[funini.com] -> [kei@sodan] -> Kernel Reading

root/fs/xfs/xfs_attr_leaf.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. xfs_attr_namesp_match
  2. xfs_attr_shortform_bytesfit
  3. xfs_sbversion_add_attr2
  4. xfs_attr_shortform_create
  5. xfs_attr_shortform_add
  6. xfs_attr_shortform_remove
  7. xfs_attr_shortform_lookup
  8. xfs_attr_shortform_getvalue
  9. xfs_attr_shortform_to_leaf
  10. xfs_attr_shortform_compare
  11. xfs_attr_shortform_list
  12. xfs_attr_shortform_allfit
  13. xfs_attr_leaf_to_shortform
  14. xfs_attr_leaf_to_node
  15. xfs_attr_leaf_create
  16. xfs_attr_leaf_split
  17. xfs_attr_leaf_add
  18. xfs_attr_leaf_add_work
  19. xfs_attr_leaf_compact
  20. xfs_attr_leaf_rebalance
  21. xfs_attr_leaf_figure_balance
  22. xfs_attr_leaf_toosmall
  23. xfs_attr_leaf_remove
  24. xfs_attr_leaf_unbalance
  25. xfs_attr_leaf_lookup_int
  26. xfs_attr_leaf_getvalue
  27. xfs_attr_leaf_moveents
  28. xfs_attr_leaf_order
  29. xfs_attr_leaf_lasthash
  30. xfs_attr_leaf_entsize
  31. xfs_attr_leaf_newentsize
  32. xfs_attr_leaf_list_int
  33. xfs_attr_leaf_clearflag
  34. xfs_attr_leaf_setflag
  35. xfs_attr_leaf_flipflags
  36. xfs_attr_root_inactive
  37. xfs_attr_node_inactive
  38. xfs_attr_leaf_inactive
  39. xfs_attr_leaf_freextent

/*
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_types.h"
#include "xfs_bit.h"
#include "xfs_log.h"
#include "xfs_inum.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_dir2.h"
#include "xfs_dmapi.h"
#include "xfs_mount.h"
#include "xfs_da_btree.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_alloc.h"
#include "xfs_btree.h"
#include "xfs_dir2_sf.h"
#include "xfs_attr_sf.h"
#include "xfs_dinode.h"
#include "xfs_inode.h"
#include "xfs_inode_item.h"
#include "xfs_bmap.h"
#include "xfs_attr.h"
#include "xfs_attr_leaf.h"
#include "xfs_error.h"

/*
 * xfs_attr_leaf.c
 *
 * Routines to implement leaf blocks of attributes as Btrees of hashed names.
 */

/*========================================================================
 * Function prototypes for the kernel.
 *========================================================================*/

/*
 * Routines used for growing the Btree.
 */
STATIC int xfs_attr_leaf_create(xfs_da_args_t *args, xfs_dablk_t which_block,
                                    xfs_dabuf_t **bpp);
STATIC int xfs_attr_leaf_add_work(xfs_dabuf_t *leaf_buffer, xfs_da_args_t *args,
                                              int freemap_index);
STATIC void xfs_attr_leaf_compact(xfs_trans_t *trans, xfs_dabuf_t *leaf_buffer);
STATIC void xfs_attr_leaf_rebalance(xfs_da_state_t *state,
                                                   xfs_da_state_blk_t *blk1,
                                                   xfs_da_state_blk_t *blk2);
STATIC int xfs_attr_leaf_figure_balance(xfs_da_state_t *state,
                                           xfs_da_state_blk_t *leaf_blk_1,
                                           xfs_da_state_blk_t *leaf_blk_2,
                                           int *number_entries_in_blk1,
                                           int *number_usedbytes_in_blk1);

/*
 * Routines used for shrinking the Btree.
 */
STATIC int xfs_attr_node_inactive(xfs_trans_t **trans, xfs_inode_t *dp,
                                  xfs_dabuf_t *bp, int level);
STATIC int xfs_attr_leaf_inactive(xfs_trans_t **trans, xfs_inode_t *dp,
                                  xfs_dabuf_t *bp);
STATIC int xfs_attr_leaf_freextent(xfs_trans_t **trans, xfs_inode_t *dp,
                                   xfs_dablk_t blkno, int blkcnt);

/*
 * Utility routines.
 */
STATIC void xfs_attr_leaf_moveents(xfs_attr_leafblock_t *src_leaf,
                                         int src_start,
                                         xfs_attr_leafblock_t *dst_leaf,
                                         int dst_start, int move_count,
                                         xfs_mount_t *mp);
STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index);

/*========================================================================
 * Namespace helper routines
 *========================================================================*/

/*
 * If namespace bits don't match return 0.
 * If all match then return 1.
 */
STATIC_INLINE int
xfs_attr_namesp_match(int arg_flags, int ondisk_flags)
{
        return XFS_ATTR_NSP_ONDISK(ondisk_flags) == XFS_ATTR_NSP_ARGS_TO_ONDISK(arg_flags);
}


/*========================================================================
 * External routines when attribute fork size < XFS_LITINO(mp).
 *========================================================================*/

/*
 * Query whether the requested number of additional bytes of extended
 * attribute space will be able to fit inline.
 * Returns zero if not, else the di_forkoff fork offset to be used in the
 * literal area for attribute data once the new bytes have been added.
 *
 * di_forkoff must be 8 byte aligned, hence is stored as a >>3 value;
 * special case for dev/uuid inodes, they have fixed size data forks.
 */
int
xfs_attr_shortform_bytesfit(xfs_inode_t *dp, int bytes)
{
        int offset;
        int minforkoff; /* lower limit on valid forkoff locations */
        int maxforkoff; /* upper limit on valid forkoff locations */
        int dsize;      
        xfs_mount_t *mp = dp->i_mount;

        offset = (XFS_LITINO(mp) - bytes) >> 3; /* rounded down */

        switch (dp->i_d.di_format) {
        case XFS_DINODE_FMT_DEV:
                minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3;
                return (offset >= minforkoff) ? minforkoff : 0;
        case XFS_DINODE_FMT_UUID:
                minforkoff = roundup(sizeof(uuid_t), 8) >> 3;
                return (offset >= minforkoff) ? minforkoff : 0;
        }

        if (!(mp->m_flags & XFS_MOUNT_ATTR2)) {
                if (bytes <= XFS_IFORK_ASIZE(dp))
                        return dp->i_d.di_forkoff;
                return 0;
        }

        dsize = dp->i_df.if_bytes;
        
        switch (dp->i_d.di_format) {
        case XFS_DINODE_FMT_EXTENTS:
                /* 
                 * If there is no attr fork and the data fork is extents, 
                 * determine if creating the default attr fork will result 
                 * in the extents form migrating to btree. If so, the 
                 * minimum offset only needs to be the space required for 
                 * the btree root.
                 */ 
                if (!dp->i_d.di_forkoff && dp->i_df.if_bytes > mp->m_attroffset)
                        dsize = XFS_BMDR_SPACE_CALC(MINDBTPTRS);
                break;
                
        case XFS_DINODE_FMT_BTREE:
                /*
                 * If have data btree then keep forkoff if we have one,
                 * otherwise we are adding a new attr, so then we set 
                 * minforkoff to where the btree root can finish so we have 
                 * plenty of room for attrs
                 */
                if (dp->i_d.di_forkoff) {
                        if (offset < dp->i_d.di_forkoff) 
                                return 0;
                        else 
                                return dp->i_d.di_forkoff;
                } else
                        dsize = XFS_BMAP_BROOT_SPACE(dp->i_df.if_broot);
                break;
        }
        
        /* 
         * A data fork btree root must have space for at least 
         * MINDBTPTRS key/ptr pairs if the data fork is small or empty.
         */
        minforkoff = MAX(dsize, XFS_BMDR_SPACE_CALC(MINDBTPTRS));
        minforkoff = roundup(minforkoff, 8) >> 3;

        /* attr fork btree root can have at least this many key/ptr pairs */
        maxforkoff = XFS_LITINO(mp) - XFS_BMDR_SPACE_CALC(MINABTPTRS);
        maxforkoff = maxforkoff >> 3;   /* rounded down */

        if (offset >= minforkoff && offset < maxforkoff)
                return offset;
        if (offset >= maxforkoff)
                return maxforkoff;
        return 0;
}

/*
 * Switch on the ATTR2 superblock bit (implies also FEATURES2)
 */
STATIC void
xfs_sbversion_add_attr2(xfs_mount_t *mp, xfs_trans_t *tp)
{
        if ((mp->m_flags & XFS_MOUNT_ATTR2) &&
            !(xfs_sb_version_hasattr2(&mp->m_sb))) {
                spin_lock(&mp->m_sb_lock);
                if (!xfs_sb_version_hasattr2(&mp->m_sb)) {
                        xfs_sb_version_addattr2(&mp->m_sb);
                        spin_unlock(&mp->m_sb_lock);
                        xfs_mod_sb(tp, XFS_SB_VERSIONNUM | XFS_SB_FEATURES2);
                } else
                        spin_unlock(&mp->m_sb_lock);
        }
}

/*
 * Create the initial contents of a shortform attribute list.
 */
void
xfs_attr_shortform_create(xfs_da_args_t *args)
{
        xfs_attr_sf_hdr_t *hdr;
        xfs_inode_t *dp;
        xfs_ifork_t *ifp;

        dp = args->dp;
        ASSERT(dp != NULL);
        ifp = dp->i_afp;
        ASSERT(ifp != NULL);
        ASSERT(ifp->if_bytes == 0);
        if (dp->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS) {
                ifp->if_flags &= ~XFS_IFEXTENTS;        /* just in case */
                dp->i_d.di_aformat = XFS_DINODE_FMT_LOCAL;
                ifp->if_flags |= XFS_IFINLINE;
        } else {
                ASSERT(ifp->if_flags & XFS_IFINLINE);
        }
        xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK);
        hdr = (xfs_attr_sf_hdr_t *)ifp->if_u1.if_data;
        hdr->count = 0;
        hdr->totsize = cpu_to_be16(sizeof(*hdr));
        xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
}

/*
 * Add a name/value pair to the shortform attribute list.
 * Overflow from the inode has already been checked for.
 */
void
xfs_attr_shortform_add(xfs_da_args_t *args, int forkoff)
{
        xfs_attr_shortform_t *sf;
        xfs_attr_sf_entry_t *sfe;
        int i, offset, size;
        xfs_mount_t *mp;
        xfs_inode_t *dp;
        xfs_ifork_t *ifp;

        dp = args->dp;
        mp = dp->i_mount;
        dp->i_d.di_forkoff = forkoff;
        dp->i_df.if_ext_max =
                XFS_IFORK_DSIZE(dp) / (uint)sizeof(xfs_bmbt_rec_t);
        dp->i_afp->if_ext_max =
                XFS_IFORK_ASIZE(dp) / (uint)sizeof(xfs_bmbt_rec_t);

        ifp = dp->i_afp;
        ASSERT(ifp->if_flags & XFS_IFINLINE);
        sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
        sfe = &sf->list[0];
        for (i = 0; i < sf->hdr.count; sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
#ifdef DEBUG
                if (sfe->namelen != args->namelen)
                        continue;
                if (memcmp(args->name, sfe->nameval, args->namelen) != 0)
                        continue;
                if (!xfs_attr_namesp_match(args->flags, sfe->flags))
                        continue;
                ASSERT(0);
#endif
        }

        offset = (char *)sfe - (char *)sf;
        size = XFS_ATTR_SF_ENTSIZE_BYNAME(args->namelen, args->valuelen);
        xfs_idata_realloc(dp, size, XFS_ATTR_FORK);
        sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
        sfe = (xfs_attr_sf_entry_t *)((char *)sf + offset);

        sfe->namelen = args->namelen;
        sfe->valuelen = args->valuelen;
        sfe->flags = XFS_ATTR_NSP_ARGS_TO_ONDISK(args->flags);
        memcpy(sfe->nameval, args->name, args->namelen);
        memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen);
        sf->hdr.count++;
        be16_add_cpu(&sf->hdr.totsize, size);
        xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);

        xfs_sbversion_add_attr2(mp, args->trans);
}

/*
 * Remove an attribute from the shortform attribute list structure.
 */
int
xfs_attr_shortform_remove(xfs_da_args_t *args)
{
        xfs_attr_shortform_t *sf;
        xfs_attr_sf_entry_t *sfe;
        int base, size=0, end, totsize, i;
        xfs_mount_t *mp;
        xfs_inode_t *dp;

        dp = args->dp;
        mp = dp->i_mount;
        base = sizeof(xfs_attr_sf_hdr_t);
        sf = (xfs_attr_shortform_t *)dp->i_afp->if_u1.if_data;
        sfe = &sf->list[0];
        end = sf->hdr.count;
        for (i = 0; i < end; sfe = XFS_ATTR_SF_NEXTENTRY(sfe),
                                        base += size, i++) {
                size = XFS_ATTR_SF_ENTSIZE(sfe);
                if (sfe->namelen != args->namelen)
                        continue;
                if (memcmp(sfe->nameval, args->name, args->namelen) != 0)
                        continue;
                if (!xfs_attr_namesp_match(args->flags, sfe->flags))
                        continue;
                break;
        }
        if (i == end)
                return(XFS_ERROR(ENOATTR));

        /*
         * Fix up the attribute fork data, covering the hole
         */
        end = base + size;
        totsize = be16_to_cpu(sf->hdr.totsize);
        if (end != totsize)
                memmove(&((char *)sf)[base], &((char *)sf)[end], totsize - end);
        sf->hdr.count--;
        be16_add_cpu(&sf->hdr.totsize, -size);

        /*
         * Fix up the start offset of the attribute fork
         */
        totsize -= size;
        if (totsize == sizeof(xfs_attr_sf_hdr_t) &&
                                !(args->op_flags & XFS_DA_OP_ADDNAME) &&
                                (mp->m_flags & XFS_MOUNT_ATTR2) &&
                                (dp->i_d.di_format != XFS_DINODE_FMT_BTREE)) {
                /*
                 * Last attribute now removed, revert to original
                 * inode format making all literal area available
                 * to the data fork once more.
                 */
                xfs_idestroy_fork(dp, XFS_ATTR_FORK);
                dp->i_d.di_forkoff = 0;
                dp->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
                ASSERT(dp->i_d.di_anextents == 0);
                ASSERT(dp->i_afp == NULL);
                dp->i_df.if_ext_max =
                        XFS_IFORK_DSIZE(dp) / (uint)sizeof(xfs_bmbt_rec_t);
                xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE);
        } else {
                xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
                dp->i_d.di_forkoff = xfs_attr_shortform_bytesfit(dp, totsize);
                ASSERT(dp->i_d.di_forkoff);
                ASSERT(totsize > sizeof(xfs_attr_sf_hdr_t) ||
                                (args->op_flags & XFS_DA_OP_ADDNAME) ||
                                !(mp->m_flags & XFS_MOUNT_ATTR2) ||
                                dp->i_d.di_format == XFS_DINODE_FMT_BTREE);
                dp->i_afp->if_ext_max =
                        XFS_IFORK_ASIZE(dp) / (uint)sizeof(xfs_bmbt_rec_t);
                dp->i_df.if_ext_max =
                        XFS_IFORK_DSIZE(dp) / (uint)sizeof(xfs_bmbt_rec_t);
                xfs_trans_log_inode(args->trans, dp,
                                        XFS_ILOG_CORE | XFS_ILOG_ADATA);
        }

        xfs_sbversion_add_attr2(mp, args->trans);

        return(0);
}

/*
 * Look up a name in a shortform attribute list structure.
 */
/*ARGSUSED*/
int
xfs_attr_shortform_lookup(xfs_da_args_t *args)
{
        xfs_attr_shortform_t *sf;
        xfs_attr_sf_entry_t *sfe;
        int i;
        xfs_ifork_t *ifp;

        ifp = args->dp->i_afp;
        ASSERT(ifp->if_flags & XFS_IFINLINE);
        sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
        sfe = &sf->list[0];
        for (i = 0; i < sf->hdr.count;
                                sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
                if (sfe->namelen != args->namelen)
                        continue;
                if (memcmp(args->name, sfe->nameval, args->namelen) != 0)
                        continue;
                if (!xfs_attr_namesp_match(args->flags, sfe->flags))
                        continue;
                return(XFS_ERROR(EEXIST));
        }
        return(XFS_ERROR(ENOATTR));
}

/*
 * Look up a name in a shortform attribute list structure.
 */
/*ARGSUSED*/
int
xfs_attr_shortform_getvalue(xfs_da_args_t *args)
{
        xfs_attr_shortform_t *sf;
        xfs_attr_sf_entry_t *sfe;
        int i;

        ASSERT(args->dp->i_d.di_aformat == XFS_IFINLINE);
        sf = (xfs_attr_shortform_t *)args->dp->i_afp->if_u1.if_data;
        sfe = &sf->list[0];
        for (i = 0; i < sf->hdr.count;
                                sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
                if (sfe->namelen != args->namelen)
                        continue;
                if (memcmp(args->name, sfe->nameval, args->namelen) != 0)
                        continue;
                if (!xfs_attr_namesp_match(args->flags, sfe->flags))
                        continue;
                if (args->flags & ATTR_KERNOVAL) {
                        args->valuelen = sfe->valuelen;
                        return(XFS_ERROR(EEXIST));
                }
                if (args->valuelen < sfe->valuelen) {
                        args->valuelen = sfe->valuelen;
                        return(XFS_ERROR(ERANGE));
                }
                args->valuelen = sfe->valuelen;
                memcpy(args->value, &sfe->nameval[args->namelen],
                                                    args->valuelen);
                return(XFS_ERROR(EEXIST));
        }
        return(XFS_ERROR(ENOATTR));
}

/*
 * Convert from using the shortform to the leaf.
 */
int
xfs_attr_shortform_to_leaf(xfs_da_args_t *args)
{
        xfs_inode_t *dp;
        xfs_attr_shortform_t *sf;
        xfs_attr_sf_entry_t *sfe;
        xfs_da_args_t nargs;
        char *tmpbuffer;
        int error, i, size;
        xfs_dablk_t blkno;
        xfs_dabuf_t *bp;
        xfs_ifork_t *ifp;

        dp = args->dp;
        ifp = dp->i_afp;
        sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
        size = be16_to_cpu(sf->hdr.totsize);
        tmpbuffer = kmem_alloc(size, KM_SLEEP);
        ASSERT(tmpbuffer != NULL);
        memcpy(tmpbuffer, ifp->if_u1.if_data, size);
        sf = (xfs_attr_shortform_t *)tmpbuffer;

        xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
        bp = NULL;
        error = xfs_da_grow_inode(args, &blkno);
        if (error) {
                /*
                 * If we hit an IO error middle of the transaction inside
                 * grow_inode(), we may have inconsistent data. Bail out.
                 */
                if (error == EIO)
                        goto out;
                xfs_idata_realloc(dp, size, XFS_ATTR_FORK);     /* try to put */
                memcpy(ifp->if_u1.if_data, tmpbuffer, size);    /* it back */
                goto out;
        }

        ASSERT(blkno == 0);
        error = xfs_attr_leaf_create(args, blkno, &bp);
        if (error) {
                error = xfs_da_shrink_inode(args, 0, bp);
                bp = NULL;
                if (error)
                        goto out;
                xfs_idata_realloc(dp, size, XFS_ATTR_FORK);     /* try to put */
                memcpy(ifp->if_u1.if_data, tmpbuffer, size);    /* it back */
                goto out;
        }

        memset((char *)&nargs, 0, sizeof(nargs));
        nargs.dp = dp;
        nargs.firstblock = args->firstblock;
        nargs.flist = args->flist;
        nargs.total = args->total;
        nargs.whichfork = XFS_ATTR_FORK;
        nargs.trans = args->trans;
        nargs.op_flags = XFS_DA_OP_OKNOENT;

        sfe = &sf->list[0];
        for (i = 0; i < sf->hdr.count; i++) {
                nargs.name = (char *)sfe->nameval;
                nargs.namelen = sfe->namelen;
                nargs.value = (char *)&sfe->nameval[nargs.namelen];
                nargs.valuelen = sfe->valuelen;
                nargs.hashval = xfs_da_hashname((char *)sfe->nameval,
                                                sfe->namelen);
                nargs.flags = XFS_ATTR_NSP_ONDISK_TO_ARGS(sfe->flags);
                error = xfs_attr_leaf_lookup_int(bp, &nargs); /* set a->index */
                ASSERT(error == ENOATTR);
                error = xfs_attr_leaf_add(bp, &nargs);
                ASSERT(error != ENOSPC);
                if (error)
                        goto out;
                sfe = XFS_ATTR_SF_NEXTENTRY(sfe);
        }
        error = 0;

out:
        if(bp)
                xfs_da_buf_done(bp);
        kmem_free(tmpbuffer);
        return(error);
}

STATIC int
xfs_attr_shortform_compare(const void *a, const void *b)
{
        xfs_attr_sf_sort_t *sa, *sb;

        sa = (xfs_attr_sf_sort_t *)a;
        sb = (xfs_attr_sf_sort_t *)b;
        if (sa->hash < sb->hash) {
                return(-1);
        } else if (sa->hash > sb->hash) {
                return(1);
        } else {
                return(sa->entno - sb->entno);
        }
}


#define XFS_ISRESET_CURSOR(cursor) \
        (!((cursor)->initted) && !((cursor)->hashval) && \
         !((cursor)->blkno) && !((cursor)->offset))
/*
 * Copy out entries of shortform attribute lists for attr_list().
 * Shortform attribute lists are not stored in hashval sorted order.
 * If the output buffer is not large enough to hold them all, then we
 * we have to calculate each entries' hashvalue and sort them before
 * we can begin returning them to the user.
 */
/*ARGSUSED*/
int
xfs_attr_shortform_list(xfs_attr_list_context_t *context)
{
        attrlist_cursor_kern_t *cursor;
        xfs_attr_sf_sort_t *sbuf, *sbp;
        xfs_attr_shortform_t *sf;
        xfs_attr_sf_entry_t *sfe;
        xfs_inode_t *dp;
        int sbsize, nsbuf, count, i;
        int error;

        ASSERT(context != NULL);
        dp = context->dp;
        ASSERT(dp != NULL);
        ASSERT(dp->i_afp != NULL);
        sf = (xfs_attr_shortform_t *)dp->i_afp->if_u1.if_data;
        ASSERT(sf != NULL);
        if (!sf->hdr.count)
                return(0);
        cursor = context->cursor;
        ASSERT(cursor != NULL);

        xfs_attr_trace_l_c("sf start", context);

        /*
         * If the buffer is large enough and the cursor is at the start,
         * do not bother with sorting since we will return everything in
         * one buffer and another call using the cursor won't need to be
         * made.
         * Note the generous fudge factor of 16 overhead bytes per entry.
         * If bufsize is zero then put_listent must be a search function
         * and can just scan through what we have.
         */
        if (context->bufsize == 0 ||
            (XFS_ISRESET_CURSOR(cursor) &&
             (dp->i_afp->if_bytes + sf->hdr.count * 16) < context->bufsize)) {
                for (i = 0, sfe = &sf->list[0]; i < sf->hdr.count; i++) {
                        error = context->put_listent(context,
                                           sfe->flags,
                                           (char *)sfe->nameval,
                                           (int)sfe->namelen,
                                           (int)sfe->valuelen,
                                           (char*)&sfe->nameval[sfe->namelen]);

                        /*
                         * Either search callback finished early or
                         * didn't fit it all in the buffer after all.
                         */
                        if (context->seen_enough)
                                break;

                        if (error)
                                return error;
                        sfe = XFS_ATTR_SF_NEXTENTRY(sfe);
                }
                xfs_attr_trace_l_c("sf big-gulp", context);
                return(0);
        }

        /* do no more for a search callback */
        if (context->bufsize == 0)
                return 0;

        /*
         * It didn't all fit, so we have to sort everything on hashval.
         */
        sbsize = sf->hdr.count * sizeof(*sbuf);
        sbp = sbuf = kmem_alloc(sbsize, KM_SLEEP);

        /*
         * Scan the attribute list for the rest of the entries, storing
         * the relevant info from only those that match into a buffer.
         */
        nsbuf = 0;
        for (i = 0, sfe = &sf->list[0]; i < sf->hdr.count; i++) {
                if (unlikely(
                    ((char *)sfe < (char *)sf) ||
                    ((char *)sfe >= ((char *)sf + dp->i_afp->if_bytes)))) {
                        XFS_CORRUPTION_ERROR("xfs_attr_shortform_list",
                                             XFS_ERRLEVEL_LOW,
                                             context->dp->i_mount, sfe);
                        xfs_attr_trace_l_c("sf corrupted", context);
                        kmem_free(sbuf);
                        return XFS_ERROR(EFSCORRUPTED);
                }

                sbp->entno = i;
                sbp->hash = xfs_da_hashname((char *)sfe->nameval, sfe->namelen);
                sbp->name = (char *)sfe->nameval;
                sbp->namelen = sfe->namelen;
                /* These are bytes, and both on-disk, don't endian-flip */
                sbp->valuelen = sfe->valuelen;
                sbp->flags = sfe->flags;
                sfe = XFS_ATTR_SF_NEXTENTRY(sfe);
                sbp++;
                nsbuf++;
        }

        /*
         * Sort the entries on hash then entno.
         */
        xfs_sort(sbuf, nsbuf, sizeof(*sbuf), xfs_attr_shortform_compare);

        /*
         * Re-find our place IN THE SORTED LIST.
         */
        count = 0;
        cursor->initted = 1;
        cursor->blkno = 0;
        for (sbp = sbuf, i = 0; i < nsbuf; i++, sbp++) {
                if (sbp->hash == cursor->hashval) {
                        if (cursor->offset == count) {
                                break;
                        }
                        count++;
                } else if (sbp->hash > cursor->hashval) {
                        break;
                }
        }
        if (i == nsbuf) {
                kmem_free(sbuf);
                xfs_attr_trace_l_c("blk end", context);
                return(0);
        }

        /*
         * Loop putting entries into the user buffer.
         */
        for ( ; i < nsbuf; i++, sbp++) {
                if (cursor->hashval != sbp->hash) {
                        cursor->hashval = sbp->hash;
                        cursor->offset = 0;
                }
                error = context->put_listent(context,
                                        sbp->flags,
                                        sbp->name,
                                        sbp->namelen,
                                        sbp->valuelen,
                                        &sbp->name[sbp->namelen]);
                if (error)
                        return error;
                if (context->seen_enough)
                        break;
                cursor->offset++;
        }

        kmem_free(sbuf);
        xfs_attr_trace_l_c("sf E-O-F", context);
        return(0);
}

/*
 * Check a leaf attribute block to see if all the entries would fit into
 * a shortform attribute list.
 */
int
xfs_attr_shortform_allfit(xfs_dabuf_t *bp, xfs_inode_t *dp)
{
        xfs_attr_leafblock_t *leaf;
        xfs_attr_leaf_entry_t *entry;
        xfs_attr_leaf_name_local_t *name_loc;
        int bytes, i;

        leaf = bp->data;
        ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);

        entry = &leaf->entries[0];
        bytes = sizeof(struct xfs_attr_sf_hdr);
        for (i = 0; i < be16_to_cpu(leaf->hdr.count); entry++, i++) {
                if (entry->flags & XFS_ATTR_INCOMPLETE)
                        continue;               /* don't copy partial entries */
                if (!(entry->flags & XFS_ATTR_LOCAL))
                        return(0);
                name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf, i);
                if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX)
                        return(0);
                if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX)
                        return(0);
                bytes += sizeof(struct xfs_attr_sf_entry)-1
                                + name_loc->namelen
                                + be16_to_cpu(name_loc->valuelen);
        }
        if ((dp->i_mount->m_flags & XFS_MOUNT_ATTR2) &&
            (dp->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
            (bytes == sizeof(struct xfs_attr_sf_hdr)))
                return(-1);
        return(xfs_attr_shortform_bytesfit(dp, bytes));
}

/*
 * Convert a leaf attribute list to shortform attribute list
 */
int
xfs_attr_leaf_to_shortform(xfs_dabuf_t *bp, xfs_da_args_t *args, int forkoff)
{
        xfs_attr_leafblock_t *leaf;
        xfs_attr_leaf_entry_t *entry;
        xfs_attr_leaf_name_local_t *name_loc;
        xfs_da_args_t nargs;
        xfs_inode_t *dp;
        char *tmpbuffer;
        int error, i;

        dp = args->dp;
        tmpbuffer = kmem_alloc(XFS_LBSIZE(dp->i_mount), KM_SLEEP);
        ASSERT(tmpbuffer != NULL);

        ASSERT(bp != NULL);
        memcpy(tmpbuffer, bp->data, XFS_LBSIZE(dp->i_mount));
        leaf = (xfs_attr_leafblock_t *)tmpbuffer;
        ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
        memset(bp->data, 0, XFS_LBSIZE(dp->i_mount));

        /*
         * Clean out the prior contents of the attribute list.
         */
        error = xfs_da_shrink_inode(args, 0, bp);
        if (error)
                goto out;

        if (forkoff == -1) {
                ASSERT(dp->i_mount->m_flags & XFS_MOUNT_ATTR2);
                ASSERT(dp->i_d.di_format != XFS_DINODE_FMT_BTREE);

                /*
                 * Last attribute was removed, revert to original
                 * inode format making all literal area available
                 * to the data fork once more.
                 */
                xfs_idestroy_fork(dp, XFS_ATTR_FORK);
                dp->i_d.di_forkoff = 0;
                dp->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
                ASSERT(dp->i_d.di_anextents == 0);
                ASSERT(dp->i_afp == NULL);
                dp->i_df.if_ext_max =
                        XFS_IFORK_DSIZE(dp) / (uint)sizeof(xfs_bmbt_rec_t);
                xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE);
                goto out;
        }

        xfs_attr_shortform_create(args);

        /*
         * Copy the attributes
         */
        memset((char *)&nargs, 0, sizeof(nargs));
        nargs.dp = dp;
        nargs.firstblock = args->firstblock;
        nargs.flist = args->flist;
        nargs.total = args->total;
        nargs.whichfork = XFS_ATTR_FORK;
        nargs.trans = args->trans;
        nargs.op_flags = XFS_DA_OP_OKNOENT;
        entry = &leaf->entries[0];
        for (i = 0; i < be16_to_cpu(leaf->hdr.count); entry++, i++) {
                if (entry->flags & XFS_ATTR_INCOMPLETE)
                        continue;       /* don't copy partial entries */
                if (!entry->nameidx)
                        continue;
                ASSERT(entry->flags & XFS_ATTR_LOCAL);
                name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf, i);
                nargs.name = (char *)name_loc->nameval;
                nargs.namelen = name_loc->namelen;
                nargs.value = (char *)&name_loc->nameval[nargs.namelen];
                nargs.valuelen = be16_to_cpu(name_loc->valuelen);
                nargs.hashval = be32_to_cpu(entry->hashval);
                nargs.flags = XFS_ATTR_NSP_ONDISK_TO_ARGS(entry->flags);
                xfs_attr_shortform_add(&nargs, forkoff);
        }
        error = 0;

out:
        kmem_free(tmpbuffer);
        return(error);
}

/*
 * Convert from using a single leaf to a root node and a leaf.
 */
int
xfs_attr_leaf_to_node(xfs_da_args_t *args)
{
        xfs_attr_leafblock_t *leaf;
        xfs_da_intnode_t *node;
        xfs_inode_t *dp;
        xfs_dabuf_t *bp1, *bp2;
        xfs_dablk_t blkno;
        int error;

        dp = args->dp;
        bp1 = bp2 = NULL;
        error = xfs_da_grow_inode(args, &blkno);
        if (error)
                goto out;
        error = xfs_da_read_buf(args->trans, args->dp, 0, -1, &bp1,
                                             XFS_ATTR_FORK);
        if (error)
                goto out;
        ASSERT(bp1 != NULL);
        bp2 = NULL;
        error = xfs_da_get_buf(args->trans, args->dp, blkno, -1, &bp2,
                                            XFS_ATTR_FORK);
        if (error)
                goto out;
        ASSERT(bp2 != NULL);
        memcpy(bp2->data, bp1->data, XFS_LBSIZE(dp->i_mount));
        xfs_da_buf_done(bp1);
        bp1 = NULL;
        xfs_da_log_buf(args->trans, bp2, 0, XFS_LBSIZE(dp->i_mount) - 1);

        /*
         * Set up the new root node.
         */
        error = xfs_da_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK);
        if (error)
                goto out;
        node = bp1->data;
        leaf = bp2->data;
        ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
        /* both on-disk, don't endian-flip twice */
        node->btree[0].hashval =
                leaf->entries[be16_to_cpu(leaf->hdr.count)-1 ].hashval;
        node->btree[0].before = cpu_to_be32(blkno);
        node->hdr.count = cpu_to_be16(1);
        xfs_da_log_buf(args->trans, bp1, 0, XFS_LBSIZE(dp->i_mount) - 1);
        error = 0;
out:
        if (bp1)
                xfs_da_buf_done(bp1);
        if (bp2)
                xfs_da_buf_done(bp2);
        return(error);
}


/*========================================================================
 * Routines used for growing the Btree.
 *========================================================================*/

/*
 * Create the initial contents of a leaf attribute list
 * or a leaf in a node attribute list.
 */
STATIC int
xfs_attr_leaf_create(xfs_da_args_t *args, xfs_dablk_t blkno, xfs_dabuf_t **bpp)
{
        xfs_attr_leafblock_t *leaf;
        xfs_attr_leaf_hdr_t *hdr;
        xfs_inode_t *dp;
        xfs_dabuf_t *bp;
        int error;

        dp = args->dp;
        ASSERT(dp != NULL);
        error = xfs_da_get_buf(args->trans, args->dp, blkno, -1, &bp,
                                            XFS_ATTR_FORK);
        if (error)
                return(error);
        ASSERT(bp != NULL);
        leaf = bp->data;
        memset((char *)leaf, 0, XFS_LBSIZE(dp->i_mount));
        hdr = &leaf->hdr;
        hdr->info.magic = cpu_to_be16(XFS_ATTR_LEAF_MAGIC);
        hdr->firstused = cpu_to_be16(XFS_LBSIZE(dp->i_mount));
        if (!hdr->firstused) {
                hdr->firstused = cpu_to_be16(
                        XFS_LBSIZE(dp->i_mount) - XFS_ATTR_LEAF_NAME_ALIGN);
        }

        hdr->freemap[0].base = cpu_to_be16(sizeof(xfs_attr_leaf_hdr_t));
        hdr->freemap[0].size = cpu_to_be16(be16_to_cpu(hdr->firstused) -
                                           sizeof(xfs_attr_leaf_hdr_t));

        xfs_da_log_buf(args->trans, bp, 0, XFS_LBSIZE(dp->i_mount) - 1);

        *bpp = bp;
        return(0);
}

/*
 * Split the leaf node, rebalance, then add the new entry.
 */
int
xfs_attr_leaf_split(xfs_da_state_t *state, xfs_da_state_blk_t *oldblk,
                                   xfs_da_state_blk_t *newblk)
{
        xfs_dablk_t blkno;
        int error;

        /*
         * Allocate space for a new leaf node.
         */
        ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC);
        error = xfs_da_grow_inode(state->args, &blkno);
        if (error)
                return(error);
        error = xfs_attr_leaf_create(state->args, blkno, &newblk->bp);
        if (error)
                return(error);
        newblk->blkno = blkno;
        newblk->magic = XFS_ATTR_LEAF_MAGIC;

        /*
         * Rebalance the entries across the two leaves.
         * NOTE: rebalance() currently depends on the 2nd block being empty.
         */
        xfs_attr_leaf_rebalance(state, oldblk, newblk);
        error = xfs_da_blk_link(state, oldblk, newblk);
        if (error)
                return(error);

        /*
         * Save info on "old" attribute for "atomic rename" ops, leaf_add()
         * modifies the index/blkno/rmtblk/rmtblkcnt fields to show the
         * "new" attrs info.  Will need the "old" info to remove it later.
         *
         * Insert the "new" entry in the correct block.
         */
        if (state->inleaf)
                error = xfs_attr_leaf_add(oldblk->bp, state->args);
        else
                error = xfs_attr_leaf_add(newblk->bp, state->args);

        /*
         * Update last hashval in each block since we added the name.
         */
        oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL);
        newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL);
        return(error);
}

/*
 * Add a name to the leaf attribute list structure.
 */
int
xfs_attr_leaf_add(xfs_dabuf_t *bp, xfs_da_args_t *args)
{
        xfs_attr_leafblock_t *leaf;
        xfs_attr_leaf_hdr_t *hdr;
        xfs_attr_leaf_map_t *map;
        int tablesize, entsize, sum, tmp, i;

        leaf = bp->data;
        ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
        ASSERT((args->index >= 0)
                && (args->index <= be16_to_cpu(leaf->hdr.count)));
        hdr = &leaf->hdr;
        entsize = xfs_attr_leaf_newentsize(args->namelen, args->valuelen,
                           args->trans->t_mountp->m_sb.sb_blocksize, NULL);

        /*
         * Search through freemap for first-fit on new name length.
         * (may need to figure in size of entry struct too)
         */
        tablesize = (be16_to_cpu(hdr->count) + 1)
                                        * sizeof(xfs_attr_leaf_entry_t)
                                        + sizeof(xfs_attr_leaf_hdr_t);
        map = &hdr->freemap[XFS_ATTR_LEAF_MAPSIZE-1];
        for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE-1; i >= 0; map--, i--) {
                if (tablesize > be16_to_cpu(hdr->firstused)) {
                        sum += be16_to_cpu(map->size);
                        continue;
                }
                if (!map->size)
                        continue;       /* no space in this map */
                tmp = entsize;
                if (be16_to_cpu(map->base) < be16_to_cpu(hdr->firstused))
                        tmp += sizeof(xfs_attr_leaf_entry_t);
                if (be16_to_cpu(map->size) >= tmp) {
                        tmp = xfs_attr_leaf_add_work(bp, args, i);
                        return(tmp);
                }
                sum += be16_to_cpu(map->size);
        }

        /*
         * If there are no holes in the address space of the block,
         * and we don't have enough freespace, then compaction will do us
         * no good and we should just give up.
         */
        if (!hdr->holes && (sum < entsize))
                return(XFS_ERROR(ENOSPC));

        /*
         * Compact the entries to coalesce free space.
         * This may change the hdr->count via dropping INCOMPLETE entries.
         */
        xfs_attr_leaf_compact(args->trans, bp);

        /*
         * After compaction, the block is guaranteed to have only one
         * free region, in freemap[0].  If it is not big enough, give up.
         */
        if (be16_to_cpu(hdr->freemap[0].size)
                                < (entsize + sizeof(xfs_attr_leaf_entry_t)))
                return(XFS_ERROR(ENOSPC));

        return(xfs_attr_leaf_add_work(bp, args, 0));
}

/*
 * Add a name to a leaf attribute list structure.
 */
STATIC int
xfs_attr_leaf_add_work(xfs_dabuf_t *bp, xfs_da_args_t *args, int mapindex)
{
        xfs_attr_leafblock_t *leaf;
        xfs_attr_leaf_hdr_t *hdr;
        xfs_attr_leaf_entry_t *entry;
        xfs_attr_leaf_name_local_t *name_loc;
        xfs_attr_leaf_name_remote_t *name_rmt;
        xfs_attr_leaf_map_t *map;
        xfs_mount_t *mp;
        int tmp, i;

        leaf = bp->data;
        ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
        hdr = &leaf->hdr;
        ASSERT((mapindex >= 0) && (mapindex < XFS_ATTR_LEAF_MAPSIZE));
        ASSERT((args->index >= 0) && (args->index <= be16_to_cpu(hdr->count)));

        /*
         * Force open some space in the entry array and fill it in.
         */
        entry = &leaf->entries[args->index];
        if (args->index < be16_to_cpu(hdr->count)) {
                tmp  = be16_to_cpu(hdr->count) - args->index;
                tmp *= sizeof(xfs_attr_leaf_entry_t);
                memmove((char *)(entry+1), (char *)entry, tmp);
                xfs_da_log_buf(args->trans, bp,
                    XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry)));
        }
        be16_add_cpu(&hdr->count, 1);

        /*
         * Allocate space for the new string (at the end of the run).
         */
        map = &hdr->freemap[mapindex];
        mp = args->trans->t_mountp;
        ASSERT(be16_to_cpu(map->base) < XFS_LBSIZE(mp));
        ASSERT((be16_to_cpu(map->base) & 0x3) == 0);
        ASSERT(be16_to_cpu(map->size) >=
                xfs_attr_leaf_newentsize(args->namelen, args->valuelen,
                                         mp->m_sb.sb_blocksize, NULL));
        ASSERT(be16_to_cpu(map->size) < XFS_LBSIZE(mp));
        ASSERT((be16_to_cpu(map->size) & 0x3) == 0);
        be16_add_cpu(&map->size,
                -xfs_attr_leaf_newentsize(args->namelen, args->valuelen,
                                          mp->m_sb.sb_blocksize, &tmp));
        entry->nameidx = cpu_to_be16(be16_to_cpu(map->base) +
                                     be16_to_cpu(map->size));
        entry->hashval = cpu_to_be32(args->hashval);
        entry->flags = tmp ? XFS_ATTR_LOCAL : 0;
        entry->flags |= XFS_ATTR_NSP_ARGS_TO_ONDISK(args->flags);
        if (args->op_flags & XFS_DA_OP_RENAME) {
                entry->flags |= XFS_ATTR_INCOMPLETE;
                if ((args->blkno2 == args->blkno) &&
                    (args->index2 <= args->index)) {
                        args->index2++;
                }
        }
        xfs_da_log_buf(args->trans, bp,
                          XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
        ASSERT((args->index == 0) ||
               (be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval)));
        ASSERT((args->index == be16_to_cpu(hdr->count)-1) ||
               (be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval)));

        /*
         * Copy the attribute name and value into the new space.
         *
         * For "remote" attribute values, simply note that we need to
         * allocate space for the "remote" value.  We can't actually
         * allocate the extents in this transaction, and we can't decide
         * which blocks they should be as we might allocate more blocks
         * as part of this transaction (a split operation for example).
         */
        if (entry->flags & XFS_ATTR_LOCAL) {
                name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf, args->index);
                name_loc->namelen = args->namelen;
                name_loc->valuelen = cpu_to_be16(args->valuelen);
                memcpy((char *)name_loc->nameval, args->name, args->namelen);
                memcpy((char *)&name_loc->nameval[args->namelen], args->value,
                                   be16_to_cpu(name_loc->valuelen));
        } else {
                name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, args->index);
                name_rmt->namelen = args->namelen;
                memcpy((char *)name_rmt->name, args->name, args->namelen);
                entry->flags |= XFS_ATTR_INCOMPLETE;
                /* just in case */
                name_rmt->valuelen = 0;
                name_rmt->valueblk = 0;
                args->rmtblkno = 1;
                args->rmtblkcnt = XFS_B_TO_FSB(mp, args->valuelen);
        }
        xfs_da_log_buf(args->trans, bp,
             XFS_DA_LOGRANGE(leaf, XFS_ATTR_LEAF_NAME(leaf, args->index),
                                   xfs_attr_leaf_entsize(leaf, args->index)));

        /*
         * Update the control info for this leaf node
         */
        if (be16_to_cpu(entry->nameidx) < be16_to_cpu(hdr->firstused)) {
                /* both on-disk, don't endian-flip twice */
                hdr->firstused = entry->nameidx;
        }
        ASSERT(be16_to_cpu(hdr->firstused) >=
               ((be16_to_cpu(hdr->count) * sizeof(*entry)) + sizeof(*hdr)));
        tmp = (be16_to_cpu(hdr->count)-1) * sizeof(xfs_attr_leaf_entry_t)
                                        + sizeof(xfs_attr_leaf_hdr_t);
        map = &hdr->freemap[0];
        for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; map++, i++) {
                if (be16_to_cpu(map->base) == tmp) {
                        be16_add_cpu(&map->base, sizeof(xfs_attr_leaf_entry_t));
                        be16_add_cpu(&map->size,
                                 -((int)sizeof(xfs_attr_leaf_entry_t)));
                }
        }
        be16_add_cpu(&hdr->usedbytes, xfs_attr_leaf_entsize(leaf, args->index));
        xfs_da_log_buf(args->trans, bp,
                XFS_DA_LOGRANGE(leaf, hdr, sizeof(*hdr)));
        return(0);
}

/*
 * Garbage collect a leaf attribute list block by copying it to a new buffer.
 */
STATIC void
xfs_attr_leaf_compact(xfs_trans_t *trans, xfs_dabuf_t *bp)
{
        xfs_attr_leafblock_t *leaf_s, *leaf_d;
        xfs_attr_leaf_hdr_t *hdr_s, *hdr_d;
        xfs_mount_t *mp;
        char *tmpbuffer;

        mp = trans->t_mountp;
        tmpbuffer = kmem_alloc(XFS_LBSIZE(mp), KM_SLEEP);
        ASSERT(tmpbuffer != NULL);
        memcpy(tmpbuffer, bp->data, XFS_LBSIZE(mp));
        memset(bp->data, 0, XFS_LBSIZE(mp));

        /*
         * Copy basic information
         */
        leaf_s = (xfs_attr_leafblock_t *)tmpbuffer;
        leaf_d = bp->data;
        hdr_s = &leaf_s->hdr;
        hdr_d = &leaf_d->hdr;
        hdr_d->info = hdr_s->info;      /* struct copy */
        hdr_d->firstused = cpu_to_be16(XFS_LBSIZE(mp));
        /* handle truncation gracefully */
        if (!hdr_d->firstused) {
                hdr_d->firstused = cpu_to_be16(
                                XFS_LBSIZE(mp) - XFS_ATTR_LEAF_NAME_ALIGN);
        }
        hdr_d->usedbytes = 0;
        hdr_d->count = 0;
        hdr_d->holes = 0;
        hdr_d->freemap[0].base = cpu_to_be16(sizeof(xfs_attr_leaf_hdr_t));
        hdr_d->freemap[0].size = cpu_to_be16(be16_to_cpu(hdr_d->firstused) -
                                             sizeof(xfs_attr_leaf_hdr_t));

        /*
         * Copy all entry's in the same (sorted) order,
         * but allocate name/value pairs packed and in sequence.
         */
        xfs_attr_leaf_moveents(leaf_s, 0, leaf_d, 0,
                                be16_to_cpu(hdr_s->count), mp);
        xfs_da_log_buf(trans, bp, 0, XFS_LBSIZE(mp) - 1);

        kmem_free(tmpbuffer);
}

/*
 * Redistribute the attribute list entries between two leaf nodes,
 * taking into account the size of the new entry.
 *
 * NOTE: if new block is empty, then it will get the upper half of the
 * old block.  At present, all (one) callers pass in an empty second block.
 *
 * This code adjusts the args->index/blkno and args->index2/blkno2 fields
 * to match what it is doing in splitting the attribute leaf block.  Those
 * values are used in "atomic rename" operations on attributes.  Note that
 * the "new" and "old" values can end up in different blocks.
 */
STATIC void
xfs_attr_leaf_rebalance(xfs_da_state_t *state, xfs_da_state_blk_t *blk1,
                                       xfs_da_state_blk_t *blk2)
{
        xfs_da_args_t *args;
        xfs_da_state_blk_t *tmp_blk;
        xfs_attr_leafblock_t *leaf1, *leaf2;
        xfs_attr_leaf_hdr_t *hdr1, *hdr2;
        int count, totallen, max, space, swap;

        /*
         * Set up environment.
         */
        ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC);
        ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC);
        leaf1 = blk1->bp->data;
        leaf2 = blk2->bp->data;
        ASSERT(be16_to_cpu(leaf1->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
        ASSERT(be16_to_cpu(leaf2->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
        args = state->args;

        /*
         * Check ordering of blocks, reverse if it makes things simpler.
         *
         * NOTE: Given that all (current) callers pass in an empty
         * second block, this code should never set "swap".
         */
        swap = 0;
        if (xfs_attr_leaf_order(blk1->bp, blk2->bp)) {
                tmp_blk = blk1;
                blk1 = blk2;
                blk2 = tmp_blk;
                leaf1 = blk1->bp->data;
                leaf2 = blk2->bp->data;
                swap = 1;
        }
        hdr1 = &leaf1->hdr;
        hdr2 = &leaf2->hdr;

        /*
         * Examine entries until we reduce the absolute difference in
         * byte usage between the two blocks to a minimum.  Then get
         * the direction to copy and the number of elements to move.
         *
         * "inleaf" is true if the new entry should be inserted into blk1.
         * If "swap" is also true, then reverse the sense of "inleaf".
         */
        state->inleaf = xfs_attr_leaf_figure_balance(state, blk1, blk2,
                                                            &count, &totallen);
        if (swap)
                state->inleaf = !state->inleaf;

        /*
         * Move any entries required from leaf to leaf:
         */
        if (count < be16_to_cpu(hdr1->count)) {
                /*
                 * Figure the total bytes to be added to the destination leaf.
                 */
                /* number entries being moved */
                count = be16_to_cpu(hdr1->count) - count;
                space  = be16_to_cpu(hdr1->usedbytes) - totallen;
                space += count * sizeof(xfs_attr_leaf_entry_t);

                /*
                 * leaf2 is the destination, compact it if it looks tight.
                 */
                max  = be16_to_cpu(hdr2->firstused)
                                                - sizeof(xfs_attr_leaf_hdr_t);
                max -= be16_to_cpu(hdr2->count) * sizeof(xfs_attr_leaf_entry_t);
                if (space > max) {
                        xfs_attr_leaf_compact(args->trans, blk2->bp);
                }

                /*
                 * Move high entries from leaf1 to low end of leaf2.
                 */
                xfs_attr_leaf_moveents(leaf1, be16_to_cpu(hdr1->count) - count,
                                leaf2, 0, count, state->mp);

                xfs_da_log_buf(args->trans, blk1->bp, 0, state->blocksize-1);
                xfs_da_log_buf(args->trans, blk2->bp, 0, state->blocksize-1);
        } else if (count > be16_to_cpu(hdr1->count)) {
                /*
                 * I assert that since all callers pass in an empty
                 * second buffer, this code should never execute.
                 */

                /*
                 * Figure the total bytes to be added to the destination leaf.
                 */
                /* number entries being moved */
                count -= be16_to_cpu(hdr1->count);
                space  = totallen - be16_to_cpu(hdr1->usedbytes);
                space += count * sizeof(xfs_attr_leaf_entry_t);

                /*
                 * leaf1 is the destination, compact it if it looks tight.
                 */
                max  = be16_to_cpu(hdr1->firstused)
                                                - sizeof(xfs_attr_leaf_hdr_t);
                max -= be16_to_cpu(hdr1->count) * sizeof(xfs_attr_leaf_entry_t);
                if (space > max) {
                        xfs_attr_leaf_compact(args->trans, blk1->bp);
                }

                /*
                 * Move low entries from leaf2 to high end of leaf1.
                 */
                xfs_attr_leaf_moveents(leaf2, 0, leaf1,
                                be16_to_cpu(hdr1->count), count, state->mp);

                xfs_da_log_buf(args->trans, blk1->bp, 0, state->blocksize-1);
                xfs_da_log_buf(args->trans, blk2->bp, 0, state->blocksize-1);
        }

        /*
         * Copy out last hashval in each block for B-tree code.
         */
        blk1->hashval = be32_to_cpu(
                leaf1->entries[be16_to_cpu(leaf1->hdr.count)-1].hashval);
        blk2->hashval = be32_to_cpu(
                leaf2->entries[be16_to_cpu(leaf2->hdr.count)-1].hashval);

        /*
         * Adjust the expected index for insertion.
         * NOTE: this code depends on the (current) situation that the
         * second block was originally empty.
         *
         * If the insertion point moved to the 2nd block, we must adjust
         * the index.  We must also track the entry just following the
         * new entry for use in an "atomic rename" operation, that entry
         * is always the "old" entry and the "new" entry is what we are
         * inserting.  The index/blkno fields refer to the "old" entry,
         * while the index2/blkno2 fields refer to the "new" entry.
         */
        if (blk1->index > be16_to_cpu(leaf1->hdr.count)) {
                ASSERT(state->inleaf == 0);
                blk2->index = blk1->index - be16_to_cpu(leaf1->hdr.count);
                args->index = args->index2 = blk2->index;
                args->blkno = args->blkno2 = blk2->blkno;
        } else if (blk1->index == be16_to_cpu(leaf1->hdr.count)) {
                if (state->inleaf) {
                        args->index = blk1->index;
                        args->blkno = blk1->blkno;
                        args->index2 = 0;
                        args->blkno2 = blk2->blkno;
                } else {
                        blk2->index = blk1->index
                                    - be16_to_cpu(leaf1->hdr.count);
                        args->index = args->index2 = blk2->index;
                        args->blkno = args->blkno2 = blk2->blkno;
                }
        } else {
                ASSERT(state->inleaf == 1);
                args->index = args->index2 = blk1->index;
                args->blkno = args->blkno2 = blk1->blkno;
        }
}

/*
 * Examine entries until we reduce the absolute difference in
 * byte usage between the two blocks to a minimum.
 * GROT: Is this really necessary?  With other than a 512 byte blocksize,
 * GROT: there will always be enough room in either block for a new entry.
 * GROT: Do a double-split for this case?
 */
STATIC int
xfs_attr_leaf_figure_balance(xfs_da_state_t *state,
                                    xfs_da_state_blk_t *blk1,
                                    xfs_da_state_blk_t *blk2,
                                    int *countarg, int *usedbytesarg)
{
        xfs_attr_leafblock_t *leaf1, *leaf2;
        xfs_attr_leaf_hdr_t *hdr1, *hdr2;
        xfs_attr_leaf_entry_t *entry;
        int count, max, index, totallen, half;
        int lastdelta, foundit, tmp;

        /*
         * Set up environment.
         */
        leaf1 = blk1->bp->data;
        leaf2 = blk2->bp->data;
        hdr1 = &leaf1->hdr;
        hdr2 = &leaf2->hdr;
        foundit = 0;
        totallen = 0;

        /*
         * Examine entries until we reduce the absolute difference in
         * byte usage between the two blocks to a minimum.
         */
        max = be16_to_cpu(hdr1->count) + be16_to_cpu(hdr2->count);
        half  = (max+1) * sizeof(*entry);
        half += be16_to_cpu(hdr1->usedbytes) +
                be16_to_cpu(hdr2->usedbytes) +
                xfs_attr_leaf_newentsize(
                                state->args->namelen,
                                state->args->valuelen,
                                state->blocksize, NULL);
        half /= 2;
        lastdelta = state->blocksize;
        entry = &leaf1->entries[0];
        for (count = index = 0; count < max; entry++, index++, count++) {

#define XFS_ATTR_ABS(A) (((A) < 0) ? -(A) : (A))
                /*
                 * The new entry is in the first block, account for it.
                 */
                if (count == blk1->index) {
                        tmp = totallen + sizeof(*entry) +
                                xfs_attr_leaf_newentsize(
                                                state->args->namelen,
                                                state->args->valuelen,
                                                state->blocksize, NULL);
                        if (XFS_ATTR_ABS(half - tmp) > lastdelta)
                                break;
                        lastdelta = XFS_ATTR_ABS(half - tmp);
                        totallen = tmp;
                        foundit = 1;
                }

                /*
                 * Wrap around into the second block if necessary.
                 */
                if (count == be16_to_cpu(hdr1->count)) {
                        leaf1 = leaf2;
                        entry = &leaf1->entries[0];
                        index = 0;
                }

                /*
                 * Figure out if next leaf entry would be too much.
                 */
                tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1,
                                                                        index);
                if (XFS_ATTR_ABS(half - tmp) > lastdelta)
                        break;
                lastdelta = XFS_ATTR_ABS(half - tmp);
                totallen = tmp;
#undef XFS_ATTR_ABS
        }

        /*
         * Calculate the number of usedbytes that will end up in lower block.
         * If new entry not in lower block, fix up the count.
         */
        totallen -= count * sizeof(*entry);
        if (foundit) {
                totallen -= sizeof(*entry) +
                                xfs_attr_leaf_newentsize(
                                                state->args->namelen,
                                                state->args->valuelen,
                                                state->blocksize, NULL);
        }

        *countarg = count;
        *usedbytesarg = totallen;
        return(foundit);
}

/*========================================================================
 * Routines used for shrinking the Btree.
 *========================================================================*/

/*
 * Check a leaf block and its neighbors to see if the block should be
 * collapsed into one or the other neighbor.  Always keep the block
 * with the smaller block number.
 * If the current block is over 50% full, don't try to join it, return 0.
 * If the block is empty, fill in the state structure and return 2.
 * If it can be collapsed, fill in the state structure and return 1.
 * If nothing can be done, return 0.
 *
 * GROT: allow for INCOMPLETE entries in calculation.
 */
int
xfs_attr_leaf_toosmall(xfs_da_state_t *state, int *action)
{
        xfs_attr_leafblock_t *leaf;
        xfs_da_state_blk_t *blk;
        xfs_da_blkinfo_t *info;
        int count, bytes, forward, error, retval, i;
        xfs_dablk_t blkno;
        xfs_dabuf_t *bp;

        /*
         * Check for the degenerate case of the block being over 50% full.
         * If so, it's not worth even looking to see if we might be able
         * to coalesce with a sibling.
         */
        blk = &state->path.blk[ state->path.active-1 ];
        info = blk->bp->data;
        ASSERT(be16_to_cpu(info->magic) == XFS_ATTR_LEAF_MAGIC);
        leaf = (xfs_attr_leafblock_t *)info;
        count = be16_to_cpu(leaf->hdr.count);
        bytes = sizeof(xfs_attr_leaf_hdr_t) +
                count * sizeof(xfs_attr_leaf_entry_t) +
                be16_to_cpu(leaf->hdr.usedbytes);
        if (bytes > (state->blocksize >> 1)) {
                *action = 0;    /* blk over 50%, don't try to join */
                return(0);
        }

        /*
         * Check for the degenerate case of the block being empty.
         * If the block is empty, we'll simply delete it, no need to
         * coalesce it with a sibling block.  We choose (arbitrarily)
         * to merge with the forward block unless it is NULL.
         */
        if (count == 0) {
                /*
                 * Make altpath point to the block we want to keep and
                 * path point to the block we want to drop (this one).
                 */
                forward = (info->forw != 0);
                memcpy(&state->altpath, &state->path, sizeof(state->path));
                error = xfs_da_path_shift(state, &state->altpath, forward,
                                                 0, &retval);
                if (error)
                        return(error);
                if (retval) {
                        *action = 0;
                } else {
                        *action = 2;
                }
                return(0);
        }

        /*
         * Examine each sibling block to see if we can coalesce with
         * at least 25% free space to spare.  We need to figure out
         * whether to merge with the forward or the backward block.
         * We prefer coalescing with the lower numbered sibling so as
         * to shrink an attribute list over time.
         */
        /* start with smaller blk num */
        forward = (be32_to_cpu(info->forw) < be32_to_cpu(info->back));
        for (i = 0; i < 2; forward = !forward, i++) {
                if (forward)
                        blkno = be32_to_cpu(info->forw);
                else
                        blkno = be32_to_cpu(info->back);
                if (blkno == 0)
                        continue;
                error = xfs_da_read_buf(state->args->trans, state->args->dp,
                                        blkno, -1, &bp, XFS_ATTR_FORK);
                if (error)
                        return(error);
                ASSERT(bp != NULL);

                leaf = (xfs_attr_leafblock_t *)info;
                count  = be16_to_cpu(leaf->hdr.count);
                bytes  = state->blocksize - (state->blocksize>>2);
                bytes -= be16_to_cpu(leaf->hdr.usedbytes);
                leaf = bp->data;
                ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
                count += be16_to_cpu(leaf->hdr.count);
                bytes -= be16_to_cpu(leaf->hdr.usedbytes);
                bytes -= count * sizeof(xfs_attr_leaf_entry_t);
                bytes -= sizeof(xfs_attr_leaf_hdr_t);
                xfs_da_brelse(state->args->trans, bp);
                if (bytes >= 0)
                        break;  /* fits with at least 25% to spare */
        }
        if (i >= 2) {
                *action = 0;
                return(0);
        }

        /*
         * Make altpath point to the block we want to keep (the lower
         * numbered block) and path point to the block we want to drop.
         */
        memcpy(&state->altpath, &state->path, sizeof(state->path));
        if (blkno < blk->blkno) {
                error = xfs_da_path_shift(state, &state->altpath, forward,
                                                 0, &retval);
        } else {
                error = xfs_da_path_shift(state, &state->path, forward,
                                                 0, &retval);
        }
        if (error)
                return(error);
        if (retval) {
                *action = 0;
        } else {
                *action = 1;
        }
        return(0);
}

/*
 * Remove a name from the leaf attribute list structure.
 *
 * Return 1 if leaf is less than 37% full, 0 if >= 37% full.
 * If two leaves are 37% full, when combined they will leave 25% free.
 */
int
xfs_attr_leaf_remove(xfs_dabuf_t *bp, xfs_da_args_t *args)
{
        xfs_attr_leafblock_t *leaf;
        xfs_attr_leaf_hdr_t *hdr;
        xfs_attr_leaf_map_t *map;
        xfs_attr_leaf_entry_t *entry;
        int before, after, smallest, entsize;
        int tablesize, tmp, i;
        xfs_mount_t *mp;

        leaf = bp->data;
        ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
        hdr = &leaf->hdr;
        mp = args->trans->t_mountp;
        ASSERT((be16_to_cpu(hdr->count) > 0)
                && (be16_to_cpu(hdr->count) < (XFS_LBSIZE(mp)/8)));
        ASSERT((args->index >= 0)
                && (args->index < be16_to_cpu(hdr->count)));
        ASSERT(be16_to_cpu(hdr->firstused) >=
               ((be16_to_cpu(hdr->count) * sizeof(*entry)) + sizeof(*hdr)));
        entry = &leaf->entries[args->index];
        ASSERT(be16_to_cpu(entry->nameidx) >= be16_to_cpu(hdr->firstused));
        ASSERT(be16_to_cpu(entry->nameidx) < XFS_LBSIZE(mp));

        /*
         * Scan through free region table:
         *    check for adjacency of free'd entry with an existing one,
         *    find smallest free region in case we need to replace it,
         *    adjust any map that borders the entry table,
         */
        tablesize = be16_to_cpu(hdr->count) * sizeof(xfs_attr_leaf_entry_t)
                                        + sizeof(xfs_attr_leaf_hdr_t);
        map = &hdr->freemap[0];
        tmp = be16_to_cpu(map->size);
        before = after = -1;
        smallest = XFS_ATTR_LEAF_MAPSIZE - 1;
        entsize = xfs_attr_leaf_entsize(leaf, args->index);
        for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; map++, i++) {
                ASSERT(be16_to_cpu(map->base) < XFS_LBSIZE(mp));
                ASSERT(be16_to_cpu(map->size) < XFS_LBSIZE(mp));
                if (be16_to_cpu(map->base) == tablesize) {
                        be16_add_cpu(&map->base,
                                 -((int)sizeof(xfs_attr_leaf_entry_t)));
                        be16_add_cpu(&map->size, sizeof(xfs_attr_leaf_entry_t));
                }

                if ((be16_to_cpu(map->base) + be16_to_cpu(map->size))
                                == be16_to_cpu(entry->nameidx)) {
                        before = i;
                } else if (be16_to_cpu(map->base)
                        == (be16_to_cpu(entry->nameidx) + entsize)) {
                        after = i;
                } else if (be16_to_cpu(map->size) < tmp) {
                        tmp = be16_to_cpu(map->size);
                        smallest = i;
                }
        }

        /*
         * Coalesce adjacent freemap regions,
         * or replace the smallest region.
         */
        if ((before >= 0) || (after >= 0)) {
                if ((before >= 0) && (after >= 0)) {
                        map = &hdr->freemap[before];
                        be16_add_cpu(&map->size, entsize);
                        be16_add_cpu(&map->size,
                                 be16_to_cpu(hdr->freemap[after].size));
                        hdr->freemap[after].base = 0;
                        hdr->freemap[after].size = 0;
                } else if (before >= 0) {
                        map = &hdr->freemap[before];
                        be16_add_cpu(&map->size, entsize);
                } else {
                        map = &hdr->freemap[after];
                        /* both on-disk, don't endian flip twice */
                        map->base = entry->nameidx;
                        be16_add_cpu(&map->size, entsize);
                }
        } else {
                /*
                 * Replace smallest region (if it is smaller than free'd entry)
                 */
                map = &hdr->freemap[smallest];
                if (be16_to_cpu(map->size) < entsize) {
                        map->base = cpu_to_be16(be16_to_cpu(entry->nameidx));
                        map->size = cpu_to_be16(entsize);
                }
        }

        /*
         * Did we remove the first entry?
         */
        if (be16_to_cpu(entry->nameidx) == be16_to_cpu(hdr->firstused))
                smallest = 1;
        else
                smallest = 0;

        /*
         * Compress the remaining entries and zero out the removed stuff.
         */
        memset(XFS_ATTR_LEAF_NAME(leaf, args->index), 0, entsize);
        be16_add_cpu(&hdr->usedbytes, -entsize);
        xfs_da_log_buf(args->trans, bp,
             XFS_DA_LOGRANGE(leaf, XFS_ATTR_LEAF_NAME(leaf, args->index),
                                   entsize));

        tmp = (be16_to_cpu(hdr->count) - args->index)
                                        * sizeof(xfs_attr_leaf_entry_t);
        memmove((char *)entry, (char *)(entry+1), tmp);
        be16_add_cpu(&hdr->count, -1);
        xfs_da_log_buf(args->trans, bp,
            XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry)));
        entry = &leaf->entries[be16_to_cpu(hdr->count)];
        memset((char *)entry, 0, sizeof(xfs_attr_leaf_entry_t));

        /*
         * If we removed the first entry, re-find the first used byte
         * in the name area.  Note that if the entry was the "firstused",
         * then we don't have a "hole" in our block resulting from
         * removing the name.
         */
        if (smallest) {
                tmp = XFS_LBSIZE(mp);
                entry = &leaf->entries[0];
                for (i = be16_to_cpu(hdr->count)-1; i >= 0; entry++, i--) {
                        ASSERT(be16_to_cpu(entry->nameidx) >=
                               be16_to_cpu(hdr->firstused));
                        ASSERT(be16_to_cpu(entry->nameidx) < XFS_LBSIZE(mp));

                        if (be16_to_cpu(entry->nameidx) < tmp)
                                tmp = be16_to_cpu(entry->nameidx);
                }
                hdr->firstused = cpu_to_be16(tmp);
                if (!hdr->firstused) {
                        hdr->firstused = cpu_to_be16(
                                        tmp - XFS_ATTR_LEAF_NAME_ALIGN);
                }
        } else {
                hdr->holes = 1;         /* mark as needing compaction */
        }
        xfs_da_log_buf(args->trans, bp,
                          XFS_DA_LOGRANGE(leaf, hdr, sizeof(*hdr)));

        /*
         * Check if leaf is less than 50% full, caller may want to
         * "join" the leaf with a sibling if so.
         */
        tmp  = sizeof(xfs_attr_leaf_hdr_t);
        tmp += be16_to_cpu(leaf->hdr.count) * sizeof(xfs_attr_leaf_entry_t);
        tmp += be16_to_cpu(leaf->hdr.usedbytes);
        return(tmp < mp->m_attr_magicpct); /* leaf is < 37% full */
}

/*
 * Move all the attribute list entries from drop_leaf into save_leaf.
 */
void
xfs_attr_leaf_unbalance(xfs_da_state_t *state, xfs_da_state_blk_t *drop_blk,
                                       xfs_da_state_blk_t *save_blk)
{
        xfs_attr_leafblock_t *drop_leaf, *save_leaf, *tmp_leaf;
        xfs_attr_leaf_hdr_t *drop_hdr, *save_hdr, *tmp_hdr;
        xfs_mount_t *mp;
        char *tmpbuffer;

        /*
         * Set up environment.
         */
        mp = state->mp;
        ASSERT(drop_blk->magic == XFS_ATTR_LEAF_MAGIC);
        ASSERT(save_blk->magic == XFS_ATTR_LEAF_MAGIC);
        drop_leaf = drop_blk->bp->data;
        save_leaf = save_blk->bp->data;
        ASSERT(be16_to_cpu(drop_leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
        ASSERT(be16_to_cpu(save_leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
        drop_hdr = &drop_leaf->hdr;
        save_hdr = &save_leaf->hdr;

        /*
         * Save last hashval from dying block for later Btree fixup.
         */
        drop_blk->hashval = be32_to_cpu(
                drop_leaf->entries[be16_to_cpu(drop_leaf->hdr.count)-1].hashval);

        /*
         * Check if we need a temp buffer, or can we do it in place.
         * Note that we don't check "leaf" for holes because we will
         * always be dropping it, toosmall() decided that for us already.
         */
        if (save_hdr->holes == 0) {
                /*
                 * dest leaf has no holes, so we add there.  May need
                 * to make some room in the entry array.
                 */
                if (xfs_attr_leaf_order(save_blk->bp, drop_blk->bp)) {
                        xfs_attr_leaf_moveents(drop_leaf, 0, save_leaf, 0,
                             be16_to_cpu(drop_hdr->count), mp);
                } else {
                        xfs_attr_leaf_moveents(drop_leaf, 0, save_leaf,
                                  be16_to_cpu(save_hdr->count),
                                  be16_to_cpu(drop_hdr->count), mp);
                }
        } else {
                /*
                 * Destination has holes, so we make a temporary copy
                 * of the leaf and add them both to that.
                 */
                tmpbuffer = kmem_alloc(state->blocksize, KM_SLEEP);
                ASSERT(tmpbuffer != NULL);
                memset(tmpbuffer, 0, state->blocksize);
                tmp_leaf = (xfs_attr_leafblock_t *)tmpbuffer;
                tmp_hdr = &tmp_leaf->hdr;
                tmp_hdr->info = save_hdr->info; /* struct copy */
                tmp_hdr->count = 0;
                tmp_hdr->firstused = cpu_to_be16(state->blocksize);
                if (!tmp_hdr->firstused) {
                        tmp_hdr->firstused = cpu_to_be16(
                                state->blocksize - XFS_ATTR_LEAF_NAME_ALIGN);
                }
                tmp_hdr->usedbytes = 0;
                if (xfs_attr_leaf_order(save_blk->bp, drop_blk->bp)) {
                        xfs_attr_leaf_moveents(drop_leaf, 0, tmp_leaf, 0,
                                be16_to_cpu(drop_hdr->count), mp);
                        xfs_attr_leaf_moveents(save_leaf, 0, tmp_leaf,
                                  be16_to_cpu(tmp_leaf->hdr.count),
                                  be16_to_cpu(save_hdr->count), mp);
                } else {
                        xfs_attr_leaf_moveents(save_leaf, 0, tmp_leaf, 0,
                                be16_to_cpu(save_hdr->count), mp);
                        xfs_attr_leaf_moveents(drop_leaf, 0, tmp_leaf,
                                be16_to_cpu(tmp_leaf->hdr.count),
                                be16_to_cpu(drop_hdr->count), mp);
                }
                memcpy((char *)save_leaf, (char *)tmp_leaf, state->blocksize);
                kmem_free(tmpbuffer);
        }

        xfs_da_log_buf(state->args->trans, save_blk->bp, 0,
                                           state->blocksize - 1);

        /*
         * Copy out last hashval in each block for B-tree code.
         */
        save_blk->hashval = be32_to_cpu(
                save_leaf->entries[be16_to_cpu(save_leaf->hdr.count)-1].hashval);
}

/*========================================================================
 * Routines used for finding things in the Btree.
 *========================================================================*/

/*
 * Look up a name in a leaf attribute list structure.
 * This is the internal routine, it uses the caller's buffer.
 *
 * Note that duplicate keys are allowed, but only check within the
 * current leaf node.  The Btree code must check in adjacent leaf nodes.
 *
 * Return in args->index the index into the entry[] array of either
 * the found entry, or where the entry should have been (insert before
 * that entry).
 *
 * Don't change the args->value unless we find the attribute.
 */
int
xfs_attr_leaf_lookup_int(xfs_dabuf_t *bp, xfs_da_args_t *args)
{
        xfs_attr_leafblock_t *leaf;
        xfs_attr_leaf_entry_t *entry;
        xfs_attr_leaf_name_local_t *name_loc;
        xfs_attr_leaf_name_remote_t *name_rmt;
        int probe, span;
        xfs_dahash_t hashval;

        leaf = bp->data;
        ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
        ASSERT(be16_to_cpu(leaf->hdr.count)
                                        < (XFS_LBSIZE(args->dp->i_mount)/8));

        /*
         * Binary search.  (note: small blocks will skip this loop)
         */
        hashval = args->hashval;
        probe = span = be16_to_cpu(leaf->hdr.count) / 2;
        for (entry = &leaf->entries[probe]; span > 4;
                   entry = &leaf->entries[probe]) {
                span /= 2;
                if (be32_to_cpu(entry->hashval) < hashval)
                        probe += span;
                else if (be32_to_cpu(entry->hashval) > hashval)
                        probe -= span;
                else
                        break;
        }
        ASSERT((probe >= 0) &&
               (!leaf->hdr.count
               || (probe < be16_to_cpu(leaf->hdr.count))));
        ASSERT((span <= 4) || (be32_to_cpu(entry->hashval) == hashval));

        /*
         * Since we may have duplicate hashval's, find the first matching
         * hashval in the leaf.
         */
        while ((probe > 0) && (be32_to_cpu(entry->hashval) >= hashval)) {
                entry--;
                probe--;
        }
        while ((probe < be16_to_cpu(leaf->hdr.count)) &&
               (be32_to_cpu(entry->hashval) < hashval)) {
                entry++;
                probe++;
        }
        if ((probe == be16_to_cpu(leaf->hdr.count)) ||
            (be32_to_cpu(entry->hashval) != hashval)) {
                args->index = probe;
                return(XFS_ERROR(ENOATTR));
        }

        /*
         * Duplicate keys may be present, so search all of them for a match.
         */
        for (  ; (probe < be16_to_cpu(leaf->hdr.count)) &&
                        (be32_to_cpu(entry->hashval) == hashval);
                        entry++, probe++) {
/*
 * GROT: Add code to remove incomplete entries.
 */
                /*
                 * If we are looking for INCOMPLETE entries, show only those.
                 * If we are looking for complete entries, show only those.
                 */
                if ((args->flags & XFS_ATTR_INCOMPLETE) !=
                    (entry->flags & XFS_ATTR_INCOMPLETE)) {
                        continue;
                }
                if (entry->flags & XFS_ATTR_LOCAL) {
                        name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf, probe);
                        if (name_loc->namelen != args->namelen)
                                continue;
                        if (memcmp(args->name, (char *)name_loc->nameval, args->namelen) != 0)
                                continue;
                        if (!xfs_attr_namesp_match(args->flags, entry->flags))
                                continue;
                        args->index = probe;
                        return(XFS_ERROR(EEXIST));
                } else {
                        name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, probe);
                        if (name_rmt->namelen != args->namelen)
                                continue;
                        if (memcmp(args->name, (char *)name_rmt->name,
                                             args->namelen) != 0)
                                continue;
                        if (!xfs_attr_namesp_match(args->flags, entry->flags))
                                continue;
                        args->index = probe;
                        args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
                        args->rmtblkcnt = XFS_B_TO_FSB(args->dp->i_mount,
                                                   be32_to_cpu(name_rmt->valuelen));
                        return(XFS_ERROR(EEXIST));
                }
        }
        args->index = probe;
        return(XFS_ERROR(ENOATTR));
}

/*
 * Get the value associated with an attribute name from a leaf attribute
 * list structure.
 */
int
xfs_attr_leaf_getvalue(xfs_dabuf_t *bp, xfs_da_args_t *args)
{
        int valuelen;
        xfs_attr_leafblock_t *leaf;
        xfs_attr_leaf_entry_t *entry;
        xfs_attr_leaf_name_local_t *name_loc;
        xfs_attr_leaf_name_remote_t *name_rmt;

        leaf = bp->data;
        ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
        ASSERT(be16_to_cpu(leaf->hdr.count)
                                        < (XFS_LBSIZE(args->dp->i_mount)/8));
        ASSERT(args->index < be16_to_cpu(leaf->hdr.count));

        entry = &leaf->entries[args->index];
        if (entry->flags & XFS_ATTR_LOCAL) {
                name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf, args->index);
                ASSERT(name_loc->namelen == args->namelen);
                ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0);
                valuelen = be16_to_cpu(name_loc->valuelen);
                if (args->flags & ATTR_KERNOVAL) {
                        args->valuelen = valuelen;
                        return(0);
                }
                if (args->valuelen < valuelen) {
                        args->valuelen = valuelen;
                        return(XFS_ERROR(ERANGE));
                }
                args->valuelen = valuelen;
                memcpy(args->value, &name_loc->nameval[args->namelen], valuelen);
        } else {
                name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, args->index);
                ASSERT(name_rmt->namelen == args->namelen);
                ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0);
                valuelen = be32_to_cpu(name_rmt->valuelen);
                args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
                args->rmtblkcnt = XFS_B_TO_FSB(args->dp->i_mount, valuelen);
                if (args->flags & ATTR_KERNOVAL) {
                        args->valuelen = valuelen;
                        return(0);
                }
                if (args->valuelen < valuelen) {
                        args->valuelen = valuelen;
                        return(XFS_ERROR(ERANGE));
                }
                args->valuelen = valuelen;
        }
        return(0);
}

/*========================================================================
 * Utility routines.
 *========================================================================*/

/*
 * Move the indicated entries from one leaf to another.
 * NOTE: this routine modifies both source and destination leaves.
 */
/*ARGSUSED*/
STATIC void
xfs_attr_leaf_moveents(xfs_attr_leafblock_t *leaf_s, int start_s,
                        xfs_attr_leafblock_t *leaf_d, int start_d,
                        int count, xfs_mount_t *mp)
{
        xfs_attr_leaf_hdr_t *hdr_s, *hdr_d;
        xfs_attr_leaf_entry_t *entry_s, *entry_d;
        int desti, tmp, i;

        /*
         * Check for nothing to do.
         */
        if (count == 0)
                return;

        /*
         * Set up environment.
         */
        ASSERT(be16_to_cpu(leaf_s->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
        ASSERT(be16_to_cpu(leaf_d->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
        hdr_s = &leaf_s->hdr;
        hdr_d = &leaf_d->hdr;
        ASSERT((be16_to_cpu(hdr_s->count) > 0) &&
               (be16_to_cpu(hdr_s->count) < (XFS_LBSIZE(mp)/8)));
        ASSERT(be16_to_cpu(hdr_s->firstused) >=
                ((be16_to_cpu(hdr_s->count)
                                        * sizeof(*entry_s))+sizeof(*hdr_s)));
        ASSERT(be16_to_cpu(hdr_d->count) < (XFS_LBSIZE(mp)/8));
        ASSERT(be16_to_cpu(hdr_d->firstused) >=
                ((be16_to_cpu(hdr_d->count)
                                        * sizeof(*entry_d))+sizeof(*hdr_d)));

        ASSERT(start_s < be16_to_cpu(hdr_s->count));
        ASSERT(start_d <= be16_to_cpu(hdr_d->count));
        ASSERT(count <= be16_to_cpu(hdr_s->count));

        /*
         * Move the entries in the destination leaf up to make a hole?
         */
        if (start_d < be16_to_cpu(hdr_d->count)) {
                tmp  = be16_to_cpu(hdr_d->count) - start_d;
                tmp *= sizeof(xfs_attr_leaf_entry_t);
                entry_s = &leaf_d->entries[start_d];
                entry_d = &leaf_d->entries[start_d + count];
                memmove((char *)entry_d, (char *)entry_s, tmp);
        }

        /*
         * Copy all entry's in the same (sorted) order,
         * but allocate attribute info packed and in sequence.
         */
        entry_s = &leaf_s->entries[start_s];
        entry_d = &leaf_d->entries[start_d];
        desti = start_d;
        for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) {
                ASSERT(be16_to_cpu(entry_s->nameidx)
                                >= be16_to_cpu(hdr_s->firstused));
                tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i);
#ifdef GROT
                /*
                 * Code to drop INCOMPLETE entries.  Difficult to use as we
                 * may also need to change the insertion index.  Code turned
                 * off for 6.2, should be revisited later.
                 */
                if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */
                        memset(XFS_ATTR_LEAF_NAME(leaf_s, start_s + i), 0, tmp);
                        be16_add_cpu(&hdr_s->usedbytes, -tmp);
                        be16_add_cpu(&hdr_s->count, -1);
                        entry_d--;      /* to compensate for ++ in loop hdr */
                        desti--;
                        if ((start_s + i) < offset)
                                result++;       /* insertion index adjustment */
                } else {
#endif /* GROT */
                        be16_add_cpu(&hdr_d->firstused, -tmp);
                        /* both on-disk, don't endian flip twice */
                        entry_d->hashval = entry_s->hashval;
                        /* both on-disk, don't endian flip twice */
                        entry_d->nameidx = hdr_d->firstused;
                        entry_d->flags = entry_s->flags;
                        ASSERT(be16_to_cpu(entry_d->nameidx) + tmp
                                                        <= XFS_LBSIZE(mp));
                        memmove(XFS_ATTR_LEAF_NAME(leaf_d, desti),
                                XFS_ATTR_LEAF_NAME(leaf_s, start_s + i), tmp);
                        ASSERT(be16_to_cpu(entry_s->nameidx) + tmp
                                                        <= XFS_LBSIZE(mp));
                        memset(XFS_ATTR_LEAF_NAME(leaf_s, start_s + i), 0, tmp);
                        be16_add_cpu(&hdr_s->usedbytes, -tmp);
                        be16_add_cpu(&hdr_d->usedbytes, tmp);
                        be16_add_cpu(&hdr_s->count, -1);
                        be16_add_cpu(&hdr_d->count, 1);
                        tmp = be16_to_cpu(hdr_d->count)
                                                * sizeof(xfs_attr_leaf_entry_t)
                                                + sizeof(xfs_attr_leaf_hdr_t);
                        ASSERT(be16_to_cpu(hdr_d->firstused) >= tmp);
#ifdef GROT
                }
#endif /* GROT */
        }

        /*
         * Zero out the entries we just copied.
         */
        if (start_s == be16_to_cpu(hdr_s->count)) {
                tmp = count * sizeof(xfs_attr_leaf_entry_t);
                entry_s = &leaf_s->entries[start_s];
                ASSERT(((char *)entry_s + tmp) <=
                       ((char *)leaf_s + XFS_LBSIZE(mp)));
                memset((char *)entry_s, 0, tmp);
        } else {
                /*
                 * Move the remaining entries down to fill the hole,
                 * then zero the entries at the top.
                 */
                tmp  = be16_to_cpu(hdr_s->count) - count;
                tmp *= sizeof(xfs_attr_leaf_entry_t);
                entry_s = &leaf_s->entries[start_s + count];
                entry_d = &leaf_s->entries[start_s];
                memmove((char *)entry_d, (char *)entry_s, tmp);

                tmp = count * sizeof(xfs_attr_leaf_entry_t);
                entry_s = &leaf_s->entries[be16_to_cpu(hdr_s->count)];
                ASSERT(((char *)entry_s + tmp) <=
                       ((char *)leaf_s + XFS_LBSIZE(mp)));
                memset((char *)entry_s, 0, tmp);
        }

        /*
         * Fill in the freemap information
         */
        hdr_d->freemap[0].base = cpu_to_be16(sizeof(xfs_attr_leaf_hdr_t));
        be16_add_cpu(&hdr_d->freemap[0].base, be16_to_cpu(hdr_d->count) *
                        sizeof(xfs_attr_leaf_entry_t));
        hdr_d->freemap[0].size = cpu_to_be16(be16_to_cpu(hdr_d->firstused)
                              - be16_to_cpu(hdr_d->freemap[0].base));
        hdr_d->freemap[1].base = 0;
        hdr_d->freemap[2].base = 0;
        hdr_d->freemap[1].size = 0;
        hdr_d->freemap[2].size = 0;
        hdr_s->holes = 1;       /* leaf may not be compact */
}

/*
 * Compare two leaf blocks "order".
 * Return 0 unless leaf2 should go before leaf1.
 */
int
xfs_attr_leaf_order(xfs_dabuf_t *leaf1_bp, xfs_dabuf_t *leaf2_bp)
{
        xfs_attr_leafblock_t *leaf1, *leaf2;

        leaf1 = leaf1_bp->data;
        leaf2 = leaf2_bp->data;
        ASSERT((be16_to_cpu(leaf1->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC) &&
               (be16_to_cpu(leaf2->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC));
        if ((be16_to_cpu(leaf1->hdr.count) > 0) &&
            (be16_to_cpu(leaf2->hdr.count) > 0) &&
            ((be32_to_cpu(leaf2->entries[0].hashval) <
              be32_to_cpu(leaf1->entries[0].hashval)) ||
             (be32_to_cpu(leaf2->entries[
                        be16_to_cpu(leaf2->hdr.count)-1].hashval) <
              be32_to_cpu(leaf1->entries[
                        be16_to_cpu(leaf1->hdr.count)-1].hashval)))) {
                return(1);
        }
        return(0);
}

/*
 * Pick up the last hashvalue from a leaf block.
 */
xfs_dahash_t
xfs_attr_leaf_lasthash(xfs_dabuf_t *bp, int *count)
{
        xfs_attr_leafblock_t *leaf;

        leaf = bp->data;
        ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
        if (count)
                *count = be16_to_cpu(leaf->hdr.count);
        if (!leaf->hdr.count)
                return(0);
        return be32_to_cpu(leaf->entries[be16_to_cpu(leaf->hdr.count)-1].hashval);
}

/*
 * Calculate the number of bytes used to store the indicated attribute
 * (whether local or remote only calculate bytes in this block).
 */
STATIC int
xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index)
{
        xfs_attr_leaf_name_local_t *name_loc;
        xfs_attr_leaf_name_remote_t *name_rmt;
        int size;

        ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
        if (leaf->entries[index].flags & XFS_ATTR_LOCAL) {
                name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf, index);
                size = XFS_ATTR_LEAF_ENTSIZE_LOCAL(name_loc->namelen,
                                                   be16_to_cpu(name_loc->valuelen));
        } else {
                name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, index);
                size = XFS_ATTR_LEAF_ENTSIZE_REMOTE(name_rmt->namelen);
        }
        return(size);
}

/*
 * Calculate the number of bytes that would be required to store the new
 * attribute (whether local or remote only calculate bytes in this block).
 * This routine decides as a side effect whether the attribute will be
 * a "local" or a "remote" attribute.
 */
int
xfs_attr_leaf_newentsize(int namelen, int valuelen, int blocksize, int *local)
{
        int size;

        size = XFS_ATTR_LEAF_ENTSIZE_LOCAL(namelen, valuelen);
        if (size < XFS_ATTR_LEAF_ENTSIZE_LOCAL_MAX(blocksize)) {
                if (local) {
                        *local = 1;
                }
        } else {
                size = XFS_ATTR_LEAF_ENTSIZE_REMOTE(namelen);
                if (local) {
                        *local = 0;
                }
        }
        return(size);
}

/*
 * Copy out attribute list entries for attr_list(), for leaf attribute lists.
 */
int
xfs_attr_leaf_list_int(xfs_dabuf_t *bp, xfs_attr_list_context_t *context)
{
        attrlist_cursor_kern_t *cursor;
        xfs_attr_leafblock_t *leaf;
        xfs_attr_leaf_entry_t *entry;
        int retval, i;

        ASSERT(bp != NULL);
        leaf = bp->data;
        cursor = context->cursor;
        cursor->initted = 1;

        xfs_attr_trace_l_cl("blk start", context, leaf);

        /*
         * Re-find our place in the leaf block if this is a new syscall.
         */
        if (context->resynch) {
                entry = &leaf->entries[0];
                for (i = 0; i < be16_to_cpu(leaf->hdr.count); entry++, i++) {
                        if (be32_to_cpu(entry->hashval) == cursor->hashval) {
                                if (cursor->offset == context->dupcnt) {
                                        context->dupcnt = 0;
                                        break;
                                }
                                context->dupcnt++;
                        } else if (be32_to_cpu(entry->hashval) >
                                        cursor->hashval) {
                                context->dupcnt = 0;
                                break;
                        }
                }
                if (i == be16_to_cpu(leaf->hdr.count)) {
                        xfs_attr_trace_l_c("not found", context);
                        return(0);
                }
        } else {
                entry = &leaf->entries[0];
                i = 0;
        }
        context->resynch = 0;

        /*
         * We have found our place, start copying out the new attributes.
         */
        retval = 0;
        for (  ; (i < be16_to_cpu(leaf->hdr.count)); entry++, i++) {
                if (be32_to_cpu(entry->hashval) != cursor->hashval) {
                        cursor->hashval = be32_to_cpu(entry->hashval);
                        cursor->offset = 0;
                }

                if (entry->flags & XFS_ATTR_INCOMPLETE)
                        continue;               /* skip incomplete entries */

                if (entry->flags & XFS_ATTR_LOCAL) {
                        xfs_attr_leaf_name_local_t *name_loc =
                                XFS_ATTR_LEAF_NAME_LOCAL(leaf, i);

                        retval = context->put_listent(context,
                                                entry->flags,
                                                (char *)name_loc->nameval,
                                                (int)name_loc->namelen,
                                                be16_to_cpu(name_loc->valuelen),
                                                (char *)&name_loc->nameval[name_loc->namelen]);
                        if (retval)
                                return retval;
                } else {
                        xfs_attr_leaf_name_remote_t *name_rmt =
                                XFS_ATTR_LEAF_NAME_REMOTE(leaf, i);

                        int valuelen = be32_to_cpu(name_rmt->valuelen);

                        if (context->put_value) {
                                xfs_da_args_t args;

                                memset((char *)&args, 0, sizeof(args));
                                args.dp = context->dp;
                                args.whichfork = XFS_ATTR_FORK;
                                args.valuelen = valuelen;
                                args.value = kmem_alloc(valuelen, KM_SLEEP);
                                args.rmtblkno = be32_to_cpu(name_rmt->valueblk);
                                args.rmtblkcnt = XFS_B_TO_FSB(args.dp->i_mount, valuelen);
                                retval = xfs_attr_rmtval_get(&args);
                                if (retval)
                                        return retval;
                                retval = context->put_listent(context,
                                                entry->flags,
                                                (char *)name_rmt->name,
                                                (int)name_rmt->namelen,
                                                valuelen,
                                                (char*)args.value);
                                kmem_free(args.value);
                        } else {
                                retval = context->put_listent(context,
                                                entry->flags,
                                                (char *)name_rmt->name,
                                                (int)name_rmt->namelen,
                                                valuelen,
                                                NULL);
                        }
                        if (retval)
                                return retval;
                }
                if (context->seen_enough)
                        break;
                cursor->offset++;
        }
        xfs_attr_trace_l_cl("blk end", context, leaf);
        return(retval);
}


/*========================================================================
 * Manage the INCOMPLETE flag in a leaf entry
 *========================================================================*/

/*
 * Clear the INCOMPLETE flag on an entry in a leaf block.
 */
int
xfs_attr_leaf_clearflag(xfs_da_args_t *args)
{
        xfs_attr_leafblock_t *leaf;
        xfs_attr_leaf_entry_t *entry;
        xfs_attr_leaf_name_remote_t *name_rmt;
        xfs_dabuf_t *bp;
        int error;
#ifdef DEBUG
        xfs_attr_leaf_name_local_t *name_loc;
        int namelen;
        char *name;
#endif /* DEBUG */

        /*
         * Set up the operation.
         */
        error = xfs_da_read_buf(args->trans, args->dp, args->blkno, -1, &bp,
                                             XFS_ATTR_FORK);
        if (error) {
                return(error);
        }
        ASSERT(bp != NULL);

        leaf = bp->data;
        ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
        ASSERT(args->index < be16_to_cpu(leaf->hdr.count));
        ASSERT(args->index >= 0);
        entry = &leaf->entries[ args->index ];
        ASSERT(entry->flags & XFS_ATTR_INCOMPLETE);

#ifdef DEBUG
        if (entry->flags & XFS_ATTR_LOCAL) {
                name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf, args->index);
                namelen = name_loc->namelen;
                name = (char *)name_loc->nameval;
        } else {
                name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, args->index);
                namelen = name_rmt->namelen;
                name = (char *)name_rmt->name;
        }
        ASSERT(be32_to_cpu(entry->hashval) == args->hashval);
        ASSERT(namelen == args->namelen);
        ASSERT(memcmp(name, args->name, namelen) == 0);
#endif /* DEBUG */

        entry->flags &= ~XFS_ATTR_INCOMPLETE;
        xfs_da_log_buf(args->trans, bp,
                         XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));

        if (args->rmtblkno) {
                ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0);
                name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, args->index);
                name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
                name_rmt->valuelen = cpu_to_be32(args->valuelen);
                xfs_da_log_buf(args->trans, bp,
                         XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
        }
        xfs_da_buf_done(bp);

        /*
         * Commit the flag value change and start the next trans in series.
         */
        return xfs_trans_roll(&args->trans, args->dp);
}

/*
 * Set the INCOMPLETE flag on an entry in a leaf block.
 */
int
xfs_attr_leaf_setflag(xfs_da_args_t *args)
{
        xfs_attr_leafblock_t *leaf;
        xfs_attr_leaf_entry_t *entry;
        xfs_attr_leaf_name_remote_t *name_rmt;
        xfs_dabuf_t *bp;
        int error;

        /*
         * Set up the operation.
         */
        error = xfs_da_read_buf(args->trans, args->dp, args->blkno, -1, &bp,
                                             XFS_ATTR_FORK);
        if (error) {
                return(error);
        }
        ASSERT(bp != NULL);

        leaf = bp->data;
        ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
        ASSERT(args->index < be16_to_cpu(leaf->hdr.count));
        ASSERT(args->index >= 0);
        entry = &leaf->entries[ args->index ];

        ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0);
        entry->flags |= XFS_ATTR_INCOMPLETE;
        xfs_da_log_buf(args->trans, bp,
                        XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
        if ((entry->flags & XFS_ATTR_LOCAL) == 0) {
                name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, args->index);
                name_rmt->valueblk = 0;
                name_rmt->valuelen = 0;
                xfs_da_log_buf(args->trans, bp,
                         XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
        }
        xfs_da_buf_done(bp);

        /*
         * Commit the flag value change and start the next trans in series.
         */
        return xfs_trans_roll(&args->trans, args->dp);
}

/*
 * In a single transaction, clear the INCOMPLETE flag on the leaf entry
 * given by args->blkno/index and set the INCOMPLETE flag on the leaf
 * entry given by args->blkno2/index2.
 *
 * Note that they could be in different blocks, or in the same block.
 */
int
xfs_attr_leaf_flipflags(xfs_da_args_t *args)
{
        xfs_attr_leafblock_t *leaf1, *leaf2;
        xfs_attr_leaf_entry_t *entry1, *entry2;
        xfs_attr_leaf_name_remote_t *name_rmt;
        xfs_dabuf_t *bp1, *bp2;
        int error;
#ifdef DEBUG
        xfs_attr_leaf_name_local_t *name_loc;
        int namelen1, namelen2;
        char *name1, *name2;
#endif /* DEBUG */

        /*
         * Read the block containing the "old" attr
         */
        error = xfs_da_read_buf(args->trans, args->dp, args->blkno, -1, &bp1,
                                             XFS_ATTR_FORK);
        if (error) {
                return(error);
        }
        ASSERT(bp1 != NULL);

        /*
         * Read the block containing the "new" attr, if it is different
         */
        if (args->blkno2 != args->blkno) {
                error = xfs_da_read_buf(args->trans, args->dp, args->blkno2,
                                        -1, &bp2, XFS_ATTR_FORK);
                if (error) {
                        return(error);
                }
                ASSERT(bp2 != NULL);
        } else {
                bp2 = bp1;
        }

        leaf1 = bp1->data;
        ASSERT(be16_to_cpu(leaf1->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
        ASSERT(args->index < be16_to_cpu(leaf1->hdr.count));
        ASSERT(args->index >= 0);
        entry1 = &leaf1->entries[ args->index ];

        leaf2 = bp2->data;
        ASSERT(be16_to_cpu(leaf2->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
        ASSERT(args->index2 < be16_to_cpu(leaf2->hdr.count));
        ASSERT(args->index2 >= 0);
        entry2 = &leaf2->entries[ args->index2 ];

#ifdef DEBUG
        if (entry1->flags & XFS_ATTR_LOCAL) {
                name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf1, args->index);
                namelen1 = name_loc->namelen;
                name1 = (char *)name_loc->nameval;
        } else {
                name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf1, args->index);
                namelen1 = name_rmt->namelen;
                name1 = (char *)name_rmt->name;
        }
        if (entry2->flags & XFS_ATTR_LOCAL) {
                name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf2, args->index2);
                namelen2 = name_loc->namelen;
                name2 = (char *)name_loc->nameval;
        } else {
                name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf2, args->index2);
                namelen2 = name_rmt->namelen;
                name2 = (char *)name_rmt->name;
        }
        ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval));
        ASSERT(namelen1 == namelen2);
        ASSERT(memcmp(name1, name2, namelen1) == 0);
#endif /* DEBUG */

        ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE);
        ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0);

        entry1->flags &= ~XFS_ATTR_INCOMPLETE;
        xfs_da_log_buf(args->trans, bp1,
                          XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1)));
        if (args->rmtblkno) {
                ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0);
                name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf1, args->index);
                name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
                name_rmt->valuelen = cpu_to_be32(args->valuelen);
                xfs_da_log_buf(args->trans, bp1,
                         XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt)));
        }

        entry2->flags |= XFS_ATTR_INCOMPLETE;
        xfs_da_log_buf(args->trans, bp2,
                          XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2)));
        if ((entry2->flags & XFS_ATTR_LOCAL) == 0) {
                name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf2, args->index2);
                name_rmt->valueblk = 0;
                name_rmt->valuelen = 0;
                xfs_da_log_buf(args->trans, bp2,
                         XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt)));
        }
        xfs_da_buf_done(bp1);
        if (bp1 != bp2)
                xfs_da_buf_done(bp2);

        /*
         * Commit the flag value change and start the next trans in series.
         */
        error = xfs_trans_roll(&args->trans, args->dp);

        return(error);
}

/*========================================================================
 * Indiscriminately delete the entire attribute fork
 *========================================================================*/

/*
 * Recurse (gasp!) through the attribute nodes until we find leaves.
 * We're doing a depth-first traversal in order to invalidate everything.
 */
int
xfs_attr_root_inactive(xfs_trans_t **trans, xfs_inode_t *dp)
{
        xfs_da_blkinfo_t *info;
        xfs_daddr_t blkno;
        xfs_dabuf_t *bp;
        int error;

        /*
         * Read block 0 to see what we have to work with.
         * We only get here if we have extents, since we remove
         * the extents in reverse order the extent containing
         * block 0 must still be there.
         */
        error = xfs_da_read_buf(*trans, dp, 0, -1, &bp, XFS_ATTR_FORK);
        if (error)
                return(error);
        blkno = xfs_da_blkno(bp);

        /*
         * Invalidate the tree, even if the "tree" is only a single leaf block.
         * This is a depth-first traversal!
         */
        info = bp->data;
        if (be16_to_cpu(info->magic) == XFS_DA_NODE_MAGIC) {
                error = xfs_attr_node_inactive(trans, dp, bp, 1);
        } else if (be16_to_cpu(info->magic) == XFS_ATTR_LEAF_MAGIC) {
                error = xfs_attr_leaf_inactive(trans, dp, bp);
        } else {
                error = XFS_ERROR(EIO);
                xfs_da_brelse(*trans, bp);
        }
        if (error)
                return(error);

        /*
         * Invalidate the incore copy of the root block.
         */
        error = xfs_da_get_buf(*trans, dp, 0, blkno, &bp, XFS_ATTR_FORK);
        if (error)
                return(error);
        xfs_da_binval(*trans, bp);      /* remove from cache */
        /*
         * Commit the invalidate and start the next transaction.
         */
        error = xfs_trans_roll(trans, dp);

        return (error);
}

/*
 * Recurse (gasp!) through the attribute nodes until we find leaves.
 * We're doing a depth-first traversal in order to invalidate everything.
 */
STATIC int
xfs_attr_node_inactive(xfs_trans_t **trans, xfs_inode_t *dp, xfs_dabuf_t *bp,
                                   int level)
{
        xfs_da_blkinfo_t *info;
        xfs_da_intnode_t *node;
        xfs_dablk_t child_fsb;
        xfs_daddr_t parent_blkno, child_blkno;
        int error, count, i;
        xfs_dabuf_t *child_bp;

        /*
         * Since this code is recursive (gasp!) we must protect ourselves.
         */
        if (level > XFS_DA_NODE_MAXDEPTH) {
                xfs_da_brelse(*trans, bp);      /* no locks for later trans */
                return(XFS_ERROR(EIO));
        }

        node = bp->data;
        ASSERT(be16_to_cpu(node->hdr.info.magic) == XFS_DA_NODE_MAGIC);
        parent_blkno = xfs_da_blkno(bp);        /* save for re-read later */
        count = be16_to_cpu(node->hdr.count);
        if (!count) {
                xfs_da_brelse(*trans, bp);
                return(0);
        }
        child_fsb = be32_to_cpu(node->btree[0].before);
        xfs_da_brelse(*trans, bp);      /* no locks for later trans */

        /*
         * If this is the node level just above the leaves, simply loop
         * over the leaves removing all of them.  If this is higher up
         * in the tree, recurse downward.
         */
        for (i = 0; i < count; i++) {
                /*
                 * Read the subsidiary block to see what we have to work with.
                 * Don't do this in a transaction.  This is a depth-first
                 * traversal of the tree so we may deal with many blocks
                 * before we come back to this one.
                 */
                error = xfs_da_read_buf(*trans, dp, child_fsb, -2, &child_bp,
                                                XFS_ATTR_FORK);
                if (error)
                        return(error);
                if (child_bp) {
                                                /* save for re-read later */
                        child_blkno = xfs_da_blkno(child_bp);

                        /*
                         * Invalidate the subtree, however we have to.
                         */
                        info = child_bp->data;
                        if (be16_to_cpu(info->magic) == XFS_DA_NODE_MAGIC) {
                                error = xfs_attr_node_inactive(trans, dp,
                                                child_bp, level+1);
                        } else if (be16_to_cpu(info->magic) == XFS_ATTR_LEAF_MAGIC) {
                                error = xfs_attr_leaf_inactive(trans, dp,
                                                child_bp);
                        } else {
                                error = XFS_ERROR(EIO);
                                xfs_da_brelse(*trans, child_bp);
                        }
                        if (error)
                                return(error);

                        /*
                         * Remove the subsidiary block from the cache
                         * and from the log.
                         */
                        error = xfs_da_get_buf(*trans, dp, 0, child_blkno,
                                &child_bp, XFS_ATTR_FORK);
                        if (error)
                                return(error);
                        xfs_da_binval(*trans, child_bp);
                }

                /*
                 * If we're not done, re-read the parent to get the next
                 * child block number.
                 */
                if ((i+1) < count) {
                        error = xfs_da_read_buf(*trans, dp, 0, parent_blkno,
                                &bp, XFS_ATTR_FORK);
                        if (error)
                                return(error);
                        child_fsb = be32_to_cpu(node->btree[i+1].before);
                        xfs_da_brelse(*trans, bp);
                }
                /*
                 * Atomically commit the whole invalidate stuff.
                 */
                error = xfs_trans_roll(trans, dp);
                if (error)
                        return (error);
        }

        return(0);
}

/*
 * Invalidate all of the "remote" value regions pointed to by a particular
 * leaf block.
 * Note that we must release the lock on the buffer so that we are not
 * caught holding something that the logging code wants to flush to disk.
 */
STATIC int
xfs_attr_leaf_inactive(xfs_trans_t **trans, xfs_inode_t *dp, xfs_dabuf_t *bp)
{
        xfs_attr_leafblock_t *leaf;
        xfs_attr_leaf_entry_t *entry;
        xfs_attr_leaf_name_remote_t *name_rmt;
        xfs_attr_inactive_list_t *list, *lp;
        int error, count, size, tmp, i;

        leaf = bp->data;
        ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);

        /*
         * Count the number of "remote" value extents.
         */
        count = 0;
        entry = &leaf->entries[0];
        for (i = 0; i < be16_to_cpu(leaf->hdr.count); entry++, i++) {
                if (be16_to_cpu(entry->nameidx) &&
                    ((entry->flags & XFS_ATTR_LOCAL) == 0)) {
                        name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, i);
                        if (name_rmt->valueblk)
                                count++;
                }
        }

        /*
         * If there are no "remote" values, we're done.
         */
        if (count == 0) {
                xfs_da_brelse(*trans, bp);
                return(0);
        }

        /*
         * Allocate storage for a list of all the "remote" value extents.
         */
        size = count * sizeof(xfs_attr_inactive_list_t);
        list = (xfs_attr_inactive_list_t *)kmem_alloc(size, KM_SLEEP);

        /*
         * Identify each of the "remote" value extents.
         */
        lp = list;
        entry = &leaf->entries[0];
        for (i = 0; i < be16_to_cpu(leaf->hdr.count); entry++, i++) {
                if (be16_to_cpu(entry->nameidx) &&
                    ((entry->flags & XFS_ATTR_LOCAL) == 0)) {
                        name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, i);
                        if (name_rmt->valueblk) {
                                lp->valueblk = be32_to_cpu(name_rmt->valueblk);
                                lp->valuelen = XFS_B_TO_FSB(dp->i_mount,
                                                    be32_to_cpu(name_rmt->valuelen));
                                lp++;
                        }
                }
        }
        xfs_da_brelse(*trans, bp);      /* unlock for trans. in freextent() */

        /*
         * Invalidate each of the "remote" value extents.
         */
        error = 0;
        for (lp = list, i = 0; i < count; i++, lp++) {
                tmp = xfs_attr_leaf_freextent(trans, dp,
                                lp->valueblk, lp->valuelen);

                if (error == 0)
                        error = tmp;    /* save only the 1st errno */
        }

        kmem_free((xfs_caddr_t)list);
        return(error);
}

/*
 * Look at all the extents for this logical region,
 * invalidate any buffers that are incore/in transactions.
 */
STATIC int
xfs_attr_leaf_freextent(xfs_trans_t **trans, xfs_inode_t *dp,
                                    xfs_dablk_t blkno, int blkcnt)
{
        xfs_bmbt_irec_t map;
        xfs_dablk_t tblkno;
        int tblkcnt, dblkcnt, nmap, error;
        xfs_daddr_t dblkno;
        xfs_buf_t *bp;

        /*
         * Roll through the "value", invalidating the attribute value's
         * blocks.
         */
        tblkno = blkno;
        tblkcnt = blkcnt;
        while (tblkcnt > 0) {
                /*
                 * Try to remember where we decided to put the value.
                 */
                nmap = 1;
                error = xfs_bmapi(*trans, dp, (xfs_fileoff_t)tblkno, tblkcnt,
                                        XFS_BMAPI_ATTRFORK | XFS_BMAPI_METADATA,
                                        NULL, 0, &map, &nmap, NULL, NULL);
                if (error) {
                        return(error);
                }
                ASSERT(nmap == 1);
                ASSERT(map.br_startblock != DELAYSTARTBLOCK);

                /*
                 * If it's a hole, these are already unmapped
                 * so there's nothing to invalidate.
                 */
                if (map.br_startblock != HOLESTARTBLOCK) {

                        dblkno = XFS_FSB_TO_DADDR(dp->i_mount,
                                                  map.br_startblock);
                        dblkcnt = XFS_FSB_TO_BB(dp->i_mount,
                                                map.br_blockcount);
                        bp = xfs_trans_get_buf(*trans,
                                        dp->i_mount->m_ddev_targp,
                                        dblkno, dblkcnt, XFS_BUF_LOCK);
                        xfs_trans_binval(*trans, bp);
                        /*
                         * Roll to next transaction.
                         */
                        error = xfs_trans_roll(trans, dp);
                        if (error)
                                return (error);
                }

                tblkno += map.br_blockcount;
                tblkcnt -= map.br_blockcount;
        }

        return(0);
}

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading