_extent_tree *et,
                                    struct buffer_head **last_eb_bh,
                                    struct ocfs2_extent_rec *insert_rec,
                                    int *free_records,
                                    struct ocfs2_insert_type *insert)
{
        int ret;
        struct ocfs2_extent_block *eb;
        struct ocfs2_extent_list *el;
        struct ocfs2_path *path = NULL;
        struct buffer_head *bh = NULL;

        insert->ins_split = SPLIT_NONE;

        el = et->et_root_el;
        insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);

        if (el->l_tree_depth) {
                /*
                 * If we have tree depth, we read in the
                 * rightmost extent block ahead of time as
                 * ocfs2_figure_insert_type() and ocfs2_add_branch()
                 * may want it later.
                 */
                ret = ocfs2_read_block(inode, ocfs2_et_get_last_eb_blk(et), &bh);
                if (ret) {
                        mlog_exit(ret);
                        goto out;
                }
                eb = (struct ocfs2_extent_block *) bh->b_data;
                el = &eb->h_list;
        }

        /*
         * Unless we have a contiguous insert, we'll need to know if
         * there is room left in our allocation tree for another
         * extent record.
         *
         * XXX: This test is simplistic, we can search for empty
         * extent records too.
         */
        *free_records = le16_to_cpu(el->l_count) -
                le16_to_cpu(el->l_next_free_rec);

        if (!insert->ins_tree_depth) {
                ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
                ocfs2_figure_appending_type(insert, el, insert_rec);
                return 0;
        }

        path = ocfs2_new_path(et->et_root_bh, et->et_root_el);
        if (!path) {
                ret = -ENOMEM;
                mlog_errno(ret);
                goto out;
        }

        /*
         * In the case that we're inserting past what the tree
         * currently accounts for, ocfs2_find_path() will return for
         * us the rightmost tree path. This is accounted for below in
         * the appending code.
         */
        ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
        if (ret) {
                mlog_errno(ret);
                goto out;
        }

        el = path_leaf_el(path);

        /*
         * Now that we have the path, there's two things we want to determine:
         * 1) Contiguousness (also set contig_index if this is so)
         *
         * 2) Are we doing an append? We can trivially break this up
         *     into two types of appends: simple record append, or a
         *     rotate inside the tail leaf.
         */
        ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);

        /*
         * The insert code isn't quite ready to deal with all cases of
         * left contiguousness. Specifically, if it's an insert into
         * the 1st record in a leaf, it will require the adjustment of
         * cluster count on the last record of the path directly to it's
         * left. For now, just catch that case and fool the layers
         * above us. This works just fine for tree_depth == 0, which
         * is why we allow that above.
         */
        if (insert->ins_contig == CONTIG_LEFT &&
            insert->ins_contig_index == 0)
                insert->ins_contig = CONTIG_NONE;

        /*
         * Ok, so we can simply compare against last_eb to figure out
         * whether the path doesn't exist. This will only happen in
         * the case that we're doing a tail append, so maybe we can
         * take advantage of that information somehow.
         */
        if (ocfs2_et_get_last_eb_blk(et) ==
            path_leaf_bh(path)->b_blocknr) {
                /*
                 * Ok, ocfs2_find_path() returned us the rightmost
                 * tree path. This might be an appending insert. There are
                 * two cases:
                 *    1) We're doing a true append at the tail:
                 *      -This might even be off the end of the leaf
                 *    2) We're "appending" by rotating in the tail
                 */
                ocfs2_figure_appending_type(insert, el, insert_rec);
        }

out:
        ocfs2_free_path(path);

        if (ret == 0)
                *last_eb_bh = bh;
        else
                brelse(bh);
        return ret;
}

/*
 * Insert an extent into an inode btree.
 *
 * The caller needs to update fe->i_clusters
 */
int ocfs2_insert_extent(struct ocfs2_super *osb,
                        handle_t *handle,
                        struct inode *inode,
                        struct ocfs2_extent_tree *et,
                        u32 cpos,
                        u64 start_blk,
                        u32 new_clusters,
                        u8 flags,
                        struct ocfs2_alloc_context *meta_ac)
{
        int status;
        int uninitialized_var(free_records);
        struct buffer_head *last_eb_bh = NULL;
        struct ocfs2_insert_type insert = {0, };
        struct ocfs2_extent_rec rec;

        mlog(0, "add %u clusters at position %u to inode %llu\n",
             new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);

        memset(&rec, 0, sizeof(rec));
        rec.e_cpos = cpu_to_le32(cpos);
        rec.e_blkno = cpu_to_le64(start_blk);
        rec.e_leaf_clusters = cpu_to_le16(new_clusters);
        rec.e_flags = flags;
        status = ocfs2_et_insert_check(inode, et, &rec);
        if (status) {
                mlog_errno(status);
                goto bail;
        }

        status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec,
                                          &free_records, &insert);
        if (status < 0) {
                mlog_errno(status);
                goto bail;
        }

        mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
             "Insert.contig_index: %d, Insert.free_records: %d, "
             "Insert.tree_depth: %d\n",
             insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
             free_records, insert.ins_tree_depth);

        if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
                status = ocfs2_grow_tree(inode, handle, et,
                                         &insert.ins_tree_depth, &last_eb_bh,
                                         meta_ac);
                if (status) {
                        mlog_errno(status);
                        goto bail;
                }
        }

        /* Finally, we can add clusters. This might rotate the tree for us. */
        status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert);
        if (status < 0)
                mlog_errno(status);
        else if (et->et_ops == &ocfs2_dinode_et_ops)
                ocfs2_extent_map_insert_rec(inode, &rec);

bail:
        brelse(last_eb_bh);

        mlog_exit(status);
        return status;
}

/*
 * Allcate and add clusters into the extent b-tree.
 * The new clusters(clusters_to_add) will be inserted at logical_offset.
 * The extent b-tree's root is specified by et, and
 * it is not limited to the file storage. Any extent tree can use this
 * function if it implements the proper ocfs2_extent_tree.
 */
int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb,
                                struct inode *inode,
                                u32 *logical_offset,
                                u32 clusters_to_add,
                                int mark_unwritten,
                                struct ocfs2_extent_tree *et,
                                handle_t *handle,
                                struct ocfs2_alloc_context *data_ac,
                                struct ocfs2_alloc_context *meta_ac,
                                enum ocfs2_alloc_restarted *reason_ret)
{
        int status = 0;
        int free_extents;
        enum ocfs2_alloc_restarted reason = RESTART_NONE;
        u32 bit_off, num_bits;
        u64 block;
        u8 flags = 0;

        BUG_ON(!clusters_to_add);

        if (mark_unwritten)
                flags = OCFS2_EXT_UNWRITTEN;

        free_extents = ocfs2_num_free_extents(osb, inode, et);
        if (free_extents < 0) {
                status = free_extents;
                mlog_errno(status);
                goto leave;
        }

        /* there are two cases which could cause us to EAGAIN in the
         * we-need-more-metadata case:
         * 1) we haven't reserved *any*
         * 2) we are so fragmented, we've needed to add metadata too
         *    many times. */
        if (!free_extents && !meta_ac) {
                mlog(0, "we haven't reserved any metadata!\n");
                status = -EAGAIN;
                reason = RESTART_META;
                goto leave;
        } else if ((!free_extents)
                   && (ocfs2_alloc_context_bits_left(meta_ac)
                       < ocfs2_extend_meta_needed(et->et_root_el))) {
                mlog(0, "filesystem is really fragmented...\n");
                status = -EAGAIN;
                reason = RESTART_META;
                goto leave;
        }

        status = __ocfs2_claim_clusters(osb, handle, data_ac, 1,
                                        clusters_to_add, &bit_off, &num_bits);
        if (status < 0) {
                if (status != -ENOSPC)
                        mlog_errno(status);
                goto leave;
        }

        BUG_ON(num_bits > clusters_to_add);

        /* reserve our write early -- insert_extent may update the inode */
        status = ocfs2_journal_access(handle, inode, et->et_root_bh,
                                      OCFS2_JOURNAL_ACCESS_WRITE);
        if (status < 0) {
                mlog_errno(status);
                goto leave;
        }

        block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
        mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
             num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno);
        status = ocfs2_insert_extent(osb, handle, inode, et,
                                     *logical_offset, block,
                                     num_bits, flags, meta_ac);
        if (status < 0) {
                mlog_errno(status);
                goto leave;
        }

        status = ocfs2_journal_dirty(handle, et->et_root_bh);
        if (status < 0) {
                mlog_errno(status);
                goto leave;
        }

        clusters_to_add -= num_bits;
        *logical_offset += num_bits;

        if (clusters_to_add) {
                mlog(0, "need to alloc once more, wanted = %u\n",
                     clusters_to_add);
                status = -EAGAIN;
                reason = RESTART_TRANS;
        }

leave:
        mlog_exit(status);
        if (reason_ret)
                *reason_ret = reason;
        return status;
}

static void ocfs2_make_right_split_rec(struct super_block *sb,
                                       struct ocfs2_extent_rec *split_rec,
                                       u32 cpos,
                                       struct ocfs2_extent_rec *rec)
{
        u32 rec_cpos = le32_to_cpu(rec->e_cpos);
        u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);

        memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));

        split_rec->e_cpos = cpu_to_le32(cpos);
        split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);

        split_rec->e_blkno = rec->e_blkno;
        le64_add_cpu(&split_rec->e_blkno,
                     ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));

        split_rec->e_flags = rec->e_flags;
}

static int ocfs2_split_and_insert(struct inode *inode,
                                  handle_t *handle,
                                  struct ocfs2_path *path,
                                  struct ocfs2_extent_tree *et,
                                  struct buffer_head **last_eb_bh,
                                  int split_index,
                                  struct ocfs2_extent_rec *orig_split_rec,
                                  struct ocfs2_alloc_context *meta_ac)
{
        int ret = 0, depth;
        unsigned int insert_range, rec_range, do_leftright = 0;
        struct ocfs2_extent_rec tmprec;
        struct ocfs2_extent_list *rightmost_el;
        struct ocfs2_extent_rec rec;
        struct ocfs2_extent_rec split_rec = *orig_split_rec;
        struct ocfs2_insert_type insert;
        struct ocfs2_extent_block *eb;

leftright:
        /*
         * Store a copy of the record on the stack - it might move
         * around as the tree is manipulated below.
         */
        rec = path_leaf_el(path)->l_recs[split_index];

        rightmost_el = et->et_root_el;

        depth = le16_to_cpu(rightmost_el->l_tree_depth);
        if (depth) {
                BUG_ON(!(*last_eb_bh));
                eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
                rightmost_el = &eb->h_list;
        }

        if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
            le16_to_cpu(rightmost_el->l_count)) {
                ret = ocfs2_grow_tree(inode, handle, et,
                                      &depth, last_eb_bh, meta_ac);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }
        }

        memset(&insert, 0, sizeof(struct ocfs2_insert_type));
        insert.ins_appending = APPEND_NONE;
        insert.ins_contig = CONTIG_NONE;
        insert.ins_tree_depth = depth;

        insert_range = le32_to_cpu(split_rec.e_cpos) +
                le16_to_cpu(split_rec.e_leaf_clusters);
        rec_range = le32_to_cpu(rec.e_cpos) +
                le16_to_cpu(rec.e_leaf_clusters);

        if (split_rec.e_cpos == rec.e_cpos) {
                insert.ins_split = SPLIT_LEFT;
        } else if (insert_range == rec_range) {
                insert.ins_split = SPLIT_RIGHT;
        } else {
                /*
                 * Left/right split. We fake this as a right split
                 * first and then make a second pass as a left split.
                 */
                insert.ins_split = SPLIT_RIGHT;

                ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
                                           &rec);

                split_rec = tmprec;

                BUG_ON(do_leftright);
                do_leftright = 1;
        }

        ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
        if (ret) {
                mlog_errno(ret);
                goto out;
        }

        if (do_leftright == 1) {
                u32 cpos;
                struct ocfs2_extent_list *el;

                do_leftright++;
                split_rec = *orig_split_rec;

                ocfs2_reinit_path(path, 1);

                cpos = le32_to_cpu(split_rec.e_cpos);
                ret = ocfs2_find_path(inode, path, cpos);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }

                el = path_leaf_el(path);
                split_index = ocfs2_search_extent_list(el, cpos);
                goto leftright;
        }
out:

        return ret;
}

/*
 * Mark part or all of the extent record at split_index in the leaf
 * pointed to by path as written. This removes the unwritten
 * extent flag.
 *
 * Care is taken to handle contiguousness so as to not grow the tree.
 *
 * meta_ac is not strictly necessary - we only truly need it if growth
 * of the tree is required. All other cases will degrade into a less
 * optimal tree layout.
 *
 * last_eb_bh should be the rightmost leaf block for any extent
 * btree. Since a split may grow the tree or a merge might shrink it,
 * the caller cannot trust the contents of that buffer after this call.
 *
 * This code is optimized for readability - several passes might be
 * made over certain portions of the tree. All of those blocks will
 * have been brought into cache (and pinned via the journal), so the
 * extra overhead is not expressed in terms of disk reads.
 */
static int __ocfs2_mark_extent_written(struct inode *inode,
                                       struct ocfs2_extent_tree *et,
                                       handle_t *handle,
                                       struct ocfs2_path *path,
                                       int split_index,
                                       struct ocfs2_extent_rec *split_rec,
                                       struct ocfs2_alloc_context *meta_ac,
                                       struct ocfs2_cached_dealloc_ctxt *dealloc)
{
        int ret = 0;
        struct ocfs2_extent_list *el = path_leaf_el(path);
        struct buffer_head *last_eb_bh = NULL;
        struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
        struct ocfs2_merge_ctxt ctxt;
        struct ocfs2_extent_list *rightmost_el;

        if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
                ret = -EIO;
                mlog_errno(ret);
                goto out;
        }

        if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
            ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
             (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
                ret = -EIO;
                mlog_errno(ret);
                goto out;
        }

        ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
                                                            split_index,
                                                            split_rec);

        /*
         * The core merge / split code wants to know how much room is
         * left in this inodes allocation tree, so we pass the
         * rightmost extent list.
         */
        if (path->p_tree_depth) {
                struct ocfs2_extent_block *eb;

                ret = ocfs2_read_block(inode, ocfs2_et_get_last_eb_blk(et),
                                       &last_eb_bh);
                if (ret) {
                        mlog_exit(ret);
                        goto out;
                }

                eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
                if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
                        OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
                        ret = -EROFS;
                        goto out;
                }

                rightmost_el = &eb->h_list;
        } else
                rightmost_el = path_root_el(path);

        if (rec->e_cpos == split_rec->e_cpos &&
            rec->e_leaf_clusters == split_rec->e_leaf_clusters)
                ctxt.c_split_covers_rec = 1;
        else
                ctxt.c_split_covers_rec = 0;

        ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);

        mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
             split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
             ctxt.c_split_covers_rec);

        if (ctxt.c_contig_type == CONTIG_NONE) {
                if (ctxt.c_split_covers_rec)
                        el->l_recs[split_index] = *split_rec;
                else
                        ret = ocfs2_split_and_insert(inode, handle, path, et,
                                                     &last_eb_bh, split_index,
                                                     split_rec, meta_ac);
                if (ret)
                        mlog_errno(ret);
        } else {
                ret = ocfs2_try_to_merge_extent(inode, handle, path,
                                                split_index, split_rec,
                                                dealloc, &ctxt, et);
                if (ret)
                        mlog_errno(ret);
        }

out:
        brelse(last_eb_bh);
        return ret;
}

/*
 * Mark the already-existing extent at cpos as written for len clusters.
 *
 * If the existing extent is larger than the request, initiate a
 * split. An attempt will be made at merging with adjacent extents.
 *
 * The caller is responsible for passing down meta_ac if we'll need it.
 */
int ocfs2_mark_extent_written(struct inode *inode,
                              struct ocfs2_extent_tree *et,
                              handle_t *handle, u32 cpos, u32 len, u32 phys,
                              struct ocfs2_alloc_context *meta_ac,
                              struct ocfs2_cached_dealloc_ctxt *dealloc)
{
        int ret, index;
        u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
        struct ocfs2_extent_rec split_rec;
        struct ocfs2_path *left_path = NULL;
        struct ocfs2_extent_list *el;

        mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
             inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);

        if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
                ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
                            "that are being written to, but the feature bit "
                            "is not set in the super block.",
                            (unsigned long long)OCFS2_I(inode)->ip_blkno);
                ret = -EROFS;
                goto out;
        }

        /*
         * XXX: This should be fixed up so that we just re-insert the
         * next extent records.
         *
         * XXX: This is a hack on the extent tree, maybe it should be
         * an op?
         */
        if (et->et_ops == &ocfs2_dinode_et_ops)
                ocfs2_extent_map_trunc(inode, 0);

        left_path = ocfs2_new_path(et->et_root_bh, et->et_root_el);
        if (!left_path) {
                ret = -ENOMEM;
                mlog_errno(ret);
                goto out;
        }

        ret = ocfs2_find_path(inode, left_path, cpos);
        if (ret) {
                mlog_errno(ret);
                goto out;
        }
        el = path_leaf_el(left_path);

        index = ocfs2_search_extent_list(el, cpos);
        if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
                ocfs2_error(inode->i_sb,
                            "Inode %llu has an extent at cpos %u which can no "
                            "longer be found.\n",
                            (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
                ret = -EROFS;
                goto out;
        }

        memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
        split_rec.e_cpos = cpu_to_le32(cpos);
        split_rec.e_leaf_clusters = cpu_to_le16(len);
        split_rec.e_blkno = cpu_to_le64(start_blkno);
        split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
        split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;

        ret = __ocfs2_mark_extent_written(inode, et, handle, left_path,
                                          index, &split_rec, meta_ac,
                                          dealloc);
        if (ret)
                mlog_errno(ret);

out:
        ocfs2_free_path(left_path);
        return ret;
}

static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et,
                            handle_t *handle, struct ocfs2_path *path,
                            int index, u32 new_range,
                            struct ocfs2_alloc_context *meta_ac)
{
        int ret, depth, credits = handle->h_buffer_credits;
        struct buffer_head *last_eb_bh = NULL;
        struct ocfs2_extent_block *eb;
        struct ocfs2_extent_list *rightmost_el, *el;
        struct ocfs2_extent_rec split_rec;
        struct ocfs2_extent_rec *rec;
        struct ocfs2_insert_type insert;

        /*
         * Setup the record to split before we grow the tree.
         */
        el = path_leaf_el(path);
        rec = &el->l_recs[index];
        ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);

        depth = path->p_tree_depth;
        if (depth > 0) {
                ret = ocfs2_read_block(inode, ocfs2_et_get_last_eb_blk(et),
                                       &last_eb_bh);
                if (ret < 0) {
                        mlog_errno(ret);
                        goto out;
                }

                eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
                rightmost_el = &eb->h_list;
        } else
                rightmost_el = path_leaf_el(path);

        credits += path->p_tree_depth +
                   ocfs2_extend_meta_needed(et->et_root_el);
        ret = ocfs2_extend_trans(handle, credits);
        if (ret) {
                mlog_errno(ret);
                goto out;
        }

        if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
            le16_to_cpu(rightmost_el->l_count)) {
                ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh,
                                      meta_ac);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }
        }

        memset(&insert, 0, sizeof(struct ocfs2_insert_type));
        insert.ins_appending = APPEND_NONE;
        insert.ins_contig = CONTIG_NONE;
        insert.ins_split = SPLIT_RIGHT;
        insert.ins_tree_depth = depth;

        ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
        if (ret)
                mlog_errno(ret);

out:
        brelse(last_eb_bh);
        return ret;
}

static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
                              struct ocfs2_path *path, int index,
                              struct ocfs2_cached_dealloc_ctxt *dealloc,
                              u32 cpos, u32 len,
                              struct ocfs2_extent_tree *et)
{
        int ret;
        u32 left_cpos, rec_range, trunc_range;
        int wants_rotate = 0, is_rightmost_tree_rec = 0;
        struct super_block *sb = inode->i_sb;
        struct ocfs2_path *left_path = NULL;
        struct ocfs2_extent_list *el = path_leaf_el(path);
        struct ocfs2_extent_rec *rec;
        struct ocfs2_extent_block *eb;

        if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
                ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }

                index--;
        }

        if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
            path->p_tree_depth) {
                /*
                 * Check whether this is the rightmost tree record. If
                 * we remove all of this record or part of its right
                 * edge then an update of the record lengths above it
                 * will be required.
                 */
                eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
                if (eb->h_next_leaf_blk == 0)
                        is_rightmost_tree_rec = 1;
        }

        rec = &el->l_recs[index];
        if (index == 0 && path->p_tree_depth &&
            le32_to_cpu(rec->e_cpos) == cpos) {
                /*
                 * Changing the leftmost offset (via partial or whole
                 * record truncate) of an interior (or rightmost) path
                 * means we have to update the subtree that is formed
                 * by this leaf and the one to it's left.
                 *
                 * There are two cases we can skip:
                 *   1) Path is the leftmost one in our inode tree.
                 *   2) The leaf is rightmost and will be empty after
                 *      we remove the extent record - the rotate code
                 *      knows how to update the newly formed edge.
                 */

                ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
                                                    &left_cpos);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }

                if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
                        left_path = ocfs2_new_path(path_root_bh(path),
                                                   path_root_el(path));
                        if (!left_path) {
                                ret = -ENOMEM;
                                mlog_errno(ret);
                                goto out;
                        }

                        ret = ocfs2_find_path(inode, left_path, left_cpos);
                        if (ret) {
                                mlog_errno(ret);
                                goto out;
                        }
                }
        }

        ret = ocfs2_extend_rotate_transaction(handle, 0,
                                              handle->h_buffer_credits,
                                              path);
        if (ret) {
                mlog_errno(ret);
                goto out;
        }

        ret = ocfs2_journal_access_path(inode, handle, path);
        if (ret) {
                mlog_errno(ret);
                goto out;
        }

        ret = ocfs2_journal_access_path(inode, handle, left_path);
        if (ret) {
                mlog_errno(ret);
                goto out;
        }

        rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
        trunc_range = cpos + len;

        if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
                int next_free;

                memset(rec, 0, sizeof(*rec));
                ocfs2_cleanup_merge(el, index);
                wants_rotate = 1;

                next_free = le16_to_cpu(el->l_next_free_rec);
                if (is_rightmost_tree_rec && next_free > 1) {
                        /*
                         * We skip the edge update if this path will
                         * be deleted by the rotate code.
                         */
                        rec = &el->l_recs[next_free - 1];
                        ocfs2_adjust_rightmost_records(inode, handle, path,
                                                       rec);
                }
        } else if (le32_to_cpu(rec->e_cpos) == cpos) {
                /* Remove leftmost portion of the record. */
                le32_add_cpu(&rec->e_cpos, len);
                le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
                le16_add_cpu(&rec->e_leaf_clusters, -len);
        } else if (rec_range == trunc_range) {
                /* Remove rightmost portion of the record */
                le16_add_cpu(&rec->e_leaf_clusters, -len);
                if (is_rightmost_tree_rec)
                        ocfs2_adjust_rightmost_records(inode, handle, path, rec);
        } else {
                /* Caller should have trapped this. */
                mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
                     "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
                     le32_to_cpu(rec->e_cpos),
                     le16_to_cpu(rec->e_leaf_clusters), cpos, len);
                BUG();
        }

        if (left_path) {
                int subtree_index;

                subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
                ocfs2_complete_edge_insert(inode, handle, left_path, path,
                                           subtree_index);
        }

        ocfs2_journal_dirty(handle, path_leaf_bh(path));

        ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
        if (ret) {
                mlog_errno(ret);
                goto out;
        }

out:
        ocfs2_free_path(left_path);
        return ret;
}

int ocfs2_remove_extent(struct inode *inode,
                        struct ocfs2_extent_tree *et,
                        u32 cpos, u32 len, handle_t *handle,
                        struct ocfs2_alloc_context *meta_ac,
                        struct ocfs2_cached_dealloc_ctxt *dealloc)
{
        int ret, index;
        u32 rec_range, trunc_range;
        struct ocfs2_extent_rec *rec;
        struct ocfs2_extent_list *el;
        struct ocfs2_path *path = NULL;

        ocfs2_extent_map_trunc(inode, 0);

        path = ocfs2_new_path(et->et_root_bh, et->et_root_el);
        if (!path) {
                ret = -ENOMEM;
                mlog_errno(ret);
                goto out;
        }

        ret = ocfs2_find_path(inode, path, cpos);
        if (ret) {
                mlog_errno(ret);
                goto out;
        }

        el = path_leaf_el(path);
        index = ocfs2_search_extent_list(el, cpos);
        if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
                ocfs2_error(inode->i_sb,
                            "Inode %llu has an extent at cpos %u which can no "
                            "longer be found.\n",
                            (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
                ret = -EROFS;
                goto out;
        }

        /*
         * We have 3 cases of extent removal:
         *   1) Range covers the entire extent rec
         *   2) Range begins or ends on one edge of the extent rec
         *   3) Range is in the middle of the extent rec (no shared edges)
         *
         * For case 1 we remove the extent rec and left rotate to
         * fill the hole.
         *
         * For case 2 we just shrink the existing extent rec, with a
         * tree update if the shrinking edge is also the edge of an
         * extent block.
         *
         * For case 3 we do a right split to turn the extent rec into
         * something case 2 can handle.
         */
        rec = &el->l_recs[index];
        rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
        trunc_range = cpos + len;

        BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);

        mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
             "(cpos %u, len %u)\n",
             (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
             le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));

        if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
                ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
                                         cpos, len, et);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }
        } else {
                ret = ocfs2_split_tree(inode, et, handle, path, index,
                                       trunc_range, meta_ac);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }

                /*
                 * The split could have manipulated the tree enough to
                 * move the record location, so we have to look for it again.
                 */
                ocfs2_reinit_path(path, 1);

                ret = ocfs2_find_path(inode, path, cpos);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }

                el = path_leaf_el(path);
                index = ocfs2_search_extent_list(el, cpos);
                if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
                        ocfs2_error(inode->i_sb,
                                    "Inode %llu: split at cpos %u lost record.",
                                    (unsigned long long)OCFS2_I(inode)->ip_blkno,
                                    cpos);
                        ret = -EROFS;
                        goto out;
                }

                /*
                 * Double check our values here. If anything is fishy,
                 * it's easier to catch it at the top level.
                 */
                rec = &el->l_recs[index];
                rec_range = le32_to_cpu(rec->e_cpos) +
                        ocfs2_rec_clusters(el, rec);
                if (rec_range != trunc_range) {
                        ocfs2_error(inode->i_sb,
                                    "Inode %llu: error after split at cpos %u"
                                    "trunc len %u, existing record is (%u,%u)",
                                    (unsigned long long)OCFS2_I(inode)->ip_blkno,
                                    cpos, len, le32_to_cpu(rec->e_cpos),
                                    ocfs2_rec_clusters(el, rec));
                        ret = -EROFS;
                        goto out;
                }

                ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
                                         cpos, len, et);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }
        }

out:
        ocfs2_free_path(path);
        return ret;
}

int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
{
        struct buffer_head *tl_bh = osb->osb_tl_bh;
        struct ocfs2_dinode *di;
        struct ocfs2_truncate_log *tl;

        di = (struct ocfs2_dinode *) tl_bh->b_data;
        tl = &di->id2.i_dealloc;

        mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
                        "slot %d, invalid truncate log parameters: used = "
                        "%u, count = %u\n", osb->slot_num,
                        le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
        return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
}

static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
                                           unsigned int new_start)
{
        unsigned int tail_index;
        unsigned int current_tail;

        /* No records, nothing to coalesce */
        if (!le16_to_cpu(tl->tl_used))
                return 0;

        tail_index = le16_to_cpu(tl->tl_used) - 1;
        current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
        current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);

        return current_tail == new_start;
}

int ocfs2_truncate_log_append(struct ocfs2_super *osb,
                              handle_t *handle,
                              u64 start_blk,
                              unsigned int num_clusters)
{
        int status, index;
        unsigned int start_cluster, tl_count;
        struct inode *tl_inode = osb->osb_tl_inode;
        struct buffer_head *tl_bh = osb->osb_tl_bh;
        struct ocfs2_dinode *di;
        struct ocfs2_truncate_log *tl;

        mlog_entry("start_blk = %llu, num_clusters = %u\n",
                   (unsigned long long)start_blk, num_clusters);

        BUG_ON(mutex_trylock(&tl_inode->i_mutex));

        start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);

        di = (struct ocfs2_dinode *) tl_bh->b_data;
        tl = &di->id2.i_dealloc;
        if (!OCFS2_IS_VALID_DINODE(di)) {
                OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
                status = -EIO;
                goto bail;
        }

        tl_count = le16_to_cpu(tl->tl_count);
        mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
                        tl_count == 0,
                        "Truncate record count on #%llu invalid "
                        "wanted %u, actual %u\n",
                        (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
                        ocfs2_truncate_recs_per_inode(osb->sb),
                        le16_to_cpu(tl->tl_count));

        /* Caller should have known to flush before calling us. */
        index = le16_to_cpu(tl->tl_used);
        if (index >= tl_count) {
                status = -ENOSPC;
                mlog_errno(status);
                goto bail;
        }

        status = ocfs2_journal_access(handle, tl_inode, tl_bh,
                                      OCFS2_JOURNAL_ACCESS_WRITE);
        if (status < 0) {
                mlog_errno(status);
                goto bail;
        }

        mlog(0, "Log truncate of %u clusters starting at cluster %u to "
             "%llu (index = %d)\n", num_clusters, start_cluster,
             (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);

        if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
                /*
                 * Move index back to the record we are coalescing with.
                 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
                 */
                index--;

                num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
                mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
                     index, le32_to_cpu(tl->tl_recs[index].t_start),
                     num_clusters);
        } else {
                tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
                tl->tl_used = cpu_to_le16(index + 1);
        }
        tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);

        status = ocfs2_journal_dirty(handle, tl_bh);
        if (status < 0) {
                mlog_errno(status);
                goto bail;
        }

bail:
        mlog_exit(status);
        return status;
}

static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
                                         handle_t *handle,
                                         struct inode *data_alloc_inode,
                                         struct buffer_head *data_alloc_bh)
{
        int status = 0;
        int i;
        unsigned int num_clusters;
        u64 start_blk;
        struct ocfs2_truncate_rec rec;
        struct ocfs2_dinode *di;
        struct ocfs2_truncate_log *tl;
        struct inode *tl_inode = osb->osb_tl_inode;
        struct buffer_head *tl_bh = osb->osb_tl_bh;

        mlog_entry_void();

        di = (struct ocfs2_dinode *) tl_bh->b_data;
        tl = &di->id2.i_dealloc;
        i = le16_to_cpu(tl->tl_used) - 1;
        while (i >= 0) {
                /* Caller has given us at least enough credits to
                 * update the truncate log dinode */
                status = ocfs2_journal_access(handle, tl_inode, tl_bh,
                                              OCFS2_JOURNAL_ACCESS_WRITE);
                if (status < 0) {
                        mlog_errno(status);
                        goto bail;
                }

                tl->tl_used = cpu_to_le16(i);

                status = ocfs2_journal_dirty(handle, tl_bh);
                if (status < 0) {
                        mlog_errno(status);
                        goto bail;
                }

                /* TODO: Perhaps we can calculate the bulk of the
                 * credits up front rather than extending like
                 * this. */
                status = ocfs2_extend_trans(handle,
                                            OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
                if (status < 0) {
                        mlog_errno(status);
                        goto bail;
                }

                rec = tl->tl_recs[i];
                start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
                                                    le32_to_cpu(rec.t_start));
                num_clusters = le32_to_cpu(rec.t_clusters);

                /* if start_blk is not set, we ignore the record as
                 * invalid. */
                if (start_blk) {
                        mlog(0, "free record %d, start = %u, clusters = %u\n",
                             i, le32_to_cpu(rec.t_start), num_clusters);

                        status = ocfs2_free_clusters(handle, data_alloc_inode,
                                                     data_alloc_bh, start_blk,
                                                     num_clusters);
                        if (status < 0) {
                                mlog_errno(status);
                                goto bail;
                        }
                }
                i--;
        }

bail:
        mlog_exit(status);
        return status;
}

/* Expects you to already be holding tl_inode->i_mutex */
int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
{
        int status;
        unsigned int num_to_flush;
        handle_t *handle;
        struct inode *tl_inode = osb->osb_tl_inode;
        struct inode *data_alloc_inode = NULL;
        struct buffer_head *tl_bh = osb->osb_tl_bh;
        struct buffer_head *data_alloc_bh = NULL;
        struct ocfs2_dinode *di;
        struct ocfs2_truncate_log *tl;

        mlog_entry_void();

        BUG_ON(mutex_trylock(&tl_inode->i_mutex));

        di = (struct ocfs2_dinode *) tl_bh->b_data;
        tl = &di->id2.i_dealloc;
        if (!OCFS2_IS_VALID_DINODE(di)) {
                OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
                status = -EIO;
                goto out;
        }

        num_to_flush = le16_to_cpu(tl->tl_used);
        mlog(0, "Flush %u records from truncate log #%llu\n",
             num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
        if (!num_to_flush) {
                status = 0;
                goto out;
        }

        data_alloc_inode = ocfs2_get_system_file_inode(osb,
                                                       GLOBAL_BITMAP_SYSTEM_INODE,
                                                       OCFS2_INVALID_SLOT);
        if (!data_alloc_inode) {
                status = -EINVAL;
                mlog(ML_ERROR, "Could not get bitmap inode!\n");
                goto out;
        }

        mutex_lock(&data_alloc_inode->i_mutex);

        status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
        if (status < 0) {
                mlog_errno(status);
                goto out_mutex;
        }

        handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
        if (IS_ERR(handle)) {
                status = PTR_ERR(handle);
                mlog_errno(status);
                goto out_unlock;
        }

        status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
                                               data_alloc_bh);
        if (status < 0)
                mlog_errno(status);

        ocfs2_commit_trans(osb, handle);

out_unlock:
        brelse(data_alloc_bh);
        ocfs2_inode_unlock(data_alloc_inode, 1);

out_mutex:
        mutex_unlock(&data_alloc_inode->i_mutex);
        iput(data_alloc_inode);

out:
        mlog_exit(status);
        return status;
}

int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
{
        int status;
        struct inode *tl_inode = osb->osb_tl_inode;

        mutex_lock(&tl_inode->i_mutex);
        status = __ocfs2_flush_truncate_log(osb);
        mutex_unlock(&tl_inode->i_mutex);

        return status;
}

static void ocfs2_truncate_log_worker(struct work_struct *work)
{
        int status;
        struct ocfs2_super *osb =
                container_of(work, struct ocfs2_super,
                             osb_truncate_log_wq.work);

        mlog_entry_void();

        status = ocfs2_flush_truncate_log(osb);
        if (status < 0)
                mlog_errno(status);
        else
                ocfs2_init_inode_steal_slot(osb);

        mlog_exit(status);
}

#define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
                                       int cancel)
{
        if (osb->osb_tl_inode) {
                /* We want to push off log flushes while truncates are
                 * still running. */
                if (cancel)
                        cancel_delayed_work(&osb->osb_truncate_log_wq);

                queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
                                   OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
        }
}

static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
                                       int slot_num,
                                       struct inode **tl_inode,
                                       struct buffer_head **tl_bh)
{
        int status;
        struct inode *inode = NULL;
        struct buffer_head *bh = NULL;

        inode = ocfs2_get_system_file_inode(osb,
                                           TRUNCATE_LOG_SYSTEM_INODE,
                                           slot_num);
        if (!inode) {
                status = -EINVAL;
                mlog(ML_ERROR, "Could not get load truncate log inode!\n");
                goto bail;
        }

        status = ocfs2_read_block(inode, OCFS2_I(inode)->ip_blkno, &bh);
        if (status < 0) {
                iput(inode);
                mlog_errno(status);
                goto bail;
        }

        *tl_inode = inode;
        *tl_bh    = bh;
bail:
        mlog_exit(status);
        return status;
}

/* called during the 1st stage of node recovery. we stamp a clean
 * truncate log and pass back a copy for processing later. if the
 * truncate log does not require processing, a *tl_copy is set to
 * NULL. */
int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
                                      int slot_num,
                                      struct ocfs2_dinode **tl_copy)
{
        int status;
        struct inode *tl_inode = NULL;
        struct buffer_head *tl_bh = NULL;
        struct ocfs2_dinode *di;
        struct ocfs2_truncate_log *tl;

        *tl_copy = NULL;

        mlog(0, "recover truncate log from slot %d\n", slot_num);

        status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
        if (status < 0) {
                mlog_errno(status);
                goto bail;
        }

        di = (struct ocfs2_dinode *) tl_bh->b_data;
        tl = &di->id2.i_dealloc;
        if (!OCFS2_IS_VALID_DINODE(di)) {
                OCFS2_RO_ON_INVALID_DINODE(tl_inode->i_sb, di);
                status = -EIO;
                goto bail;
        }

        if (le16_to_cpu(tl->tl_used)) {
                mlog(0, "We'll have %u logs to recover\n",
                     le16_to_cpu(tl->tl_used));

                *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
                if (!(*tl_copy)) {
                        status = -ENOMEM;
                        mlog_errno(status);
                        goto bail;
                }

                /* Assuming the write-out below goes well, this copy
                 * will be passed back to recovery for processing. */
                memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);

                /* All we need to do to clear the truncate log is set
                 * tl_used. */
                tl->tl_used = 0;

                status = ocfs2_write_block(osb, tl_bh, tl_inode);
                if (status < 0) {
                        mlog_errno(status);
                        goto bail;
                }
        }

bail:
        if (tl_inode)
                iput(tl_inode);
        brelse(tl_bh);

        if (status < 0 && (*tl_copy)) {
                kfree(*tl_copy);
                *tl_copy = NULL;
        }

        mlog_exit(status);
        return status;
}

int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
                                         struct ocfs2_dinode *tl_copy)
{
        int status = 0;
        int i;
        unsigned int clusters, num_recs, start_cluster;
        u64 start_blk;
        handle_t *handle;
        struct inode *tl_inode = osb->osb_tl_inode;
        struct ocfs2_truncate_log *tl;

        mlog_entry_void();

        if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
                mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
                return -EINVAL;
        }

        tl = &tl_copy->id2.i_dealloc;
        num_recs = le16_to_cpu(tl->tl_used);
        mlog(0, "cleanup %u records from %llu\n", num_recs,
             (unsigned long long)le64_to_cpu(tl_copy->i_blkno));

        mutex_lock(&tl_inode->i_mutex);
        for(i = 0; i < num_recs; i++) {
                if (ocfs2_truncate_log_needs_flush(osb)) {
                        status = __ocfs2_flush_truncate_log(osb);
                        if (status < 0) {
                                mlog_errno(status);
                                goto bail_up;
                        }
                }

                handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
                if (IS_ERR(handle)) {
                        status = PTR_ERR(handle);
                        mlog_errno(status);
                        goto bail_up;
                }

                clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
                start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
                start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);

                status = ocfs2_truncate_log_append(osb, handle,
                                                   start_blk, clusters);
                ocfs2_commit_trans(osb, handle);
                if (status < 0) {
                        mlog_errno(status);
                        goto bail_up;
                }
        }

bail_up:
        mutex_unlock(&tl_inode->i_mutex);

        mlog_exit(status);
        return status;
}

void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
{
        int status;
        struct inode *tl_inode = osb->osb_tl_inode;

        mlog_entry_void();

        if (tl_inode) {
                cancel_delayed_work(&osb->osb_truncate_log_wq);
                flush_workqueue(ocfs2_wq);

                status = ocfs2_flush_truncate_log(osb);
                if (status < 0)
                        mlog_errno(status);

                brelse(osb->osb_tl_bh);
                iput(osb->osb_tl_inode);
        }

        mlog_exit_void();
}

int ocfs2_truncate_log_init(struct ocfs2_super *osb)
{
        int status;
        struct inode *tl_inode = NULL;
        struct buffer_head *tl_bh = NULL;

        mlog_entry_void();

        status = ocfs2_get_truncate_log_info(osb,
                                             osb->slot_num,
                                             &tl_inode,
                                             &tl_bh);
        if (status < 0)
                mlog_errno(status);

        /* ocfs2_truncate_log_shutdown keys on the existence of
         * osb->osb_tl_inode so we don't set any of the osb variables
         * until we're sure all is well. */
        INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
                          ocfs2_truncate_log_worker);
        osb->osb_tl_bh    = tl_bh;
        osb->osb_tl_inode = tl_inode;

        mlog_exit(status);
        return status;
}

/*
 * Delayed de-allocation of suballocator blocks.
 *
 * Some sets of block de-allocations might involve multiple suballocator inodes.
 *
 * The locking for this can get extremely complicated, especially when
 * the suballocator inodes to delete from aren't known until deep
 * within an unrelated codepath.
 *
 * ocfs2_extent_block structures are a good example of this - an inode
 * btree could have been grown by any number of nodes each allocating
 * out of their own suballoc inode.
 *
 * These structures allow the delay of block de-allocation until a
 * later time, when locking of multiple cluster inodes won't cause
 * deadlock.
 */

/*
 * Describes a single block free from a suballocator
 */
struct ocfs2_cached_block_free {
        struct ocfs2_cached_block_free          *free_next;
        u64                                     free_blk;
        unsigned int                            free_bit;
};

struct ocfs2_per_slot_free_list {
        struct ocfs2_per_slot_free_list         *f_next_suballocator;
        int                                     f_inode_type;
        int                                     f_slot;
        struct ocfs2_cached_block_free          *f_first;
};

static int ocfs2_free_cached_items(struct ocfs2_super *osb,
                                   int sysfile_type,
                                   int slot,
                                   struct ocfs2_cached_block_free *head)
{
        int ret;
        u64 bg_blkno;
        handle_t *handle;
        struct inode *inode;
        struct buffer_head *di_bh = NULL;
        struct ocfs2_cached_block_free *tmp;

        inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
        if (!inode) {
                ret = -EINVAL;
                mlog_errno(ret);
                goto out;
        }

        mutex_lock(&inode->i_mutex);

        ret = ocfs2_inode_lock(inode, &di_bh, 1);
        if (ret) {
                mlog_errno(ret);
                goto out_mutex;
        }

        handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
        if (IS_ERR(handle)) {
                ret = PTR_ERR(handle);
                mlog_errno(ret);
                goto out_unlock;
        }

        while (head) {
                bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
                                                      head->free_bit);
                mlog(0, "Free bit: (bit %u, blkno %llu)\n",
                     head->free_bit, (unsigned long long)head->free_blk);

                ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
                                               head->free_bit, bg_blkno, 1);
                if (ret) {
                        mlog_errno(ret);
                        goto out_journal;
                }

                ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
                if (ret) {
                        mlog_errno(ret);
                        goto out_journal;
                }

                tmp = head;
                head = head->free_next;
                kfree(tmp);
        }

out_journal:
        ocfs2_commit_trans(osb, handle);

out_unlock:
        ocfs2_inode_unlock(inode, 1);
        brelse(di_bh);
out_mutex:
        mutex_unlock(&inode->i_mutex);
        iput(inode);
out:
        while(head) {
                /* Premature exit may have left some dangling items. */
                tmp = head;
                head = head->free_next;
                kfree(tmp);
        }

        return ret;
}

int ocfs2_run_deallocs(struct ocfs2_super *osb,
                       struct ocfs2_cached_dealloc_ctxt *ctxt)
{
        int ret = 0, ret2;
        struct ocfs2_per_slot_free_list *fl;

        if (!ctxt)
                return 0;

        while (ctxt->c_first_suballocator) {
                fl = ctxt->c_first_suballocator;

                if (fl->f_first) {
                        mlog(0, "Free items: (type %u, slot %d)\n",
                             fl->f_inode_type, fl->f_slot);
                        ret2 = ocfs2_free_cached_items(osb, fl->f_inode_type,
                                                       fl->f_slot, fl->f_first);
                        if (ret2)
                                mlog_errno(ret2);
                        if (!ret)
                                ret = ret2;
                }

                ctxt->c_first_suballocator = fl->f_next_suballocator;
                kfree(fl);
        }

        return ret;
}

static struct ocfs2_per_slot_free_list *
ocfs2_find_per_slot_free_list(int type,
                              int slot,
                              struct ocfs2_cached_dealloc_ctxt *ctxt)
{
        struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;

        while (fl) {
                if (fl->f_inode_type == type && fl->f_slot == slot)
                        return fl;

                fl = fl->f_next_suballocator;
        }

        fl = kmalloc(sizeof(*fl), GFP_NOFS);
        if (fl) {
                fl->f_inode_type = type;
                fl->f_slot = slot;
                fl->f_first = NULL;
                fl->f_next_suballocator = ctxt->c_first_suballocator;

                ctxt->c_first_suballocator = fl;
        }
        return fl;
}

static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
                                     int type, int slot, u64 blkno,
                                     unsigned int bit)
{
        int ret;
        struct ocfs2_per_slot_free_list *fl;
        struct ocfs2_cached_block_free *item;

        fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
        if (fl == NULL) {
                ret = -ENOMEM;
                mlog_errno(ret);
                goto out;
        }

        item = kmalloc(sizeof(*item), GFP_NOFS);
        if (item == NULL) {
                ret = -ENOMEM;
                mlog_errno(ret);
                goto out;
        }

        mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
             type, slot, bit, (unsigned long long)blkno);

        item->free_blk = blkno;
        item->free_bit = bit;
        item->free_next = fl->f_first;

        fl->f_first = item;

        ret = 0;
out:
        return ret;
}

static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
                                         struct ocfs2_extent_block *eb)
{
        return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
                                         le16_to_cpu(eb->h_suballoc_slot),
                                         le64_to_cpu(eb->h_blkno),
                                         le16_to_cpu(eb->h_suballoc_bit));
}

/* This function will figure out whether the currently last extent
 * block will be deleted, and if it will, what the new last extent
 * block will be so we can update his h_next_leaf_blk field, as well
 * as the dinodes i_last_eb_blk */
static int ocfs2_find_new_last_ext_blk(struct inode *inode,
                                       unsigned int clusters_to_del,
                                       struct ocfs2_path *path,
                                       struct buffer_head **new_last_eb)
{
        int next_free, ret = 0;
        u32 cpos;
        struct ocfs2_extent_rec *rec;
        struct ocfs2_extent_block *eb;
        struct ocfs2_extent_list *el;
        struct buffer_head *bh = NULL;

        *new_last_eb = NULL;

        /* we have no tree, so of course, no last_eb. */
        if (!path->p_tree_depth)
                goto out;

        /* trunc to zero special case - this makes tree_depth = 0
         * regardless of what it is.  */
        if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
                goto out;

        el = path_leaf_el(path);
        BUG_ON(!el->l_next_free_rec);

        /*
         * Make sure that this extent list will actually be empty
         * after we clear away the data. We can shortcut out if
         * there's more than one non-empty extent in the
         * list. Otherwise, a check of the remaining extent is
         * necessary.
         */
        next_free = le16_to_cpu(el->l_next_free_rec);
        rec = NULL;
        if (ocfs2_is_empty_extent(&el->l_recs[0])) {
                if (next_free > 2)
                        goto out;

                /* We may have a valid extent in index 1, check it. */
                if (next_free == 2)
                        rec = &el->l_recs[1];

                /*
                 * Fall through - no more nonempty extents, so we want
                 * to delete this leaf.
                 */
        } else {
                if (next_free > 1)
                        goto out;

                rec = &el->l_recs[0];
        }

        if (rec) {
                /*
                 * Check it we'll only be trimming off the end of this
                 * cluster.
                 */
                if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
                        goto out;
        }

        ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
        if (ret) {
                mlog_errno(ret);
                goto out;
        }

        ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
        if (ret) {
                mlog_errno(ret);
                goto out;
        }

        eb = (struct ocfs2_extent_block *) bh->b_data;
        el = &eb->h_list;
        if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
                OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
                ret = -EROFS;
                goto out;
        }

        *new_last_eb = bh;
        get_bh(*new_last_eb);
        mlog(0, "returning block %llu, (cpos: %u)\n",
             (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
out:
        brelse(bh);

        return ret;
}

/*
 * Trim some clusters off the rightmost edge of a tree. Only called
 * during truncate.
 *
 * The caller needs to:
 *   - start journaling of each path component.
 *   - compute and fully set up any new last ext block
 */
static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
                           handle_t *handle, struct ocfs2_truncate_context *tc,
                           u32 clusters_to_del, u64 *delete_start)
{
        int ret, i, index = path->p_tree_depth;
        u32 new_edge = 0;
        u64 deleted_eb = 0;
        struct buffer_head *bh;
        struct ocfs2_extent_list *el;
        struct ocfs2_extent_rec *rec;

        *delete_start = 0;

        while (index >= 0) {
                bh = path->p_node[index].bh;
                el = path->p_node[index].el;

                mlog(0, "traveling tree (index = %d, block = %llu)\n",
                     index,  (unsigned long long)bh->b_blocknr);

                BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);

                if (index !=
                    (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
                        ocfs2_error(inode->i_sb,
                                    "Inode %lu has invalid ext. block %llu",
                                    inode->i_ino,
                                    (unsigned long long)bh->b_blocknr);
                        ret = -EROFS;
                        goto out;
                }

find_tail_record:
                i = le16_to_cpu(el->l_next_free_rec) - 1;
                rec = &el->l_recs[i];

                mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
                     "next = %u\n", i, le32_to_cpu(rec->e_cpos),
                     ocfs2_rec_clusters(el, rec),
                     (unsigned long long)le64_to_cpu(rec->e_blkno),
                     le16_to_cpu(el->l_next_free_rec));

                BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);

                if (le16_to_cpu(el->l_tree_depth) == 0) {
                        /*
                         * If the leaf block contains a single empty
                         * extent and no records, we can just remove
                         * the block.
                         */
                        if (i == 0 && ocfs2_is_empty_extent(rec)) {
                                memset(rec, 0,
                                       sizeof(struct ocfs2_extent_rec));
                                el->l_next_free_rec = cpu_to_le16(0);

                                goto delete;
                        }

                        /*
                         * Remove any empty extents by shifting things
                         * left. That should make life much easier on
                         * the code below. This condition is rare
                         * enough that we shouldn't see a performance
                         * hit.
                         */
                        if (ocfs2_is_empty_extent(&el->l_recs[0])) {
                                le16_add_cpu(&el->l_next_free_rec, -1);

                                for(i = 0;
                                    i < le16_to_cpu(el->l_next_free_rec); i++)
                                        el->l_recs[i] = el->l_recs[i + 1];

                                memset(&el->l_recs[i], 0,
                                       sizeof(struct ocfs2_extent_rec));

                                /*
                                 * We've modified our extent list. The
                                 * simplest way to handle this change
                                 * is to being the search from the
                                 * start again.
                                 */
                                goto find_tail_record;
                        }

                        le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);

                        /*
                         * We'll use "new_edge" on our way back up the
                         * tree to know what our rightmost cpos is.
                         */
                        new_edge = le16_to_cpu(rec->e_leaf_clusters);
                        new_edge += le32_to_cpu(rec->e_cpos);

                        /*
                         * The caller will use this to delete data blocks.
                         */
                        *delete_start = le64_to_cpu(rec->e_blkno)
                                + ocfs2_clusters_to_blocks(inode->i_sb,
                                        le16_to_cpu(rec->e_leaf_clusters));

                        /*
                         * If it's now empty, remove this record.
                         */
                        if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
                                memset(rec, 0,
                                       sizeof(struct ocfs2_extent_rec));
                                le16_add_cpu(&el->l_next_free_rec, -1);
                        }
                } else {
                        if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
                                memset(rec, 0,
                                       sizeof(struct ocfs2_extent_rec));
                                le16_add_cpu(&el->l_next_free_rec, -1);

                                goto delete;
                        }

                        /* Can this actually happen? */
                        if (le16_to_cpu(el->l_next_free_rec) == 0)
                                goto delete;

                        /*
                         * We never actually deleted any clusters
                         * because our leaf was empty. There's no
                         * reason to adjust the rightmost edge then.
                         */
                        if (new_edge == 0)
                                goto delete;

                        rec->e_int_clusters = cpu_to_le32(new_edge);
                        le32_add_cpu(&rec->e_int_clusters,
                                     -le32_to_cpu(rec->e_cpos));

                         /*
                          * A deleted child record should have been
                          * caught above.
                          */
                         BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
                }

delete:
                ret = ocfs2_journal_dirty(handle, bh);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }

                mlog(0, "extent list container %llu, after: record %d: "
                     "(%u, %u, %llu), next = %u.\n",
                     (unsigned long long)bh->b_blocknr, i,
                     le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
                     (unsigned long long)le64_to_cpu(rec->e_blkno),
                     le16_to_cpu(el->l_next_free_rec));

                /*
                 * We must be careful to only attempt delete of an
                 * extent block (and not the root inode block).
                 */
                if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
                        struct ocfs2_extent_block *eb =
                                (struct ocfs2_extent_block *)bh->b_data;

                        /*
                         * Save this for use when processing the
                         * parent block.
                         */
                        deleted_eb = le64_to_cpu(eb->h_blkno);

                        mlog(0, "deleting this extent block.\n");

                        ocfs2_remove_from_cache(inode, bh);

                        BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
                        BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
                        BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));

                        ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
                        /* An error here is not fatal. */
                        if (ret < 0)
                                mlog_errno(ret);
                } else {
                        deleted_eb = 0;
                }

                index--;
        }

        ret = 0;
out:
        return ret;
}

static int ocfs2_do_truncate(struct ocfs2_super *osb,
                             unsigned int clusters_to_del,
                             struct inode *inode,
                             struct buffer_head *fe_bh,
                             handle_t *handle,
                             struct ocfs2_truncate_context *tc,
                             struct ocfs2_path *path)
{
        int status;
        struct ocfs2_dinode *fe;
        struct ocfs2_extent_block *last_eb = NULL;
        struct ocfs2_extent_list *el;
        struct buffer_head *last_eb_bh = NULL;
        u64 delete_blk = 0;

        fe = (struct ocfs2_dinode *) fe_bh->b_data;

        status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
                                             path, &last_eb_bh);
        if (status < 0) {
                mlog_errno(status);
                goto bail;
        }

        /*
         * Each component will be touched, so we might as well journal
         * here to avoid having to handle errors later.
         */
        status = ocfs2_journal_access_path(inode, handle, path);
        if (status < 0) {
                mlog_errno(status);
                goto bail;
        }

        if (last_eb_bh) {
                status = ocfs2_journal_access(handle, inode, last_eb_bh,
                                              OCFS2_JOURNAL_ACCESS_WRITE);
                if (status < 0) {
                        mlog_errno(status);
                        goto bail;
                }

                last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
        }

        el = &(fe->id2.i_list);

        /*
         * Lower levels depend on this never happening, but it's best
         * to check it up here before changing the tree.
         */
        if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
                ocfs2_error(inode->i_sb,
                            "Inode %lu has an empty extent record, depth %u\n",
                            inode->i_ino, le16_to_cpu(el->l_tree_depth));
                status = -EROFS;
                goto bail;
        }

        spin_lock(&OCFS2_I(inode)->ip_lock);
        OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
                                      clusters_to_del;
        spin_unlock(&OCFS2_I(inode)->ip_lock);
        le32_add_cpu(&fe->i_clusters, -clusters_to_del);
        inode->i_blocks = ocfs2_inode_sector_count(inode);

        status = ocfs2_trim_tree(inode, path, handle, tc,
                                 clusters_to_del, &delete_blk);
        if (status) {
                mlog_errno(status);
                goto bail;
        }

        if (le32_to_cpu(fe->i_clusters) == 0) {
                /* trunc to zero is a special case. */
                el->l_tree_depth = 0;
                fe->i_last_eb_blk = 0;
        } else if (last_eb)
                fe->i_last_eb_blk = last_eb->h_blkno;

        status = ocfs2_journal_dirty(handle, fe_bh);
        if (status < 0) {
                mlog_errno(status);
                goto bail;
        }

        if (last_eb) {
                /* If there will be a new last extent block, then by
                 * definition, there cannot be any leaves to the right of
                 * him. */
                last_eb->h_next_leaf_blk = 0;
                status = ocfs2_journal_dirty(handle, last_eb_bh);
                if (status < 0) {
                        mlog_errno(status);
                        goto bail;
                }
        }

        if (delete_blk) {
                status = ocfs2_truncate_log_append(osb, handle, delete_blk,
                                                   clusters_to_del);
                if (status < 0) {
                        mlog_errno(status);
                        goto bail;
                }
        }
        status = 0;
bail:

        mlog_exit(status);
        return status;
}

static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
{
        set_buffer_uptodate(bh);
        mark_buffer_dirty(bh);
        return 0;
}

static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
                                     unsigned int from, unsigned int to,
                                     struct page *page, int zero, u64 *phys)
{
        int ret, partial = 0;

        ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
        if (ret)
                mlog_errno(ret);

        if (zero)
                zero_user_segment(page, from, to);

        /*
         * Need to set the buffers we zero'd into uptodate
         * here if they aren't - ocfs2_map_page_blocks()
         * might've skipped some
         */
        ret = walk_page_buffers(handle, page_buffers(page),
                                from, to, &partial,
                                ocfs2_zero_func);
        if (ret < 0)
                mlog_errno(ret);
        else if (ocfs2_should_order_data(inode)) {
                ret = ocfs2_jbd2_file_inode(handle, inode);
#ifdef CONFIG_OCFS2_COMPAT_JBD
                ret = walk_page_buffers(handle, page_buffers(page),
                                        from, to, &partial,
                                        ocfs2_journal_dirty_data);
#endif
                if (ret < 0)
                        mlog_errno(ret);
        }

        if (!partial)
                SetPageUptodate(page);

        flush_dcache_page(page);
}

static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
                                     loff_t end, struct page **pages,
                                     int numpages, u64 phys, handle_t *handle)
{
        int i;
        struct page *page;
        unsigned int from, to = PAGE_CACHE_SIZE;
        struct super_block *sb = inode->i_sb;

        BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));

        if (numpages == 0)
                goto out;

        to = PAGE_CACHE_SIZE;
        for(i = 0; i < numpages; i++) {
                page = pages[i];

                from = start & (PAGE_CACHE_SIZE - 1);
                if ((end >> PAGE_CACHE_SHIFT) == page->index)
                        to = end & (PAGE_CACHE_SIZE - 1);

                BUG_ON(from > PAGE_CACHE_SIZE);
                BUG_ON(to > PAGE_CACHE_SIZE);

                ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
                                         &phys);

                start = (page->index + 1) << PAGE_CACHE_SHIFT;
        }
out:
        if (pages)
                ocfs2_unlock_and_free_pages(pages, numpages);
}

static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
                                struct page **pages, int *num)
{
        int numpages, ret = 0;
        struct super_block *sb = inode->i_sb;
        struct address_space *mapping = inode->i_mapping;
        unsigned long index;
        loff_t last_page_bytes;

        BUG_ON(start > end);

        BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
               (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);

        numpages = 0;
        last_page_bytes = PAGE_ALIGN(end);
        index = start >> PAGE_CACHE_SHIFT;
        do {
                pages[numpages] = grab_cache_page(mapping, index);
                if (!pages[numpages]) {
                        ret = -ENOMEM;
                        mlog_errno(ret);
                        goto out;
                }

                numpages++;
                index++;
        } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));

out:
        if (ret != 0) {
                if (pages)
                        ocfs2_unlock_and_free_pages(pages, numpages);
                numpages = 0;
        }

        *num = numpages;

        return ret;
}

/*
 * Zero the area past i_size but still within an allocated
 * cluster. This avoids exposing nonzero data on subsequent file
 * extends.
 *
 * We need to call this before i_size is updated on the inode because
 * otherwise block_write_full_page() will skip writeout of pages past
 * i_size. The new_i_size parameter is passed for this reason.
 */
int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
                                  u64 range_start, u64 range_end)
{
        int ret = 0, numpages;
        struct page **pages = NULL;
        u64 phys;
        unsigned int ext_flags;
        struct super_block *sb = inode->i_sb;

        /*
         * File systems which don't support sparse files zero on every
         * extend.
         */
        if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
                return 0;

        pages = kcalloc(ocfs2_pages_per_cluster(sb),
                        sizeof(struct page *), GFP_NOFS);
        if (pages == NULL) {
                ret = -ENOMEM;
                mlog_errno(ret);
                goto out;
        }

        if (range_start == range_end)
                goto out;

        ret = ocfs2_extent_map_get_blocks(inode,
                                          range_start >> sb->s_blocksize_bits,
                                          &phys, NULL, &ext_flags);
        if (ret) {
                mlog_errno(ret);
                goto out;
        }

        /*
         * Tail is a hole, or is marked unwritten. In either case, we
         * can count on read and write to return/push zero's.
         */
        if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
                goto out;

        ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
                                   &numpages);
        if (ret) {
                mlog_errno(ret);
                goto out;
        }

        ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
                                 numpages, phys, handle);

        /*
         * Initiate writeout of the pages we zero'd here. We don't
         * wait on them - the truncate_inode_pages() call later will
         * do that for us.
         */
        ret = do_sync_mapping_range(inode->i_mapping, range_start,
                                    range_end - 1, SYNC_FILE_RANGE_WRITE);
        if (ret)
                mlog_errno(ret);

out:
        if (pages)
                kfree(pages);

        return ret;
}

static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
                                             struct ocfs2_dinode *di)
{
        unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
        unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);

        if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
                memset(&di->id2, 0, blocksize -
                                    offsetof(struct ocfs2_dinode, id2) -
                                    xattrsize);
        else
                memset(&di->id2, 0, blocksize -
                                    offsetof(struct ocfs2_dinode, id2));
}

void ocfs2_dinode_new_extent_list(struct inode *inode,
                                  struct ocfs2_dinode *di)
{
        ocfs2_zero_dinode_id2_with_xattr(inode, di);
        di->id2.i_list.l_tree_depth = 0;
        di->id2.i_list.l_next_free_rec = 0;
        di->id2.i_list.l_count = cpu_to_le16(
                ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
}

void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
{
        struct ocfs2_inode_info *oi = OCFS2_I(inode);
        struct ocfs2_inline_data *idata = &di->id2.i_data;

        spin_lock(&oi->ip_lock);
        oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
        di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
        spin_unlock(&oi->ip_lock);

        /*
         * We clear the entire i_data structure here so that all
         * fields can be properly initialized.
         */
        ocfs2_zero_dinode_id2_with_xattr(inode, di);

        idata->id_count = cpu_to_le16(
                        ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
}

int ocfs2_convert_inline_data_to_extents(struct inode *inode,
                                         struct buffer_head *di_bh)
{
        int ret, i, has_data, num_pages = 0;
        handle_t *handle;
        u64 uninitialized_var(block);
        struct ocfs2_inode_info *oi = OCFS2_I(inode);
        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
        struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
        struct ocfs2_alloc_context *data_ac = NULL;
        struct page **pages = NULL;
        loff_t end = osb->s_clustersize;
        struct ocfs2_extent_tree et;

        has_data = i_size_read(inode) ? 1 : 0;

        if (has_data) {
                pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
                                sizeof(struct page *), GFP_NOFS);
                if (pages == NULL) {
                        ret = -ENOMEM;
                        mlog_errno(ret);
                        goto out;
                }

                ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
                if (ret) {
                        mlog_errno(ret);
                        goto out;
                }
        }

        handle = ocfs2_start_trans(osb, OCFS2_INLINE_TO_EXTENTS_CREDITS);
        if (IS_ERR(handle)) {
                ret = PTR_ERR(handle);
                mlog_errno(ret);
                goto out_unlock;
        }

        ret = ocfs2_journal_access(handle, inode, di_bh,
                                   OCFS2_JOURNAL_ACCESS_WRITE);
        if (ret) {
                mlog_errno(ret);
                goto out_commit;
        }

        if (has_data) {
                u32 bit_off, num;
                unsigned int page_end;
                u64 phys;

                ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
                                           &num);
                if (ret) {
                        mlog_errno(ret);
                        goto out_commit;
                }

                /*
                 * Save two copies, one for insert, and one that can
                 * be changed by ocfs2_map_and_dirty_page() below.
                 */
                block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);

                /*
                 * Non sparse file systems zero on extend, so no need
                 * to do that now.
                 */
                if (!ocfs2_sparse_alloc(osb) &&
                    PAGE_CACHE_SIZE < osb->s_clustersize)
                        end = PAGE_CACHE_SIZE;

                ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
                if (ret) {
                        mlog_errno(ret);
                        goto out_commit;
                }

                /*
                 * This should populate the 1st page for us and mark
                 * it up to date.
                 */
                ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
                if (ret) {
                        mlog_errno(ret);
                        goto out_commit;
                }

                page_end = PAGE_CACHE_SIZE;
                if (PAGE_CACHE_SIZE > osb->s_clustersize)
                        page_end = osb->s_clustersize;

                for (i = 0; i < num_pages; i++)
                        ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
                                                 pages[i], i > 0, &phys);
        }

        spin_lock(&oi->ip_lock);
        oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
        di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
        spin_unlock(&oi->ip_lock);

        ocfs2_dinode_new_extent_list(inode, di);

        ocfs2_journal_dirty(handle, di_bh);

        if (has_data) {
                /*
                 * An error at this point should be extremely rare. If
                 * this proves to be false, we could always re-build
                 * the in-inode data from our pages.
                 */
                ocfs2_init_dinode_extent_tree(&et, inode, di_bh);
                ret = ocfs2_insert_extent(osb, handle, inode, &et,
                                          0, block, 1, 0, NULL);
                if (ret) {
                        mlog_errno(ret);
                        goto out_commit;
                }

                inode->i_blocks = ocfs2_inode_sector_count(inode);
        }

out_commit:
        ocfs2_commit_trans(osb, handle);

out_unlock:
        if (data_ac)
                ocfs2_free_alloc_context(data_ac);

out:
        if (pages) {
                ocfs2_unlock_and_free_pages(pages, num_pages);
                kfree(pages);
        }

        return ret;
}

/*
 * It is expected, that by the time you call this function,
 * inode->i_size and fe->i_size have been adjusted.
 *
 * WARNING: This will kfree the truncate context
 */
int ocfs2_commit_truncate(struct ocfs2_super *osb,
                          struct inode *inode,
                          struct buffer_head *fe_bh,
                          struct ocfs2_truncate_context *tc)
{
        int status, i, credits, tl_sem = 0;
        u32 clusters_to_del, new_highest_cpos, range;
        struct ocfs2_extent_list *el;
        handle_t *handle = NULL;
        struct inode *tl_inode = osb->osb_tl_inode;
        struct ocfs2_path *path = NULL;
        struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;

        mlog_entry_void();

        new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
                                                     i_size_read(inode));

        path = ocfs2_new_path(fe_bh, &di->id2.i_list);
        if (!path) {
                status = -ENOMEM;
                mlog_errno(status);
                goto bail;
        }

        ocfs2_extent_map_trunc(inode, new_highest_cpos);

start:
        /*
         * Check that we still have allocation to delete.
         */
        if (OCFS2_I(inode)->ip_clusters == 0) {
                status = 0;
                goto bail;
        }

        /*
         * Truncate always works against the rightmost tree branch.
         */
        status = ocfs2_find_path(inode, path, UINT_MAX);
        if (status) {
                mlog_errno(status);
                goto bail;
        }

        mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
             OCFS2_I(inode)->ip_clusters, path->p_tree_depth);

        /*
         * By now, el will point to the extent list on the bottom most
         * portion of this tree. Only the tail record is considered in
         * each pass.
         *
         * We handle the following cases, in order:
         * - empty extent: delete the remaining branch
         * - remove the entire record
         * - remove a partial record
         * - no record needs to be removed (truncate has completed)
         */
        el = path_leaf_el(path);
        if (le16_to_cpu(el->l_next_free_rec) == 0) {
                ocfs2_error(inode->i_sb,
                            "Inode %llu has empty extent block at %llu\n",
                            (unsigned long long)OCFS2_I(inode)->ip_blkno,
                            (unsigned long long)path_leaf_bh(path)->b_blocknr);
                status = -EROFS;
                goto bail;
        }

        i = le16_to_cpu(el->l_next_free_rec) - 1;
        range = le32_to_cpu(el->l_recs[i].e_cpos) +
                ocfs2_rec_clusters(el, &el->l_recs[i]);
        if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
                clusters_to_del = 0;
        } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
                clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
        } else if (range > new_highest_cpos) {
                clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
                                   le32_to_cpu(el->l_recs[i].e_cpos)) -
                                  new_highest_cpos;
        } else {
                status = 0;
                goto bail;
        }

        mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
             clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);

        mutex_lock(&tl_inode->i_mutex);
        tl_sem = 1;
        /* ocfs2_truncate_log_needs_flush guarantees us at least one
         * record is free for use. If there isn't any, we flush to get
         * an empty truncate log.  */
        if (ocfs2_truncate_log_needs_flush(osb)) {
                status = __ocfs2_flush_truncate_log(osb);
                if (status < 0) {
                        mlog_errno(status);
                        goto bail;
                }
        }

        credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
                                                (struct ocfs2_dinode *)fe_bh->b_data,
                                                el);
        handle = ocfs2_start_trans(osb, credits);
        if (IS_ERR(handle)) {
                status = PTR_ERR(handle);
                handle = NULL;
                mlog_errno(status);
                goto bail;
        }

        status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
                                   tc, path);
        if (status < 0) {
                mlog_errno(status);
                goto bail;
        }

        mutex_unlock(&tl_inode->i_mutex);
        tl_sem = 0;

        ocfs2_commit_trans(osb, handle);
        handle = NULL;

        ocfs2_reinit_path(path, 1);

        /*
         * The check above will catch the case where we've truncated
         * away all allocation.
         */
        goto start;

bail:

        ocfs2_schedule_truncate_log_flush(osb, 1);

        if (tl_sem)
                mutex_unlock(&tl_inode->i_mutex);

        if (handle)
                ocfs2_commit_trans(osb, handle);

        ocfs2_run_deallocs(osb, &tc->tc_dealloc);

        ocfs2_free_path(path);

        /* This will drop the ext_alloc cluster lock for us */
        ocfs2_free_truncate_context(tc);

        mlog_exit(status);
        return status;
}

/*
 * Expects the inode to already be locked.
 */
int ocfs2_prepare_truncate(struct ocfs2_super *osb,
                           struct inode *inode,
                           struct buffer_head *fe_bh,
                           struct ocfs2_truncate_context **tc)
{
        int status;
        unsigned int new_i_clusters;
        struct ocfs2_dinode *fe;
        struct ocfs2_extent_block *eb;
        struct buffer_head *last_eb_bh = NULL;

        mlog_entry_void();

        *tc = NULL;

        new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
                                                  i_size_read(inode));
        fe = (struct ocfs2_dinode *) fe_bh->b_data;

        mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
             "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
             (unsigned long long)le64_to_cpu(fe->i_size));

        *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
        if (!(*tc)) {
                status = -ENOMEM;
                mlog_errno(status);
                goto bail;
        }
        ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);

        if (fe->id2.i_list.l_tree_depth) {
                status = ocfs2_read_block(inode, le64_to_cpu(fe->i_last_eb_blk),
                                          &last_eb_bh);
                if (status < 0) {
                        mlog_errno(status);
                        goto bail;
                }
                eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
                if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
                        OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);

                        brelse(last_eb_bh);
                        status = -EIO;
                        goto bail;
                }
        }

        (*tc)->tc_last_eb_bh = last_eb_bh;

        status = 0;
bail:
        if (status < 0) {
                if (*tc)
                        ocfs2_free_truncate_context(*tc);
                *tc = NULL;
        }
        mlog_exit_void();
        return status;
}

/*
 * 'start' is inclusive, 'end' is not.
 */
int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
                          unsigned int start, unsigned int end, int trunc)
{
        int ret;
        unsigned int numbytes;
        handle_t *handle;
        struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
        struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
        struct ocfs2_inline_data *idata = &di->id2.i_data;

        if (end > i_size_read(inode))
                end = i_size_read(inode);

        BUG_ON(start >= end);

        if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
            !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
            !ocfs2_supports_inline_data(osb)) {
                ocfs2_error(inode->i_sb,
                            "Inline data flags for inode %llu don't agree! "
                            "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
                            (unsigned long long)OCFS2_I(inode)->ip_blkno,
                            le16_to_cpu(di->i_dyn_features),
                            OCFS2_I(inode)->ip_dyn_features,
                            osb->s_feature_incompat);
                ret = -EROFS;
                goto out;
        }

        handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
        if (IS_ERR(handle)) {
                ret = PTR_ERR(handle);
                mlog_errno(ret);
                goto out;
        }

        ret = ocfs2_journal_access(handle, inode, di_bh,
                                   OCFS2_JOURNAL_ACCESS_WRITE);
        if (ret) {
                mlog_errno(ret);
                goto out_commit;
        }

        numbytes = end - start;
        memset(idata->id_data + start, 0, numbytes);

        /*
         * No need to worry about the data page here - it's been
         * truncated already and inline data doesn't need it for
         * pushing zero's to disk, so we'll let readpage pick it up
         * later.
         */
        if (trunc) {
                i_size_write(inode, start);
                di->i_size = cpu_to_le64(start);
        }

        inode->i_blocks = ocfs2_inode_sector_count(inode);
        inode->i_ctime = inode->i_mtime = CURRENT_TIME;

        di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
        di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);

        ocfs2_journal_dirty(handle, di_bh);

out_commit:
        ocfs2_commit_trans(osb, handle);

out:
        return ret;
}

static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
{
        /*
         * The caller is responsible for completing deallocation
         * before freeing the context.
         */
        if (tc->tc_dealloc.c_first_suballocator != NULL)
                mlog(ML_NOTICE,
                     "Truncate completion has non-empty dealloc context\n");

        brelse(tc->tc_last_eb_bh);

        kfree(tc);
}

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading