[funini.com] -> [kei@sodan] -> Kernel Reading

root/arch/x86/kernel/genx2apic_uv_x.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. uv_acpi_madt_oem_check
  2. get_uv_system_type
  3. is_uv_system
  4. uv_target_cpus
  5. uv_vector_allocation_domain
  6. uv_wakeup_secondary
  7. uv_send_IPI_one
  8. uv_send_IPI_mask
  9. uv_send_IPI_allbutself
  10. uv_send_IPI_all
  11. uv_apic_id_registered
  12. uv_init_apic_ldr
  13. uv_cpu_mask_to_apicid
  14. get_apic_id
  15. set_apic_id
  16. uv_read_apic_id
  17. phys_pkg_id
  18. uv_send_IPI_self
  19. set_x2apic_extra_bits
  20. boot_pnode_to_blade
  21. get_lowmem_redirect
  22. map_low_mmrs
  23. map_high
  24. map_gru_high
  25. map_config_high
  26. map_mmr_high
  27. map_mmioh_high
  28. uv_rtc_init
  29. uv_system_init
  30. uv_cpu_init

/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * SGI UV APIC functions (note: not an Intel compatible APIC)
 *
 * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
 */

#include <linux/kernel.h>
#include <linux/threads.h>
#include <linux/cpumask.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/bootmem.h>
#include <linux/module.h>
#include <linux/hardirq.h>
#include <asm/smp.h>
#include <asm/ipi.h>
#include <asm/genapic.h>
#include <asm/pgtable.h>
#include <asm/uv/uv_mmrs.h>
#include <asm/uv/uv_hub.h>
#include <asm/uv/bios.h>

DEFINE_PER_CPU(int, x2apic_extra_bits);

static enum uv_system_type uv_system_type;

static int __init uv_acpi_madt_oem_check(char *oem_id, char *oem_table_id)
{
        if (!strcmp(oem_id, "SGI")) {
                if (!strcmp(oem_table_id, "UVL"))
                        uv_system_type = UV_LEGACY_APIC;
                else if (!strcmp(oem_table_id, "UVX"))
                        uv_system_type = UV_X2APIC;
                else if (!strcmp(oem_table_id, "UVH")) {
                        uv_system_type = UV_NON_UNIQUE_APIC;
                        return 1;
                }
        }
        return 0;
}

enum uv_system_type get_uv_system_type(void)
{
        return uv_system_type;
}

int is_uv_system(void)
{
        return uv_system_type != UV_NONE;
}
EXPORT_SYMBOL_GPL(is_uv_system);

DEFINE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
EXPORT_PER_CPU_SYMBOL_GPL(__uv_hub_info);

struct uv_blade_info *uv_blade_info;
EXPORT_SYMBOL_GPL(uv_blade_info);

short *uv_node_to_blade;
EXPORT_SYMBOL_GPL(uv_node_to_blade);

short *uv_cpu_to_blade;
EXPORT_SYMBOL_GPL(uv_cpu_to_blade);

short uv_possible_blades;
EXPORT_SYMBOL_GPL(uv_possible_blades);

unsigned long sn_rtc_cycles_per_second;
EXPORT_SYMBOL(sn_rtc_cycles_per_second);

/* Start with all IRQs pointing to boot CPU.  IRQ balancing will shift them. */

static cpumask_t uv_target_cpus(void)
{
        return cpumask_of_cpu(0);
}

static cpumask_t uv_vector_allocation_domain(int cpu)
{
        cpumask_t domain = CPU_MASK_NONE;
        cpu_set(cpu, domain);
        return domain;
}

int uv_wakeup_secondary(int phys_apicid, unsigned int start_rip)
{
        unsigned long val;
        int pnode;

        pnode = uv_apicid_to_pnode(phys_apicid);
        val = (1UL << UVH_IPI_INT_SEND_SHFT) |
            (phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) |
            (((long)start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) |
            APIC_DM_INIT;
        uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
        mdelay(10);

        val = (1UL << UVH_IPI_INT_SEND_SHFT) |
            (phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) |
            (((long)start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) |
            APIC_DM_STARTUP;
        uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
        return 0;
}

static void uv_send_IPI_one(int cpu, int vector)
{
        unsigned long val, apicid, lapicid;
        int pnode;

        apicid = per_cpu(x86_cpu_to_apicid, cpu);
        lapicid = apicid & 0x3f;                /* ZZZ macro needed */
        pnode = uv_apicid_to_pnode(apicid);
        val =
            (1UL << UVH_IPI_INT_SEND_SHFT) | (lapicid <<
                                              UVH_IPI_INT_APIC_ID_SHFT) |
            (vector << UVH_IPI_INT_VECTOR_SHFT);
        uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
}

static void uv_send_IPI_mask(cpumask_t mask, int vector)
{
        unsigned int cpu;

        for_each_possible_cpu(cpu)
                if (cpu_isset(cpu, mask))
                        uv_send_IPI_one(cpu, vector);
}

static void uv_send_IPI_allbutself(int vector)
{
        cpumask_t mask = cpu_online_map;

        cpu_clear(smp_processor_id(), mask);

        if (!cpus_empty(mask))
                uv_send_IPI_mask(mask, vector);
}

static void uv_send_IPI_all(int vector)
{
        uv_send_IPI_mask(cpu_online_map, vector);
}

static int uv_apic_id_registered(void)
{
        return 1;
}

static void uv_init_apic_ldr(void)
{
}

static unsigned int uv_cpu_mask_to_apicid(cpumask_t cpumask)
{
        int cpu;

        /*
         * We're using fixed IRQ delivery, can only return one phys APIC ID.
         * May as well be the first.
         */
        cpu = first_cpu(cpumask);
        if ((unsigned)cpu < nr_cpu_ids)
                return per_cpu(x86_cpu_to_apicid, cpu);
        else
                return BAD_APICID;
}

static unsigned int get_apic_id(unsigned long x)
{
        unsigned int id;

        WARN_ON(preemptible() && num_online_cpus() > 1);
        id = x | __get_cpu_var(x2apic_extra_bits);

        return id;
}

static unsigned long set_apic_id(unsigned int id)
{
        unsigned long x;

        /* maskout x2apic_extra_bits ? */
        x = id;
        return x;
}

static unsigned int uv_read_apic_id(void)
{

        return get_apic_id(apic_read(APIC_ID));
}

static unsigned int phys_pkg_id(int index_msb)
{
        return uv_read_apic_id() >> index_msb;
}

static void uv_send_IPI_self(int vector)
{
        apic_write(APIC_SELF_IPI, vector);
}

struct genapic apic_x2apic_uv_x = {
        .name = "UV large system",
        .acpi_madt_oem_check = uv_acpi_madt_oem_check,
        .int_delivery_mode = dest_Fixed,
        .int_dest_mode = (APIC_DEST_PHYSICAL != 0),
        .target_cpus = uv_target_cpus,
        .vector_allocation_domain = uv_vector_allocation_domain,
        .apic_id_registered = uv_apic_id_registered,
        .init_apic_ldr = uv_init_apic_ldr,
        .send_IPI_all = uv_send_IPI_all,
        .send_IPI_allbutself = uv_send_IPI_allbutself,
        .send_IPI_mask = uv_send_IPI_mask,
        .send_IPI_self = uv_send_IPI_self,
        .cpu_mask_to_apicid = uv_cpu_mask_to_apicid,
        .phys_pkg_id = phys_pkg_id,
        .get_apic_id = get_apic_id,
        .set_apic_id = set_apic_id,
        .apic_id_mask = (0xFFFFFFFFu),
};

static __cpuinit void set_x2apic_extra_bits(int pnode)
{
        __get_cpu_var(x2apic_extra_bits) = (pnode << 6);
}

/*
 * Called on boot cpu.
 */
static __init int boot_pnode_to_blade(int pnode)
{
        int blade;

        for (blade = 0; blade < uv_num_possible_blades(); blade++)
                if (pnode == uv_blade_info[blade].pnode)
                        return blade;
        BUG();
}

struct redir_addr {
        unsigned long redirect;
        unsigned long alias;
};

#define DEST_SHIFT UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR_DEST_BASE_SHFT

static __initdata struct redir_addr redir_addrs[] = {
        {UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR, UVH_SI_ALIAS0_OVERLAY_CONFIG},
        {UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_1_MMR, UVH_SI_ALIAS1_OVERLAY_CONFIG},
        {UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_2_MMR, UVH_SI_ALIAS2_OVERLAY_CONFIG},
};

static __init void get_lowmem_redirect(unsigned long *base, unsigned long *size)
{
        union uvh_si_alias0_overlay_config_u alias;
        union uvh_rh_gam_alias210_redirect_config_2_mmr_u redirect;
        int i;

        for (i = 0; i < ARRAY_SIZE(redir_addrs); i++) {
                alias.v = uv_read_local_mmr(redir_addrs[i].alias);
                if (alias.s.base == 0) {
                        *size = (1UL << alias.s.m_alias);
                        redirect.v = uv_read_local_mmr(redir_addrs[i].redirect);
                        *base = (unsigned long)redirect.s.dest_base << DEST_SHIFT;
                        return;
                }
        }
        BUG();
}

static __init void map_low_mmrs(void)
{
        init_extra_mapping_uc(UV_GLOBAL_MMR32_BASE, UV_GLOBAL_MMR32_SIZE);
        init_extra_mapping_uc(UV_LOCAL_MMR_BASE, UV_LOCAL_MMR_SIZE);
}

enum map_type {map_wb, map_uc};

static __init void map_high(char *id, unsigned long base, int shift,
                            int max_pnode, enum map_type map_type)
{
        unsigned long bytes, paddr;

        paddr = base << shift;
        bytes = (1UL << shift) * (max_pnode + 1);
        printk(KERN_INFO "UV: Map %s_HI 0x%lx - 0x%lx\n", id, paddr,
                                                paddr + bytes);
        if (map_type == map_uc)
                init_extra_mapping_uc(paddr, bytes);
        else
                init_extra_mapping_wb(paddr, bytes);

}
static __init void map_gru_high(int max_pnode)
{
        union uvh_rh_gam_gru_overlay_config_mmr_u gru;
        int shift = UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR_BASE_SHFT;

        gru.v = uv_read_local_mmr(UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR);
        if (gru.s.enable)
                map_high("GRU", gru.s.base, shift, max_pnode, map_wb);
}

static __init void map_config_high(int max_pnode)
{
        union uvh_rh_gam_cfg_overlay_config_mmr_u cfg;
        int shift = UVH_RH_GAM_CFG_OVERLAY_CONFIG_MMR_BASE_SHFT;

        cfg.v = uv_read_local_mmr(UVH_RH_GAM_CFG_OVERLAY_CONFIG_MMR);
        if (cfg.s.enable)
                map_high("CONFIG", cfg.s.base, shift, max_pnode, map_uc);
}

static __init void map_mmr_high(int max_pnode)
{
        union uvh_rh_gam_mmr_overlay_config_mmr_u mmr;
        int shift = UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR_BASE_SHFT;

        mmr.v = uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR);
        if (mmr.s.enable)
                map_high("MMR", mmr.s.base, shift, max_pnode, map_uc);
}

static __init void map_mmioh_high(int max_pnode)
{
        union uvh_rh_gam_mmioh_overlay_config_mmr_u mmioh;
        int shift = UVH_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR_BASE_SHFT;

        mmioh.v = uv_read_local_mmr(UVH_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR);
        if (mmioh.s.enable)
                map_high("MMIOH", mmioh.s.base, shift, max_pnode, map_uc);
}

static __init void uv_rtc_init(void)
{
        long status, ticks_per_sec, drift;

        status =
            x86_bios_freq_base(BIOS_FREQ_BASE_REALTIME_CLOCK, &ticks_per_sec,
                                        &drift);
        if (status != 0 || ticks_per_sec < 100000) {
                printk(KERN_WARNING
                        "unable to determine platform RTC clock frequency, "
                        "guessing.\n");
                /* BIOS gives wrong value for clock freq. so guess */
                sn_rtc_cycles_per_second = 1000000000000UL / 30000UL;
        } else
                sn_rtc_cycles_per_second = ticks_per_sec;
}

static bool uv_system_inited;

void __init uv_system_init(void)
{
        union uvh_si_addr_map_config_u m_n_config;
        union uvh_node_id_u node_id;
        unsigned long gnode_upper, lowmem_redir_base, lowmem_redir_size;
        int bytes, nid, cpu, lcpu, pnode, blade, i, j, m_val, n_val;
        int max_pnode = 0;
        unsigned long mmr_base, present;

        map_low_mmrs();

        m_n_config.v = uv_read_local_mmr(UVH_SI_ADDR_MAP_CONFIG);
        m_val = m_n_config.s.m_skt;
        n_val = m_n_config.s.n_skt;
        mmr_base =
            uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR) &
            ~UV_MMR_ENABLE;
        printk(KERN_DEBUG "UV: global MMR base 0x%lx\n", mmr_base);

        for(i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++)
                uv_possible_blades +=
                  hweight64(uv_read_local_mmr( UVH_NODE_PRESENT_TABLE + i * 8));
        printk(KERN_DEBUG "UV: Found %d blades\n", uv_num_possible_blades());

        bytes = sizeof(struct uv_blade_info) * uv_num_possible_blades();
        uv_blade_info = alloc_bootmem_pages(bytes);

        get_lowmem_redirect(&lowmem_redir_base, &lowmem_redir_size);

        bytes = sizeof(uv_node_to_blade[0]) * num_possible_nodes();
        uv_node_to_blade = alloc_bootmem_pages(bytes);
        memset(uv_node_to_blade, 255, bytes);

        bytes = sizeof(uv_cpu_to_blade[0]) * num_possible_cpus();
        uv_cpu_to_blade = alloc_bootmem_pages(bytes);
        memset(uv_cpu_to_blade, 255, bytes);

        blade = 0;
        for (i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++) {
                present = uv_read_local_mmr(UVH_NODE_PRESENT_TABLE + i * 8);
                for (j = 0; j < 64; j++) {
                        if (!test_bit(j, &present))
                                continue;
                        uv_blade_info[blade].pnode = (i * 64 + j);
                        uv_blade_info[blade].nr_possible_cpus = 0;
                        uv_blade_info[blade].nr_online_cpus = 0;
                        blade++;
                }
        }

        node_id.v = uv_read_local_mmr(UVH_NODE_ID);
        gnode_upper = (((unsigned long)node_id.s.node_id) &
                       ~((1 << n_val) - 1)) << m_val;

        uv_rtc_init();

        for_each_present_cpu(cpu) {
                nid = cpu_to_node(cpu);
                pnode = uv_apicid_to_pnode(per_cpu(x86_cpu_to_apicid, cpu));
                blade = boot_pnode_to_blade(pnode);
                lcpu = uv_blade_info[blade].nr_possible_cpus;
                uv_blade_info[blade].nr_possible_cpus++;

                uv_cpu_hub_info(cpu)->lowmem_remap_base = lowmem_redir_base;
                uv_cpu_hub_info(cpu)->lowmem_remap_top =
                                        lowmem_redir_base + lowmem_redir_size;
                uv_cpu_hub_info(cpu)->m_val = m_val;
                uv_cpu_hub_info(cpu)->n_val = m_val;
                uv_cpu_hub_info(cpu)->numa_blade_id = blade;
                uv_cpu_hub_info(cpu)->blade_processor_id = lcpu;
                uv_cpu_hub_info(cpu)->pnode = pnode;
                uv_cpu_hub_info(cpu)->pnode_mask = (1 << n_val) - 1;
                uv_cpu_hub_info(cpu)->gpa_mask = (1 << (m_val + n_val)) - 1;
                uv_cpu_hub_info(cpu)->gnode_upper = gnode_upper;
                uv_cpu_hub_info(cpu)->global_mmr_base = mmr_base;
                uv_cpu_hub_info(cpu)->coherency_domain_number = 0;/* ZZZ */
                uv_node_to_blade[nid] = blade;
                uv_cpu_to_blade[cpu] = blade;
                max_pnode = max(pnode, max_pnode);

                printk(KERN_DEBUG "UV: cpu %d, apicid 0x%x, pnode %d, nid %d, "
                        "lcpu %d, blade %d\n",
                        cpu, per_cpu(x86_cpu_to_apicid, cpu), pnode, nid,
                        lcpu, blade);
        }

        map_gru_high(max_pnode);
        map_mmr_high(max_pnode);
        map_config_high(max_pnode);
        map_mmioh_high(max_pnode);
        uv_system_inited = true;
}

/*
 * Called on each cpu to initialize the per_cpu UV data area.
 *      ZZZ hotplug not supported yet
 */
void __cpuinit uv_cpu_init(void)
{
        BUG_ON(!uv_system_inited);

        uv_blade_info[uv_numa_blade_id()].nr_online_cpus++;

        if (get_uv_system_type() == UV_NON_UNIQUE_APIC)
                set_x2apic_extra_bits(uv_hub_info->pnode);
}



/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading