[funini.com] -> [kei@sodan] -> Kernel Reading

root/kernel/profile.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. profile_setup
  2. profile_init
  3. profile_task_exit
  4. profile_handoff_task
  5. profile_munmap
  6. task_handoff_register
  7. task_handoff_unregister
  8. profile_event_register
  9. profile_event_unregister
  10. register_timer_hook
  11. unregister_timer_hook
  12. __profile_flip_buffers
  13. profile_flip_buffers
  14. profile_discard_flip_buffers
  15. profile_hits
  16. profile_cpu_callback
  17. profile_hits
  18. profile_tick
  19. prof_cpu_mask_read_proc
  20. prof_cpu_mask_write_proc
  21. create_prof_cpu_mask
  22. read_profile
  23. write_profile
  24. profile_nop
  25. create_hash_tables
  26. create_proc_profile

/*
 *  linux/kernel/profile.c
 *  Simple profiling. Manages a direct-mapped profile hit count buffer,
 *  with configurable resolution, support for restricting the cpus on
 *  which profiling is done, and switching between cpu time and
 *  schedule() calls via kernel command line parameters passed at boot.
 *
 *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
 *      Red Hat, July 2004
 *  Consolidation of architecture support code for profiling,
 *      William Irwin, Oracle, July 2004
 *  Amortized hit count accounting via per-cpu open-addressed hashtables
 *      to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
 */

#include <linux/module.h>
#include <linux/profile.h>
#include <linux/bootmem.h>
#include <linux/notifier.h>
#include <linux/mm.h>
#include <linux/cpumask.h>
#include <linux/cpu.h>
#include <linux/highmem.h>
#include <linux/mutex.h>
#include <asm/sections.h>
#include <asm/irq_regs.h>
#include <asm/ptrace.h>

struct profile_hit {
        u32 pc, hits;
};
#define PROFILE_GRPSHIFT        3
#define PROFILE_GRPSZ           (1 << PROFILE_GRPSHIFT)
#define NR_PROFILE_HIT          (PAGE_SIZE/sizeof(struct profile_hit))
#define NR_PROFILE_GRP          (NR_PROFILE_HIT/PROFILE_GRPSZ)

/* Oprofile timer tick hook */
static int (*timer_hook)(struct pt_regs *) __read_mostly;

static atomic_t *prof_buffer;
static unsigned long prof_len, prof_shift;

int prof_on __read_mostly;
EXPORT_SYMBOL_GPL(prof_on);

static cpumask_t prof_cpu_mask = CPU_MASK_ALL;
#ifdef CONFIG_SMP
static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
static DEFINE_PER_CPU(int, cpu_profile_flip);
static DEFINE_MUTEX(profile_flip_mutex);
#endif /* CONFIG_SMP */

static int __init profile_setup(char *str)
{
        static char __initdata schedstr[] = "schedule";
        static char __initdata sleepstr[] = "sleep";
        static char __initdata kvmstr[] = "kvm";
        int par;

        if (!strncmp(str, sleepstr, strlen(sleepstr))) {
#ifdef CONFIG_SCHEDSTATS
                prof_on = SLEEP_PROFILING;
                if (str[strlen(sleepstr)] == ',')
                        str += strlen(sleepstr) + 1;
                if (get_option(&str, &par))
                        prof_shift = par;
                printk(KERN_INFO
                        "kernel sleep profiling enabled (shift: %ld)\n",
                        prof_shift);
#else
                printk(KERN_WARNING
                        "kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
#endif /* CONFIG_SCHEDSTATS */
        } else if (!strncmp(str, schedstr, strlen(schedstr))) {
                prof_on = SCHED_PROFILING;
                if (str[strlen(schedstr)] == ',')
                        str += strlen(schedstr) + 1;
                if (get_option(&str, &par))
                        prof_shift = par;
                printk(KERN_INFO
                        "kernel schedule profiling enabled (shift: %ld)\n",
                        prof_shift);
        } else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
                prof_on = KVM_PROFILING;
                if (str[strlen(kvmstr)] == ',')
                        str += strlen(kvmstr) + 1;
                if (get_option(&str, &par))
                        prof_shift = par;
                printk(KERN_INFO
                        "kernel KVM profiling enabled (shift: %ld)\n",
                        prof_shift);
        } else if (get_option(&str, &par)) {
                prof_shift = par;
                prof_on = CPU_PROFILING;
                printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
                        prof_shift);
        }
        return 1;
}
__setup("profile=", profile_setup);


void __init profile_init(void)
{
        if (!prof_on)
                return;

        /* only text is profiled */
        prof_len = (_etext - _stext) >> prof_shift;
        prof_buffer = alloc_bootmem(prof_len*sizeof(atomic_t));
}

/* Profile event notifications */

static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
static BLOCKING_NOTIFIER_HEAD(munmap_notifier);

void profile_task_exit(struct task_struct *task)
{
        blocking_notifier_call_chain(&task_exit_notifier, 0, task);
}

int profile_handoff_task(struct task_struct *task)
{
        int ret;
        ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
        return (ret == NOTIFY_OK) ? 1 : 0;
}

void profile_munmap(unsigned long addr)
{
        blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
}

int task_handoff_register(struct notifier_block *n)
{
        return atomic_notifier_chain_register(&task_free_notifier, n);
}
EXPORT_SYMBOL_GPL(task_handoff_register);

int task_handoff_unregister(struct notifier_block *n)
{
        return atomic_notifier_chain_unregister(&task_free_notifier, n);
}
EXPORT_SYMBOL_GPL(task_handoff_unregister);

int profile_event_register(enum profile_type type, struct notifier_block *n)
{
        int err = -EINVAL;

        switch (type) {
        case PROFILE_TASK_EXIT:
                err = blocking_notifier_chain_register(
                                &task_exit_notifier, n);
                break;
        case PROFILE_MUNMAP:
                err = blocking_notifier_chain_register(
                                &munmap_notifier, n);
                break;
        }

        return err;
}
EXPORT_SYMBOL_GPL(profile_event_register);

int profile_event_unregister(enum profile_type type, struct notifier_block *n)
{
        int err = -EINVAL;

        switch (type) {
        case PROFILE_TASK_EXIT:
                err = blocking_notifier_chain_unregister(
                                &task_exit_notifier, n);
                break;
        case PROFILE_MUNMAP:
                err = blocking_notifier_chain_unregister(
                                &munmap_notifier, n);
                break;
        }

        return err;
}
EXPORT_SYMBOL_GPL(profile_event_unregister);

int register_timer_hook(int (*hook)(struct pt_regs *))
{
        if (timer_hook)
                return -EBUSY;
        timer_hook = hook;
        return 0;
}
EXPORT_SYMBOL_GPL(register_timer_hook);

void unregister_timer_hook(int (*hook)(struct pt_regs *))
{
        WARN_ON(hook != timer_hook);
        timer_hook = NULL;
        /* make sure all CPUs see the NULL hook */
        synchronize_sched();  /* Allow ongoing interrupts to complete. */
}
EXPORT_SYMBOL_GPL(unregister_timer_hook);


#ifdef CONFIG_SMP
/*
 * Each cpu has a pair of open-addressed hashtables for pending
 * profile hits. read_profile() IPI's all cpus to request them
 * to flip buffers and flushes their contents to prof_buffer itself.
 * Flip requests are serialized by the profile_flip_mutex. The sole
 * use of having a second hashtable is for avoiding cacheline
 * contention that would otherwise happen during flushes of pending
 * profile hits required for the accuracy of reported profile hits
 * and so resurrect the interrupt livelock issue.
 *
 * The open-addressed hashtables are indexed by profile buffer slot
 * and hold the number of pending hits to that profile buffer slot on
 * a cpu in an entry. When the hashtable overflows, all pending hits
 * are accounted to their corresponding profile buffer slots with
 * atomic_add() and the hashtable emptied. As numerous pending hits
 * may be accounted to a profile buffer slot in a hashtable entry,
 * this amortizes a number of atomic profile buffer increments likely
 * to be far larger than the number of entries in the hashtable,
 * particularly given that the number of distinct profile buffer
 * positions to which hits are accounted during short intervals (e.g.
 * several seconds) is usually very small. Exclusion from buffer
 * flipping is provided by interrupt disablement (note that for
 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
 * process context).
 * The hash function is meant to be lightweight as opposed to strong,
 * and was vaguely inspired by ppc64 firmware-supported inverted
 * pagetable hash functions, but uses a full hashtable full of finite
 * collision chains, not just pairs of them.
 *
 * -- wli
 */
static void __profile_flip_buffers(void *unused)
{
        int cpu = smp_processor_id();

        per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
}

static void profile_flip_buffers(void)
{
        int i, j, cpu;

        mutex_lock(&profile_flip_mutex);
        j = per_cpu(cpu_profile_flip, get_cpu());
        put_cpu();
        on_each_cpu(__profile_flip_buffers, NULL, 1);
        for_each_online_cpu(cpu) {
                struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
                for (i = 0; i < NR_PROFILE_HIT; ++i) {
                        if (!hits[i].hits) {
                                if (hits[i].pc)
                                        hits[i].pc = 0;
                                continue;
                        }
                        atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
                        hits[i].hits = hits[i].pc = 0;
                }
        }
        mutex_unlock(&profile_flip_mutex);
}

static void profile_discard_flip_buffers(void)
{
        int i, cpu;

        mutex_lock(&profile_flip_mutex);
        i = per_cpu(cpu_profile_flip, get_cpu());
        put_cpu();
        on_each_cpu(__profile_flip_buffers, NULL, 1);
        for_each_online_cpu(cpu) {
                struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
                memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
        }
        mutex_unlock(&profile_flip_mutex);
}

void profile_hits(int type, void *__pc, unsigned int nr_hits)
{
        unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
        int i, j, cpu;
        struct profile_hit *hits;

        if (prof_on != type || !prof_buffer)
                return;
        pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
        i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
        secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
        cpu = get_cpu();
        hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
        if (!hits) {
                put_cpu();
                return;
        }
        /*
         * We buffer the global profiler buffer into a per-CPU
         * queue and thus reduce the number of global (and possibly
         * NUMA-alien) accesses. The write-queue is self-coalescing:
         */
        local_irq_save(flags);
        do {
                for (j = 0; j < PROFILE_GRPSZ; ++j) {
                        if (hits[i + j].pc == pc) {
                                hits[i + j].hits += nr_hits;
                                goto out;
                        } else if (!hits[i + j].hits) {
                                hits[i + j].pc = pc;
                                hits[i + j].hits = nr_hits;
                                goto out;
                        }
                }
                i = (i + secondary) & (NR_PROFILE_HIT - 1);
        } while (i != primary);

        /*
         * Add the current hit(s) and flush the write-queue out
         * to the global buffer:
         */
        atomic_add(nr_hits, &prof_buffer[pc]);
        for (i = 0; i < NR_PROFILE_HIT; ++i) {
                atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
                hits[i].pc = hits[i].hits = 0;
        }
out:
        local_irq_restore(flags);
        put_cpu();
}

static int __devinit profile_cpu_callback(struct notifier_block *info,
                                        unsigned long action, void *__cpu)
{
        int node, cpu = (unsigned long)__cpu;
        struct page *page;

        switch (action) {
        case CPU_UP_PREPARE:
        case CPU_UP_PREPARE_FROZEN:
                node = cpu_to_node(cpu);
                per_cpu(cpu_profile_flip, cpu) = 0;
                if (!per_cpu(cpu_profile_hits, cpu)[1]) {
                        page = alloc_pages_node(node,
                                        GFP_KERNEL | __GFP_ZERO,
                                        0);
                        if (!page)
                                return NOTIFY_BAD;
                        per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
                }
                if (!per_cpu(cpu_profile_hits, cpu)[0]) {
                        page = alloc_pages_node(node,
                                        GFP_KERNEL | __GFP_ZERO,
                                        0);
                        if (!page)
                                goto out_free;
                        per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
                }
                break;
out_free:
                page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
                per_cpu(cpu_profile_hits, cpu)[1] = NULL;
                __free_page(page);
                return NOTIFY_BAD;
        case CPU_ONLINE:
        case CPU_ONLINE_FROZEN:
                cpu_set(cpu, prof_cpu_mask);
                break;
        case CPU_UP_CANCELED:
        case CPU_UP_CANCELED_FROZEN:
        case CPU_DEAD:
        case CPU_DEAD_FROZEN:
                cpu_clear(cpu, prof_cpu_mask);
                if (per_cpu(cpu_profile_hits, cpu)[0]) {
                        page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
                        per_cpu(cpu_profile_hits, cpu)[0] = NULL;
                        __free_page(page);
                }
                if (per_cpu(cpu_profile_hits, cpu)[1]) {
                        page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
                        per_cpu(cpu_profile_hits, cpu)[1] = NULL;
                        __free_page(page);
                }
                break;
        }
        return NOTIFY_OK;
}
#else /* !CONFIG_SMP */
#define profile_flip_buffers()          do { } while (0)
#define profile_discard_flip_buffers()  do { } while (0)
#define profile_cpu_callback            NULL

void profile_hits(int type, void *__pc, unsigned int nr_hits)
{
        unsigned long pc;

        if (prof_on != type || !prof_buffer)
                return;
        pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
        atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
}
#endif /* !CONFIG_SMP */
EXPORT_SYMBOL_GPL(profile_hits);

void profile_tick(int type)
{
        struct pt_regs *regs = get_irq_regs();

        if (type == CPU_PROFILING && timer_hook)
                timer_hook(regs);
        if (!user_mode(regs) && cpu_isset(smp_processor_id(), prof_cpu_mask))
                profile_hit(type, (void *)profile_pc(regs));
}

#ifdef CONFIG_PROC_FS
#include <linux/proc_fs.h>
#include <asm/uaccess.h>
#include <asm/ptrace.h>

static int prof_cpu_mask_read_proc(char *page, char **start, off_t off,
                        int count, int *eof, void *data)
{
        int len = cpumask_scnprintf(page, count, *(cpumask_t *)data);
        if (count - len < 2)
                return -EINVAL;
        len += sprintf(page + len, "\n");
        return len;
}

static int prof_cpu_mask_write_proc(struct file *file,
        const char __user *buffer,  unsigned long count, void *data)
{
        cpumask_t *mask = (cpumask_t *)data;
        unsigned long full_count = count, err;
        cpumask_t new_value;

        err = cpumask_parse_user(buffer, count, new_value);
        if (err)
                return err;

        *mask = new_value;
        return full_count;
}

void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
{
        struct proc_dir_entry *entry;

        /* create /proc/irq/prof_cpu_mask */
        entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir);
        if (!entry)
                return;
        entry->data = (void *)&prof_cpu_mask;
        entry->read_proc = prof_cpu_mask_read_proc;
        entry->write_proc = prof_cpu_mask_write_proc;
}

/*
 * This function accesses profiling information. The returned data is
 * binary: the sampling step and the actual contents of the profile
 * buffer. Use of the program readprofile is recommended in order to
 * get meaningful info out of these data.
 */
static ssize_t
read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
{
        unsigned long p = *ppos;
        ssize_t read;
        char *pnt;
        unsigned int sample_step = 1 << prof_shift;

        profile_flip_buffers();
        if (p >= (prof_len+1)*sizeof(unsigned int))
                return 0;
        if (count > (prof_len+1)*sizeof(unsigned int) - p)
                count = (prof_len+1)*sizeof(unsigned int) - p;
        read = 0;

        while (p < sizeof(unsigned int) && count > 0) {
                if (put_user(*((char *)(&sample_step)+p), buf))
                        return -EFAULT;
                buf++; p++; count--; read++;
        }
        pnt = (char *)prof_buffer + p - sizeof(atomic_t);
        if (copy_to_user(buf, (void *)pnt, count))
                return -EFAULT;
        read += count;
        *ppos += read;
        return read;
}

/*
 * Writing to /proc/profile resets the counters
 *
 * Writing a 'profiling multiplier' value into it also re-sets the profiling
 * interrupt frequency, on architectures that support this.
 */
static ssize_t write_profile(struct file *file, const char __user *buf,
                             size_t count, loff_t *ppos)
{
#ifdef CONFIG_SMP
        extern int setup_profiling_timer(unsigned int multiplier);

        if (count == sizeof(int)) {
                unsigned int multiplier;

                if (copy_from_user(&multiplier, buf, sizeof(int)))
                        return -EFAULT;

                if (setup_profiling_timer(multiplier))
                        return -EINVAL;
        }
#endif
        profile_discard_flip_buffers();
        memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
        return count;
}

static const struct file_operations proc_profile_operations = {
        .read           = read_profile,
        .write          = write_profile,
};

#ifdef CONFIG_SMP
static void __init profile_nop(void *unused)
{
}

static int __init create_hash_tables(void)
{
        int cpu;

        for_each_online_cpu(cpu) {
                int node = cpu_to_node(cpu);
                struct page *page;

                page = alloc_pages_node(node,
                                GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
                                0);
                if (!page)
                        goto out_cleanup;
                per_cpu(cpu_profile_hits, cpu)[1]
                                = (struct profile_hit *)page_address(page);
                page = alloc_pages_node(node,
                                GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
                                0);
                if (!page)
                        goto out_cleanup;
                per_cpu(cpu_profile_hits, cpu)[0]
                                = (struct profile_hit *)page_address(page);
        }
        return 0;
out_cleanup:
        prof_on = 0;
        smp_mb();
        on_each_cpu(profile_nop, NULL, 1);
        for_each_online_cpu(cpu) {
                struct page *page;

                if (per_cpu(cpu_profile_hits, cpu)[0]) {
                        page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
                        per_cpu(cpu_profile_hits, cpu)[0] = NULL;
                        __free_page(page);
                }
                if (per_cpu(cpu_profile_hits, cpu)[1]) {
                        page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
                        per_cpu(cpu_profile_hits, cpu)[1] = NULL;
                        __free_page(page);
                }
        }
        return -1;
}
#else
#define create_hash_tables()                    ({ 0; })
#endif

static int __init create_proc_profile(void)
{
        struct proc_dir_entry *entry;

        if (!prof_on)
                return 0;
        if (create_hash_tables())
                return -1;
        entry = proc_create("profile", S_IWUSR | S_IRUGO,
                            NULL, &proc_profile_operations);
        if (!entry)
                return 0;
        entry->size = (1+prof_len) * sizeof(atomic_t);
        hotcpu_notifier(profile_cpu_callback, 0);
        return 0;
}
module_init(create_proc_profile);
#endif /* CONFIG_PROC_FS */

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading