[funini.com] -> [kei@sodan] -> Kernel Reading

root/fs/file.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. alloc_fdmem
  2. free_fdarr
  3. free_fdset
  4. free_fdtable_work
  5. free_fdtable_rcu
  6. copy_fdtable
  7. alloc_fdtable
  8. expand_fdtable
  9. expand_files
  10. count_open_files
  11. dup_fd
  12. fdtable_defer_list_init
  13. files_defer_init
  14. alloc_fd
  15. get_unused_fd

/*
 *  linux/fs/file.c
 *
 *  Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
 *
 *  Manage the dynamic fd arrays in the process files_struct.
 */

#include <linux/module.h>
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/time.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/file.h>
#include <linux/fdtable.h>
#include <linux/bitops.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/rcupdate.h>
#include <linux/workqueue.h>

struct fdtable_defer {
        spinlock_t lock;
        struct work_struct wq;
        struct fdtable *next;
};

int sysctl_nr_open __read_mostly = 1024*1024;
int sysctl_nr_open_min = BITS_PER_LONG;
int sysctl_nr_open_max = 1024 * 1024; /* raised later */

/*
 * We use this list to defer free fdtables that have vmalloced
 * sets/arrays. By keeping a per-cpu list, we avoid having to embed
 * the work_struct in fdtable itself which avoids a 64 byte (i386) increase in
 * this per-task structure.
 */
static DEFINE_PER_CPU(struct fdtable_defer, fdtable_defer_list);

static inline void * alloc_fdmem(unsigned int size)
{
        if (size <= PAGE_SIZE)
                return kmalloc(size, GFP_KERNEL);
        else
                return vmalloc(size);
}

static inline void free_fdarr(struct fdtable *fdt)
{
        if (fdt->max_fds <= (PAGE_SIZE / sizeof(struct file *)))
                kfree(fdt->fd);
        else
                vfree(fdt->fd);
}

static inline void free_fdset(struct fdtable *fdt)
{
        if (fdt->max_fds <= (PAGE_SIZE * BITS_PER_BYTE / 2))
                kfree(fdt->open_fds);
        else
                vfree(fdt->open_fds);
}

static void free_fdtable_work(struct work_struct *work)
{
        struct fdtable_defer *f =
                container_of(work, struct fdtable_defer, wq);
        struct fdtable *fdt;

        spin_lock_bh(&f->lock);
        fdt = f->next;
        f->next = NULL;
        spin_unlock_bh(&f->lock);
        while(fdt) {
                struct fdtable *next = fdt->next;
                vfree(fdt->fd);
                free_fdset(fdt);
                kfree(fdt);
                fdt = next;
        }
}

void free_fdtable_rcu(struct rcu_head *rcu)
{
        struct fdtable *fdt = container_of(rcu, struct fdtable, rcu);
        struct fdtable_defer *fddef;

        BUG_ON(!fdt);

        if (fdt->max_fds <= NR_OPEN_DEFAULT) {
                /*
                 * This fdtable is embedded in the files structure and that
                 * structure itself is getting destroyed.
                 */
                kmem_cache_free(files_cachep,
                                container_of(fdt, struct files_struct, fdtab));
                return;
        }
        if (fdt->max_fds <= (PAGE_SIZE / sizeof(struct file *))) {
                kfree(fdt->fd);
                kfree(fdt->open_fds);
                kfree(fdt);
        } else {
                fddef = &get_cpu_var(fdtable_defer_list);
                spin_lock(&fddef->lock);
                fdt->next = fddef->next;
                fddef->next = fdt;
                /* vmallocs are handled from the workqueue context */
                schedule_work(&fddef->wq);
                spin_unlock(&fddef->lock);
                put_cpu_var(fdtable_defer_list);
        }
}

/*
 * Expand the fdset in the files_struct.  Called with the files spinlock
 * held for write.
 */
static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
{
        unsigned int cpy, set;

        BUG_ON(nfdt->max_fds < ofdt->max_fds);

        cpy = ofdt->max_fds * sizeof(struct file *);
        set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
        memcpy(nfdt->fd, ofdt->fd, cpy);
        memset((char *)(nfdt->fd) + cpy, 0, set);

        cpy = ofdt->max_fds / BITS_PER_BYTE;
        set = (nfdt->max_fds - ofdt->max_fds) / BITS_PER_BYTE;
        memcpy(nfdt->open_fds, ofdt->open_fds, cpy);
        memset((char *)(nfdt->open_fds) + cpy, 0, set);
        memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy);
        memset((char *)(nfdt->close_on_exec) + cpy, 0, set);
}

static struct fdtable * alloc_fdtable(unsigned int nr)
{
        struct fdtable *fdt;
        char *data;

        /*
         * Figure out how many fds we actually want to support in this fdtable.
         * Allocation steps are keyed to the size of the fdarray, since it
         * grows far faster than any of the other dynamic data. We try to fit
         * the fdarray into comfortable page-tuned chunks: starting at 1024B
         * and growing in powers of two from there on.
         */
        nr /= (1024 / sizeof(struct file *));
        nr = roundup_pow_of_two(nr + 1);
        nr *= (1024 / sizeof(struct file *));
        /*
         * Note that this can drive nr *below* what we had passed if sysctl_nr_open
         * had been set lower between the check in expand_files() and here.  Deal
         * with that in caller, it's cheaper that way.
         *
         * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
         * bitmaps handling below becomes unpleasant, to put it mildly...
         */
        if (unlikely(nr > sysctl_nr_open))
                nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1;

        fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL);
        if (!fdt)
                goto out;
        fdt->max_fds = nr;
        data = alloc_fdmem(nr * sizeof(struct file *));
        if (!data)
                goto out_fdt;
        fdt->fd = (struct file **)data;
        data = alloc_fdmem(max_t(unsigned int,
                                 2 * nr / BITS_PER_BYTE, L1_CACHE_BYTES));
        if (!data)
                goto out_arr;
        fdt->open_fds = (fd_set *)data;
        data += nr / BITS_PER_BYTE;
        fdt->close_on_exec = (fd_set *)data;
        INIT_RCU_HEAD(&fdt->rcu);
        fdt->next = NULL;

        return fdt;

out_arr:
        free_fdarr(fdt);
out_fdt:
        kfree(fdt);
out:
        return NULL;
}

/*
 * Expand the file descriptor table.
 * This function will allocate a new fdtable and both fd array and fdset, of
 * the given size.
 * Return <0 error code on error; 1 on successful completion.
 * The files->file_lock should be held on entry, and will be held on exit.
 */
static int expand_fdtable(struct files_struct *files, int nr)
        __releases(files->file_lock)
        __acquires(files->file_lock)
{
        struct fdtable *new_fdt, *cur_fdt;

        spin_unlock(&files->file_lock);
        new_fdt = alloc_fdtable(nr);
        spin_lock(&files->file_lock);
        if (!new_fdt)
                return -ENOMEM;
        /*
         * extremely unlikely race - sysctl_nr_open decreased between the check in
         * caller and alloc_fdtable().  Cheaper to catch it here...
         */
        if (unlikely(new_fdt->max_fds <= nr)) {
                free_fdarr(new_fdt);
                free_fdset(new_fdt);
                kfree(new_fdt);
                return -EMFILE;
        }
        /*
         * Check again since another task may have expanded the fd table while
         * we dropped the lock
         */
        cur_fdt = files_fdtable(files);
        if (nr >= cur_fdt->max_fds) {
                /* Continue as planned */
                copy_fdtable(new_fdt, cur_fdt);
                rcu_assign_pointer(files->fdt, new_fdt);
                if (cur_fdt->max_fds > NR_OPEN_DEFAULT)
                        free_fdtable(cur_fdt);
        } else {
                /* Somebody else expanded, so undo our attempt */
                free_fdarr(new_fdt);
                free_fdset(new_fdt);
                kfree(new_fdt);
        }
        return 1;
}

/*
 * Expand files.
 * This function will expand the file structures, if the requested size exceeds
 * the current capacity and there is room for expansion.
 * Return <0 error code on error; 0 when nothing done; 1 when files were
 * expanded and execution may have blocked.
 * The files->file_lock should be held on entry, and will be held on exit.
 */
int expand_files(struct files_struct *files, int nr)
{
        struct fdtable *fdt;

        fdt = files_fdtable(files);

        /*
         * N.B. For clone tasks sharing a files structure, this test
         * will limit the total number of files that can be opened.
         */
        if (nr >= current->signal->rlim[RLIMIT_NOFILE].rlim_cur)
                return -EMFILE;

        /* Do we need to expand? */
        if (nr < fdt->max_fds)
                return 0;

        /* Can we expand? */
        if (nr >= sysctl_nr_open)
                return -EMFILE;

        /* All good, so we try */
        return expand_fdtable(files, nr);
}

static int count_open_files(struct fdtable *fdt)
{
        int size = fdt->max_fds;
        int i;

        /* Find the last open fd */
        for (i = size/(8*sizeof(long)); i > 0; ) {
                if (fdt->open_fds->fds_bits[--i])
                        break;
        }
        i = (i+1) * 8 * sizeof(long);
        return i;
}

/*
 * Allocate a new files structure and copy contents from the
 * passed in files structure.
 * errorp will be valid only when the returned files_struct is NULL.
 */
struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
{
        struct files_struct *newf;
        struct file **old_fds, **new_fds;
        int open_files, size, i;
        struct fdtable *old_fdt, *new_fdt;

        *errorp = -ENOMEM;
        newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
        if (!newf)
                goto out;

        atomic_set(&newf->count, 1);

        spin_lock_init(&newf->file_lock);
        newf->next_fd = 0;
        new_fdt = &newf->fdtab;
        new_fdt->max_fds = NR_OPEN_DEFAULT;
        new_fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
        new_fdt->open_fds = (fd_set *)&newf->open_fds_init;
        new_fdt->fd = &newf->fd_array[0];
        INIT_RCU_HEAD(&new_fdt->rcu);
        new_fdt->next = NULL;

        spin_lock(&oldf->file_lock);
        old_fdt = files_fdtable(oldf);
        open_files = count_open_files(old_fdt);

        /*
         * Check whether we need to allocate a larger fd array and fd set.
         */
        while (unlikely(open_files > new_fdt->max_fds)) {
                spin_unlock(&oldf->file_lock);

                if (new_fdt != &newf->fdtab) {
                        free_fdarr(new_fdt);
                        free_fdset(new_fdt);
                        kfree(new_fdt);
                }

                new_fdt = alloc_fdtable(open_files - 1);
                if (!new_fdt) {
                        *errorp = -ENOMEM;
                        goto out_release;
                }

                /* beyond sysctl_nr_open; nothing to do */
                if (unlikely(new_fdt->max_fds < open_files)) {
                        free_fdarr(new_fdt);
                        free_fdset(new_fdt);
                        kfree(new_fdt);
                        *errorp = -EMFILE;
                        goto out_release;
                }

                /*
                 * Reacquire the oldf lock and a pointer to its fd table
                 * who knows it may have a new bigger fd table. We need
                 * the latest pointer.
                 */
                spin_lock(&oldf->file_lock);
                old_fdt = files_fdtable(oldf);
                open_files = count_open_files(old_fdt);
        }

        old_fds = old_fdt->fd;
        new_fds = new_fdt->fd;

        memcpy(new_fdt->open_fds->fds_bits,
                old_fdt->open_fds->fds_bits, open_files/8);
        memcpy(new_fdt->close_on_exec->fds_bits,
                old_fdt->close_on_exec->fds_bits, open_files/8);

        for (i = open_files; i != 0; i--) {
                struct file *f = *old_fds++;
                if (f) {
                        get_file(f);
                } else {
                        /*
                         * The fd may be claimed in the fd bitmap but not yet
                         * instantiated in the files array if a sibling thread
                         * is partway through open().  So make sure that this
                         * fd is available to the new process.
                         */
                        FD_CLR(open_files - i, new_fdt->open_fds);
                }
                rcu_assign_pointer(*new_fds++, f);
        }
        spin_unlock(&oldf->file_lock);

        /* compute the remainder to be cleared */
        size = (new_fdt->max_fds - open_files) * sizeof(struct file *);

        /* This is long word aligned thus could use a optimized version */
        memset(new_fds, 0, size);

        if (new_fdt->max_fds > open_files) {
                int left = (new_fdt->max_fds-open_files)/8;
                int start = open_files / (8 * sizeof(unsigned long));

                memset(&new_fdt->open_fds->fds_bits[start], 0, left);
                memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
        }

        rcu_assign_pointer(newf->fdt, new_fdt);

        return newf;

out_release:
        kmem_cache_free(files_cachep, newf);
out:
        return NULL;
}

static void __devinit fdtable_defer_list_init(int cpu)
{
        struct fdtable_defer *fddef = &per_cpu(fdtable_defer_list, cpu);
        spin_lock_init(&fddef->lock);
        INIT_WORK(&fddef->wq, free_fdtable_work);
        fddef->next = NULL;
}

void __init files_defer_init(void)
{
        int i;
        for_each_possible_cpu(i)
                fdtable_defer_list_init(i);
        sysctl_nr_open_max = min((size_t)INT_MAX, ~(size_t)0/sizeof(void *)) &
                             -BITS_PER_LONG;
}

struct files_struct init_files = {
        .count          = ATOMIC_INIT(1),
        .fdt            = &init_files.fdtab,
        .fdtab          = {
                .max_fds        = NR_OPEN_DEFAULT,
                .fd             = &init_files.fd_array[0],
                .close_on_exec  = (fd_set *)&init_files.close_on_exec_init,
                .open_fds       = (fd_set *)&init_files.open_fds_init,
                .rcu            = RCU_HEAD_INIT,
        },
        .file_lock      = __SPIN_LOCK_UNLOCKED(init_task.file_lock),
};

/*
 * allocate a file descriptor, mark it busy.
 */
int alloc_fd(unsigned start, unsigned flags)
{
        struct files_struct *files = current->files;
        unsigned int fd;
        int error;
        struct fdtable *fdt;

        spin_lock(&files->file_lock);
repeat:
        fdt = files_fdtable(files);
        fd = start;
        if (fd < files->next_fd)
                fd = files->next_fd;

        if (fd < fdt->max_fds)
                fd = find_next_zero_bit(fdt->open_fds->fds_bits,
                                           fdt->max_fds, fd);

        error = expand_files(files, fd);
        if (error < 0)
                goto out;

        /*
         * If we needed to expand the fs array we
         * might have blocked - try again.
         */
        if (error)
                goto repeat;

        if (start <= files->next_fd)
                files->next_fd = fd + 1;

        FD_SET(fd, fdt->open_fds);
        if (flags & O_CLOEXEC)
                FD_SET(fd, fdt->close_on_exec);
        else
                FD_CLR(fd, fdt->close_on_exec);
        error = fd;
#if 1
        /* Sanity check */
        if (rcu_dereference(fdt->fd[fd]) != NULL) {
                printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd);
                rcu_assign_pointer(fdt->fd[fd], NULL);
        }
#endif

out:
        spin_unlock(&files->file_lock);
        return error;
}

int get_unused_fd(void)
{
        return alloc_fd(0, 0);
}
EXPORT_SYMBOL(get_unused_fd);

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading