[funini.com] -> [kei@sodan] -> Kernel Reading

root/arch/x86/kvm/i8254.c

/* [<][>][^][v][top][bottom][index][help] */

DEFINITIONS

This source file includes following definitions.
  1. muldiv64
  2. pit_set_gate
  3. pit_get_gate
  4. pit_get_count
  5. pit_get_out
  6. pit_latch_count
  7. pit_latch_status
  8. __pit_timer_fn
  9. pit_has_pending_timer
  10. pit_timer_fn
  11. __kvm_migrate_pit_timer
  12. destroy_pit_timer
  13. create_pit_timer
  14. pit_load_count
  15. kvm_pit_load_count
  16. pit_ioport_write
  17. pit_ioport_read
  18. pit_in_range
  19. speaker_ioport_write
  20. speaker_ioport_read
  21. speaker_in_range
  22. kvm_pit_reset
  23. kvm_create_pit
  24. kvm_free_pit
  25. __inject_pit_timer_intr
  26. kvm_inject_pit_timer_irqs
  27. kvm_pit_timer_intr_post

/*
 * 8253/8254 interval timer emulation
 *
 * Copyright (c) 2003-2004 Fabrice Bellard
 * Copyright (c) 2006 Intel Corporation
 * Copyright (c) 2007 Keir Fraser, XenSource Inc
 * Copyright (c) 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 * Authors:
 *   Sheng Yang <sheng.yang@intel.com>
 *   Based on QEMU and Xen.
 */

#include <linux/kvm_host.h>

#include "irq.h"
#include "i8254.h"

#ifndef CONFIG_X86_64
#define mod_64(x, y) ((x) - (y) * div64_u64(x, y))
#else
#define mod_64(x, y) ((x) % (y))
#endif

#define RW_STATE_LSB 1
#define RW_STATE_MSB 2
#define RW_STATE_WORD0 3
#define RW_STATE_WORD1 4

/* Compute with 96 bit intermediate result: (a*b)/c */
static u64 muldiv64(u64 a, u32 b, u32 c)
{
        union {
                u64 ll;
                struct {
                        u32 low, high;
                } l;
        } u, res;
        u64 rl, rh;

        u.ll = a;
        rl = (u64)u.l.low * (u64)b;
        rh = (u64)u.l.high * (u64)b;
        rh += (rl >> 32);
        res.l.high = div64_u64(rh, c);
        res.l.low = div64_u64(((mod_64(rh, c) << 32) + (rl & 0xffffffff)), c);
        return res.ll;
}

static void pit_set_gate(struct kvm *kvm, int channel, u32 val)
{
        struct kvm_kpit_channel_state *c =
                &kvm->arch.vpit->pit_state.channels[channel];

        WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));

        switch (c->mode) {
        default:
        case 0:
        case 4:
                /* XXX: just disable/enable counting */
                break;
        case 1:
        case 2:
        case 3:
        case 5:
                /* Restart counting on rising edge. */
                if (c->gate < val)
                        c->count_load_time = ktime_get();
                break;
        }

        c->gate = val;
}

static int pit_get_gate(struct kvm *kvm, int channel)
{
        WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));

        return kvm->arch.vpit->pit_state.channels[channel].gate;
}

static int pit_get_count(struct kvm *kvm, int channel)
{
        struct kvm_kpit_channel_state *c =
                &kvm->arch.vpit->pit_state.channels[channel];
        s64 d, t;
        int counter;

        WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));

        t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
        d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);

        switch (c->mode) {
        case 0:
        case 1:
        case 4:
        case 5:
                counter = (c->count - d) & 0xffff;
                break;
        case 3:
                /* XXX: may be incorrect for odd counts */
                counter = c->count - (mod_64((2 * d), c->count));
                break;
        default:
                counter = c->count - mod_64(d, c->count);
                break;
        }
        return counter;
}

static int pit_get_out(struct kvm *kvm, int channel)
{
        struct kvm_kpit_channel_state *c =
                &kvm->arch.vpit->pit_state.channels[channel];
        s64 d, t;
        int out;

        WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));

        t = ktime_to_ns(ktime_sub(ktime_get(), c->count_load_time));
        d = muldiv64(t, KVM_PIT_FREQ, NSEC_PER_SEC);

        switch (c->mode) {
        default:
        case 0:
                out = (d >= c->count);
                break;
        case 1:
                out = (d < c->count);
                break;
        case 2:
                out = ((mod_64(d, c->count) == 0) && (d != 0));
                break;
        case 3:
                out = (mod_64(d, c->count) < ((c->count + 1) >> 1));
                break;
        case 4:
        case 5:
                out = (d == c->count);
                break;
        }

        return out;
}

static void pit_latch_count(struct kvm *kvm, int channel)
{
        struct kvm_kpit_channel_state *c =
                &kvm->arch.vpit->pit_state.channels[channel];

        WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));

        if (!c->count_latched) {
                c->latched_count = pit_get_count(kvm, channel);
                c->count_latched = c->rw_mode;
        }
}

static void pit_latch_status(struct kvm *kvm, int channel)
{
        struct kvm_kpit_channel_state *c =
                &kvm->arch.vpit->pit_state.channels[channel];

        WARN_ON(!mutex_is_locked(&kvm->arch.vpit->pit_state.lock));

        if (!c->status_latched) {
                /* TODO: Return NULL COUNT (bit 6). */
                c->status = ((pit_get_out(kvm, channel) << 7) |
                                (c->rw_mode << 4) |
                                (c->mode << 1) |
                                c->bcd);
                c->status_latched = 1;
        }
}

static int __pit_timer_fn(struct kvm_kpit_state *ps)
{
        struct kvm_vcpu *vcpu0 = ps->pit->kvm->vcpus[0];
        struct kvm_kpit_timer *pt = &ps->pit_timer;

        if (!atomic_inc_and_test(&pt->pending))
                set_bit(KVM_REQ_PENDING_TIMER, &vcpu0->requests);
        if (vcpu0 && waitqueue_active(&vcpu0->wq)) {
                vcpu0->arch.mp_state = KVM_MP_STATE_RUNNABLE;
                wake_up_interruptible(&vcpu0->wq);
        }

        pt->timer.expires = ktime_add_ns(pt->timer.expires, pt->period);
        pt->scheduled = ktime_to_ns(pt->timer.expires);

        return (pt->period == 0 ? 0 : 1);
}

int pit_has_pending_timer(struct kvm_vcpu *vcpu)
{
        struct kvm_pit *pit = vcpu->kvm->arch.vpit;

        if (pit && vcpu->vcpu_id == 0 && pit->pit_state.inject_pending)
                return atomic_read(&pit->pit_state.pit_timer.pending);

        return 0;
}

static enum hrtimer_restart pit_timer_fn(struct hrtimer *data)
{
        struct kvm_kpit_state *ps;
        int restart_timer = 0;

        ps = container_of(data, struct kvm_kpit_state, pit_timer.timer);

        restart_timer = __pit_timer_fn(ps);

        if (restart_timer)
                return HRTIMER_RESTART;
        else
                return HRTIMER_NORESTART;
}

void __kvm_migrate_pit_timer(struct kvm_vcpu *vcpu)
{
        struct kvm_pit *pit = vcpu->kvm->arch.vpit;
        struct hrtimer *timer;

        if (vcpu->vcpu_id != 0 || !pit)
                return;

        timer = &pit->pit_state.pit_timer.timer;
        if (hrtimer_cancel(timer))
                hrtimer_start(timer, timer->expires, HRTIMER_MODE_ABS);
}

static void destroy_pit_timer(struct kvm_kpit_timer *pt)
{
        pr_debug("pit: execute del timer!\n");
        hrtimer_cancel(&pt->timer);
}

static void create_pit_timer(struct kvm_kpit_timer *pt, u32 val, int is_period)
{
        s64 interval;

        interval = muldiv64(val, NSEC_PER_SEC, KVM_PIT_FREQ);

        pr_debug("pit: create pit timer, interval is %llu nsec\n", interval);

        /* TODO The new value only affected after the retriggered */
        hrtimer_cancel(&pt->timer);
        pt->period = (is_period == 0) ? 0 : interval;
        pt->timer.function = pit_timer_fn;
        atomic_set(&pt->pending, 0);

        hrtimer_start(&pt->timer, ktime_add_ns(ktime_get(), interval),
                      HRTIMER_MODE_ABS);
}

static void pit_load_count(struct kvm *kvm, int channel, u32 val)
{
        struct kvm_kpit_state *ps = &kvm->arch.vpit->pit_state;

        WARN_ON(!mutex_is_locked(&ps->lock));

        pr_debug("pit: load_count val is %d, channel is %d\n", val, channel);

        /*
         * Though spec said the state of 8254 is undefined after power-up,
         * seems some tricky OS like Windows XP depends on IRQ0 interrupt
         * when booting up.
         * So here setting initialize rate for it, and not a specific number
         */
        if (val == 0)
                val = 0x10000;

        ps->channels[channel].count_load_time = ktime_get();
        ps->channels[channel].count = val;

        if (channel != 0)
                return;

        /* Two types of timer
         * mode 1 is one shot, mode 2 is period, otherwise del timer */
        switch (ps->channels[0].mode) {
        case 1:
        /* FIXME: enhance mode 4 precision */
        case 4:
                create_pit_timer(&ps->pit_timer, val, 0);
                break;
        case 2:
        case 3:
                create_pit_timer(&ps->pit_timer, val, 1);
                break;
        default:
                destroy_pit_timer(&ps->pit_timer);
        }
}

void kvm_pit_load_count(struct kvm *kvm, int channel, u32 val)
{
        mutex_lock(&kvm->arch.vpit->pit_state.lock);
        pit_load_count(kvm, channel, val);
        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
}

static void pit_ioport_write(struct kvm_io_device *this,
                             gpa_t addr, int len, const void *data)
{
        struct kvm_pit *pit = (struct kvm_pit *)this->private;
        struct kvm_kpit_state *pit_state = &pit->pit_state;
        struct kvm *kvm = pit->kvm;
        int channel, access;
        struct kvm_kpit_channel_state *s;
        u32 val = *(u32 *) data;

        val  &= 0xff;
        addr &= KVM_PIT_CHANNEL_MASK;

        mutex_lock(&pit_state->lock);

        if (val != 0)
                pr_debug("pit: write addr is 0x%x, len is %d, val is 0x%x\n",
                          (unsigned int)addr, len, val);

        if (addr == 3) {
                channel = val >> 6;
                if (channel == 3) {
                        /* Read-Back Command. */
                        for (channel = 0; channel < 3; channel++) {
                                s = &pit_state->channels[channel];
                                if (val & (2 << channel)) {
                                        if (!(val & 0x20))
                                                pit_latch_count(kvm, channel);
                                        if (!(val & 0x10))
                                                pit_latch_status(kvm, channel);
                                }
                        }
                } else {
                        /* Select Counter <channel>. */
                        s = &pit_state->channels[channel];
                        access = (val >> 4) & KVM_PIT_CHANNEL_MASK;
                        if (access == 0) {
                                pit_latch_count(kvm, channel);
                        } else {
                                s->rw_mode = access;
                                s->read_state = access;
                                s->write_state = access;
                                s->mode = (val >> 1) & 7;
                                if (s->mode > 5)
                                        s->mode -= 4;
                                s->bcd = val & 1;
                        }
                }
        } else {
                /* Write Count. */
                s = &pit_state->channels[addr];
                switch (s->write_state) {
                default:
                case RW_STATE_LSB:
                        pit_load_count(kvm, addr, val);
                        break;
                case RW_STATE_MSB:
                        pit_load_count(kvm, addr, val << 8);
                        break;
                case RW_STATE_WORD0:
                        s->write_latch = val;
                        s->write_state = RW_STATE_WORD1;
                        break;
                case RW_STATE_WORD1:
                        pit_load_count(kvm, addr, s->write_latch | (val << 8));
                        s->write_state = RW_STATE_WORD0;
                        break;
                }
        }

        mutex_unlock(&pit_state->lock);
}

static void pit_ioport_read(struct kvm_io_device *this,
                            gpa_t addr, int len, void *data)
{
        struct kvm_pit *pit = (struct kvm_pit *)this->private;
        struct kvm_kpit_state *pit_state = &pit->pit_state;
        struct kvm *kvm = pit->kvm;
        int ret, count;
        struct kvm_kpit_channel_state *s;

        addr &= KVM_PIT_CHANNEL_MASK;
        s = &pit_state->channels[addr];

        mutex_lock(&pit_state->lock);

        if (s->status_latched) {
                s->status_latched = 0;
                ret = s->status;
        } else if (s->count_latched) {
                switch (s->count_latched) {
                default:
                case RW_STATE_LSB:
                        ret = s->latched_count & 0xff;
                        s->count_latched = 0;
                        break;
                case RW_STATE_MSB:
                        ret = s->latched_count >> 8;
                        s->count_latched = 0;
                        break;
                case RW_STATE_WORD0:
                        ret = s->latched_count & 0xff;
                        s->count_latched = RW_STATE_MSB;
                        break;
                }
        } else {
                switch (s->read_state) {
                default:
                case RW_STATE_LSB:
                        count = pit_get_count(kvm, addr);
                        ret = count & 0xff;
                        break;
                case RW_STATE_MSB:
                        count = pit_get_count(kvm, addr);
                        ret = (count >> 8) & 0xff;
                        break;
                case RW_STATE_WORD0:
                        count = pit_get_count(kvm, addr);
                        ret = count & 0xff;
                        s->read_state = RW_STATE_WORD1;
                        break;
                case RW_STATE_WORD1:
                        count = pit_get_count(kvm, addr);
                        ret = (count >> 8) & 0xff;
                        s->read_state = RW_STATE_WORD0;
                        break;
                }
        }

        if (len > sizeof(ret))
                len = sizeof(ret);
        memcpy(data, (char *)&ret, len);

        mutex_unlock(&pit_state->lock);
}

static int pit_in_range(struct kvm_io_device *this, gpa_t addr,
                        int len, int is_write)
{
        return ((addr >= KVM_PIT_BASE_ADDRESS) &&
                (addr < KVM_PIT_BASE_ADDRESS + KVM_PIT_MEM_LENGTH));
}

static void speaker_ioport_write(struct kvm_io_device *this,
                                 gpa_t addr, int len, const void *data)
{
        struct kvm_pit *pit = (struct kvm_pit *)this->private;
        struct kvm_kpit_state *pit_state = &pit->pit_state;
        struct kvm *kvm = pit->kvm;
        u32 val = *(u32 *) data;

        mutex_lock(&pit_state->lock);
        pit_state->speaker_data_on = (val >> 1) & 1;
        pit_set_gate(kvm, 2, val & 1);
        mutex_unlock(&pit_state->lock);
}

static void speaker_ioport_read(struct kvm_io_device *this,
                                gpa_t addr, int len, void *data)
{
        struct kvm_pit *pit = (struct kvm_pit *)this->private;
        struct kvm_kpit_state *pit_state = &pit->pit_state;
        struct kvm *kvm = pit->kvm;
        unsigned int refresh_clock;
        int ret;

        /* Refresh clock toggles at about 15us. We approximate as 2^14ns. */
        refresh_clock = ((unsigned int)ktime_to_ns(ktime_get()) >> 14) & 1;

        mutex_lock(&pit_state->lock);
        ret = ((pit_state->speaker_data_on << 1) | pit_get_gate(kvm, 2) |
                (pit_get_out(kvm, 2) << 5) | (refresh_clock << 4));
        if (len > sizeof(ret))
                len = sizeof(ret);
        memcpy(data, (char *)&ret, len);
        mutex_unlock(&pit_state->lock);
}

static int speaker_in_range(struct kvm_io_device *this, gpa_t addr,
                            int len, int is_write)
{
        return (addr == KVM_SPEAKER_BASE_ADDRESS);
}

void kvm_pit_reset(struct kvm_pit *pit)
{
        int i;
        struct kvm_kpit_channel_state *c;

        mutex_lock(&pit->pit_state.lock);
        for (i = 0; i < 3; i++) {
                c = &pit->pit_state.channels[i];
                c->mode = 0xff;
                c->gate = (i != 2);
                pit_load_count(pit->kvm, i, 0);
        }
        mutex_unlock(&pit->pit_state.lock);

        atomic_set(&pit->pit_state.pit_timer.pending, 0);
        pit->pit_state.inject_pending = 1;
}

struct kvm_pit *kvm_create_pit(struct kvm *kvm)
{
        struct kvm_pit *pit;
        struct kvm_kpit_state *pit_state;

        pit = kzalloc(sizeof(struct kvm_pit), GFP_KERNEL);
        if (!pit)
                return NULL;

        mutex_init(&pit->pit_state.lock);
        mutex_lock(&pit->pit_state.lock);

        /* Initialize PIO device */
        pit->dev.read = pit_ioport_read;
        pit->dev.write = pit_ioport_write;
        pit->dev.in_range = pit_in_range;
        pit->dev.private = pit;
        kvm_io_bus_register_dev(&kvm->pio_bus, &pit->dev);

        pit->speaker_dev.read = speaker_ioport_read;
        pit->speaker_dev.write = speaker_ioport_write;
        pit->speaker_dev.in_range = speaker_in_range;
        pit->speaker_dev.private = pit;
        kvm_io_bus_register_dev(&kvm->pio_bus, &pit->speaker_dev);

        kvm->arch.vpit = pit;
        pit->kvm = kvm;

        pit_state = &pit->pit_state;
        pit_state->pit = pit;
        hrtimer_init(&pit_state->pit_timer.timer,
                     CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
        mutex_unlock(&pit->pit_state.lock);

        kvm_pit_reset(pit);

        return pit;
}

void kvm_free_pit(struct kvm *kvm)
{
        struct hrtimer *timer;

        if (kvm->arch.vpit) {
                mutex_lock(&kvm->arch.vpit->pit_state.lock);
                timer = &kvm->arch.vpit->pit_state.pit_timer.timer;
                hrtimer_cancel(timer);
                mutex_unlock(&kvm->arch.vpit->pit_state.lock);
                kfree(kvm->arch.vpit);
        }
}

static void __inject_pit_timer_intr(struct kvm *kvm)
{
        mutex_lock(&kvm->lock);
        kvm_ioapic_set_irq(kvm->arch.vioapic, 0, 1);
        kvm_ioapic_set_irq(kvm->arch.vioapic, 0, 0);
        kvm_pic_set_irq(pic_irqchip(kvm), 0, 1);
        kvm_pic_set_irq(pic_irqchip(kvm), 0, 0);
        mutex_unlock(&kvm->lock);
}

void kvm_inject_pit_timer_irqs(struct kvm_vcpu *vcpu)
{
        struct kvm_pit *pit = vcpu->kvm->arch.vpit;
        struct kvm *kvm = vcpu->kvm;
        struct kvm_kpit_state *ps;

        if (vcpu && pit) {
                ps = &pit->pit_state;

                /* Try to inject pending interrupts when:
                 * 1. Pending exists
                 * 2. Last interrupt was accepted or waited for too long time*/
                if (atomic_read(&ps->pit_timer.pending) &&
                    (ps->inject_pending ||
                    (jiffies - ps->last_injected_time
                                >= KVM_MAX_PIT_INTR_INTERVAL))) {
                        ps->inject_pending = 0;
                        __inject_pit_timer_intr(kvm);
                        ps->last_injected_time = jiffies;
                }
        }
}

void kvm_pit_timer_intr_post(struct kvm_vcpu *vcpu, int vec)
{
        struct kvm_arch *arch = &vcpu->kvm->arch;
        struct kvm_kpit_state *ps;

        if (vcpu && arch->vpit) {
                ps = &arch->vpit->pit_state;
                if (atomic_read(&ps->pit_timer.pending) &&
                (((arch->vpic->pics[0].imr & 1) == 0 &&
                  arch->vpic->pics[0].irq_base == vec) ||
                  (arch->vioapic->redirtbl[0].fields.vector == vec &&
                  arch->vioapic->redirtbl[0].fields.mask != 1))) {
                        ps->inject_pending = 1;
                        atomic_dec(&ps->pit_timer.pending);
                        ps->channels[0].count_load_time = ktime_get();
                }
        }
}

/* [<][>][^][v][top][bottom][index][help] */

[funini.com] -> [kei@sodan] -> Kernel Reading